JP2013190194A - Method for reducing fuel consumption and emission gas of gas combustion apparatus - Google Patents

Method for reducing fuel consumption and emission gas of gas combustion apparatus Download PDF

Info

Publication number
JP2013190194A
JP2013190194A JP2012084310A JP2012084310A JP2013190194A JP 2013190194 A JP2013190194 A JP 2013190194A JP 2012084310 A JP2012084310 A JP 2012084310A JP 2012084310 A JP2012084310 A JP 2012084310A JP 2013190194 A JP2013190194 A JP 2013190194A
Authority
JP
Japan
Prior art keywords
gas
water
flow passage
gaseous
lpg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012084310A
Other languages
Japanese (ja)
Inventor
Satoru Tashiro
哲 田代
Tsuyoshi Kubota
強 久保田
Yukio Akuzawa
幸雄 阿久澤
Katsuo Matsuzawa
勝男 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012084310A priority Critical patent/JP2013190194A/en
Publication of JP2013190194A publication Critical patent/JP2013190194A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings

Abstract

PROBLEM TO BE SOLVED: To provide a method for significantly reducing fuel consumption and emission gas of a gas boiler or a combustion apparatus.SOLUTION: A boiler, a turbine or a household gas combustion apparatus includes: a gas burner having a gas flow passage disposed at the center thereof and an air flow passage in an outer periphery of the gas flow passage; and a dispersion mixing module disposed at an inlet of the gas flow passage for uniformly dispersing and mixing city gas or LPG supplied from a supply port with electrostatically atomized gaseous ultrafine particulate water. In the dispersion mixing module, gaseous ultrafine particulate water having a particle diameter of 10 to 20 nm produced by electrostatic atomization in a gaseous ultrafine particulate water generator comprising interdigital electrodes is mixed in a percentage of 20 to 50 vol.% in city gas or LPG, and the mixed gas is combusted.

Description

本発明は都市ガス、天然ガス、LPG等のガス類を燃焼使用するボイラーや家庭用風呂釜、給湯器、暖房機具等の燃焼機器において、燃費の大幅な低減化及び排気ガスの削減化を可能とするガス燃焼機器の燃費低減化及び排気ガス削減化方法に関するものである。  The present invention can significantly reduce fuel consumption and exhaust gas in combustion equipment such as boilers, household baths, hot water heaters, and heating appliances that burn and use city gas, natural gas, LPG, and other gases. The present invention relates to a method for reducing fuel consumption and exhaust gas in a gas combustion device.

経済発展の背景には膨大なエネルギーの消費が付帯するもので、今日までの先進諸国の経済発展には主にその消費エネルギー源として石油類が消費されて来たものであって、この膨大量の石油類の消費に伴い一方においては資源の枯渇化が進み且他方においてはその燃焼消費に伴い排出された排気ガス等により環境汚染も極限にまで至っており、健康被害の多発はもとより地球規模での温暖化の促進とこれに伴う異常気象による農作物の育成不良ばかりか、集中豪雨の頻発と河川の氾濫や道路や家屋の冠水も多発しこれによる損害は莫大なものに至っている。  The background of economic development comes with enormous energy consumption, and the economic development of developed countries to date has been mainly due to the consumption of petroleum as a source of energy consumption. With the consumption of petroleum, the depletion of resources has progressed on the one hand, and on the other hand, environmental pollution has reached its limit due to exhaust gases etc. emitted from its combustion consumption. In addition to the poor growth of crops due to the promotion of global warming and the accompanying abnormal weather, frequent heavy rains, flooding of rivers and flooding of roads and houses have resulted in tremendous damage.

そして一方におけるこれら資源の枯渇化や、その燃焼消費により排出された膨大量の排気ガスを初めとする温暖化ガス等による環境汚染は、いわば先進諸国の経済発展におけるエネルギー消費の痕跡に過ぎず、寧ろ今後においては更なる経済規模の大きな新興国の経済発展に伴って莫大な消費により招来される資源の枯渇化への対処や、その燃焼使用により排出される排気ガス等による環境汚染の拡大防止対策が緊急且最大の課題として提起されている。  And on the other hand, the depletion of these resources and the environmental pollution caused by greenhouse gases such as the huge amount of exhaust gas emitted from the combustion consumption are just traces of energy consumption in the economic development of developed countries. Rather, in the future, we will deal with the depletion of resources caused by enormous consumption in connection with the economic development of emerging economies with even larger economies, and prevent the expansion of environmental pollution caused by exhaust gases emitted from the use of combustion. Countermeasures are raised as an urgent and greatest issue.

かくしてなる課題に対処する手段としては、資源の枯渇化に対しては燃焼源を石油類から天然ガス類に積極的に転換させることと共に、エネルギーの獲得手段を燃焼方式から電力方式に転換することも推進されつつある。
しかしながら石油類を天然ガス類に転換させても、先進国や新興国の莫大な消費に際しては依然として天然資源の枯渇化を抱える結果となる。更に電力方式においても膨大数に亘る電力供給施設の形成はもとより、実用使用に際しては未だに熱変換効率やエネルギー変換効率が悪いばかりか、車輌等の移動体においては長時の充電時間と且充電設備の整備も莫大な投資が要請される。
As a means to deal with these issues, in order to deplete resources, the combustion source should be actively switched from petroleum to natural gas, and the energy acquisition means should be switched from the combustion method to the power method. Is also being promoted.
However, even if oils are converted to natural gas, natural resources will still be depleted during the huge consumption of developed and emerging countries. In addition to the formation of a huge number of power supply facilities in the power system, not only the heat conversion efficiency and energy conversion efficiency are still poor for practical use, but also the charging time and long charging time for mobile objects such as vehicles. As a result, enormous investment is required.

