JP2013185992A - Cooling system for spent fuel storage pool - Google Patents

Cooling system for spent fuel storage pool Download PDF

Info

Publication number
JP2013185992A
JP2013185992A JP2012051954A JP2012051954A JP2013185992A JP 2013185992 A JP2013185992 A JP 2013185992A JP 2012051954 A JP2012051954 A JP 2012051954A JP 2012051954 A JP2012051954 A JP 2012051954A JP 2013185992 A JP2013185992 A JP 2013185992A
Authority
JP
Japan
Prior art keywords
spent fuel
fuel storage
storage pool
duct
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012051954A
Other languages
Japanese (ja)
Inventor
Toshihiro Yoshii
敏浩 吉井
Miyuki Akiba
美幸 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012051954A priority Critical patent/JP2013185992A/en
Publication of JP2013185992A publication Critical patent/JP2013185992A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow semi-permanent cooling of pool water in a spent fuel storage pool even when all power supply is lost.SOLUTION: A cooling system 15 for spent fuel storage pool cools pool water of a spent fuel storage pool 10 which stores spent fuel 12 by submerging it in the pool water 11. It comprises: a cooling piping 16 which has a vertical part 19 disposed outside the spent fuel storage pool in a vertical direction and is provided with an upper end part 20 and a lower end part 21, respectively connected to the upper end and the lower end of the vertical part and communicating with the inside of the spent fuel storage pool 10; and a duct 17 which is disposed extending in a vertical direction outside the spent fuel storage pool 10, accommodates the cooling piping 16 therein and has an upper end opening 22 and a lower end opening 23 which are open to the atmosphere. It is configured in such a manner that the pool water 11 flowing into the cooling piping 16 from the upper end part 20 exchanges heat with air rising in the duct 17 and is cooled down.

Description

本発明は、原子力発電プラント等の原子炉設備に設置された使用済燃料貯蔵プールのプール水を冷却する使用済燃料貯蔵プール冷却システムに関する。   The present invention relates to a spent fuel storage pool cooling system that cools pool water in a spent fuel storage pool installed in a nuclear reactor facility such as a nuclear power plant.

地震や津波等の緊急事態が発生し、原子炉設備に冷却が必要となった場合には、例えば原子炉格納容器内の蒸気を低温の流体と熱交換して放熱する安全システムや、原子炉圧力容器内を冷却注水スプレーで注水することにより原子炉を冷却するシステム等が提案されている。   When an emergency such as an earthquake or tsunami occurs and the reactor equipment needs to be cooled, for example, a safety system that exchanges heat with the low-temperature fluid to dissipate heat in the reactor containment vessel, or a reactor A system for cooling a nuclear reactor by injecting water into a pressure vessel with a cooling water injection spray has been proposed.

例えば、特許文献1には、原子炉格納容器外に冷却水(プール水)を保有するプールが設置され、このプールに管式の熱交換器が設置され、この熱交換器内に原子炉格納容器内で発生した蒸気を導くことで、原子炉格納容器内の蒸気をプール水により凝縮して冷却し、これにより原子炉格納容器内の圧力を低下させるシステムが提案されている。   For example, in Patent Document 1, a pool that holds cooling water (pool water) is installed outside the reactor containment vessel, and a tubular heat exchanger is installed in the pool, and the reactor is stored in the heat exchanger. A system has been proposed in which steam generated in the vessel is led to condense the steam in the reactor containment vessel with the pool water and cool it, thereby reducing the pressure in the reactor containment vessel.

特開2007−170832号公報JP 2007-170832 A

原子炉設備に地震や津波等の緊急事態が発生し、特に原子炉設備が外部電源を喪失し、電動ポンプ等を用いて作動する非常用原子炉冷却システムや使用済燃料貯蔵プール冷却系が動作しないような場合に備え、動力を要しない冷却システムが嘱望される。   An emergency such as an earthquake or tsunami occurs in the reactor equipment, especially the reactor equipment loses the external power supply, and the emergency reactor cooling system and the spent fuel storage pool cooling system that operate using an electric pump etc. operate In preparation for such a case, a cooling system that does not require power is desired.

この場合、特許文献1に記載のシステムでは、原子炉格納容器内の蒸気を、有限の冷却水(プール水)を冷源とし熱交換器により自然循環させて凝縮し冷却しているが、プール水の温度が上昇するに従い熱交換の性能が徐々に低下し、半永久的には冷却効果を持続できない恐れがある。   In this case, in the system described in Patent Document 1, the steam in the reactor containment vessel is condensed and cooled by circulating naturally through a heat exchanger using finite cooling water (pool water) as a cold source. As the temperature of water rises, the performance of heat exchange gradually decreases, and there is a possibility that the cooling effect cannot be sustained semipermanently.

本発明の目的は、上述の事情を考慮してなされたものであり、全電源喪失時においても使用済燃料貯蔵プールのプール水を半永久的に冷却できる使用済燃料貯蔵プール冷却システムを提供することにある。   An object of the present invention is to provide a spent fuel storage pool cooling system capable of semi-permanently cooling the pool water of the spent fuel storage pool even when the entire power source is lost. It is in.

