JP2013185861A - Self-discharge inspection device of storage battery, and self-discharge inspection method for storage battery - Google Patents

Self-discharge inspection device of storage battery, and self-discharge inspection method for storage battery Download PDF

Info

Publication number
JP2013185861A
JP2013185861A JP2012049237A JP2012049237A JP2013185861A JP 2013185861 A JP2013185861 A JP 2013185861A JP 2012049237 A JP2012049237 A JP 2012049237A JP 2012049237 A JP2012049237 A JP 2012049237A JP 2013185861 A JP2013185861 A JP 2013185861A
Authority
JP
Japan
Prior art keywords
storage battery
self
discharge
voltage
potential difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012049237A
Other languages
Japanese (ja)
Inventor
Tetsuya Takahashi
哲哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2012049237A priority Critical patent/JP2013185861A/en
Publication of JP2013185861A publication Critical patent/JP2013185861A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform self-discharge inspection for a storage battery with high precision and in a shorter time.SOLUTION: A self-discharge inspection device 1 for a storage battery inspects self-discharge amounts of the same type of storage batteries 11a to 11d, and comprises a voltage measurement section 5, a changeover section 3 and a processing section 6. The changeover section 3 is disposed between the storage batteries 11a to 11d and the voltage measurement section 5, and outputs, to the voltage measurement section 5, a potential difference V2 between a reference storage battery 11a obtained by regarding the one storage battery 11a of the storage batteries 11a to 11d as a reference storage battery and the remaining storage batteries 11b to 11d. The processing section 6, in a state in which each of the storage batteries 11b to 11d is self-discharged for the same time period after charged with the same charging voltage, performs: potential difference measurement processing for controlling the changeover section 3 to cause the voltage measurement section 5 to sequentially measure the potential differences V2 between the reference storage battery 11a and all the remaining storage batteries 11b to 11d, and acquiring the potential difference V2; and discharge amount inspection processing for inspecting the self-discharge amounts of the storage batteries 11a to 11d on the basis of each of the potential differences V2 thus acquired.

Description

本発明は、鉛蓄電池やリチウムイオン電池などの蓄電池の自己放電量を検査する蓄電池の自己放電検査装置および蓄電池の自己放電検査方法に関するものである。   The present invention relates to a storage battery self-discharge inspection apparatus and a storage battery self-discharge inspection method for inspecting a self-discharge amount of a storage battery such as a lead storage battery or a lithium ion battery.

この種の自己放電検査方法としては、下記特許文献1に従来技術として開示されている自己放電量の測定方法を使用した検査方法が知られている。この自己放電量の測定方法は、満充電した蓄電池を一定期間室温雰囲気等で放置した後に端子電圧(充電電圧)を測定する方法であり、蓄電池の自己放電量が小さいということは、正負極間の微短絡(マイクロショート)がないということであって好ましいことから、自己放電量の検査では、この測定方法によって測定された自己放電量(充電電圧の変化量:満充電時の充電電圧と自己放電後の充電電圧との差分(電圧降下量))と予め規定したしきい値とを比較して、自己放電量がしきい値以下の蓄電池については良品とし、しきい値を越える蓄電池については不良品としている。   As this type of self-discharge inspection method, an inspection method using a self-discharge amount measuring method disclosed as a prior art in Patent Document 1 below is known. This method of measuring self-discharge is a method of measuring the terminal voltage (charge voltage) after leaving a fully charged storage battery in a room temperature atmosphere for a certain period of time. Therefore, in the self-discharge amount test, the self-discharge amount measured by this measurement method (change in charge voltage: charge voltage at full charge and self-discharge) Comparing the difference between the charging voltage after discharge (voltage drop amount) and a predetermined threshold value, a battery with a self-discharge amount equal to or less than the threshold value is regarded as a non-defective product. Defective product.

特開2002−343446号公報(第2頁)JP 2002-343446 A (2nd page)

ところが、上記の自己放電検査方法には、以下の改善すべき課題が存在している。すなわち、この自己放電検査方法では、満充電した蓄電池を一定期間室温雰囲気等で放置して自己放電させたときの電圧降下量を測定している。この場合、この電圧降下量は僅か(放置する時間や電池の容量にもよるが、例えば、4週間の放置で、数十ミリボルト程度)である一方で、蓄電池の定格充電電圧は一般的には数ボルト(例えば、4ボルト程度)であることから、電圧計で充電電圧を測定する際には、例えば10ボルトレンジで測定せざるを得ず、僅かな電圧降下量を高い精度で測定するのが困難であるという課題が存在している。   However, the above self-discharge inspection method has the following problems to be improved. That is, in this self-discharge inspection method, the amount of voltage drop when a fully charged storage battery is left in a room temperature atmosphere or the like for a certain period to be self-discharged is measured. In this case, the amount of voltage drop is small (depending on the time to be left and the capacity of the battery, for example, about several tens of millivolts after being left for 4 weeks), while the rated charging voltage of the storage battery is generally Since it is several volts (for example, about 4 volts), when measuring the charging voltage with a voltmeter, for example, it must be measured in the 10 volt range, and a slight voltage drop is measured with high accuracy. There is a problem that is difficult.

また、電圧降下量を大きくして精度を高めることも考えられるが、上記したように自己放電の少ない蓄電池では、大きく電圧降下させるためには、さらに長期間放置しなければならないことから、自己放電検査に要する時間が非常に長くなるという課題が発生する。   In addition, it is conceivable to increase the accuracy by increasing the amount of voltage drop. However, in the case of a storage battery with low self-discharge as described above, it is necessary to leave it for a longer period in order to reduce the voltage significantly. There arises a problem that the time required for the inspection becomes very long.

本発明は、かかる課題を改善するためになされたものであり、高い精度で、かつより短い時間で蓄電池の自己放電検査を行い得る蓄電池の自己放電検査装置および蓄電池の自己放電検査方法を提供することを主目的とする。   The present invention has been made to improve such a problem, and provides a storage battery self-discharge inspection apparatus and a storage battery self-discharge inspection method capable of performing a self-discharge inspection of a storage battery with high accuracy and in a shorter time. The main purpose.

上記目的を達成すべく請求項1記載の蓄電池の自己放電検査装置は、複数の同種の蓄電池についての自己放電量を検査する蓄電池の自己放電検査装置であって、入力される測定電圧を測定する電圧測定部と、前記複数の蓄電池と前記電圧測定部との間に配設されて、当該複数の蓄電池のうちの1つの蓄電池を基準蓄電池としたときの当該基準蓄電池と他の任意の蓄電池との間の電位差を前記測定電圧として前記電圧測定部に出力する切替部と、前記複数の蓄電池が同一充電電圧に充電された後に同一時間だけ自己放電された状態において、前記切替部を制御して前記基準蓄電池とすべての前記他の蓄電池との間の前記電位差を前記電圧測定部に順次測定させると共に当該電圧測定部によって測定された当該電位差を取得する電位差測定処理、および当該取得した各電位差に基づいて前記複数の蓄電池の自己放電量を検査する放電量検査処理を実行する処理部とを備えている。   In order to achieve the above object, a self-discharge inspection device for a storage battery according to claim 1 is a self-discharge inspection device for a storage battery that inspects a self-discharge amount for a plurality of storage batteries of the same type, and measures an input measurement voltage. A voltage measuring unit, the plurality of storage batteries, and the voltage measuring unit, the reference storage battery and any other storage battery when one storage battery of the plurality of storage batteries is used as a reference storage battery; A switching unit that outputs a potential difference between the voltage measurement unit to the voltage measurement unit, and controls the switching unit in a state where the plurality of storage batteries are self-discharged for the same time after being charged to the same charging voltage. A potential difference measurement process for causing the voltage measurement unit to sequentially measure the potential difference between the reference storage battery and all the other storage batteries and acquiring the potential difference measured by the voltage measurement unit; And and a processing unit that executes discharge amount inspection process for inspecting a self-discharge quantity of said plurality of storage batteries based on each potential difference the acquired.

請求項2記載の蓄電池の自己放電検査装置は、請求項1記載の蓄電池の自己放電検査装置において、前記処理部は、前記放電量検査処理において、前記取得した各電位差に基づいて前記複数の蓄電池のうちから最高の充電電圧の蓄電池を特定蓄電池として検出する電池特定処理、当該特定蓄電池と他のすべての蓄電池との間の電位差を新たな電位差として算出する電位差算出処理、および当該算出した新たな電位差が予め規定されたしきい値電圧以下となる前記蓄電池を選別する選別処理を実行する。   The storage battery self-discharge inspection device according to claim 2 is the storage battery self-discharge inspection device according to claim 1, wherein the processing unit is configured to determine the plurality of storage batteries based on the acquired potential differences in the discharge amount inspection processing. A battery identification process for detecting a storage battery with the highest charging voltage as a specific storage battery, a potential difference calculation process for calculating a potential difference between the specific storage battery and all other storage batteries as a new potential difference, and the calculated new A sorting process for sorting the storage batteries having a potential difference equal to or lower than a predetermined threshold voltage is executed.

請求項3記載の蓄電池の自己放電検査装置は、請求項1または2記載の蓄電池の自己放電検査装置において、前記切替部は、前記複数の蓄電池を並列接続可能に構成され、前記処理部は、充電状態の前記複数の蓄電池を前記切替部を制御して並列接続することにより当該複数の蓄電池を前記同一充電電圧に充電する電圧均一化処理を実行する。   The self-discharge inspection device for a storage battery according to claim 3 is the self-discharge inspection device for a storage battery according to claim 1 or 2, wherein the switching unit is configured to be able to connect the plurality of storage batteries in parallel, and the processing unit includes: A voltage equalization process for charging the plurality of storage batteries to the same charging voltage is performed by connecting the plurality of storage batteries in a charged state in parallel by controlling the switching unit.

請求項4記載の蓄電池の自己放電検査装置は、請求項1または2記載の蓄電池の自己放電検査装置において、充電部を備え、前記切替部は、前記複数の蓄電池を並列接続可能に構成され、前記処理部は、前記切替部を制御して前記複数の蓄電池を並列接続すると共に当該並列接続された状態の複数の蓄電池に前記充電部を接続して前記同一充電電圧に充電する。   The storage battery self-discharge inspection device according to claim 4 is the storage battery self-discharge inspection device according to claim 1 or 2, further comprising a charging unit, wherein the switching unit is configured to be able to connect the plurality of storage batteries in parallel. The processing unit controls the switching unit to connect the plurality of storage batteries in parallel and connects the charging unit to the plurality of storage batteries connected in parallel to charge the same charging voltage.