これがため発明者等は石油類に対して水を、望ましくは20乃至50容量%割合で分散混合せしめて水の水蒸気改質反応や水性ガス反応を促進活用せしめて、燃焼エネルギーを高めつつ石油類の消費低減と排気ガスの削減を実現することを究明し、その内容については先願として特願2010−196154号か、特願2010−246834号或いは特願2010−264312号等で開示している。
ところで環境汚染防止のための排気ガス削減は、国内的にも炭酸ガス排出税の創設気運を初め、22年4月から東京都において温暖化ガス排出規制が実施され、且23年度からは他県でも規制の実施が予定されている。加えて炭酸ガス総排出量の略30%が家庭生活から排出されるものであることから、京都市に次いで広島市でも排出削減に対しクレジット制を実施するに至っている。
For this reason, the inventors have dispersed and mixed water with petroleum, preferably 20 to 50% by volume to promote the steam reforming reaction and water gas reaction of water, thereby increasing the combustion energy and increasing the petroleum energy. To reduce the consumption of exhaust gas and reduce exhaust gas, the contents of which are disclosed in Japanese Patent Application Nos. 2010-196154, 2010-246834, 2010-264312, etc. as prior applications .
By the way, in order to reduce exhaust gas to prevent environmental pollution, carbon dioxide emission tax was established in Japan, and greenhouse gas emission regulations were implemented in Tokyo in April 2010. However, regulations are scheduled to be implemented. In addition, approximately 30% of total carbon dioxide emissions are emitted from household life, so in Hiroshima City following Kyoto City, a credit system has been implemented to reduce emissions.

而して家庭生活から排出される炭酸ガス等の主たる排出は風呂釜や給湯器或いは暖房機等であって、これらは今日では都市ガスやLPGガスを専ら燃焼源としている。
してみればこれら家庭生活に付帯する風呂釜や給湯器或いは暖房機の燃費の低減化と排気ガスの低減にも前記先願で開示の如く、その主たる燃焼源たる都市ガスやLPGガス等に水を略20乃至50%容量%割合で混合させ燃焼させることで実現が可能となる。そしてこの実現のためには主たる燃焼源の都市ガスやLPGと水とが均質に分散混合されていること並びに水の微爆作用を積極的に発揮させるためには可能な限りその液滴を微粒化させること、及び燃焼に際しての気化熱の剥奪を極力防止することにある。
Thus, the main discharge of carbon dioxide and the like discharged from home life is a bath pot, a water heater, a heater, and the like, and today these are mainly made of city gas and LPG gas as combustion sources.
As a result, as disclosed in the previous application, city gas, LPG gas, etc., which are the main combustion sources, are also used to reduce fuel consumption and exhaust gas of bath pots, water heaters or heaters incidental to household life. This can be achieved by mixing and burning water at a ratio of approximately 20 to 50% by volume. In order to achieve this, the main combustion source city gas or LPG and water are homogeneously dispersed and mixed, and in order to actively exert the micro-explosive action of water, the droplets are made as fine as possible. And to prevent as much as possible the removal of vaporization heat during combustion.

これがため発明者等は更なる研究を重ねた結果、都市ガスやLPG等は気体であり、その具体的粒径も数nm以下の極微粒のオーダーである反面、分散混合される水は高圧噴霧等による微粒化手段によっても、その粒径はせいぜい10乃至30μm以上とされており、従って都市ガスやLPGとかかる粒径の水との直接的混合では粒径差が極めて大きく相互の均質な分散混合がなされず、且都市ガスやLPGの極微粒に伴う優れた燃焼性に対し、大粒径の水では燃焼に際して微爆作用も瞬時且有効に働かず、更には燃焼に際しての気化熱の剥奪も大きく安定した燃焼にも支障が生ずることを確認した。  As a result, the inventors have conducted further research. As a result, city gas, LPG, and the like are gases, and the specific particle size is on the order of very fine particles of several nanometers or less. Even by means of atomization by means of, for example, the particle size is at most 10 to 30 μm. Therefore, the direct mixing of city gas or LPG with water of such particle size has a very large particle size difference and a homogeneous dispersion between them. In contrast to the excellent flammability associated with the ultrafine particles of city gas and LPG, mixing is not carried out, but in the case of water having a large particle size, the microexplosive action does not work instantaneously and effectively during combustion, and furthermore, the heat of vaporization during combustion is deprived. It was also confirmed that there was a problem with large and stable combustion.

そこで発明者等は静電霧化技術における水を蒸散させたうえレイリー***作用を加重させてnmオーダーの気体状極微粒化水が生成しえることに着目するとともに、このnmオーダーの気体状極微粒化水の生成を交差指状電極で連続的且多量に生成させたうえ、都市ガスやLPG等のガス類に混合させることにより、都市ガスやLPGと均質な分散混合がなされ、而も微爆作用も積極的に且気化熱の剥奪も抑制されて、燃費の大幅な低減化と排気ガスの削減化が実現しえることに想到し本発明に至った。  Therefore, the inventors noticed that the water in the electrostatic atomization technology can be evaporated and the Rayleigh splitting action is weighted to produce nano-order gaseous ultrafine water, and this nano-order gaseous electrode. The generation of atomized water is generated continuously and in large quantities with the interdigitated electrode, and mixed with city gas, LPG, and other gases to achieve homogeneous dispersion and mixing with city gas and LPG. The present invention was conceived that the explosive action and the desorption of the heat of vaporization were suppressed, and the fuel consumption and exhaust gas could be reduced significantly.