本発明は、使用済燃料をプール水に水没させて保管する使用済燃料貯蔵プールの前記プール水を冷却する使用済燃料貯蔵プール冷却システムであって、垂直部が前記使用済燃料貯蔵プールの外側に垂直方向に配設されると共に、この垂直部の上端と下端にそれぞれ接続された上側端部、下側端部が前記使用済燃料貯蔵プールの内部に連通して設けられた冷却用配管と、前記使用済燃料貯蔵プールの外側に垂直方向に延在して配置されると共に、内部に前記冷却用配管を収容し、上端開口及び下端開口が大気に開放されたダクトとを有し、前記冷却用配管内に前記上側端部から流入する前記プール水が、前記ダクト内を上昇する空気と熱交換して冷却可能に構成されたことを特徴とするものである。   The present invention is a spent fuel storage pool cooling system for cooling the pool water of a spent fuel storage pool that stores the spent fuel immersed in the pool water, wherein a vertical portion is outside the spent fuel storage pool. And an upper end and a lower end connected to the upper end and the lower end of the vertical portion, respectively, and a cooling pipe provided in communication with the spent fuel storage pool. And a duct that extends vertically outside the spent fuel storage pool, accommodates the cooling pipe therein, and has an upper end opening and a lower end opening opened to the atmosphere, The pool water flowing from the upper end into the cooling pipe is configured to be able to cool by exchanging heat with the air rising in the duct.

本発明によれば、使用済燃料貯蔵プールの外側に配設された冷却用配管に、その上側端部からプール水が流入することで、冷却用配管を収容するダクト内で空気がその密度差により上昇する。この空気の上昇流によって冷却用配管内のプール水が冷却され、この冷却用配管内のプール水がその密度差により使用済燃料貯蔵プールとの間で循環することで、全電源喪失時においても使用済燃料貯蔵プールのプール水を半永久的に冷却できる。   According to the present invention, the pool water flows into the cooling pipe disposed outside the spent fuel storage pool from the upper end thereof, so that the air has a density difference in the duct housing the cooling pipe. It rises by. The pool water in the cooling pipe is cooled by this upward flow of air, and the pool water in the cooling pipe circulates between the spent fuel storage pool due to the density difference, so even when the entire power supply is lost. The pool water in the spent fuel storage pool can be cooled semipermanently.

本発明に係る使用済燃料貯蔵プール冷却システムの第1実施形態を示す構成図。The block diagram which shows 1st Embodiment of the spent fuel storage pool cooling system which concerns on this invention. 図1の冷却用配管及びダクトを拡大して示す拡大縦断面図。FIG. 2 is an enlarged longitudinal sectional view showing the cooling pipe and duct of FIG. 1 in an enlarged manner. 図2のIII−III線に沿う断面図。Sectional drawing which follows the III-III line | wire of FIG. 図2のIV矢視図。The IV arrow line view of FIG. (A)は、図2の冷却用配管の変形形態を示す横断面図、(B)は、図2の冷却用配管の他の変形形態を示す横断面図。(A) is a cross-sectional view showing a modified form of the cooling pipe in FIG. 2, and (B) is a cross-sectional view showing another modified form of the cooling pipe in FIG. 本発明に係る使用済燃料貯蔵プール冷却システムの第2実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the spent fuel storage pool cooling system which concerns on this invention. 本発明に係る使用済燃料貯蔵プール冷却システムの第3実施形態を示す構成図。The block diagram which shows 3rd Embodiment of the spent fuel storage pool cooling system which concerns on this invention.

以下、本発明を実施するための実施形態を図面に基づき説明する。
[A]第1実施形態(図1〜図5)
図1は、本発明に係る使用済燃料貯蔵プール冷却システムの第1実施形態を示す構成図である。この図1に示す使用済燃料貯蔵プール10は、原子力発電プラントなどの原子炉設備における図示しない原子炉建屋内で、原子炉圧力容器を格納する原子炉格納容器(共に図示せず)の外側に設置されている。この使用済燃料貯蔵プール10は矩形形状であって、プール水(冷却水)11で満たされ、原子炉圧力容器内で使用された使用済燃料12をプール水11に水没させて冷却し、この状態で保管する。この使用済燃料12は、使用済燃料貯蔵プール10の底面13に設置されている。
Embodiments for carrying out the present invention will be described below with reference to the drawings.
[A] First embodiment (FIGS. 1 to 5)
FIG. 1 is a configuration diagram showing a first embodiment of a spent fuel storage pool cooling system according to the present invention. The spent fuel storage pool 10 shown in FIG. 1 is located outside a reactor containment vessel (not shown) for storing a reactor pressure vessel in a reactor building (not shown) in a nuclear reactor facility such as a nuclear power plant. is set up. The spent fuel storage pool 10 has a rectangular shape and is filled with pool water (cooling water) 11. The spent fuel 12 used in the reactor pressure vessel is submerged in the pool water 11 and cooled. Store in condition. The spent fuel 12 is installed on the bottom surface 13 of the spent fuel storage pool 10.

本実施形態の使用済燃料貯蔵プール冷却システム15は、使用済燃料貯蔵プール10のプール水11を、電動モータなどの動的機器を用いることなく冷却するものであり、冷却用配管16、ダクト17、及び隔壁としての邪魔板18を有して構成される。   The spent fuel storage pool cooling system 15 of the present embodiment cools the pool water 11 of the spent fuel storage pool 10 without using dynamic equipment such as an electric motor, and includes a cooling pipe 16 and a duct 17. And a baffle plate 18 as a partition wall.