請求項5記載の蓄電池の自己放電検査装置は、請求項3または4記載の蓄電池の自己放電検査装置において、前記処理部は、前記同一充電電圧に充電させた後に前記切替部を制御して前記複数の蓄電池の並列接続状態を解除すると共に前記同一時間だけ自己放電させる放電処理を実行する。   The storage battery self-discharge inspection device according to claim 5 is the storage battery self-discharge inspection device according to claim 3 or 4, wherein the processing unit controls the switching unit after charging the same charging voltage. A discharge process for releasing the parallel connection state of the plurality of storage batteries and performing self-discharge for the same time is executed.

請求項6記載の蓄電池の自己放電検査方法は、複数の同種の蓄電池についての自己放電量を検査する蓄電池の自己放電検査方法であって、同一充電電圧に充電された後に同一時間だけ自己放電された状態の前記複数の蓄電池のうちの1つの蓄電池を基準蓄電池としたときの当該基準蓄電池と他のすべての蓄電池との間の電位差を測定する電位差測定処理と、前記測定した各電位差に基づいて前記複数の蓄電池の自己放電量を検査する放電量検査処理とを実行する。   The self-discharge inspection method for a storage battery according to claim 6 is a self-discharge inspection method for a storage battery that inspects a self-discharge amount for a plurality of storage batteries of the same type, and is self-discharged for the same time after being charged to the same charge voltage. A potential difference measurement process for measuring a potential difference between the reference storage battery and all other storage batteries when one storage battery of the plurality of storage batteries in a state is used as a reference storage battery, and based on the measured potential differences A discharge amount inspection process for inspecting self-discharge amounts of the plurality of storage batteries is executed.

請求項7記載の蓄電池の自己放電検査方法は、請求項6記載の蓄電池の自己放電検査方法において、前記放電量検査処理において、前記測定した各電位差に基づいて前記複数の蓄電池のうちから最高の充電電圧の蓄電池を特定蓄電池として検出する電池特定処理、当該特定蓄電池と他のすべての蓄電池との間の電位差を新たな電位差として算出する電位差算出処理、および当該算出した新たな電位差が予め規定されたしきい値電圧以下となる前記蓄電池を選別する選別処理を実行する。   The self-discharge inspection method for a storage battery according to claim 7 is the self-discharge inspection method for a storage battery according to claim 6, wherein, in the discharge amount inspection process, the highest one of the plurality of storage batteries based on each measured potential difference. A battery identification process for detecting a storage battery with a charging voltage as a specific storage battery, a potential difference calculation process for calculating a potential difference between the specific storage battery and all other storage batteries as a new potential difference, and the calculated new potential difference are defined in advance. A sorting process for sorting out the storage batteries that are equal to or lower than the threshold voltage is executed.

請求項8記載の蓄電池の自己放電検査方法は、請求項6または7記載の蓄電池の自己放電検査方法において、前記電位差測定処理に先立ち、充電状態の前記複数の蓄電池を並列接続することにより当該複数の蓄電池を前記同一充電電圧に充電する電圧均一化処理を実行する。   The self-discharge inspection method for a storage battery according to claim 8 is the self-discharge inspection method for a storage battery according to claim 6 or 7, wherein the plurality of storage batteries are connected in parallel prior to the potential difference measurement process. The voltage equalization process which charges the storage battery to the same charging voltage is executed.

請求項9記載の蓄電池の自己放電検査方法は、請求項6または7記載の蓄電池の自己放電検査方法において、前記電位差測定処理に先立ち、並列接続した状態で前記複数の蓄電池を充電することにより当該複数の蓄電池を前記同一充電電圧に充電する。   The self-discharge inspection method for a storage battery according to claim 9 is the self-discharge inspection method for a storage battery according to claim 6 or 7, wherein the plurality of storage batteries are charged in a connected state prior to the potential difference measurement process. A plurality of storage batteries are charged to the same charging voltage.

請求項10記載の蓄電池の自己放電検査方法は、請求項8または9記載の蓄電池の自己放電検査方法において、前記同一充電電圧に充電させた後に前記複数の蓄電池の並列接続状態を解除すると共に前記同一時間だけ自己放電させる放電処理を実行する。   The self-discharge inspection method for a storage battery according to claim 10 is the self-discharge inspection method for a storage battery according to claim 8 or 9, wherein the parallel connection state of the plurality of storage batteries is released after charging to the same charge voltage. A discharge process for self-discharge for the same time is executed.

請求項1記載の蓄電池の自己放電検査装置および請求項6記載の蓄電池の自己放電検査方法では、複数の蓄電池が同一充電電圧に充電された後に同一時間だけ自己放電された状態において、基準蓄電池とすべての他の蓄電池との間の電位差を順次測定する電位差測定処理、および測定した各電位差に基づいて各蓄電池の自己放電量を検査する放電量検査処理を実行する。   In the self-discharge inspection device for a storage battery according to claim 1 and the self-discharge inspection method for a storage battery according to claim 6, in a state where a plurality of storage batteries are self-discharged for the same time after being charged to the same charge voltage, A potential difference measurement process for sequentially measuring potential differences from all other storage batteries and a discharge amount inspection process for inspecting the self-discharge amount of each storage battery based on the measured potential differences are executed.

したがって、この蓄電池の自己放電検査装置および蓄電池の自己放電検査方法によれば、蓄電池の充電電圧自体を測定する場合の電圧測定レンジ(例えば、10ボルトレンジ)でμボルトオーダーの自己放電による電圧変化量を測定する構成(十分な測定精度を得られない構成)を採用することなく、10ボルトレンジよりも十分に小さな電圧測定レンジ(例えば100μボルトの電圧測定レンジ)で測定する構成を採用して、2つの蓄電池に自己放電によってそれぞれ生じる充電電圧の変化(約十数μボルト〜数十μボルト程度の変化)の差分(数μボルト程度)である電位差を高精度で測定することができる結果、この電位差に基づいて、蓄電池の自己放電量を高い精度で検査することができる。また、このようにして測定精度を大幅に向上させることができるため、各蓄電池での自己放電量を従来の方式よりも少なくしても、十分な精度で電位差を測定することができることから、自己放電時間を従来の方式での自己放電時間(4週間程度)よりも大幅に短い時間(一週間程度)にでき、これにより、自己放電検査処理に要する時間を大幅に短縮することができる。   Therefore, according to the self-discharge inspection device for a storage battery and the self-discharge inspection method for a storage battery, the voltage change due to self-discharge in the order of μV in the voltage measurement range (for example, 10 volt range) when measuring the charge voltage of the storage battery itself. Adopting a configuration that measures in a voltage measurement range that is sufficiently smaller than the 10 volt range (for example, a voltage measurement range of 100 μV) without adopting a configuration that measures the amount (configuration that does not provide sufficient measurement accuracy) The result of being able to measure with high accuracy the potential difference, which is the difference (approximately several microvolts) of the change in the charging voltage (change from approximately several tens of microvolts to several tens of microvolts) caused by self-discharge in each of the two storage batteries. Based on this potential difference, the self-discharge amount of the storage battery can be inspected with high accuracy. In addition, since the measurement accuracy can be greatly improved in this way, the potential difference can be measured with sufficient accuracy even if the amount of self-discharge in each storage battery is smaller than in the conventional method. The discharge time can be made significantly shorter (about one week) than the self-discharge time (about four weeks) in the conventional method, whereby the time required for the self-discharge inspection process can be greatly shortened.

また、請求項2記載の蓄電池の自己放電検査装置および請求項7記載の蓄電池の自己放電検査方法では、放電量検査処理において、測定した各電位差に基づいて各蓄電池のうちから最高の充電電圧の蓄電池を特定蓄電池として検出する電池特定処理、特定蓄電池と他のすべての蓄電池との間の電位差を新たな電位差として算出する電位差算出処理、および算出した新たな電位差が予め規定されたしきい値電圧以下となる蓄電池を選別する選別処理を実行して、各蓄電池の自己放電量を検査する。したがって、この蓄電池の自己放電検査装置および蓄電池の自己放電検査方法によれば、高精度で測定された電位差に基づいて、各蓄電池の自己放電量を確実に検査することができる。   Further, in the self-discharge inspection device for a storage battery according to claim 2 and the self-discharge inspection method for a storage battery according to claim 7, in the discharge amount inspection process, the highest charge voltage of each storage battery is determined based on each measured potential difference. Battery identification processing for detecting a storage battery as a specific storage battery, potential difference calculation processing for calculating a potential difference between the specific storage battery and all other storage batteries as a new potential difference, and a threshold voltage for which the calculated new potential difference is defined in advance A sorting process for sorting the storage batteries to be described below is executed to inspect the self-discharge amount of each storage battery. Therefore, according to the storage battery self-discharge inspection device and the storage battery self-discharge inspection method, the self-discharge amount of each storage battery can be reliably inspected based on the potential difference measured with high accuracy.

また、請求項3記載の蓄電池の自己放電検査装置および請求項8記載の蓄電池の自己放電検査方法によれば、電位差測定処理に先立ち、充電されたすべての蓄電池を並列接続することで、すべての蓄電池を同一充電電圧に充電する電圧均一化処理を実行する構成を採用したことにより、簡易な構成でありながら、すべての蓄電池を確実に同一充電電圧に充電することができる。   Further, according to the self-discharge inspection device for a storage battery according to claim 3 and the self-discharge inspection method for a storage battery according to claim 8, all the charged storage batteries are connected in parallel prior to the potential difference measurement process. By adopting the configuration for performing the voltage equalization process for charging the storage battery to the same charging voltage, it is possible to reliably charge all the storage batteries to the same charging voltage with a simple configuration.

また、請求項4記載の蓄電池の自己放電検査装置および請求項9記載の蓄電池の自己放電検査方法では、電位差測定処理に先立ち、並列接続された状態の複数の蓄電池を充電することにより、複数の蓄電池を同一充電電圧に充電する。したがって、この蓄電池の自己放電検査装置および蓄電池の自己放電検査方法によれば、充電処理において各蓄電池の充電電圧を同一充電電圧に揃えることができるため、充電処理とは別個に電圧均一化処理を実行する手間を省くことができ、自己放電検査でのステップ数を削減することができる。   Further, in the self-discharge inspection device for a storage battery according to claim 4 and the self-discharge inspection method for a storage battery according to claim 9, a plurality of storage batteries connected in parallel are charged prior to the potential difference measurement process. Charge the storage battery to the same charging voltage. Therefore, according to the self-discharge inspection device for a storage battery and the self-discharge inspection method for a storage battery, the charge voltage of each storage battery can be made to be the same charge voltage in the charging process. It is possible to save time and effort and to reduce the number of steps in the self-discharge test.