発明者が解決しようとする課題Problems to be solved by the inventor

本発明は都市ガスやLPG等のガス類を使用する家庭用風呂釜や給湯器、暖房機若しくはボイラー等のガス燃焼機器の大幅な燃費低減化と排気ガス削減化を可能とする、ガス燃焼機器の燃費低減化と排気ガス削減化方法を提供することにある。  The present invention is a gas combustion device that enables a significant reduction in fuel consumption and exhaust gas of a gas combustion device such as a domestic bath tub, a water heater, a heater, or a boiler that uses gases such as city gas and LPG. Is to provide a method for reducing fuel consumption and exhaust gas.

課題を解決するための手段Means for solving the problem

上述の課題を解決するために本発明が採用した技術的手段は、ボイラーやガス燃焼機器等において、その中央に都市ガスやLPG等のガス流通路とこのガス流通路の外周囲には空気流通路が設けられてなるガスバーナーと、このガス流通路の入口部にはその供給口より供給される都市ガス若しくはLPG等のガスと、緻密な交差指状電極を用いた静電霧化による気体状極微粒化水生成器で生成される多量の気体状極微粒化水とを均質に分散混合させる分散混合させる分散混合モジュールが配位され、且この分散混合モジュールの供給部には都市ガス若しくはLPG等ガス類の供給管と、静電霧化による気体状極微粒化水生成器によりその実質粒径が10乃至20nm以下の気体状極微粒化水を多量に供給する気体状極微粒化水供給管とが連結されてなり、都市ガス若しくはLPG等のガス類の供給量に対して気体状微粒化水を20乃至50容量%割合で供給させつつ分散混合モジュールで相互を均質に分散混合させたうえ燃焼させることを技術要旨とするものであり、更には安定した燃焼火炎を保持するためガスバーナーのガス流通路の出口部に保炎板若しくはスワラが配設されて燃焼させることも技術要旨とするものである。  The technical means adopted by the present invention in order to solve the above-mentioned problems are as follows. In a boiler, a gas combustion device, etc., a gas flow passage such as city gas or LPG is provided in the center and an air flow is provided around the gas flow passage. A gas burner provided with a passage, a gas such as city gas or LPG supplied from the supply port at the inlet of the gas flow passage, and a gas by electrostatic atomization using a dense interdigitated electrode Dispersion mixing module for uniformly dispersing and mixing a large amount of gaseous ultrafine water generated by the fine water atomized water generator is coordinated, and the supply part of this dispersive mixing module has city gas or Gaseous ultrafine water that supplies a large amount of gaseous ultrafine water having a substantial particle size of 10 to 20 nm or less by means of a supply pipe for gases such as LPG and a gaseous ultrafine water generator by electrostatic atomization Connected to supply pipe Combustion after homogeneously dispersing and mixing each other with a dispersion mixing module while supplying gaseous atomized water at a ratio of 20 to 50% by volume with respect to the supply amount of gases such as city gas or LPG. In order to maintain a stable combustion flame, it is also intended to burn a flame holding plate or swirler provided at the outlet of the gas flow passage of the gas burner. .

発明の効果Effect of the invention

本発明は上述の如き構成からなるものであって、本発明は現状のボイラーやガス燃焼機器等においても極めて小型且安価な気体状極微粒化水生成器と分散混合モジュールを付加させるのみであるから装置や機器のコストも僅かであり、而も実用使用に際しても特段の捜査も講ずることなく従来の操作で使用できる。
そして本発明においては都市ガスやLPG等ガス類と容積割合で20乃至50容量%割合で混合される気体状極微粒化水は、静電霧化手段を用い且緻密な交差指状電極を用いた気体状極微粒化水生成器で生成させるため、水が交差指状電極に触れることにより、該交差指状電極に付加されてなる電位と交差指状電極間の無電位とにより水に弾性表面波が付加されて積極的に蒸散し、且高電場によるレイリー***により実質粒径が10乃至20nm以下の気体状極微粒化水が多量に生成される。
The present invention is configured as described above, and the present invention only adds a very small and inexpensive gaseous ultrafine water generator and a dispersion mixing module even in the current boilers and gas combustion devices. Therefore, the cost of the apparatus and equipment is also small, and it can be used in conventional operation without any special investigation even in practical use.
In the present invention, gaseous ultrafine water mixed with a gas such as city gas or LPG at a volume ratio of 20 to 50% by volume uses an electrostatic atomizing means and uses a dense interdigitated electrode. Since it is generated by a gas micronized water generator, water touches the cross finger electrode, and the water is elastically generated by the potential applied to the cross finger electrode and the non-potential between the cross finger electrodes. A surface wave is added to actively evaporate, and a large amount of gaseous ultrafine water having a substantial particle size of 10 to 20 nm or less is generated by Rayleigh splitting due to a high electric field.

