JP2013185696A - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP2013185696A
JP2013185696A JP2012053758A JP2012053758A JP2013185696A JP 2013185696 A JP2013185696 A JP 2013185696A JP 2012053758 A JP2012053758 A JP 2012053758A JP 2012053758 A JP2012053758 A JP 2012053758A JP 2013185696 A JP2013185696 A JP 2013185696A
Authority
JP
Japan
Prior art keywords
deceleration
vehicle
acceleration
reacceleration
automatic transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012053758A
Other languages
Japanese (ja)
Other versions
JP5780184B2 (en
Inventor
Shogo Matsumoto
章吾 松本
Takaaki Tokura
隆明 戸倉
Masahito Kaigawa
正人 甲斐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012053758A priority Critical patent/JP5780184B2/en
Publication of JP2013185696A publication Critical patent/JP2013185696A/en
Application granted granted Critical
Publication of JP5780184B2 publication Critical patent/JP5780184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle control device in which drivability (for example, acceleration performance according to intention of reacceleration) at reacceleration by properly setting a gear ratio according to an intention of speed reduction.SOLUTION: A time integration value of pre and pro G equals to a vehicle speed change rate until the pre and pro G reaches a peak value after a start condition of a gear stage determination control based on the peak G is established. Because a driver's intention of speed reduction, or how a driver has reduced speed of a vehicle 10 is reflected, a gear stage of an automatic transmission 18 suitable for the driver's intention of reacceleration by correcting a reacceleration request according to the speed reduction intention. For example, a gear stage capable of satisfying a target driving force Ftgt in reacceleration is properly set, and the execution of further down-shift is avoided or suppressed by acceleration step-in in reacceleration.

Description

本発明は、車両減速度に基づいて自動変速機のギヤ比を決定する車両の制御装置に関するものである。   The present invention relates to a vehicle control device that determines a gear ratio of an automatic transmission based on vehicle deceleration.

駆動力源からの動力を駆動輪側へ伝達する自動変速機を備え、車両減速中の減速度に基づいてその自動変速機のギヤ比(ギヤ段も同意)を決定する車両が良く知られている。例えば、特許文献1に記載された車両がそれである。特許文献1には、車両の横加速度(左右加速度)と前後加速度とで表される合成加速度に基づいて設定した変速判定値が、横加速度と前後加速度とを変数として予め設定された判定領域上のアップシフト禁止領域にある場合には(つまり、旋回により一定以上の横加速度が発生しているときには)、公知の変速マップから求められたギヤ段へのアップシフトを禁止すること、及びその変速判定値が判定領域上のダウンシフト領域にある場合には(つまり、車両が略直進急減速状態にあるときには)、公知の変速マップに従って制御されている現ギヤ段から更にダウンシフトを実行することが記載されている。   A vehicle that has an automatic transmission that transmits power from a driving force source to the drive wheel side and that determines the gear ratio of the automatic transmission (the gear stage agrees) based on the deceleration during vehicle deceleration is well known. Yes. For example, this is the vehicle described in Patent Document 1. In Patent Literature 1, a shift determination value set based on a combined acceleration represented by a lateral acceleration (left / right acceleration) and a longitudinal acceleration of a vehicle is set on a determination region set in advance using the lateral acceleration and the longitudinal acceleration as variables. In the upshift prohibited region (that is, when lateral acceleration of a certain level or more is generated by turning), prohibiting an upshift to a gear determined from a known shift map and shifting the gear When the judgment value is in the downshift area on the judgment area (that is, when the vehicle is in a substantially straight forward rapid deceleration state), further downshifting is executed from the current gear stage controlled according to a known shift map. Is described.

特開2007−177966号公報JP 2007-177966 A 特開2004−257435号公報JP 2004-257435 A 特開2007−170207号公報JP 2007-170207 A