また、請求項5記載の蓄電池の自己放電検査装置および請求項10記載の蓄電池の自己放電検査方法によれば、複数の蓄電池を同一充電電圧に充電した後に、蓄電池の並列接続状態を解除すると共に同一時間だけ自己放電させる放電処理を実行することにより、同一充電電圧に充電されたすべての蓄電池に対する同一時間の自己放電を正確に実行することができるため、より一層高精度で電位差を測定することができ、これによって自己放電量の検査精度を一層高めることができる。   Moreover, according to the self-discharge inspection device for a storage battery according to claim 5 and the self-discharge inspection method for a storage battery according to claim 10, after the plurality of storage batteries are charged to the same charge voltage, the parallel connection state of the storage batteries is released. By performing a discharge process that self-discharges only for the same time, it is possible to accurately execute self-discharge for the same time for all storage batteries charged to the same charge voltage, so that the potential difference can be measured with higher accuracy. As a result, the inspection accuracy of the self-discharge amount can be further increased.

蓄電池11の自己放電検査装置1についての構成を示す構成図である。1 is a configuration diagram showing a configuration of a self-discharge inspection device 1 for a storage battery 11. 切替部3の内部構造を説明するための回路図である。3 is a circuit diagram for explaining an internal structure of a switching unit 3. FIG. 自己放電検査装置1の動作および自己放電検査方法を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement of the self-discharge test | inspection apparatus 1, and the self-discharge test method.

以下、蓄電池の自己放電検査装置および自己放電検査方法の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of a self-discharge inspection device and a self-discharge inspection method for a storage battery will be described with reference to the accompanying drawings.

最初に、蓄電池の自己放電検査装置1の構成について、図面を参照して説明する。   Initially, the structure of the self-discharge inspection apparatus 1 of a storage battery is demonstrated with reference to drawings.

自己放電検査装置1は、図1に示すように、収納部2、切替部3、充電部4、電圧測定部5、処理部6、記憶部7および出力部8を備え、検査対象としての複数(本例では一例として、4個)の同種の蓄電池(具体的にはリチウムイオン電池)11a,11b,11c,11d(以下、特に区別しないときには「蓄電池11」ともいう)についての自己放電量を検査する。   As shown in FIG. 1, the self-discharge inspection apparatus 1 includes a storage unit 2, a switching unit 3, a charging unit 4, a voltage measuring unit 5, a processing unit 6, a storage unit 7, and an output unit 8. The self-discharge amount for the same type of storage batteries (specifically, lithium ion batteries) 11a, 11b, 11c, 11d (hereinafter also referred to as “storage battery 11” unless otherwise specified) is taken as an example in this example. inspect.

収納部2は、図1,2に示すように、複数の蓄電池11を収納可能に構成されている。また、収納部2は、収納されたすべての蓄電池11における一方の電極(本例では一例として、同図に示すように負極)を互いに接続する導電部2aを備えている。また、導電部2aは、充電部4の後述する他方の出力端子(本例では負極端子4b)に接続されている。   As shown in FIGS. 1 and 2, the storage unit 2 is configured to store a plurality of storage batteries 11. In addition, the storage unit 2 includes a conductive unit 2a that connects one electrode (in this example, as an example, the negative electrode as shown in the figure) of all the storage batteries 11 stored therein. In addition, the conductive part 2a is connected to the other output terminal (negative electrode terminal 4b in this example) of the charging part 4 to be described later.

切替部3は、一例として、図2に示すように、処理部6によってオン・オフ状態が制御される複数の切替スイッチ(本例では蓄電池11の数に応じて、切替スイッチ3a〜3iの9個)を備えて構成されている。具体的には、一対の切替スイッチ3a,3bの一方の端子は共に接続されて、収納部2に収容されている蓄電池11aの他方の電極(本例では一例として、同図に示すように正極)に接続される。また、一対の切替スイッチ3c,3dの一方の端子は共に接続されて、収納部2に収容されている蓄電池11bの他方の電極(同図に示すように正極)に接続される。また、一対の切替スイッチ3e,3fの一方の端子は共に接続されて、収納部2に収容されている蓄電池11cの他方の電極(同図に示すように正極)に接続される。また、一対の切替スイッチ3g,3hの一方の端子は共に接続されて、収納部2に収容されている蓄電池11dの他方の電極(同図に示すように正極)に接続される。   As an example, as illustrated in FIG. 2, the switching unit 3 includes a plurality of change-over switches whose ON / OFF states are controlled by the processing unit 6 (in this example, 9 of the change-over switches 3 a to 3 i depending on the number of storage batteries 11. ). Specifically, one terminal of the pair of changeover switches 3a and 3b is connected together, and the other electrode of the storage battery 11a accommodated in the accommodating portion 2 (in this example, as an example, the positive electrode as shown in FIG. ). One terminal of the pair of changeover switches 3c and 3d is connected together and connected to the other electrode (positive electrode as shown in the figure) of the storage battery 11b accommodated in the accommodating portion 2. One terminal of the pair of changeover switches 3e and 3f is connected together and connected to the other electrode (positive electrode as shown in the figure) of the storage battery 11c accommodated in the accommodating portion 2. Also, one terminal of the pair of changeover switches 3g and 3h is connected together and connected to the other electrode (positive electrode as shown in the figure) of the storage battery 11d accommodated in the accommodating portion 2.

また、切替スイッチ3a,3c,3e,3gの各他方の端子は、共に接続されて、切替スイッチ3iの一方の端子と電圧測定部5の後述する一方の入力端子5aとにそれぞれ接続されている。また、切替スイッチ3b,3d,3f,3hの各他方の端子は、共に接続されて、電圧測定部5の後述する他方の入力端子5bにそれぞれ接続されている。また、切替スイッチ3iの他方の端子は、充電部4の後述の一方の出力端子(本例では正極端子4a)に接続されている。   The other terminals of the changeover switches 3a, 3c, 3e, and 3g are connected together, and are connected to one terminal of the changeover switch 3i and one input terminal 5a (described later) of the voltage measuring unit 5, respectively. . The other terminals of the changeover switches 3b, 3d, 3f, and 3h are connected together and are connected to the other input terminal 5b described later of the voltage measuring unit 5, respectively. The other terminal of the changeover switch 3i is connected to one output terminal (positive electrode terminal 4a in this example) of the charging unit 4 which will be described later.

充電部4は、一例として、処理部6によって制御される直流定電圧電源で構成されて、一対の出力端子(正極端子4aおよび負極端子4b)間に接続される蓄電池11に一定の電圧V1を出力して充電する。具体的には、充電部4は、その正極端子4aが切替部3の切替スイッチ3iにおける他方の端子に接続され、その負極端子4bが収納部2の導電部2aに接続されている。   As an example, the charging unit 4 is composed of a DC constant voltage power source controlled by the processing unit 6, and applies a constant voltage V1 to the storage battery 11 connected between a pair of output terminals (the positive terminal 4a and the negative terminal 4b). Output and charge. Specifically, the charging unit 4 has a positive terminal 4 a connected to the other terminal of the changeover switch 3 i of the switching unit 3 and a negative terminal 4 b connected to the conductive unit 2 a of the storage unit 2.

この構成により、充電部4は、切替部3の切替スイッチ3iがオフ状態のときには、収納部2に収納されているすべての蓄電池11から電気的に切り離される。また、充電部4は、切替部3の切替スイッチ3iがオン状態のときには、切替スイッチ3a,3c,3e,3gのオン・オフ状態によって選択される蓄電池11a〜11dのうちの任意の1つと電気的に接続されて、この蓄電池11を充電可能となっている。この場合、蓄電池11は、充電電圧が高いときの方が低いときよりも自己放電による電圧降下が大きくなる。したがって、自己放電量の検査においては、蓄電池11の充電電圧は高い方が望ましい。このため、充電部4から蓄電池11に出力される電圧V1は、一例として、定格充電電圧と同じ電圧またはこの定格充電電圧よりも若干低い電圧(例えば、0.3ボルト程度の範囲内で定格充電電圧よりも低い電圧)に規定されている。   With this configuration, the charging unit 4 is electrically disconnected from all the storage batteries 11 stored in the storage unit 2 when the changeover switch 3 i of the switching unit 3 is in the OFF state. In addition, the charging unit 4 is electrically connected to any one of the storage batteries 11a to 11d selected by the on / off states of the change-over switches 3a, 3c, 3e, and 3g when the change-over switch 3i of the change-over unit 3 is on. The storage battery 11 can be charged. In this case, the storage battery 11 has a larger voltage drop due to self-discharge when the charging voltage is higher than when the charging voltage is lower. Therefore, in the inspection of the self-discharge amount, it is desirable that the charging voltage of the storage battery 11 is higher. For this reason, the voltage V1 output from the charging unit 4 to the storage battery 11 is, for example, the same voltage as the rated charging voltage or a voltage slightly lower than the rated charging voltage (for example, rated charging within a range of about 0.3 volts). The voltage is lower than the voltage).

電圧測定部5は、一対の入力端子5a,5bに入力される直流電圧V2を測定して、処理部6に出力する。具体的には、電圧測定部5は、その入力端子5aが切替スイッチ3a,3c,3e,3gの各他方の端子および切替スイッチ3iの一方の端子に接続され、かつその入力端子5bが切替スイッチ3b,3d,3f,3hの各他方の端子に接続されて、これらの切替スイッチ3a〜3hのオン・オフ状態によって選択される蓄電池11a〜11dのうちの任意の2つの蓄電池11の充電電圧間の電位差を直流電圧V2として測定する(以下、「電位差V2」ともいう)。   The voltage measuring unit 5 measures the DC voltage V2 input to the pair of input terminals 5a and 5b and outputs it to the processing unit 6. Specifically, the voltage measuring unit 5 has an input terminal 5a connected to the other terminals of the changeover switches 3a, 3c, 3e, and 3g and one terminal of the changeover switch 3i, and the input terminal 5b is connected to the changeover switch. Between the charging voltages of any two storage batteries 11 among the storage batteries 11a to 11d that are connected to the other terminals of 3b, 3d, 3f, and 3h and are selected by the on / off states of these changeover switches 3a to 3h Is measured as a DC voltage V2 (hereinafter also referred to as “potential difference V2”).