そしてかかる如く生成された気体状極微粒化水は都市ガス若しくはLPGに対して20乃至50容量%割合で混合された場合にも、粒径ばかりか比重も略近似するため分散性に優れ、而も相互はガスバーナーのガス流通路の入口部でその内部に膨大数の撹乱分散間隙を有する分散混合モジュール内を流通することにより、多方向に撹乱分散されて相互が均質に分散混合されることとなる。
加えて気体状極微粒化水は都市ガスやLPGに比較的近い極小な粒径であるから燃焼に際しても都市ガスやLPGの燃焼に伴って微爆燃焼が積極的になされ、且極小な粒径であるから多量の容量割合で水が混合されても、気化熱の剥奪も僅かで安定した燃焼がなされる。そして本発明においても、ガスバーナー出口部には保炎板やスワラも配位されるものであるから、火炎が安定して燃焼できる。
そして当然の事ながら都市ガス若しくはLPGに対して20乃至50容量%割合で気体状極微粒化水が分散混合され燃焼されるものであるから、消費燃費は略20乃至50%低減され、且排出ガスとりわけ炭酸ガスも20乃至50%削減されることとなる。
And even when the gaseous ultrafine water produced in this way is mixed in a proportion of 20 to 50% by volume with respect to city gas or LPG, it has excellent dispersibility because it approximates not only the particle size but also the specific gravity. Also, the mutual gas flow passage entrance of the gas burner is distributed in the dispersion mixing module having a large number of disturbance dispersion gaps inside it, so that they are disturbed and dispersed in multiple directions so that they are uniformly dispersed and mixed with each other. It becomes.
In addition, since the gas micronized water has an extremely small particle size that is relatively close to that of city gas and LPG, micro-explosion combustion is actively carried out along with the combustion of city gas and LPG, and the particle size is extremely small. Therefore, even if water is mixed in a large volume ratio, the vaporization heat is stripped and stable combustion is achieved. Also in the present invention, since the flame holding plate and the swirler are also arranged at the gas burner outlet, the flame can be stably burned.
As a matter of course, since the gas micronized water is dispersed and mixed at a rate of 20 to 50% by volume with respect to the city gas or LPG, the fuel consumption is reduced by about 20 to 50%, and the emission is reduced. Gases, particularly carbon dioxide, will be reduced by 20 to 50%.

ガスバーナーの中央にはガス流通路が設けられ、このガス流通路の外周囲には空気流通路が設けられてなり、且ガス流通路の入口部にはその内部に膨大数の撹乱分散間隙を有する分散混合のための分散混合モジュールを配位させ、その供給口より都市ガス若しくはLPGとこれら都市ガス若しくはLPGに対して20乃至50容量%割合で、且静電霧化と緻密な交差指状電極を用いて、その粒径が10乃至20nm以下の気体状極微粒化水を供給し分散混合のうえ燃焼させる構成。  A gas flow passage is provided in the center of the gas burner, an air flow passage is provided around the outer periphery of the gas flow passage, and an enormous number of disturbance dispersion gaps are formed inside the gas flow passage. Dispersion mixing module for dispersive mixing is coordinated, and 20 to 50% by volume of city gas or LPG and these city gas or LPG from its supply port, and electrostatic atomization and dense cross fingers A configuration in which an electrode is used to supply gaseous ultrafine water having a particle size of 10 to 20 nm or less and disperse and mix to burn.

以下に本発明実施例を図とともに詳細に説明すれば、図1は本発明の使用に際して一般的に用いられるガスバーナー1の部分説明図であって、該ガスバーナー1の中央には都市ガスやLPG10を流通させるガス流通路1Aが設けられてなるとともに、このガス流通路1Aの外周囲には該ガス流通路1Aを流通され都市ガスやLPGを効率良く燃焼させるのに必要な空気量を流通させるための空気流通路1Bが形成されている。
そしてガスバーナー1の如く連続燃焼装置では、都市ガスやLPG等の燃料10と空気11は連続的に流れて燃焼が定時的に行われるものであるから火炎の安定化は基本的で且重要な課題である。
The embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a partial explanatory view of a gas burner 1 generally used in the use of the present invention. The gas flow passage 1A for circulating the LPG 10 is provided, and the gas flow passage 1A is circulated around the outer periphery of the gas flow passage 1A to distribute the amount of air necessary for efficiently burning city gas and LPG. An air flow passage 1B is formed.
In a continuous combustion apparatus such as the gas burner 1, the fuel 10 such as city gas and LPG and the air 11 flow continuously and combustion is performed on a regular basis, so that stabilization of the flame is fundamental and important. It is a problem.

この着火位置を安定させる保炎方法としては保炎板によるものとスワラ1Dを用いる手段がある。即保炎板1Cによる場合は、非流線型物体の下流側には再循環域ができることから、保炎板1Cを都市ガスやLPG10と空気11の混合域におくと、その後部に循環渦粒11Aが生じ高温の燃焼ガスがこの渦流内に巻き込まれて着火源となり火炎の着火位置が安定する。
保炎板1Cはバーナーの仕様に合せて種々の形状のものが提案されている。先混合式バーナーでは混合を急ぐ必要から再循環域の面積を大きく取った図示する板状の保炎板1Cが都市ガスやLPG10と空気11の噴出部に配位される。
As a flame holding method for stabilizing the ignition position, there are a flame holding plate and a swirler 1D. In the case of using the immediate flame holding plate 1C, a recirculation zone is formed on the downstream side of the non-streamlined object. Therefore, when the flame holding plate 1C is placed in the mixed zone of city gas or LPG 10 and air 11, the circulating vortex particles 11A are located in the rear part. The hot combustion gas is entrained in this vortex and becomes an ignition source, and the ignition position of the flame is stabilized.
Various shapes of flame holding plates 1C have been proposed according to the specifications of the burner. In the premixed burner, the plate-shaped flame holding plate 1C shown in the figure, which has a large recirculation area because it is necessary to rush the mixing, is arranged at the ejection portion of the city gas, LPG 10 and air 11.