冷却用配管16は複数本設けられ、それぞれが、垂直方向に延びる垂直部19と、この垂直部19の上端に接続された上側端部20と、垂直部19の下端に接続された下側端部21とを有してなる。各冷却用配管16の垂直部19は、使用済燃料貯蔵プール10の側壁の外側に垂直方向に配設される。また、各冷却用配管16の上側端部20及び下側端部21は使用済燃料貯蔵プール10の内部に連通され、このうちの上側端部20が使用済燃料貯蔵プール10内のプール水11の水面11A下付近に設けられ、下側端部21が使用済燃料貯蔵プール10の底面13上付近に設けられる。   A plurality of cooling pipes 16 are provided, each of which has a vertical portion 19 extending in the vertical direction, an upper end portion 20 connected to the upper end of the vertical portion 19, and a lower end connected to the lower end of the vertical portion 19. Part 21. The vertical portion 19 of each cooling pipe 16 is disposed in the vertical direction outside the side wall of the spent fuel storage pool 10. Further, the upper end 20 and the lower end 21 of each cooling pipe 16 are communicated with the inside of the spent fuel storage pool 10, and the upper end 20 of these is the pool water 11 in the spent fuel storage pool 10. The lower end 21 is provided near the bottom surface 13 of the spent fuel storage pool 10.

前記ダクト17は、図2及び図3にも示すように、例えば四角筒形状であり、使用済燃料貯蔵プール10の側壁の外側に垂直方向に延在して配置されると共に、内部に複数本の冷却用配管16を収容する。このダクト17は、上端開口22及び下端開口23が大気に開放されている。冷却用配管16内にその上側端部20から流入する温度の高いプール水11がダクト17内で放熱することで、このダクト17内の空気が温度変化によって密度差を生じ、これによりダクト17内に空気の上昇流が発生する。冷却用配管16内に流入しその垂直部19を下降するプール水11は、ダクト11内で上昇する空気と熱交換して冷却される。   As shown in FIGS. 2 and 3, the duct 17 has, for example, a rectangular tube shape, and is arranged to extend in the vertical direction outside the side wall of the spent fuel storage pool 10. The cooling pipe 16 is accommodated. The duct 17 has an upper end opening 22 and a lower end opening 23 open to the atmosphere. The pool water 11 having a high temperature flowing into the cooling pipe 16 from the upper end portion 20 dissipates heat in the duct 17, so that the air in the duct 17 generates a density difference due to a temperature change. An upward flow of air is generated. The pool water 11 flowing into the cooling pipe 16 and descending the vertical portion 19 is cooled by exchanging heat with the air rising in the duct 11.

このとき、ダクト17の長さLは、冷却用配管16の垂直部19の長さNよりも約1.3倍以上長く、好ましくは約2倍以上長く設定される。これにより、ダクト17内では、冷却用配管16内に流入したプール水11の放熱によって、上端開口22付近と下端開口23付近とで空気の密度差が大きくなり、下端開口23からダクト17内により多くの空気が吸入されて、このダクト17内で上昇する空気の流量を増大させることが可能になる。   At this time, the length L of the duct 17 is set to be longer than the length N of the vertical portion 19 of the cooling pipe 16 by about 1.3 times or more, preferably about 2 times or more. As a result, in the duct 17, due to heat radiation of the pool water 11 flowing into the cooling pipe 16, an air density difference between the upper end opening 22 and the lower end opening 23 increases, and from the lower end opening 23 to the inside of the duct 17. A lot of air is inhaled, and the flow rate of the air rising in this duct 17 can be increased.

前記邪魔板18は、ダクト17内で、このダクト17の長手方向に所定間隔で複数枚配置される。これらの隣接する邪魔板18には、ダクト17の軸Oに対し互いに反対側の位置に空気流動用の開口24が形成されている。これにより、ダクト17内で上昇する空気は、矢印Aに示すように邪魔板18の空気流動用の開口24を通り蛇行して上昇し、冷却用配管16の垂直部19に垂直方向に衝突して、垂直部19内を流れるプール水11との熱交換効率が高められる。   A plurality of the baffle plates 18 are arranged in the duct 17 at a predetermined interval in the longitudinal direction of the duct 17. These adjacent baffle plates 18 are formed with airflow openings 24 at positions opposite to each other with respect to the axis O of the duct 17. As a result, the air rising in the duct 17 rises by meandering through the air flow opening 24 of the baffle plate 18 as shown by the arrow A, and collides with the vertical portion 19 of the cooling pipe 16 in the vertical direction. Thus, the efficiency of heat exchange with the pool water 11 flowing in the vertical portion 19 is increased.

次に、作用を説明する。
この使用済燃料貯蔵プール冷却システム15では、使用済燃料12により加熱された使用済燃料貯蔵プール10内のプール水11は、その温度変化により生ずる密度差によって上方へ流れ、使用済燃料貯蔵プール10におけるプール水11の水面11A付近を冷却用配管16の上側端部20の方向へ流れ、この上側端部20に吸い込まれる。この吸い込まれた温度の高いプール水11は、冷却用配管16内でダクト17内の空気と熱交換して温度が低下し、垂直部19内を下方へ流れる。
Next, the operation will be described.
In the spent fuel storage pool cooling system 15, the pool water 11 in the spent fuel storage pool 10 heated by the spent fuel 12 flows upward due to the density difference caused by the temperature change, and the spent fuel storage pool 10. In the vicinity of the water surface 11 </ b> A of the pool water 11, the water flows toward the upper end 20 of the cooling pipe 16 and is sucked into the upper end 20. The sucked pool water 11 having a high temperature is subjected to heat exchange with the air in the duct 17 in the cooling pipe 16 and the temperature is lowered, and flows downward in the vertical portion 19.