処理部6は、CPUを備えて構成されて、切替部3および充電部4に対する制御を実行する。また、処理部6は、図3に示す自己放電検査処理50を実行する。具体的には、処理部6は、この自己放電検査処理50において、充電部4を制御して収納部2に収納されているすべての蓄電池11a〜11dを充電する充電処理、充電されたすべての蓄電池11a〜11dの充電電圧を同一電圧(同一充電電圧)に揃える電圧均一化処理、充電電圧が同一に揃えられた(均一化された)すべての蓄電池11a〜11dを同時に同一時間だけ放置する(同一時間だけ自己放電させる)放置処理、この放電後のすべての蓄電池11a〜11dのうちの1つ(一例として蓄電池11a)を基準蓄電池としたときのこの基準蓄電池の充電電圧と他のすべての蓄電池(蓄電池11b,11c,11d)の充電電圧との間の電位差V2を取得して記憶部7に記憶させる電位差測定処理、この取得した各電位差V2に基づいて収納部2に収納されているすべての蓄電池11a〜11dの自己放電量を検査する放電量検査処理、および放電量検査処理の結果を出力する出力処理を実行する。   The processing unit 6 includes a CPU, and executes control on the switching unit 3 and the charging unit 4. Further, the processing unit 6 executes a self-discharge inspection process 50 shown in FIG. Specifically, in the self-discharge inspection process 50, the processing unit 6 controls the charging unit 4 to charge all the storage batteries 11a to 11d stored in the storage unit 2, and all the charged batteries are charged. Voltage equalization processing for aligning the charging voltages of the storage batteries 11a to 11d to the same voltage (same charging voltage), all the storage batteries 11a to 11d having the same charging voltage (equalized) are left at the same time for the same time ( The charging voltage of this reference storage battery and all other storage batteries when one of the storage batteries 11a to 11d after this discharge (for example, storage battery 11a) is used as a reference storage battery. Based on the potential difference measurement process for acquiring the potential difference V2 from the charging voltage of the storage batteries (11b, 11c, 11d) and storing it in the storage unit 7, based on each acquired potential difference V2. Discharge amount inspection process for inspecting a self-discharge of all the battery 11a~11d stored in the storing unit 2 Te, and executes the output processing for outputting the result of the discharge amount checking process.

記憶部7は、一例として、ROMおよびRAMなどの半導体メモリを備えて構成されて、処理部6のワークメモリとして機能する。また、記憶部7には、電位差測定処理において処理部6が電圧測定部5から取得した各電位差V2が記憶される。また、記憶部7には、処理部6による放電量検査処理において使用されるしきい値電圧Vthが予め記憶されている。   As an example, the storage unit 7 includes a semiconductor memory such as a ROM and a RAM, and functions as a work memory of the processing unit 6. The storage unit 7 stores each potential difference V <b> 2 acquired by the processing unit 6 from the voltage measurement unit 5 in the potential difference measurement process. Further, the storage unit 7 stores in advance a threshold voltage Vth used in the discharge amount inspection process by the processing unit 6.

出力部8は、一例として、液晶ディスプレイなどの表示装置で構成されて、放電量検査処理の結果を出力する。なお、出力部8については、外部装置との間でデータ通信を行うインターフェース装置で構成して、この外部装置に放電量検査処理の結果を出力する構成を採用することもできる。   For example, the output unit 8 includes a display device such as a liquid crystal display, and outputs the result of the discharge amount inspection process. The output unit 8 may be configured by an interface device that performs data communication with an external device, and a configuration that outputs a result of the discharge amount inspection process to the external device may be employed.

次に、自己放電検査装置1の動作と共に、自己放電検査方法について図面を参照して説明する。なお、検査対象の蓄電池11a〜11dは、図1のようにして収納部2に予め収納されているものとする。   Next, the operation of the self-discharge inspection apparatus 1 and the self-discharge inspection method will be described with reference to the drawings. In addition, the storage batteries 11a to 11d to be inspected are stored in advance in the storage unit 2 as shown in FIG.

この状態において処理部6は、図3に示す自己放電検査処理50を実行する。この自己放電検査処理50では、処理部6は、まず、充電処理を実行する(ステップ51)。この充電処理では、処理部6は、充電部4に対する制御を実行して電圧V1の出力を開始させると共に、切替部3に対する制御を実行して蓄電池11a〜11dを1つずつ充電部4に接続することにより、すべての蓄電池11a〜11dを1つずつ充電する。   In this state, the processing unit 6 executes a self-discharge inspection process 50 shown in FIG. In the self-discharge inspection process 50, the processing unit 6 first executes a charging process (step 51). In this charging process, the processing unit 6 executes control on the charging unit 4 to start output of the voltage V1, and executes control on the switching unit 3 to connect the storage batteries 11a to 11d to the charging unit 4 one by one. By doing so, all the storage batteries 11a-11d are charged one by one.

具体的には、処理部6は、切替部3に対する制御を実行して、切替スイッチ3iをオン状態に移行させ、この状態において、蓄電池11aを充電するときには、切替スイッチ3a,3c,3e,3gのうちの切替スイッチ3aのみをオン状態に移行させて、充電部4の一対の出力端子間に蓄電池11aを接続し、蓄電池11bを充電するときには、切替スイッチ3cのみをオン状態に移行させて、充電部4の一対の出力端子間に蓄電池11bを接続し、蓄電池11cを充電するときには、切替スイッチ3eのみをオン状態に移行させて、充電部4の一対の出力端子間に蓄電池11cを接続し、蓄電池11dを充電するときには、切替スイッチ3gのみをオン状態に移行させて、充電部4の一対の出力端子間に蓄電池11dを接続することで、すべての蓄電池11a〜11dを1つずつ充電する。これにより、すべての蓄電池11a〜11dが充電部4から出力される電圧V1に充電される。また、処理部6は、この充電の完了後に、充電部4に対する制御を実行して電圧V1の出力を停止させる。   Specifically, the processing unit 6 executes control for the switching unit 3 to shift the changeover switch 3i to an on state, and when charging the storage battery 11a in this state, the changeover switches 3a, 3c, 3e, 3g When the storage battery 11a is connected between the pair of output terminals of the charging unit 4 and the storage battery 11b is charged, only the changeover switch 3c is turned on. When the storage battery 11b is connected between the pair of output terminals of the charging unit 4 and the storage battery 11c is charged, only the changeover switch 3e is turned on, and the storage battery 11c is connected between the pair of output terminals of the charging unit 4. When charging the storage battery 11d, only the changeover switch 3g is turned on, and the storage battery 11d is connected between the pair of output terminals of the charging unit 4, The storage battery 11a~11d of all charges one by one. Thereby, all the storage batteries 11a-11d are charged by the voltage V1 output from the charging part 4. FIG. Moreover, the processing part 6 performs control with respect to the charging part 4 after completion of this charge, and stops the output of the voltage V1.

次いで、処理部6は、電圧均一化処理を実行する(ステップ52)。この電圧均一化処理では、処理部6は、まず、切替部3に対する制御を実行して、切替スイッチ3iをオフ状態に移行させて、充電部4から各蓄電池11a〜11dを切り離す。次いで、処理部6は、予め規定された時間(例えば約30分)だけ、切替スイッチ3a,3c,3e,3gをすべてオン状態に移行させる。これにより、収納部2に収納されているすべての蓄電池11は、予め規定された時間だけ並列接続される。なお、本例の切替部3の構成では、切替スイッチ3a,3c,3e,3gに代えて、切替スイッチ3b,3d,3f,3hをすべてオン状態に移行させることもできる。   Next, the processing unit 6 performs a voltage equalization process (step 52). In this voltage equalization process, the processing unit 6 first performs control on the switching unit 3 to shift the changeover switch 3 i to the off state, and disconnects the storage batteries 11 a to 11 d from the charging unit 4. Next, the processing unit 6 shifts all the changeover switches 3a, 3c, 3e, and 3g to the on state for a predetermined time (for example, about 30 minutes). Thereby, all the storage batteries 11 accommodated in the accommodating part 2 are connected in parallel only for the time prescribed | regulated previously. In the configuration of the switching unit 3 of this example, all of the change-over switches 3b, 3d, 3f, and 3h can be shifted to the on state instead of the change-over switches 3a, 3c, 3e, and 3g.

上記の充電処理において、各蓄電池11a〜11dは、充電部4から出力される同じ電圧V1で充電されるため、理想的には同一の充電電圧V1に充電されるはずである。しかしながら、実際には、充電部4には、各蓄電池11a〜11dに対する充電動作を行う都度、出力精度の範囲内において電圧V1がばらつく虞があることから、これに起因して、各蓄電池11a〜11dの充電電圧にわずかなばらつきが存在している可能性がある。そこで、すべての蓄電池11を予め規定された時間だけ並列接続することで、各蓄電池11a〜11dの充電電圧を均一化する(同一充電電圧に揃える)。   In the above charging process, each of the storage batteries 11a to 11d is charged with the same voltage V1 output from the charging unit 4, and therefore should ideally be charged to the same charging voltage V1. However, in reality, the charging unit 4 has a possibility that the voltage V1 varies within the range of output accuracy each time the charging operation is performed on each of the storage batteries 11a to 11d. There may be a slight variation in the 11d charge voltage. Therefore, by connecting all the storage batteries 11 in parallel for a predetermined time, the charging voltages of the storage batteries 11a to 11d are made uniform (equalized to the same charging voltage).

続いて、処理部6は、放置処理を実行する(ステップ53)。この放置処理では、処理部6は、まず、処理部6は、オン状態に移行させていた切替スイッチ3a,3c,3e,3g(または、切替スイッチ3b,3d,3f,3h)を同時にオフ状態に移行させる。これにより、各蓄電池11a〜11dは、同時に自己放電を開始する。また、処理部6は、各切替スイッチ3a,3c,3e,3g(または、切替スイッチ3b,3d,3f,3h)のオフ状態への移行(自己放電の開始)と同時に自己放電時間の計測を開始する。   Subsequently, the processing unit 6 executes a neglect process (step 53). In this neglecting process, the processing unit 6 first turns off the selector switches 3a, 3c, 3e, and 3g (or the selector switches 3b, 3d, 3f, and 3h) that have been shifted to the ON state at the same time. To migrate. Thereby, each storage battery 11a-11d starts self-discharge simultaneously. Further, the processing unit 6 measures the self-discharge time simultaneously with the transition of each change-over switch 3a, 3c, 3e, 3g (or change-over switch 3b, 3d, 3f, 3h) to the off state (start of self-discharge). Start.