他方スワラ(旋回器)1Dは、該スワラ1Dで旋回流を発生させ、その時に生ずる負圧によって出来る循環流で火炎を安定させる。更にスワラ1Dは都市ガスやLPG10と空気11の混合度合いの調整や火炎形状を適合させる役目も果たすもので、具体的形状としては図1のBに示すものである。
かくしてなるガスバーナー1のガス流通路1Aの入口部1Eには図2に示す如くその供給口2Aより供給される都市ガス若しくはLPG10と気体状極微粒化水12とを均質に分散混合させるために、その内部に膨大数の撹乱分散間隙2Cを有する撹乱分散材2Dが充填された分散混合モジュール2が配位され、且該分散混合モジュール2の供出口2Eと連結されている。
On the other hand, the swirler (swivel unit) 1D generates a swirling flow with the swirler 1D and stabilizes the flame with a circulating flow generated by the negative pressure generated at that time. Furthermore, the swirler 1D also plays a role of adjusting the mixing degree of the city gas or LPG 10 and the air 11 and adapting the flame shape, and the specific shape is shown in FIG.
In order to uniformly disperse and mix the city gas or LPG 10 supplied from the supply port 2A and the gaseous ultrafine water 12 into the inlet 1E of the gas flow passage 1A of the gas burner 1 thus formed, as shown in FIG. The dispersion mixing module 2 filled with a disturbance dispersion material 2D having a huge number of disturbance dispersion gaps 2C inside is arranged and connected to the outlet 2E of the dispersion mixing module 2.

かかる分散混合モジュール2内に充填される撹乱分散材2Dはその供給口2Aより供出口2Eに都市ガスやLPG10と気体状極微粒化水12が流通する際に、膨大数の撹乱分散間隙2Cにより多方向に撹乱され相互が均質に分散混合されるものであれば使用可能で、図2には金属円板20の所定半径の円周上に所定間隙を以って三角形状の切欠凸起20Aがその一側面に、且更に該三角形状の切欠凸起20A相互の間には他側面に三角形状の切欠凹起20Bが形成されたものが示されてなるが、かかる構成に限定されるものでなく、金属線条による織物や編物の円形切断板や金属線条を用いた不織布を円形切断した物等も使用可能である。  When the city gas or LPG 10 and gaseous ultrafine water 12 are circulated from the supply port 2A to the supply port 2E, the disturbance dispersion material 2D filled in the dispersion mixing module 2 is caused by a huge number of disturbance dispersion gaps 2C. Any one that is disturbed in multiple directions and is uniformly dispersed and mixed can be used. FIG. 2 shows a triangular notch protrusion 20A with a predetermined gap on the circumference of a predetermined radius of the metal disk 20. However, it is shown that a triangular notch protrusion 20B is formed on the other side surface between the triangular notch protrusions 20A on one side surface, but is limited to this configuration. In addition, a circular cut plate of a woven or knitted fabric using metal filaments, a non-woven fabric using a metal filament, or the like can be used.

かくしてなる分散混合モジュール2の供給口2Aには都市ガス若しくはLPG10の供給管21Aと気体状極微粒化水12の供給管21Bとが連結されている。
そしてこの気体状極微粒化水12の供給管12Aの適宜位置には、気体状極微粒化水生成器が配位されている。
この気体状極微粒化水12は、本発明においては都市ガスやLPG10に対して水を20乃至50容量%割合で分散混合させて燃焼せしめることにより、都市ガスやLPG10の大幅な燃費低減と且燃焼により排出される排気ガスの削減を実現することにある。
A supply pipe 21A for city gas or LPG 10 and a supply pipe 21B for gaseous micronized water 12 are connected to the supply port 2A of the dispersion mixing module 2 thus formed.
A gaseous ultrafine water generator is arranged at an appropriate position of the supply pipe 12A for the gaseous ultrafine water 12.
In the present invention, the gaseous ultrafine water 12 is produced by dispersing and mixing water at a rate of 20 to 50% by volume with respect to the city gas or LPG 10 and burning the gas, thereby significantly reducing the fuel consumption of the city gas or LPG 10. It is to realize reduction of exhaust gas discharged by combustion.

ところで現状の静電霧化による気体状極微粒化水12の生成手段は、水中に浸漬させた吸水蒸散極により水分を吸水蒸散させたうえ、この蒸散された水蒸気を高電場空間で再***(レイリー***)させるもので、かかる技術手段では水分の吸水蒸散量が極めて僅かであるから、都市ガス若しくはLPG10と混合させ燃焼させるに足る生成量には到底至らず、而も生成される気体状極微粒化水12の粒径も最少でも略5乃至20nmとされるため混合される都市ガスやLPG10の粒径と比べても依然として大きく、とりわけ分散混合性や微爆性においても問題を抱える。  By the way, the present generation means of the gas atomized water 12 by electrostatic atomization is that water is absorbed and evaporated by a water absorption evaporation pole immersed in water, and this evaporated water vapor is re-divided in a high electric field space ( In such a technical means, the amount of water absorbed and transpiration is extremely small, so that the amount of generation sufficient to be mixed and burned with city gas or LPG10 is not reached, and the gaseous electrode is also generated. Since the particle size of the atomized water 12 is at least about 5 to 20 nm, it is still larger than the particle size of the mixed city gas and LPG 10, and there is a problem in dispersibility and micro explosive properties.