一方、冷却用配管16内のプール水11の放熱により加熱されたダクト17内の空気は、その温度変化による密度差によって上昇し、下端開口23から空気(大気)を吸い込む。この吸い込まれた空気は、ダクト17内で、矢印Aに示すように邪魔板18の空気流動用の開口24を通って蛇行しながら上昇し、冷却用配管16の垂直部19に垂直方向に衝突して、冷却用配管16内のプール水11を冷却する。   On the other hand, the air in the duct 17 heated by the heat radiation of the pool water 11 in the cooling pipe 16 rises due to the density difference due to the temperature change, and sucks air (atmosphere) from the lower end opening 23. The sucked air rises while meandering through the air flow opening 24 of the baffle plate 18 as indicated by an arrow A in the duct 17 and collides with the vertical portion 19 of the cooling pipe 16 in the vertical direction. Then, the pool water 11 in the cooling pipe 16 is cooled.

この冷却されたプール水11は、冷却用配管16の下側端部21から使用済燃料貯蔵プール10内に戻って使用済燃料12を冷却する。このように、プール水11は、使用済燃料貯蔵プール10と冷却用配管16との間で、その温度変化による密度差によって自然循環する。   The cooled pool water 11 returns to the spent fuel storage pool 10 from the lower end 21 of the cooling pipe 16 and cools the spent fuel 12. In this manner, the pool water 11 naturally circulates between the spent fuel storage pool 10 and the cooling pipe 16 due to the density difference due to the temperature change.

以上のように構成されたことから、本実施形態によれば次の効果(1)〜(3)を奏する。
(1)使用済燃料貯蔵プール10の外側に配設された複数本の冷却用配管16に、その上側端部20からプール水11が流入することで、冷却用配管16を収容するダクト17内の空気は、冷却用配管16内の温度の高いプール水11により加熱され、密度差によってダクト17内を上昇する。このダクト17内での空気の上昇流によって冷却用配管16内のプール水11が冷却され、この冷却用配管16内のプール水11はその密度差により使用済燃料貯蔵プール10との間で循環する。この結果、全電源喪失時においても使用済燃料貯蔵プール10のプール水11を半永久的に冷却でき、使用済燃料貯蔵プール10内の使用済燃料12の崩壊熱を除去できる。
With the configuration as described above, the following effects (1) to (3) are achieved according to the present embodiment.
(1) The inside of the duct 17 that accommodates the cooling pipe 16 by the pool water 11 flowing into the plurality of cooling pipes 16 disposed outside the spent fuel storage pool 10 from the upper end 20 thereof. This air is heated by the pool water 11 having a high temperature in the cooling pipe 16 and rises in the duct 17 due to the density difference. Pool water 11 in the cooling pipe 16 is cooled by the upward flow of air in the duct 17, and the pool water 11 in the cooling pipe 16 circulates between the spent fuel storage pool 10 due to the density difference. To do. As a result, the pool water 11 of the spent fuel storage pool 10 can be semi-permanently cooled even when the entire power source is lost, and the decay heat of the spent fuel 12 in the spent fuel storage pool 10 can be removed.

(2)ダクト17の長さLが冷却用配管16の垂直部19の長さNよりも約1.3倍以上長く設定されたので、ダクト17内では、冷却用配管16内のプール水11の放熱により上端開口22付近と下端開口23付近とで空気の密度差が大きくなり、ダクト17内に発生する空気の上昇流によって、下端開口23からダクト17内により多くの空気(大気)を吸い込むことができる。このため、ダクト17内で上昇する空気流量が増大し、冷却用配管16内のプール水11とダクト17内の空気との熱交換効率を向上させることができる。   (2) Since the length L of the duct 17 is set to be about 1.3 times longer than the length N of the vertical portion 19 of the cooling pipe 16, the pool water 11 in the cooling pipe 16 is set in the duct 17. Due to the heat radiation, the difference in the air density between the vicinity of the upper end opening 22 and the vicinity of the lower end opening 23 becomes large, and a large amount of air (atmosphere) is sucked into the duct 17 from the lower end opening 23 by the upward flow of air generated in the duct 17 be able to. For this reason, the air flow rate rising in the duct 17 increases, and the heat exchange efficiency between the pool water 11 in the cooling pipe 16 and the air in the duct 17 can be improved.

(3)ダクト17内には、このダクト17の長手方向に所定間隔で複数枚の邪魔板18が配置され、隣接する邪魔板18は、ダクト17の軸Oに対し互いに反対側の位置に空気流動用の開口24が形成されている。このため、ダクト17内を上昇する空気は、邪魔板18の空気流動用の開口24を通り蛇行して上昇することになるので、この間に冷却用配管16の垂直部19と垂直方向に衝突する。従って、この構成からも、冷却用配管16内を流れるプール水11とダクト17内を流れる空気との熱交換効率を向上させることができる。   (3) In the duct 17, a plurality of baffle plates 18 are arranged at a predetermined interval in the longitudinal direction of the duct 17, and the adjacent baffle plates 18 are located at positions opposite to each other on the axis O of the duct 17. A flow opening 24 is formed. Therefore, the air rising in the duct 17 meanders and rises through the air flow opening 24 of the baffle plate 18, and thus collides with the vertical portion 19 of the cooling pipe 16 in the vertical direction. . Therefore, also from this configuration, the heat exchange efficiency between the pool water 11 flowing in the cooling pipe 16 and the air flowing in the duct 17 can be improved.