処理部6は、計測している自己放電時間が予め規定された時間(例えば、一週間程度)に達したときに、電位差測定処理を実行する(ステップ54)。この電位差測定処理では、処理部6は、蓄電池11a〜11dのうちの1つ(本例では蓄電池11a)を基準蓄電池として、この基準蓄電池(蓄電池11a)と他のすべての蓄電池(蓄電池11b,11c,11d)との間の充電電圧についての電位差V2(充電電圧が同一の状態から同一時間だけ自己放電させた状態での蓄電池11aの充電電圧と、他の蓄電池11b〜11dの各充電電圧との間の電位差)を測定する。   When the measured self-discharge time reaches a predetermined time (for example, about one week), the processing unit 6 executes a potential difference measurement process (step 54). In this potential difference measurement process, the processing unit 6 uses one of the storage batteries 11a to 11d (storage battery 11a in this example) as a reference storage battery, and this reference storage battery (storage battery 11a) and all other storage batteries (storage batteries 11b and 11c). , 11d) with respect to the charging voltage between the charging voltage of the storage battery 11a and the charging voltage of the other storage batteries 11b to 11d when the charging voltage is self-discharged for the same time from the same state. Measure potential difference between).

具体的には、処理部6は、切替部3に対する制御を実行して、切替スイッチ3a,3c,3e,3gのうちの切替スイッチ3aのみをオン状態に移行させることにより、切替スイッチ3aを介して蓄電池11aの正極のみを電圧測定部5の一方の入力端子5aに接続させる。また、処理部6は、この状態において、切替部3に対する制御を実行して、切替スイッチ3d,3f,3hを一例としてこの順に1つずつ時間をずらしてオン状態に移行させることにより、オン状態の切替スイッチ3d,3f,3hを介して、蓄電池11b,11c,11dの各正極を順番に電圧測定部5の他方の入力端子5bに接続させる。なお、この蓄電池11b,11c,11dの各正極を順番に電圧測定部5の他方の入力端子5bに接続させる処理は、長くとも1分以内の短時間に行われるため、上記した一週間程度の自己放電時間に対しては、ほぼ同時に行われると見なされる。   Specifically, the processing unit 6 executes the control for the switching unit 3 and shifts only the switching switch 3a among the switching switches 3a, 3c, 3e, and 3g to the on state, and thereby via the switching switch 3a. Thus, only the positive electrode of the storage battery 11 a is connected to one input terminal 5 a of the voltage measuring unit 5. Further, in this state, the processing unit 6 executes control on the switching unit 3 and shifts the switching switches 3d, 3f, and 3h to the on state by shifting the time one by one in this order as an example. The positive electrodes of the storage batteries 11b, 11c, and 11d are sequentially connected to the other input terminal 5b of the voltage measuring unit 5 through the changeover switches 3d, 3f, and 3h. In addition, since the process which connects each positive electrode of this storage battery 11b, 11c, 11d to the other input terminal 5b of the voltage measurement part 5 in order is performed in a short time within 1 minute at the most, about one week mentioned above It is considered that the self-discharge time is performed almost at the same time.

この場合、電圧測定部5は、このようにして一対の入力端子5a,5b間に順次入力される蓄電池11a(基準蓄電池)の充電電圧と蓄電池11bの充電電圧との間の電位差V2、蓄電池11aの充電電圧と蓄電池11cの充電電圧との間の電位差V2、および蓄電池11aの充電電圧と蓄電池11dの充電電圧との間の電位差V2を順番に測定して、処理部6に出力する。処理部6は、電圧測定部5から出力される各電位差V2を入力すると共に、各電位差V2に対応する蓄電池11の組(本例では、蓄電池11aと蓄電池11bの組、蓄電池11aと蓄電池11cの組、蓄電池11aと蓄電池11dの組)に対応させて各電位差V2を記憶部7に記憶させる。   In this case, the voltage measuring unit 5 is configured such that the potential difference V2 between the charging voltage of the storage battery 11a (reference storage battery) and the charging voltage of the storage battery 11b sequentially input between the pair of input terminals 5a and 5b, the storage battery 11a. The potential difference V2 between the charging voltage of the storage battery 11c and the charging voltage of the storage battery 11c and the potential difference V2 between the charging voltage of the storage battery 11a and the charging voltage of the storage battery 11d are measured in order and output to the processing unit 6. The processing unit 6 inputs each potential difference V2 output from the voltage measurement unit 5, and sets a set of storage batteries 11 corresponding to each potential difference V2 (in this example, a set of the storage battery 11a and the storage battery 11b, a set of the storage battery 11a and the storage battery 11c). Each potential difference V <b> 2 is stored in the storage unit 7 in correspondence with the set, a set of the storage battery 11 a and the storage battery 11 d.

本例では、各蓄電池11の自己放電量を検査する手法として、自己放電によって変化(リチウムイオン電池の場合には、1日当たり約1μボルト程度の変化のため、上記した自己放電時間の経過後では、約十数μボルト〜数十μボルト程度の変化)した蓄電池11の充電電圧そのものを測定するのではなく、2つの蓄電池11の充電電圧間の電位差V2を測定する構成を採用している。このため、電圧測定部5は、充電電圧自体を測定する場合の電圧測定レンジ(蓄電池11としてのリチウムイオン電池では、充電電圧は3.7ボルト程度であるため、通常は10ボルトレンジ)でμボルトオーダーの電圧変化を測定する構成(十分な測定精度を得られない構成)にはならずに、2つの蓄電池11に自己放電によってそれぞれ生じる上記の変化(約十数μボルト〜数十μボルト程度の変化)の差分(数μボルト程度)を、10ボルトレンジよりも十分に小さな電圧測定レンジ(例えば100μボルトの電圧測定レンジ)で測定する構成とすることができ、これにより、測定精度を大幅に向上させることが可能となっている。   In this example, as a method for inspecting the self-discharge amount of each storage battery 11, the change is caused by self-discharge (in the case of a lithium ion battery, the change is about 1 μV per day. Instead of measuring the charging voltage itself of the storage battery 11 that has been changed from about a few tens of microvolts to several tens of microvolts, a configuration is employed in which the potential difference V2 between the charging voltages of the two storage batteries 11 is measured. For this reason, the voltage measuring unit 5 has a voltage measurement range in the case of measuring the charging voltage itself (in the lithium ion battery as the storage battery 11, the charging voltage is about 3.7 volts, and is usually in the 10 volt range). The above-described changes (approximately 10 to several tens of microvolts) caused by self-discharge in the two storage batteries 11 without being configured to measure a voltage change on the order of volts (a configuration in which sufficient measurement accuracy cannot be obtained). Difference) (approximately several microvolts) can be measured in a voltage measurement range sufficiently smaller than the 10 volt range (for example, a voltage measurement range of 100 microvolts), thereby improving the measurement accuracy. It is possible to greatly improve.

また、このようにして測定精度を大幅に向上させることができるため、各蓄電池11での自己放電量が従来の方式よりも少ない状態であっても、十分な精度で電位差V2を測定することが可能である。このため、自己放電時間を従来の方式における自己放電時間(4週間程度)よりも大幅に短い時間(例えば、一週間程度)にすることができるため、自己放電検査処理50に要する時間が大幅に短縮可能となっている。   Further, since the measurement accuracy can be greatly improved in this way, the potential difference V2 can be measured with sufficient accuracy even when the self-discharge amount in each storage battery 11 is smaller than that in the conventional method. Is possible. For this reason, since the self-discharge time can be set to a time (for example, about one week) that is significantly shorter than the self-discharge time (about four weeks) in the conventional method, the time required for the self-discharge inspection processing 50 is greatly increased. It can be shortened.

次いで、処理部6は、放電量検査処理を実行する(ステップ55)。この放電量検査処理では、処理部6は、まず、記憶部7に記憶されている各電位差V2に基づいて、蓄電池11a,11b,11c,11dのうちの最も自己放電量の少ない蓄電池11(つまり、自己放電後の充電電圧が最高の蓄電池11)を特定蓄電池として特定(検出)する電池特定処理を実行する。次いで、処理部6は、この特定蓄電池の充電電圧を基準としたときの他の蓄電池11の充電電圧との間の電位差を新たな電位差V3として算出して記憶部7に記憶させる電位差算出処理を実行する。続いて、処理部6は、この算出した電位差V3と記憶部7から読み出したしきい値電圧Vthとを比較して、特定蓄電池の充電電圧との間の電位差V3がしきい値電圧Vth以下となる充電電圧の蓄電池11を自己放電量の良好な(自己放電量の少ない)な蓄電池11(良品)として選別し、電位差V3がしきい値電圧Vthを超える充電電圧の蓄電池11を自己放電量の不良な(自己放電量の大きい)蓄電池11(不良品)として選別する選別処理を実行する。処理部6は、この選別処理での各蓄電池11についての選別結果を示す結果データD1を記憶部7に記憶させる。   Next, the processing unit 6 performs a discharge amount inspection process (step 55). In this discharge amount inspection process, the processing unit 6 firstly, based on each potential difference V2 stored in the storage unit 7, the storage battery 11 having the smallest self-discharge amount among the storage batteries 11a, 11b, 11c, 11d (that is, the storage battery 11). Then, the battery specifying process for specifying (detecting) the storage battery 11) having the highest charging voltage after self-discharge as the specific storage battery is executed. Next, the processing unit 6 performs a potential difference calculation process in which the potential difference between the charging voltage of the other storage battery 11 when the charging voltage of the specific storage battery is used as a reference is calculated as a new potential difference V3 and stored in the storage unit 7. Run. Subsequently, the processing unit 6 compares the calculated potential difference V3 with the threshold voltage Vth read from the storage unit 7, and the potential difference V3 between the charging voltage of the specific storage battery is equal to or less than the threshold voltage Vth. Are selected as storage batteries 11 having good self-discharge amount (small self-discharge amount) (non-defective products), and the storage battery 11 having charge voltage at which the potential difference V3 exceeds the threshold voltage Vth is selected. A sorting process for sorting as defective (large self-discharge amount) storage battery 11 (defective product) is executed. The processing unit 6 causes the storage unit 7 to store result data D1 indicating the sorting result for each storage battery 11 in the sorting process.