そこで本発明で用いる静電霧化による気体状極微粒化水12の生成手段としては、略二つの手段が提案されるもので、その一つは図3のAに示す如く蒸散放電線条極方式であって、気体状極微粒化水生成区画30内には吸水基材30Aが配設されてなるとともに、該吸水基材30Aに連接して適宜の吸水材30Bが撚合され若しくは包着された放電線条30Cが緻密に植設された蒸散放電線条極30Dが配位され、該蒸散放電線条極30Dには高電圧望ましくは5,000乃至10,000V程度の直流電圧30Eが付加され、気体状極微粒化水生成区画30内に高電場の雰囲気を形成している。そしてかかる高電場に維持された気体状極微粒化水生成区画30内を、同図3Bに示す如くその一方側34より他方側35へと送気させることにより、吸水基材30Aの水分が蒸散放電線条極30Dの吸水材30Bにより吸水揚水且蒸散30Gされたうえ、高電場30F中において更にレイリー***33されて、実質的にその粒径が10乃至20nm以下の気体状極微粒化水12が積極的且多量に生成される。かかる積極的且多量に生成しえる理由は蒸散放電線条極30Dが緻密に植設されることにより、放電線条極30D相互間は付加電圧が0に近く、高電圧付加部との間に弾性表面波作用が働き蒸散を促進させるものと考えられている。  Therefore, approximately two means are proposed as the means for generating gaseous ultrafine water 12 by electrostatic atomization used in the present invention, one of which is a transpiration discharge filament as shown in FIG. In this system, a water-absorbing substrate 30A is disposed in the gaseous ultrafine water generation section 30, and an appropriate water-absorbing material 30B is twisted or encapsulated in connection with the water-absorbing substrate 30A. A transpiration discharge filament electrode 30D in which the discharge filament 30C is densely implanted is arranged, and the transpiration discharge filament electrode 30D has a high voltage, preferably a DC voltage 30E of about 5,000 to 10,000V. In addition, a high electric field atmosphere is formed in the gaseous ultrafine water generation section 30. Then, the inside of the gaseous ultrafine water generation section 30 maintained at such a high electric field is fed from one side 34 to the other side 35 as shown in FIG. The water is pumped and evaporated 30G by the water absorbing material 30B of the discharge line electrode 30D, and further subjected to Rayleigh splitting 33 in the high electric field 30F, so that the gaseous ultrafine water 12 having a particle size of substantially 10 to 20 nm or less. Are produced actively and in large quantities. The reason why such an active and large amount can be generated is that the transpiration discharge filament electrode 30D is densely implanted, so that the additional voltage between the discharge filament electrodes 30D is close to 0 and between the high voltage application part. It is thought that the surface acoustic wave action works to promote transpiration.

かかる場合の吸水基材30Aとしては吸水吸湿性素材が好適であって、具体的にはポリアミド系やポリウレタン系樹脂による連続気泡シートやポリアミド、ポリビニルアルコール或いはレーヨン等の細繊度繊維を用いた不織布等が挙げられる。更に放電線条30Cに撚合若しくは包着される吸水材30Bも吸水基材30Aの水分を放電線条30Cの先端にまで揚水しえる吸水性や吸湿性が要請されることから、ポリビニルアルコール系やレーヨン系の細繊度繊維が好適である。  In such a case, a water-absorbing material is suitable as the water-absorbing substrate 30A, and specifically, an open-cell sheet made of polyamide or polyurethane resin, a nonwoven fabric using fine fibers such as polyamide, polyvinyl alcohol, or rayon. Is mentioned. Furthermore, since the water absorbing material 30B twisted or encapsulated in the discharge filament 30C is also required to have water absorbency and hygroscopicity capable of pumping the moisture of the water absorbing substrate 30A to the tip of the discharge filament 30C, the polyvinyl alcohol type Or, rayon type fine fiber is preferred.

更に他の手段としては、図3のBに示す如く放電線条極方式で、この放電線条極方式は気体状極微粒化水生成区画30内に絶縁性素材からなる基材21A上に、その相互の間隔が実質的に水を毛細管現象に準じて揚水しえるような間隔、即ち望ましくは10乃至30μm以下の間隔を以って高密度に放電線条30Cを植設させた放電線条極31を使用するものである。
かかる放電線条極方式では、放電線条30Cの植設が高密度に植生されてなるから、接触する水に対して極めて高密度且強度に弾性表面波作用が働き、水分蒸散が著しく促進されるとともに、この蒸散された水分は高電場30Fの雰囲気下でレイリー***33 がなされることとなる。そして気体状極微粒化水生成区画30は、円形や角形に限定されず多角形も採用できる。
Furthermore, as another means, as shown in FIG. 3B, a discharge line electrode method, this discharge line electrode method on the base material 21A made of an insulating material in the gaseous ultrafine water generation section 30, Discharge filaments in which the discharge filaments 30C are implanted at a high density with an interval of such a distance that water can be pumped substantially in accordance with the capillary phenomenon, that is, preferably an interval of 10 to 30 μm or less. The pole 31 is used.
In such a discharge filament electrode method, the discharge filaments 30C are planted at a high density, so that the surface acoustic wave action acts on the water in contact with the extremely high density and strength, and moisture transpiration is significantly accelerated. At the same time, the evaporated water undergoes Rayleigh splitting 33 in an atmosphere of a high electric field 30F. The gaseous ultrafine water generation section 30 is not limited to a circle or a square, and a polygon can also be adopted.