尚、この第1実施形態におけるダクト17では、図2及び図4に示すように、複数枚の邪魔板18で仕切られた複数の区画のうち、上側に位置する区画(例えば図2の区画25)を構成するダクト17の側面に、ダクト17の外側の空気(大気)をダクト17内に直接導入するための空気導入用の開口26が形成されてもよい。冷却用配管16内を流れるプール水11は、垂直部19の上側端部20に近い側で温度が高いので、空気導入用の開口26からダクト17内に導入される空気によってより効率的にプール水11を冷却することができる。   In the duct 17 in the first embodiment, as shown in FIG. 2 and FIG. 4, the upper section (for example, the section 25 in FIG. 2) among the plurality of sections partitioned by the plurality of baffle plates 18. An air introduction opening 26 for directly introducing the air (atmosphere) outside the duct 17 into the duct 17 may be formed on the side surface of the duct 17 constituting the above. Since the pool water 11 flowing in the cooling pipe 16 has a high temperature on the side close to the upper end 20 of the vertical portion 19, the pool water 11 is more efficiently pooled by the air introduced into the duct 17 from the air introduction opening 26. The water 11 can be cooled.

また、第1実施形態における冷却用配管16の垂直部19には、図5(A)に示すように外側に放熱フィン27が固着されて、垂直部19内のプール水11とダクト17内の空気との伝熱効率を向上させてもよい。あるいは、図5(B)に示すように、冷却用配管16の垂直部28は、扁平形状のプレート状チューブにより構成され、ダクト17内を矢印A方向に流れる空気との接触面積を増加させて、垂直部19内のプール水11とダクト17内の空気との伝熱効率を向上させてもよい。   Further, in the vertical portion 19 of the cooling pipe 16 in the first embodiment, as shown in FIG. 5 (A), heat radiating fins 27 are fixed to the outside, and the pool water 11 in the vertical portion 19 and the duct 17 Heat transfer efficiency with air may be improved. Alternatively, as shown in FIG. 5B, the vertical portion 28 of the cooling pipe 16 is configured by a flat plate-like tube, and increases the contact area with the air flowing in the direction of arrow A in the duct 17. The heat transfer efficiency between the pool water 11 in the vertical portion 19 and the air in the duct 17 may be improved.

[B]第2実施形態(図6)
図6は、本発明に係る使用済燃料貯蔵プール冷却システムの第2実施形態を示す構成図である。この第2実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIG. 6)
FIG. 6 is a block diagram showing a second embodiment of the spent fuel storage pool cooling system according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本第2実施形態の使用済燃料貯蔵プール冷却システム30が前記第1実施形態と異なる点は、隔壁としての複数枚の邪魔板31の構成である。つまり、複数枚の邪魔板31は、隣接する邪魔板31間で形成される空気の流路面積が下流側へ向かうほど漸次拡大するように、水平に対し角度θだけ斜めに配置されている。   The spent fuel storage pool cooling system 30 of the second embodiment is different from the first embodiment in the configuration of a plurality of baffle plates 31 as partition walls. That is, the plurality of baffle plates 31 are arranged obliquely at an angle θ with respect to the horizontal so that the flow path area of the air formed between the adjacent baffle plates 31 gradually increases toward the downstream side.

従って、本第2実施形態によれば、前記第1実施形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(4)を奏する。   Therefore, according to the second embodiment, in addition to the same effects as the effects (1) to (3) of the first embodiment, the following effect (4) is achieved.

(4)ダクト17内に配置される複数枚の邪魔板31は、隣接する邪魔板31間で形成される空気の流路面積が下流側へ向かうほど漸次拡大するように、水平に対し角度θだけ斜めに設置されている。このため、ダクト17内を蛇行して上昇する空気の流れがスムーズになる。このように、ダクト17内で空気が流れ易くなるので、冷却用配管16内のプール水11とダクト17内の空気との熱交換効率をより一層向上させることができる。   (4) The plurality of baffle plates 31 arranged in the duct 17 have an angle θ with respect to the horizontal so that the flow area of the air formed between the adjacent baffle plates 31 gradually increases toward the downstream side. Only installed diagonally. For this reason, the flow of the air which meanders in the duct 17 and rises becomes smooth. As described above, since air easily flows in the duct 17, the heat exchange efficiency between the pool water 11 in the cooling pipe 16 and the air in the duct 17 can be further improved.

[C]第3実施形態(図7)
図7は、本発明に係る使用済燃料貯蔵プール冷却システムの第3実施形態を示す構成図である。この第3実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 7)
FIG. 7 is a block diagram showing a third embodiment of the spent fuel storage pool cooling system according to the present invention. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本第3実施形態の使用済燃料貯蔵プール冷却システム40が前記第1実施形態と異なる点は、使用済燃料貯蔵プール10内の上方に第1案内板41が、使用済燃料貯蔵プール10内の上下方向略中央位置に第2案内板42が、それぞれ設置された点である。   The spent fuel storage pool cooling system 40 of the third embodiment is different from the first embodiment in that the first guide plate 41 is located above the spent fuel storage pool 10 in the spent fuel storage pool 10. The second guide plate 42 is installed at a substantially central position in the vertical direction.