リチウムイオン電池のような蓄電池11では、製造時に発生した製造上の原因によってロット単位で不良品(自己放電量についての不良品、つまり自己放電量が予め規定された量よりも大きい蓄電池)が発生するような特殊な場合を除き、製造される物の殆どが良品(自己放電量についての良品、つまり自己放電量が予め規定された量以内となる蓄電池)となるのが一般的である。このため、上記の電池特定処理において特定される特定蓄電池(自己放電が最も少ない蓄電池11)は、良品であると考えられることから、この特定蓄電池の充電電圧を基準として算出される電位差V3が大きい(つまり、しきい値電圧Vthを超える)蓄電池11を不良品として選別し、この電位差V3が小さい(つまり、しきい値電圧Vth以内となる)蓄電池11を良品として選別することが可能となっている。   In the storage battery 11 such as a lithium ion battery, a defective product (a defective product with respect to the self-discharge amount, that is, a storage battery in which the self-discharge amount is larger than a predetermined amount) is generated on a lot basis due to a manufacturing cause generated at the time of manufacture. Except for such special cases, most of the manufactured products are generally non-defective products (non-defective products with respect to the self-discharge amount, that is, storage batteries in which the self-discharge amount is within a predetermined amount). For this reason, the specific storage battery (storage battery 11 with the least self-discharge) specified in the battery specifying process is considered to be a non-defective product, and thus the potential difference V3 calculated based on the charging voltage of the specific storage battery is large. The storage battery 11 (that is, exceeding the threshold voltage Vth) is selected as a defective product, and the storage battery 11 having a small potential difference V3 (that is, within the threshold voltage Vth) can be selected as a non-defective product. Yes.

最後に、処理部6は、出力処理を実行する(ステップ56)。この出力処理では、処理部6は、記憶部7から各蓄電池11についての選別結果(つまり、放電量検査処理の結果)を示す結果データD1を読み出して、出力部8に出力して表示させる。これにより、自己放電検査処理50が完了する。   Finally, the processing unit 6 executes output processing (step 56). In this output process, the processing unit 6 reads out the result data D1 indicating the sorting result (that is, the result of the discharge amount inspection process) for each storage battery 11 from the storage unit 7, and outputs and displays the result data D1 on the output unit 8. Thereby, the self-discharge inspection process 50 is completed.

このように、この蓄電池の自己放電検査装置1および自己放電検査方法では、処理部6が、各蓄電池11a〜11dが同一充電電圧に充電された後に同一時間だけ自己放電された状態において、切替部3を制御して基準蓄電池(上記の例では蓄電池11a)とすべての他の蓄電池11b〜11dとの間の電位差V2を電圧測定部5に順次測定させて出力させると共にこの測定された電位差V2を取得する電位差測定処理、および取得した各電位差V2に基づいて各蓄電池11a〜11dの自己放電量を検査する放電量検査処理を実行する。   Thus, in the storage battery self-discharge inspection device 1 and the self-discharge inspection method, the processing unit 6 is in the state where each storage battery 11a to 11d is self-discharged for the same time after being charged to the same charging voltage. 3 to control the potential difference V2 between the reference storage battery (storage battery 11a in the above example) and all the other storage batteries 11b to 11d to be sequentially measured by the voltage measuring unit 5 and output the measured potential difference V2. A potential difference measurement process to be acquired and a discharge amount inspection process for inspecting the self-discharge amount of each of the storage batteries 11a to 11d based on each acquired potential difference V2 are executed.

したがって、この蓄電池の自己放電検査装置1および自己放電検査方法によれば、電圧測定部5において、蓄電池11の充電電圧自体を測定する場合の電圧測定レンジ(例えば、10ボルトレンジ)でμボルトオーダーの自己放電による電圧変化量を測定する構成(十分な測定精度を得られない構成)を採用することなく、10ボルトレンジよりも十分に小さな電圧測定レンジ(例えば100μボルトの電圧測定レンジ)で測定する構成を採用して、2つの蓄電池11に自己放電によってそれぞれ生じる充電電圧の変化(約十数μボルト〜数十μボルト程度の変化)の差分(数μボルト程度)である電位差V2を高精度で測定することができる結果、この電位差V2に基づいて、蓄電池11の自己放電量を高い精度で検査することができる。   Therefore, according to the self-discharge inspection device 1 and the self-discharge inspection method of the storage battery, the voltage measurement unit 5 measures the charge voltage itself of the storage battery 11 in the voltage measurement unit 5 (for example, 10 volt range) on the order of μ volts. Without using a configuration that measures the amount of voltage change due to self-discharge (a configuration that does not provide sufficient measurement accuracy), a voltage measurement range that is sufficiently smaller than the 10-volt range (for example, a 100-volt voltage measurement range) The potential difference V2 which is the difference (approximately several μV) of the change in the charging voltage (change of approximately several tens of μV to several tens of μV) respectively generated by the self-discharge in the two storage batteries 11 is adopted. As a result of being able to measure with accuracy, the self-discharge amount of the storage battery 11 can be inspected with high accuracy based on the potential difference V2.

また、このようにして測定精度を大幅に向上させることができるため、各蓄電池11での自己放電量を従来の方式よりも少なくしても、十分な精度で電位差V2を測定することができることから、自己放電時間を従来の方式での自己放電時間(4週間程度)よりも大幅に短い時間(一週間程度)にでき、これにより、自己放電検査処理50に要する時間を大幅に短縮することができる。   In addition, since the measurement accuracy can be greatly improved in this way, the potential difference V2 can be measured with sufficient accuracy even if the self-discharge amount in each storage battery 11 is smaller than that in the conventional method. The self-discharge time can be made significantly shorter (about one week) than the self-discharge time (about four weeks) in the conventional method, thereby significantly reducing the time required for the self-discharge inspection process 50. it can.

また、この蓄電池の自己放電検査装置1および自己放電検査方法では、上記のステップ55において実行する放電量検査処理において、取得した各電位差V2に基づいて各蓄電池11a〜11dのうちから最高の充電電圧の蓄電池11を特定蓄電池として検出する電池特定処理、特定蓄電池と他のすべての蓄電池11との間の電位差を新たな電位差V3として算出する電位差算出処理、および算出した新たな電位差V3が予め規定されたしきい値電圧Vth以下となる蓄電池11を選別する選別処理を実行して、各蓄電池11の自己放電量を検査する(自己放電量に関しての良品と不良品とに選別する)。   Further, in the storage battery self-discharge inspection device 1 and the self-discharge inspection method, in the discharge amount inspection process executed in step 55 described above, the highest charge voltage from among the storage batteries 11a to 11d based on the acquired potential differences V2. Battery identification processing for detecting the storage battery 11 as a specific storage battery, potential difference calculation processing for calculating a potential difference between the specific storage battery and all the other storage batteries 11 as a new potential difference V3, and a calculated new potential difference V3. The storage battery 11 having a threshold voltage Vth or less is selected, and the self-discharge amount of each storage battery 11 is inspected (selection into a good product and a defective product with respect to the self-discharge amount).

したがって、この蓄電池の自己放電検査装置1および自己放電検査方法によれば、高精度で測定された電位差V2に基づいて、各蓄電池11の自己放電量を確実に検査する(自己放電量に関しての良品と不良品とに確実に選別する)ことができる。   Therefore, according to the self-discharge inspection apparatus 1 and the self-discharge inspection method for the storage battery, the self-discharge amount of each storage battery 11 is reliably inspected based on the potential difference V2 measured with high accuracy (good product regarding self-discharge amount). And can be sorted into defective products).

また、この蓄電池の自己放電検査装置1および自己放電検査方法によれば、充電されたすべての蓄電池11a〜11dを切替部3を制御して並列接続することで、すべての蓄電池11a〜11dを同一充電電圧に充電する電圧均一化処理を実行する構成を採用したことにより、簡易な構成でありながら、すべての蓄電池11a〜11dを確実に同一充電電圧に充電することができる。   Further, according to the self-discharge inspection device 1 and the self-discharge inspection method for this storage battery, all the storage batteries 11a to 11d are identical by connecting all the charged storage batteries 11a to 11d in parallel by controlling the switching unit 3. By adopting the configuration for executing the voltage equalization process for charging to the charging voltage, it is possible to reliably charge all the storage batteries 11a to 11d to the same charging voltage with a simple configuration.

また、この蓄電池の自己放電検査装置1および自己放電検査方法によれば、蓄電池11a〜11dを同一充電電圧に充電した後に、切替部3を制御して複数の蓄電池11a〜11dの並列接続状態を解除すると共に同一時間だけ自己放電させる放電処理を実行することにより、同一充電電圧に充電されたすべての蓄電池11a〜11dに対する同一時間の自己放電を正確に実行することができるため、より一層高精度で電位差V2を測定することができ、これによって自己放電量の検査精度を一層高めることができる。   Further, according to the self-discharge inspection device 1 and the self-discharge inspection method for the storage battery, after the storage batteries 11a to 11d are charged to the same charging voltage, the switching unit 3 is controlled to change the parallel connection state of the plurality of storage batteries 11a to 11d. By executing the discharge process for releasing and self-discharging for the same time, it is possible to accurately execute the self-discharge for all the storage batteries 11a to 11d charged to the same charging voltage. Thus, the potential difference V2 can be measured, and the self-discharge inspection accuracy can be further increased.