ところで公知されてなる静電霧化の如く、適宜に形成した多孔質電極に高電圧を付加させて蒸散30Gさせ且レイリー***33を図っても、せいぜい80乃至100cc/日程度と極めて僅かな生成量であるが本発明においては蒸散放電線条極30Dが緻密に形成され、或いは放電線条30Cが高密度に植生されてなるから、生成される気体状極微粒化水12は膨大量を以って生成される。
そして本発明ではボイラーやガス燃焼機器等において使用するものであるから、これら使用途には更なる多量の気体状極微粒化水12の生成が要望される。
かかる問題への対処としては、蒸散放電線条極30D若しくは放電線条極31の形成面積を大きく形成させることで解決される。
By the way, as in the known electrostatic atomization, even if a high voltage is applied to a suitably formed porous electrode to evaporate 30G and Rayleigh splitting 33 is attempted, a very small amount of generation is about 80 to 100 cc / day at most. However, in the present invention, the vaporized discharge filament electrode 30D is densely formed or the discharge filament 30C is vegetated at a high density. Is generated.
And in this invention, since it uses in a boiler, a gas combustion apparatus, etc., the production | generation of the further large quantity of gaseous ultrafine water 12 is requested | required in these uses.
As a countermeasure against such a problem, the problem is solved by forming a large formation area of the transpiration discharge filament electrode 30D or the discharge filament electrode 31.

即ち図4は放電線条極31の広面積形成の例示図であって、かかる広面積形成に際しての好適な気体状極微粒化水生成区画30としては、水を移送させ且静電霧化とレイリー***作用をなさしめて気体状極微粒化水12を膨大量に生成せしめるうえからは、気体状極微粒化水12の所要容量に合わせてその口径や長さの管材4が用いられる。
そしてかかる管材4の内面には吸水基材30Aが配設されたうえ、その中央に向って相互が等密度に膨大数の放電線条30Cが、それぞれ中央に向って植生させて放電線条極31が形成されたうえ放電線条極31と対向する中心に対極30Hを設け、高電場を付加させる構成のものである。
That is, FIG. 4 is an illustration of the formation of a large area of the discharge filament electrode 31. As a suitable gaseous ultrafine water generating section 30 for forming such a large area, water is transferred and electrostatic atomization is performed. In order to generate a huge amount of the gaseous ultrafine water 12 by performing the Rayleigh splitting action, the pipe material 4 having a diameter and a length corresponding to the required capacity of the gaseous ultrafine water 12 is used.
Further, a water-absorbing base material 30A is disposed on the inner surface of the tube material 4, and a large number of discharge filaments 30C are equally dense toward each other toward the center. In addition, a counter electrode 30H is provided at the center opposite to the discharge filament electrode 31, and a high electric field is applied.

都市ガスやLPGを燃焼源とするボイラーや家庭用燃焼機器においては、気体状極微粒化水を40容量%割合まで分散混合させて燃焼使用可能である。  In boilers and household combustion equipment using city gas or LPG as a combustion source, gaseous ultrafine water can be dispersed and mixed up to 40% by volume and used for combustion.

ガスバーナーの部分説明図である。  It is a partial explanatory view of a gas burner. 分散混合モジュールの説明図である。  It is explanatory drawing of a dispersion | distribution mixing module. 気体状極微粒化水の生成手段の説明図である。  It is explanatory drawing of the production | generation means of gaseous ultrafine water. 放電線条極の広面積形成の説明図である。  It is explanatory drawing of wide area formation of a discharge filament strip.

1 ガスバーナー
1A ガス流通路
1B 空気流通路
1C 保炎板
1D スワラ
1E ガス流通路の入口部
10 都市ガスやLPG
11 空気
11A 循環渦流
12 気体状極微粒化水
2 分散混合モジュール
2A 供給口
2C 撹乱分散間隙
2D 撹乱分散材
2E 供出口
20 金属円板
20A 切欠凸起
20B 切欠凹起
21A 都市ガスやLPGの供給管
21B 気体状極微粒化水の供給管
3 気体状極微粒化水生成器
30 気体状極微粒化水生成区画
30A 吸水基材
30B 吸水材
30C 放電線条
30D 蒸散放電線条
30E 直流電圧
30F 高電場
30G 蒸散
30H 対極
31 放電線条極
31A 基材
33 レイリー***
4 管材
1 Gas Burner 1A Gas Flow Path 1B Air Flow Path 1C Flame Retaining Plate 1D Swirler 1E Gas Flow Path Entrance 10 City Gas and LPG
DESCRIPTION OF SYMBOLS 11 Air 11A Circulation vortex 12 Gaseous micronized water 2 Dispersion mixing module 2A Supply port 2C Disturbing dispersion gap 2D Disturbing dispersion material 2E Outlet 20 Metal disk 20A Notch protrusion 20B Notch protrusion 21A Supply pipe of city gas and LPG 21B Gaseous ultra-fine water supply pipe 3 Gaseous ultra-fine water generator 30 Gaseous ultra-fine water generation section 30A Water-absorbing substrate 30B Water-absorbing material 30C Discharge wire 30D Transpiration discharge wire 30E DC voltage 30F High electric field 30G transpiration 30H Counter electrode 31 Discharge filament electrode 31A Base material 33 Rayleigh split 4 Tube material