第1案内板41は、使用済燃料貯蔵プール10の内部における冷却用配管16の上側端部20の上方に配置され、使用済燃料貯蔵プール10に設置された使用済み燃料12と冷却用配管16の上側端部20とを覆うように湾曲形状に形成されている。使用済燃料貯蔵プール10内で使用済燃料12にて加熱されたプール水11は、その温度変化による密度差によって上方へ流れ、矢印Bに示すように、第1案内板41に沿って冷却用配管16の上側端部20へスムーズに案内される。   The first guide plate 41 is disposed above the upper end 20 of the cooling pipe 16 inside the spent fuel storage pool 10, and the spent fuel 12 and the cooling pipe 16 installed in the spent fuel storage pool 10. It is formed in a curved shape so as to cover the upper end portion 20. The pool water 11 heated by the spent fuel 12 in the spent fuel storage pool 10 flows upward due to the density difference due to the temperature change, and is cooled along the first guide plate 41 as indicated by an arrow B. It is smoothly guided to the upper end 20 of the pipe 16.

また、第2案内板42は、使用済燃料貯蔵プール10の内部において冷却用配管16の上側端部20と下側端部21との間に配置され、使用済燃料貯蔵プール10内の使用済燃料12よりも少し上方において水平状態に位置づけられる。冷却用配管16内を流れてダクト17内の空気により冷却されたプール水11は、冷却用配管16の下側端部21から使用済燃料貯蔵プール10内に流出するが、このとき第2案内板42に案内されて、矢印Cに示すように、下側端部21から使用済燃料貯蔵プール10内の使用済燃料12へ向かって流れ、この使用済燃料12を効率的に冷却する。   The second guide plate 42 is disposed between the upper end 20 and the lower end 21 of the cooling pipe 16 inside the spent fuel storage pool 10, and is used in the spent fuel storage pool 10. It is positioned in a horizontal state slightly above the fuel 12. The pool water 11 that has flowed through the cooling pipe 16 and cooled by the air in the duct 17 flows out from the lower end portion 21 of the cooling pipe 16 into the spent fuel storage pool 10. Guided by the plate 42, as indicated by an arrow C, it flows from the lower end 21 toward the spent fuel 12 in the spent fuel storage pool 10, and the spent fuel 12 is efficiently cooled.

従って、本実施形態によれば、前記第1実施形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(5)を奏する。   Therefore, according to this embodiment, in addition to the same effects as the effects (1) to (3) of the first embodiment, the following effect (5) is achieved.

(5)使用済燃料貯蔵プール10内では、冷却用配管16の上側端部20と使用済燃料12とを覆うようにして湾曲形状の第1案内板41が設置され、また、使用済燃料12の少し上方に水平状態で第2案内板42が設置されている。このため、使用済燃料貯蔵プール10内で加熱されたプール水11を第1案内板41により冷却用配管16の上側端部20へ案内でき、且つ冷却用配管16内で冷却されたプール水11を、冷却用配管16の下側端部21から第2案内板42によって、使用済燃料貯蔵プール10内の使用済燃料12へ案内できる。この結果、使用済燃料貯蔵プール10内でのプール水11の流れをスムーズに実施でき、使用済燃料貯蔵プール10と冷却用配管16との間でプール水11の循環を円滑に実施できる。   (5) In the spent fuel storage pool 10, a curved first guide plate 41 is installed so as to cover the upper end 20 of the cooling pipe 16 and the spent fuel 12, and the spent fuel 12 The second guide plate 42 is installed in a horizontal state slightly above. Therefore, the pool water 11 heated in the spent fuel storage pool 10 can be guided to the upper end 20 of the cooling pipe 16 by the first guide plate 41, and the pool water 11 cooled in the cooling pipe 16 is used. Can be guided from the lower end 21 of the cooling pipe 16 to the spent fuel 12 in the spent fuel storage pool 10 by the second guide plate 42. As a result, the flow of the pool water 11 in the spent fuel storage pool 10 can be smoothly performed, and the pool water 11 can be smoothly circulated between the spent fuel storage pool 10 and the cooling pipe 16.

以上、本発明を上記実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で構成要素を種々変形してもよく、また、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this, A component may be variously deformed in the range which does not deviate from the summary, and it covers different embodiment. You may combine a component suitably.