なお、上記のように、各蓄電池11を同一充電電圧に充電する構成として、上記のステップ51の充電処理において、充電部4によって各蓄電池11a〜11dを1つずつ充電し、充電動作毎の充電部4の電圧V1のばらつきに起因してばらついた各蓄電池11a〜11dの充電電圧を上記のステップ52の電圧均一化処理において同一充電電圧に揃えることで、充電部4の充電電流の供給能力を低く抑えるようにしているが、充電電流について十分な供給能力のある充電部4を採用したときには、ステップ51の充電処理において、切替スイッチ3a,3c,3e,3gを同時にオン状態に移行させると共に、切替スイッチ3iをオン状態に移行させることで、すべての蓄電池11a〜11dを並列接続にし、これによってすべての蓄電池11a〜11dを充電部4で同時に充電する構成を採用することもできる。この構成を採用することにより、充電処理において、各蓄電池11a〜11dの充電電圧を同一充電電圧に揃えること(電圧均一化処理を併せて実行すること)もできる。また、この構成を採用したときには、充電処理とは別個に電圧均一化処理を実行する手間を省くことができる(上記のステップ52での電圧均一化処理を省略することができる)ため、自己放電検査処理50でのステップ数を削減することができる。   In addition, as above-mentioned as a structure which charges each storage battery 11 to the same charging voltage, in the charging process of said step 51, each storage battery 11a-11d is charged one by one by the charge part 4, and it charges for every charging operation. By aligning the charging voltage of each of the storage batteries 11a to 11d due to the variation in the voltage V1 of the unit 4 to the same charging voltage in the voltage equalization process in step 52, the charging current supply capability of the charging unit 4 can be increased. Although it is trying to keep it low, when the charging unit 4 having a sufficient supply capacity for the charging current is adopted, in the charging process of step 51, the changeover switches 3a, 3c, 3e, 3g are simultaneously turned on, By shifting the changeover switch 3i to the on state, all the storage batteries 11a to 11d are connected in parallel, thereby all the storage batteries It is also possible to use a construction that simultaneously charged by the charging unit 4 1A~11d. By adopting this configuration, in the charging process, the charging voltages of the storage batteries 11a to 11d can be made equal to the same charging voltage (a voltage equalization process can also be performed). Further, when this configuration is adopted, it is possible to save the trouble of performing the voltage equalization process separately from the charging process (the voltage equalization process in the above step 52 can be omitted), so that self-discharge is performed. The number of steps in the inspection process 50 can be reduced.

また、充電部4を備えて、自己放電検査処理50において、すべての蓄電池11a〜11dに対する充電処理(ステップ51)から放電量検査処理(ステップ56)まですべて自動で行う構成を採用したが、予め自己放電検査装置1以外の装置で、各蓄電池11を定格充電電圧と同じ電圧またはこの定格充電電圧よりも若干低い電圧に充電し、この充電された各蓄電池11を収納部2に収納して、ステップ52の電圧均一化処理から開始する構成を採用することもできる。この構成を採用したときには、充電部4を省略することができる。   Moreover, although the charging part 4 was provided and the self-discharge test process 50 employ | adopted the structure which performs all automatically from the charge process (step 51) to the discharge amount test process (step 56) with respect to all the storage batteries 11a-11d, In each device other than the self-discharge inspection device 1, each storage battery 11 is charged to the same voltage as the rated charge voltage or a voltage slightly lower than the rated charge voltage, and each charged storage battery 11 is stored in the storage unit 2, A configuration starting from the voltage equalization process in step 52 may be employed. When this configuration is adopted, the charging unit 4 can be omitted.

また、上記の自己放電検査装置1および自己放電検査方法では、ステップ55の放電量検査処理において、各蓄電池11a〜11dのうちから最高の充電電圧の蓄電池11を特定蓄電池として検出すると共に、この特定蓄電池と他のすべての蓄電池11との間の電位差V3を算出し、この各電位差V3をしきい値電圧Vthと比較することにより、各蓄電池11の自己放電量を検査する構成を採用しているが、上記したように、通常の場合には、複数の蓄電池11のうちの殆どが良品であることから、自己放電量の不良な蓄電池11についての電位差V3は、良品としての蓄電池11についての電位差V3の存在範囲から外れて存在する。このため、放電量検査処理において、各電位差V3についての偏差値を算出し、算出した偏差値とこの偏差値に対して予め規定されたしきい値とに基づいて、自己放電量を検査する構成(例えば、しきい値以上の偏差値の蓄電池11については良品、しきい値未満の偏差値の蓄電池11については不良品と選別する構成)を採用することもできる。   Moreover, in said self-discharge test | inspection apparatus 1 and the self-discharge test | inspection method, in the discharge amount test | inspection process of step 55, while the storage battery 11 of the highest charging voltage is detected as a specific storage battery from each storage battery 11a-11d, this specification is carried out. A configuration is employed in which the potential difference V3 between the storage battery and all other storage batteries 11 is calculated, and each potential difference V3 is compared with the threshold voltage Vth to check the self-discharge amount of each storage battery 11. However, as described above, in a normal case, most of the plurality of storage batteries 11 are non-defective products. Therefore, the potential difference V3 for the storage battery 11 having a poor self-discharge amount is the potential difference for the storage battery 11 as a non-defective product. It exists outside the range of V3. Therefore, in the discharge amount inspection process, a deviation value for each potential difference V3 is calculated, and the self-discharge amount is inspected based on the calculated deviation value and a threshold value defined in advance for the deviation value. (For example, the storage battery 11 having a deviation value equal to or greater than a threshold value may be selected as a non-defective product, and the storage battery 11 having a deviation value less than the threshold value may be selected as a defective product).

1 自己放電検査装置
2 収納部
3 切替部
4 充電部
5 電圧測定部
6 処理部
11a,11b,11c,11d 蓄電池
V2 電位差
DESCRIPTION OF SYMBOLS 1 Self-discharge test apparatus 2 Storage part 3 Switching part 4 Charging part 5 Voltage measuring part 6 Processing part 11a, 11b, 11c, 11d Storage battery V2 Potential difference

Claims (10)

複数の同種の蓄電池についての自己放電量を検査する蓄電池の自己放電検査装置であって、
入力される測定電圧を測定する電圧測定部と、
前記複数の蓄電池と前記電圧測定部との間に配設されて、当該複数の蓄電池のうちの1つの蓄電池を基準蓄電池としたときの当該基準蓄電池と他の任意の蓄電池との間の電位差を前記測定電圧として前記電圧測定部に出力する切替部と、
前記複数の蓄電池が同一充電電圧に充電された後に同一時間だけ自己放電された状態において、前記切替部を制御して前記基準蓄電池とすべての前記他の蓄電池との間の前記電位差を前記電圧測定部に順次測定させると共に当該電圧測定部によって測定された当該電位差を取得する電位差測定処理、および当該取得した各電位差に基づいて前記複数の蓄電池の自己放電量を検査する放電量検査処理を実行する処理部とを備えている蓄電池の自己放電検査装置。
A self-discharge inspection device for a storage battery that inspects a self-discharge amount for a plurality of similar storage batteries,
A voltage measurement unit for measuring the input measurement voltage;
A potential difference between the reference storage battery and any other storage battery when the storage battery is disposed between the plurality of storage batteries and the voltage measurement unit and one storage battery of the plurality of storage batteries is used as a reference storage battery. A switching unit that outputs the measured voltage to the voltage measuring unit;
In the state where the plurality of storage batteries are self-discharged for the same time after being charged to the same charging voltage, the voltage difference is measured between the reference storage battery and all the other storage batteries by controlling the switching unit. A potential difference measurement process for causing the unit to sequentially measure and acquiring the potential difference measured by the voltage measurement unit, and a discharge amount inspection process for inspecting the self-discharge amounts of the plurality of storage batteries based on the acquired potential differences. A self-discharge inspection device for a storage battery comprising a processing unit.
前記処理部は、前記放電量検査処理において、前記取得した各電位差に基づいて前記複数の蓄電池のうちから最高の充電電圧の蓄電池を特定蓄電池として検出する電池特定処理、当該特定蓄電池と他のすべての蓄電池との間の電位差を新たな電位差として算出する電位差算出処理、および当該算出した新たな電位差が予め規定されたしきい値電圧以下となる前記蓄電池を選別する選別処理を実行する請求項1記載の蓄電池の自己放電検査装置。   In the discharge amount inspection process, the processing unit detects a battery with the highest charging voltage from the plurality of storage batteries as a specific storage battery based on each acquired potential difference, the specific storage battery, and all the others 2. A potential difference calculation process for calculating a potential difference between the storage battery and the storage battery as a new potential difference, and a selection process for selecting the storage battery in which the calculated new potential difference is equal to or lower than a predetermined threshold voltage. The self-discharge inspection device for the described storage battery. 前記切替部は、前記複数の蓄電池を並列接続可能に構成され、
前記処理部は、充電状態の前記複数の蓄電池を前記切替部を制御して並列接続することにより当該複数の蓄電池を前記同一充電電圧に充電する電圧均一化処理を実行する請求項1または2記載の蓄電池の自己放電検査装置。
The switching unit is configured to be able to connect the plurality of storage batteries in parallel,
The said process part performs the voltage equalization process which charges the said some storage battery to the said same charge voltage by connecting the said some storage battery of a charging state in parallel by controlling the said switch part. Storage battery self-discharge inspection device.
充電部を備え、
前記切替部は、前記複数の蓄電池を並列接続可能に構成され、
前記処理部は、前記切替部を制御して前記複数の蓄電池を並列接続すると共に当該並列接続された状態の複数の蓄電池に前記充電部を接続して前記同一充電電圧に充電する請求項1または2記載の蓄電池の自己放電検査装置。
It has a live part,
The switching unit is configured to be able to connect the plurality of storage batteries in parallel,
The processing unit controls the switching unit to connect the plurality of storage batteries in parallel and connects the charging unit to the plurality of storage batteries connected in parallel to charge the same charging voltage. 2. The self-discharge inspection device for a storage battery according to 2.
前記処理部は、前記同一充電電圧に充電させた後に前記切替部を制御して前記複数の蓄電池の並列接続状態を解除すると共に前記同一時間だけ自己放電させる放電処理を実行する請求項3または4記載の蓄電池の自己放電検査装置。   The said process part performs the discharge process which controls the said switch part after making it charge to the said same charge voltage, cancels | releases the parallel connection state of these several storage batteries, and self-discharges only for the said same time. The self-discharge inspection device for the described storage battery. 複数の同種の蓄電池についての自己放電量を検査する蓄電池の自己放電検査方法であって、
同一充電電圧に充電された後に同一時間だけ自己放電された状態の前記複数の蓄電池のうちの1つの蓄電池を基準蓄電池としたときの当該基準蓄電池と他のすべての蓄電池との間の電位差を測定する電位差測定処理と、
前記測定した各電位差に基づいて前記複数の蓄電池の自己放電量を検査する放電量検査処理とを実行する蓄電池の自己放電検査方法。
A self-discharge inspection method for a storage battery for inspecting a self-discharge amount for a plurality of similar storage batteries,
Measures the potential difference between the reference storage battery and all other storage batteries when the reference storage battery is used as one of the plurality of storage batteries that have been charged to the same charge voltage and then self-discharged for the same time. A potential difference measurement process,
A storage battery self-discharge inspection method that executes a discharge amount inspection process for inspecting the self-discharge amounts of the plurality of storage batteries based on the measured potential differences.
前記放電量検査処理において、前記測定した各電位差に基づいて前記複数の蓄電池のうちから最高の充電電圧の蓄電池を特定蓄電池として検出する電池特定処理、当該特定蓄電池と他のすべての蓄電池との間の電位差を新たな電位差として算出する電位差算出処理、および当該算出した新たな電位差が予め規定されたしきい値電圧以下となる前記蓄電池を選別する選別処理を実行する請求項6記載の蓄電池の自己放電検査方法。   In the discharge amount inspection process, a battery specifying process for detecting a storage battery having the highest charging voltage among the plurality of storage batteries based on the measured potential difference as a specific storage battery, between the specific storage battery and all other storage batteries 7. The storage battery self-processing according to claim 6, wherein a potential difference calculation process for calculating the potential difference of the storage battery as a new potential difference and a selection process for selecting the storage battery in which the calculated new potential difference is not more than a predetermined threshold voltage are executed. Discharge inspection method. 前記電位差測定処理に先立ち、充電状態の前記複数の蓄電池を並列接続することにより当該複数の蓄電池を前記同一充電電圧に充電する電圧均一化処理を実行する請求項6または7記載の蓄電池の自己放電検査方法。   8. The self-discharge of a storage battery according to claim 6 or 7, wherein a voltage equalization process for charging the plurality of storage batteries to the same charge voltage is performed by connecting the plurality of storage batteries in a charged state in parallel prior to the potential difference measurement process. Inspection method. 前記電位差測定処理に先立ち、並列接続した状態で前記複数の蓄電池を充電することにより当該複数の蓄電池を前記同一充電電圧に充電する請求項6または7記載の蓄電池の自己放電検査方法。   The storage battery self-discharge inspection method according to claim 6 or 7, wherein the plurality of storage batteries are charged to the same charge voltage by charging the plurality of storage batteries in a state of being connected in parallel prior to the potential difference measurement process. 前記同一充電電圧に充電させた後に前記複数の蓄電池の並列接続状態を解除すると共に前記同一時間だけ自己放電させる放電処理を実行する請求項8または9記載の蓄電池の自己放電検査方法。   The self-discharge inspection method for a storage battery according to claim 8 or 9, wherein after the battery is charged to the same charge voltage, a discharge process for releasing the parallel connection state of the plurality of storage batteries and performing self-discharge only for the same time is executed.
JP2012049237A 2012-03-06 2012-03-06 Self-discharge inspection device of storage battery, and self-discharge inspection method for storage battery Pending JP2013185861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049237A JP2013185861A (en) 2012-03-06 2012-03-06 Self-discharge inspection device of storage battery, and self-discharge inspection method for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049237A JP2013185861A (en) 2012-03-06 2012-03-06 Self-discharge inspection device of storage battery, and self-discharge inspection method for storage battery