Claims (3)

ガスボイラーやガス燃焼機器において、その中央にはガス流通路とその外周囲に空気流通路が設けられたガスバーナーと、該バーナーのガス流通路の入口部に、その供給口から供給される都市ガスやLPG若しくは天然ガス等のガス類と、静電霧化による気体状極微粒化水とを均質に分散混合させる分配混合モジュールが配位され、且この気体状微粒化水が静電霧化による交差指状電極からなる気体状極微粒化水生成器で粒径10乃至20nm以下に生成され、而もこの気体状極微粒化水をガス類に対して20乃至50容量%割合で分散混合させて燃焼させることを特徴とする、ガス燃焼機器の燃費低減化及び排気ガス削減化方法。  In a gas boiler and gas combustion equipment, a gas burner having a gas flow passage at its center and an air flow passage in the outer periphery thereof, and a city supplied from the supply port to the inlet of the gas flow passage of the burner Distributing and mixing module that uniformly disperses and mixes gas, LPG, natural gas, and other gases with gaseous atomized water by electrostatic atomization is coordinated, and this atomized water is electrostatic atomized. Is produced to a particle size of 10 to 20 nm or less by a gaseous ultrafine water generator composed of interdigitated electrodes, and this gaseous ultrafine water is dispersed and mixed at a rate of 20 to 50% by volume with respect to gases. A method for reducing fuel consumption and exhaust gas of a gas combustion device, characterized by causing the gas combustion device to burn. ガスバーナーのガス流通路出口部に保炎板若しくはスワラが設けられてなる、請求項1記載のガス燃焼機器の燃費低減化及び排気ガス削減化方法。  The method for reducing fuel consumption and exhaust gas of a gas combustion device according to claim 1, wherein a flame holding plate or a swirler is provided at the gas flow passage outlet of the gas burner. 気体状極微粒化水生成区画が断面多角形状からなる、請求項1若しくは請求項2記載のガス燃焼機器の燃費低減化及び排気ガス削減化方法。  The method for reducing fuel consumption and exhaust gas of a gas combustion device according to claim 1 or 2, wherein the gaseous ultrafine water generation section has a polygonal cross section.
JP2012084310A 2012-03-14 2012-03-14 Method for reducing fuel consumption and emission gas of gas combustion apparatus Pending JP2013190194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084310A JP2013190194A (en) 2012-03-14 2012-03-14 Method for reducing fuel consumption and emission gas of gas combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084310A JP2013190194A (en) 2012-03-14 2012-03-14 Method for reducing fuel consumption and emission gas of gas combustion apparatus

Publications (1)

Publication Number Publication Date
JP2013190194A true JP2013190194A (en) 2013-09-26

Family

ID=49390641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084310A Pending JP2013190194A (en) 2012-03-14 2012-03-14 Method for reducing fuel consumption and emission gas of gas combustion apparatus

Country Status (1)

Country Link
JP (1) JP2013190194A (en)

Similar Documents

Publication Publication Date Title
US9496688B2 (en) Precombustion ionization
CN101832554B (en) Liquid fuel porous medium combusting device and combusting method thereof
KR100679869B1 (en) Pm reduction equipment of dpf system using plasma reactor
US20170009985A9 (en) Charged ion flows for combustion control
Cai et al. A comprehensive review on combustion stabilization technologies of micro/meso-scale combustors for micro thermophotovoltaic systems: Thermal, emission, and energy conversion
KR101196307B1 (en) Buner Assembly Including Dual Injection
CN201652342U (en) Porous media combustion apparatus for liquid fuel
TW201027007A (en) A hydrogen-oxygen combustion burner
CN103471096B (en) A kind of biological alcohol oil combustion device
KR20140005025A (en) Device and method for generating nano-water molecule having multi-function
TW201030289A (en) A hydrogen-oxygen combustion burner
US20120167464A1 (en) Plasma-assisted catalytic reforming apparatus and method
JP2013190194A (en) Method for reducing fuel consumption and emission gas of gas combustion apparatus
KR20100103925A (en) Combustion device using brown's gas for promoting combustion of the fuel gas and method for the same
KR101810831B1 (en) an eletric heating element for nozzled spray droplet and the liquid fuel spraying and mixing device uisng both multistage-perforated heating plate and an eletric heating element
DE102006060669A1 (en) Catalytic evaporation of liquid fuels involves air quantity fed to evaporation being no more than 25 per cent of that needed for full oxidation of supplied fuel quantity; heat transfer from catalyzer to fuel takes place mainly by radiation
CN103791498A (en) Charged spray catalytic micro burner
CN206803143U (en) A kind of low boiling fuel-staged combustion device and its system
CN203718772U (en) Electrically-charged spraying and catalyzing type micro combustor
CN111322612A (en) Method for quickly starting catalytic combustor with low fuel consumption and catalytic combustor thereof
CN204502758U (en) A kind of ammoniacal liquor gasification furnace
CN203116006U (en) Liquid state alcohol group fuel vaporizing combustor
JP2013053838A (en) Combustion method of low fuel consumption and low exhaust gas
JP2012184911A (en) Combustion method of low fuel consumption and low exhaust gas
CN203718770U (en) Dual-grille charged spraying micro liquid combustor