10 使用済燃料貯蔵プール
11 プール水
12 使用済燃料
15 使用済燃料貯蔵プール冷却システム
16 冷却用配管
17 ダクト
18 邪魔板(隔壁)
19 垂直部
20 上側端部
21 下側端部
22 上端開口
23 下端開口
24 空気流動用の開口
25 区画
26 空気導入用の開口
27 放熱フィン
28 垂直部
30 使用済燃料貯蔵プール冷却システム
31 邪魔板
40 使用済燃料貯蔵プール冷却システム
41 第1案内板
42 第2案内板
L、N 長さ
O 軸
θ 角度
10 spent fuel storage pool 11 pool water 12 spent fuel 15 spent fuel storage pool cooling system 16 cooling pipe 17 duct 18 baffle plate (partition wall)
DESCRIPTION OF SYMBOLS 19 Vertical part 20 Upper end part 21 Lower end part 22 Upper end opening 23 Lower end opening 24 Air flow opening 25 Compartment 26 Air introduction opening 27 Radiation fin 28 Vertical part 30 Spent fuel storage pool cooling system 31 Baffle plate 40 Spent fuel storage pool cooling system 41 First guide plate 42 Second guide plate L, N Length O Axis θ Angle

Claims (7)

使用済燃料をプール水に水没させて保管する使用済燃料貯蔵プールの前記プール水を冷却する使用済燃料貯蔵プール冷却システムであって、
垂直部が前記使用済燃料貯蔵プールの外側に垂直方向に配設されると共に、この垂直部の上端と下端にそれぞれ接続された上側端部、下側端部が前記使用済燃料貯蔵プールの内部に連通して設けられた冷却用配管と、
前記使用済燃料貯蔵プールの外側に垂直方向に延在して配置されると共に、内部に前記冷却用配管を収容し、上端開口及び下端開口が大気に開放されたダクトとを有し、
前記冷却用配管内に前記上側端部から流入する前記プール水が、前記ダクト内を上昇する空気と熱交換して冷却可能に構成されたことを特徴とする使用済燃料貯蔵プール冷却システム。
A spent fuel storage pool cooling system that cools the pool water of a spent fuel storage pool that stores the spent fuel immersed in pool water,
A vertical portion is vertically disposed outside the spent fuel storage pool, and an upper end and a lower end connected to the upper end and the lower end of the vertical portion are the interior of the spent fuel storage pool. Cooling piping provided in communication with
A duct extending in the vertical direction outside the spent fuel storage pool, accommodating the cooling pipe therein, and having a top opening and a bottom opening opened to the atmosphere;
The spent fuel storage pool cooling system, wherein the pool water flowing into the cooling pipe from the upper end portion can be cooled by exchanging heat with the air rising in the duct.
前記ダクト内には、その長手方向に所定間隔で複数枚の隔壁が配置され、これらの隣接する隔壁には、前記ダクトの軸に対し反対側の位置に空気流動用の開口が形成され、前記ダクト内の空気が前記空気流動用の開口を通り蛇行して上昇するよう構成されたことを特徴とする請求項1に記載の使用済燃料貯蔵プール冷却システム。 In the duct, a plurality of partition walls are arranged at predetermined intervals in the longitudinal direction, and an air flow opening is formed at a position opposite to the duct axis in these adjacent partition walls, The spent fuel storage pool cooling system according to claim 1, wherein the air in the duct is configured to meander and rise through the air flow opening. 前記隔壁は、これらの隣接する隔壁間で形成される空気の流路面積が下流へ向かうほど漸次拡大するように水平に対し斜めに設置されたことを特徴とする請求項2に記載の使用済燃料貯蔵プール冷却システム。 3. The used partition according to claim 2, wherein the partition wall is installed obliquely with respect to the horizontal so that an air flow path area formed between these adjacent partition walls gradually increases toward the downstream. Fuel storage pool cooling system. 前記使用済燃料貯蔵プール内には、冷却用配管の上側端部の上方に、この上側端部及び使用済燃料を覆い、前記使用済燃料により加熱されたプール水を前記上側端部へ案内する第1案内板が設置されたことを特徴とする請求項1乃至3のいずれか1項に記載の使用済燃料貯蔵プール冷却システム。 In the spent fuel storage pool, the upper end and the spent fuel are covered above the upper end of the cooling pipe, and the pool water heated by the spent fuel is guided to the upper end. The spent fuel storage pool cooling system according to any one of claims 1 to 3, wherein a first guide plate is provided. 前記使用済燃料貯蔵プール内には、冷却用配管の上側端部と下側端部との間に、前記下側端部から流出する冷却されたプール水を使用済燃料へ向かって案内する第2案内板が設置されたことを特徴とする請求項1乃至4のいずれか1項に記載の使用済燃料貯蔵プール冷却システム。 In the spent fuel storage pool, the cooled pool water flowing out from the lower end is guided between the upper end and the lower end of the cooling pipe toward the spent fuel. The spent fuel storage pool cooling system according to any one of claims 1 to 4, wherein two guide plates are installed. 前記ダクトには、複数枚の隔壁で仕切られた複数の区画のうち、上側に位置する区画を構成する前記ダクトの側面に、このダクトの外側の空気を前記ダクト内へ導入する空気導入用の開口が形成されたことを特徴とする請求項2乃至5のいずれか1項に記載の使用済燃料貯蔵プール冷却システム。 In the duct, air for introducing air outside the duct into the duct is formed on a side surface of the duct that constitutes an upper section of the plurality of sections partitioned by a plurality of partition walls. The spent fuel storage pool cooling system according to any one of claims 2 to 5, wherein an opening is formed. 前記冷却用配管は、外側に放熱フィンが設けられフィンチューブ、または扁平形状のプレート状チューブにより構成されたことを特徴とする請求項1乃至5のいずれか1項に記載の使用済燃料貯蔵プール冷却システム。 The spent fuel storage pool according to any one of claims 1 to 5, wherein the cooling pipe is configured by a fin tube or a flat plate-like tube provided with heat radiation fins on the outside. Cooling system.
JP2012051954A 2012-03-08 2012-03-08 Cooling system for spent fuel storage pool Pending JP2013185992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051954A JP2013185992A (en) 2012-03-08 2012-03-08 Cooling system for spent fuel storage pool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051954A JP2013185992A (en) 2012-03-08 2012-03-08 Cooling system for spent fuel storage pool