Publications (1)

Publication Number Publication Date
JP2013185861A true JP2013185861A (en) 2013-09-19

Family

ID=49387424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049237A Pending JP2013185861A (en) 2012-03-06 2012-03-06 Self-discharge inspection device of storage battery, and self-discharge inspection method for storage battery

Country Status (1)

Country Link
JP (1) JP2013185861A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814319A (en) * 2015-11-28 2017-06-09 华南理工大学 A kind of lithium ion battery self discharge detecting system
CN109342957A (en) * 2018-09-26 2019-02-15 合肥国轩高科动力能源有限公司 Fail battery detection method in the big simultaneously gang mould group of lithium ion battery self discharge
US10330715B2 (en) 2016-12-11 2019-06-25 Keysight Technologies, Inc. Systems and methods for determining a self-discharge current characteristic of a storage cell
CN110073205A (en) * 2016-11-10 2019-07-30 坎麦克斯动力有限责任公司 System and method for assessing electrochemical cell quality
CN112986843A (en) * 2021-02-18 2021-06-18 昆山聚创新能源科技有限公司 Battery module detection method and device, electronic equipment and readable storage medium
JP2021117163A (en) * 2020-01-28 2021-08-10 日置電機株式会社 Measuring device and method for measuring power storage device
CN113311346A (en) * 2021-05-19 2021-08-27 北京车和家信息技术有限公司 Battery cell early warning method and device, cloud platform and storage medium
CN114264969A (en) * 2021-12-21 2022-04-01 蜂巢能源科技(无锡)有限公司 Method and device for evaluating self-discharge performance of battery cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915311A (en) * 1995-06-26 1997-01-17 Japan Storage Battery Co Ltd Failure detection device for battery set
JP2000030760A (en) * 1998-07-13 2000-01-28 Omron Corp Storage battery capacity measuring device storage battery capacity measuring method, and electronic device
JP2003157911A (en) * 2001-11-20 2003-05-30 Sony Corp Battery voltage measuring device and battery voltage measuring method, and manufacturing method of battery
JP2009145137A (en) * 2007-12-12 2009-07-02 Panasonic Corp Inspection method of secondary battery
WO2011132311A1 (en) * 2010-04-23 2011-10-27 株式会社 日立製作所 Battery assembly and method for controlling battery assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915311A (en) * 1995-06-26 1997-01-17 Japan Storage Battery Co Ltd Failure detection device for battery set
JP2000030760A (en) * 1998-07-13 2000-01-28 Omron Corp Storage battery capacity measuring device storage battery capacity measuring method, and electronic device
JP2003157911A (en) * 2001-11-20 2003-05-30 Sony Corp Battery voltage measuring device and battery voltage measuring method, and manufacturing method of battery
JP2009145137A (en) * 2007-12-12 2009-07-02 Panasonic Corp Inspection method of secondary battery
WO2011132311A1 (en) * 2010-04-23 2011-10-27 株式会社 日立製作所 Battery assembly and method for controlling battery assembly

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814319B (en) * 2015-11-28 2019-12-10 华南理工大学 lithium ion battery self-discharge detection system
CN106814319A (en) * 2015-11-28 2017-06-09 华南理工大学 A kind of lithium ion battery self discharge detecting system
US11749845B2 (en) 2016-11-10 2023-09-05 Camx Power Llc Systems and processes for assessing electrochemical cell quality
CN110073205A (en) * 2016-11-10 2019-07-30 坎麦克斯动力有限责任公司 System and method for assessing electrochemical cell quality
JP2020501122A (en) * 2016-11-10 2020-01-16 カムエクス パワー エルエルシーCAMX Power LLC System and method for assessing the quality of an electrochemical cell
US11196098B2 (en) 2016-11-10 2021-12-07 Camx Power Llc Systems and processes for assessing electrochemical cell quality
JP7216643B2 (en) 2016-11-10 2023-02-01 カムエクス パワー エルエルシー System and method for evaluating electrochemical cell quality
US10330715B2 (en) 2016-12-11 2019-06-25 Keysight Technologies, Inc. Systems and methods for determining a self-discharge current characteristic of a storage cell
CN109342957A (en) * 2018-09-26 2019-02-15 合肥国轩高科动力能源有限公司 Fail battery detection method in the big simultaneously gang mould group of lithium ion battery self discharge
JP2021117163A (en) * 2020-01-28 2021-08-10 日置電機株式会社 Measuring device and method for measuring power storage device
JP7397693B2 (en) 2020-01-28 2023-12-13 日置電機株式会社 Measuring device and method for measuring electricity storage devices
CN112986843A (en) * 2021-02-18 2021-06-18 昆山聚创新能源科技有限公司 Battery module detection method and device, electronic equipment and readable storage medium
CN113311346A (en) * 2021-05-19 2021-08-27 北京车和家信息技术有限公司 Battery cell early warning method and device, cloud platform and storage medium
CN113311346B (en) * 2021-05-19 2024-02-06 北京车和家信息技术有限公司 Battery cell early warning method and device, cloud platform and storage medium
CN114264969B (en) * 2021-12-21 2023-08-11 蜂巢能源科技(无锡)有限公司 Method and device for evaluating self-discharge performance of battery cell
CN114264969A (en) * 2021-12-21 2022-04-01 蜂巢能源科技(无锡)有限公司 Method and device for evaluating self-discharge performance of battery cell

Similar Documents

Publication Publication Date Title
JP2013185861A (en) Self-discharge inspection device of storage battery, and self-discharge inspection method for storage battery
US9291681B2 (en) Monitoring apparatus and method of battery contact point in charge/discharge system with batteries connected in series
JP6252439B2 (en) Abnormality detection method and abnormality detection device for secondary battery
JP7471337B2 (en) Monitoring system for series-connected battery cells
CN112888954B (en) Method and apparatus for diagnosing low voltage of secondary battery cell
JP2008288192A (en) Abnormality detecting device, method, and program of battery device
US8823326B2 (en) Method for determining the state of charge of a battery in charging or discharging phase
CN110850306B (en) Inspection method and manufacturing method for electricity storage device
US20210178927A1 (en) Rechargeable battery evaluation device, rechargeable battery evaluation method, and rechargeable battery evaluation system
JP6090093B2 (en) Secondary battery inspection method and inspection device
CN103858271A (en) Apparatus and method for evaluating sheet-like battery
WO2019176602A1 (en) Inspection method, inspection device, learning model and production method for power storage element unit
JP2016192278A (en) Inspection method of secondary battery
JP2022532545A (en) Battery cell diagnostic device and method
CN110073205A (en) System and method for assessing electrochemical cell quality
CA3073132A1 (en) Maturation processes for electric batteries
KR20160002378A (en) Battery state monitoring circuit and battery device
CN107430172B (en) Battery monitoring apparatus and method using discharge pulse measurements
CN110794311B (en) Inspection device for power storage device
JP6459914B2 (en) Battery characteristics learning device
CN111025171A (en) Rapid SOH (state of health) measurement method for power storage battery
CN202393891U (en) Lithium ion battery pack detector
JP2017166877A (en) Method for inspecting short-circuiting of battery
JP2009085676A (en) Battery deterioration diagnosis method of conveyance vehicle, and battery deterioration diagnosis system of conveyance vehicle
JP2014029273A (en) Battery pack inspection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160802