Publications (1)

Publication Number Publication Date
JP2013185992A true JP2013185992A (en) 2013-09-19

Family

ID=49387538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051954A Pending JP2013185992A (en) 2012-03-08 2012-03-08 Cooling system for spent fuel storage pool

Country Status (1)

Country Link
JP (1) JP2013185992A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101815392B1 (en) * 2016-09-30 2018-01-04 한국수력원자력 주식회사 Heat exchanger and nuclear reactor building passive cooling system including the same
KR101915977B1 (en) * 2017-06-08 2018-11-07 한국원자력연구원 Passive containment cooling system of nuclear power plant
CN109830318A (en) * 2018-12-25 2019-05-31 清华大学天津高端装备研究院 A kind of spent fuel storage tank
CN113871044A (en) * 2021-08-12 2021-12-31 中广核研究院有限公司 Cooling control method and related equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156998A (en) * 1978-05-29 1979-12-11 Kraftwerk Union Ag Tank for storing fuel assembly for nuclear reactor
JPS622507A (en) * 1985-06-27 1987-01-08 Toshiba Corp Oil-filled apparatus
JPH02223896A (en) * 1989-02-27 1990-09-06 Toshiba Corp Cooling device for used fuel pool
JPH03122595A (en) * 1989-10-05 1991-05-24 Toshiba Corp Cooling system for nuclear reactor containment vessel
JPH0521236A (en) * 1991-07-12 1993-01-29 Hitachi Ltd Radiator self-cooled transformer
JPH05273392A (en) * 1992-03-26 1993-10-22 Sumitomo Metal Mining Co Ltd Storage building for spent nuclear fuel
JP2001021691A (en) * 1999-07-02 2001-01-26 Ishikawajima Harima Heavy Ind Co Ltd Heat emitting body storage facility

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156998A (en) * 1978-05-29 1979-12-11 Kraftwerk Union Ag Tank for storing fuel assembly for nuclear reactor
JPS622507A (en) * 1985-06-27 1987-01-08 Toshiba Corp Oil-filled apparatus
JPH02223896A (en) * 1989-02-27 1990-09-06 Toshiba Corp Cooling device for used fuel pool
JPH03122595A (en) * 1989-10-05 1991-05-24 Toshiba Corp Cooling system for nuclear reactor containment vessel
JPH0521236A (en) * 1991-07-12 1993-01-29 Hitachi Ltd Radiator self-cooled transformer
JPH05273392A (en) * 1992-03-26 1993-10-22 Sumitomo Metal Mining Co Ltd Storage building for spent nuclear fuel
JP2001021691A (en) * 1999-07-02 2001-01-26 Ishikawajima Harima Heavy Ind Co Ltd Heat emitting body storage facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101815392B1 (en) * 2016-09-30 2018-01-04 한국수력원자력 주식회사 Heat exchanger and nuclear reactor building passive cooling system including the same
KR101915977B1 (en) * 2017-06-08 2018-11-07 한국원자력연구원 Passive containment cooling system of nuclear power plant
CN109830318A (en) * 2018-12-25 2019-05-31 清华大学天津高端装备研究院 A kind of spent fuel storage tank
CN113871044A (en) * 2021-08-12 2021-12-31 中广核研究院有限公司 Cooling control method and related equipment

Similar Documents

Publication Publication Date Title
US10854344B2 (en) Air-cooled heat exchanger and system and method of using the same to remove waste thermal energy from radioactive materials
JP5463196B2 (en) Nuclear power plant with reactor containment cooling equipment
US9865365B2 (en) Decay heat removal system with hybrid heat pipe having coolant and neutron absorber for cooling nuclear power plant
JP2019220527A (en) Heat exchanger for immersion cooling
KR20170105004A (en) System for passively removing heat from inside a containment shell
JP6283276B2 (en) Air conditioning equipment for server systems
JP2013247148A (en) Natural circulation type cooling device
WO2015003936A1 (en) Oil cooling configuration for subsea converter
US10811149B2 (en) Passive natural circulation cooling system and method
JP2016009828A (en) Ebullient cooling device for heating element
JP2013134258A (en) Filter device for filtering gas flow containing aerosol and/or gas-like iodine
KR102263866B1 (en) Thermoelectric generator using waste heat
JP2013185992A (en) Cooling system for spent fuel storage pool
JP5995490B2 (en) Cooling system
JP2016520204A5 (en)
JP2006132913A (en) Heat exchange type cooler
JP2014157029A (en) Nuclear reactor system and nuclear reactor molten material retaining device
JP7228377B2 (en) static induction electric machine
JP6283277B2 (en) Air conditioning equipment for server systems
US20190101105A1 (en) Heat exchanger for an electrical machine
JP2013076675A (en) Passive cooling system for liquid metal cooling reactor
JP5668347B2 (en) Heat absorption structure of outdoor equipment
JP2005317620A (en) Power apparatus with oil
JP5943644B2 (en) Fluid cooling device
CA2940317C (en) Cooling element for cooling the cooling liquid in a fuel pool, associated system, fuel pool and nuclear facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150317