ところで、旋回走行後のコーナ立ち上がり時には、運転者の再加速意図に応じた駆動力(再加速時の目標駆動力)が得られる自動変速機のギヤ比とされていることが望まれる。減速時に変速を判断したときの合成加速度が同様の場合であっても、運転者の減速意図(例えば減速の仕方)によっては、再加速意図は異なると考えられる。その為、特許文献1に記載されているように、減速中の合成加速度に基づいて一律に設定されたギヤ比では、運転者の再加速意図と合わない可能性がある。例えば、再加速時の目標駆動力を満たすことができないギヤ比が設定されていると、その再加速時のアクセル踏み込みによってダウンシフトを実行する必要があり、変速過渡過程で加速応答性が低下する可能性がある。反対に、再加速時の目標駆動力を満たすには低車速側過ぎるギヤ比が設定されていると、その再加速時に運転者が違和感を感じたりする可能性がある。また、これは、減速中に不要なダウンシフトを実行していることにもなる。尚、このような課題は未公知であり、減速意図に応じて再加速時の駆動要求量を満たすことができるギヤ比を適切に設定することについて未だ提案されていない。   By the way, it is desirable that the gear ratio of the automatic transmission is obtained so that the driving force according to the driver's intention to reaccelerate (the target driving force at the time of reacceleration) can be obtained when the corner rises after turning. Even if the combined acceleration when the shift is determined at the time of deceleration is the same, the intention of reacceleration is considered to be different depending on the driver's intention to decelerate (for example, how to decelerate). Therefore, as described in Patent Document 1, the gear ratio that is uniformly set based on the combined acceleration during deceleration may not match the driver's intention to reaccelerate. For example, if a gear ratio that does not satisfy the target driving force during re-acceleration is set, it is necessary to execute a downshift by depressing the accelerator during the re-acceleration, resulting in a decrease in acceleration response in the shifting transient process. there is a possibility. On the other hand, if a gear ratio that is too low to satisfy the target driving force at the time of reacceleration is set, the driver may feel uncomfortable at the time of reacceleration. This also means that an unnecessary downshift is being performed during deceleration. Such a problem is not known, and it has not yet been proposed to appropriately set a gear ratio capable of satisfying the drive request amount at the time of reacceleration according to the intention of deceleration.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、減速意図に応じてギヤ比を適切に設定し、再加速時のドライバビリティ(例えば再加速意図に応じた加速性能)を向上させることができる車両の制御装置を提供することにある。   The present invention has been made against the background of the above circumstances. The purpose of the present invention is to appropriately set the gear ratio in accordance with the intention of deceleration and driveability at the time of reacceleration (for example, in accordance with the intention of reacceleration). Another object of the present invention is to provide a vehicle control device that can improve the acceleration performance.

前記目的を達成する為の第1の発明の要旨とするところは、(a) 駆動力源からの動力を駆動輪側へ伝達する自動変速機を備え、車両減速中の減速度に基づいてその自動変速機のギヤ比を決定する車両の制御装置であって、(b) 車両減速中の減速度に基づいて再加速時の駆動要求量を求め、(c) 前記再加速時の駆動要求量を実現することができる前記自動変速機のギヤ比を求めるものであり、(d) 前記ギヤ比を求める制御の開始条件が成立してから前記車両減速中の減速度のピーク値が求められるまでのその減速度の時間積分値に基づいて、前記再加速時の駆動要求量を補正することにある。   The gist of the first invention for achieving the above object is that: (a) an automatic transmission that transmits power from a driving force source to the driving wheel side is provided, based on deceleration during vehicle deceleration. A vehicle control apparatus for determining a gear ratio of an automatic transmission, wherein (b) a required driving amount at the time of reacceleration is obtained based on deceleration during deceleration of the vehicle, and (c) a required driving amount at the time of reacceleration (D) until the peak value of deceleration during deceleration of the vehicle is obtained after the control start condition for obtaining the gear ratio is satisfied. The drive requirement amount at the time of reacceleration is corrected based on the time integration value of the deceleration.

このようにすれば、車両減速中の減速度の時間積分値は、車両減速中の減速度がピーク値に到達するまでの車速変化量に相当するものであり、運転者がどのように車両を減速させてきたかをすなわち運転者の減速意図を反映していることから、その減速意図に応じて再加速時の駆動要求量を補正することで、運転者の再加速意図に合ったギヤ比が求められる。例えば、再加速時の目標駆動力を満たすことができるギヤ比が適切に設定され、その再加速時のアクセル踏み込みによって更なるダウンシフトが実行されることが回避乃至抑制される。よって、減速意図に応じてギヤ比を適切に設定し、再加速時のドライバビリティを向上させることができる。   In this way, the time integration value of deceleration during vehicle deceleration corresponds to the amount of change in vehicle speed until the deceleration during vehicle deceleration reaches its peak value. Since it reflects the driver's intention to decelerate, the gear ratio that matches the driver's intention to reaccelerate is corrected by correcting the drive request amount at the time of reacceleration according to the intention of deceleration. Desired. For example, the gear ratio that can satisfy the target driving force at the time of reacceleration is appropriately set, and further downshift is prevented or suppressed due to depression of the accelerator at the time of reacceleration. Therefore, the gear ratio can be appropriately set according to the intention to decelerate, and the drivability during re-acceleration can be improved.

ここで、第2の発明は、前記第1の発明に記載の車両の制御装置において、前記車両減速中の減速度と前記再加速時の駆動要求量との予め定められた関係から、実際のその減速度に基づいてその駆動要求量を求めることにある。このようにすれば、車両減速中の減速度のピーク値に応じた再加速時の駆動要求量が適切に求められる。   Here, according to a second aspect of the present invention, in the vehicle control apparatus according to the first aspect of the present invention, from a predetermined relationship between the deceleration during deceleration of the vehicle and the drive request amount during the reacceleration, The required drive amount is obtained based on the deceleration. In this way, the required drive amount at the time of reacceleration according to the peak value of deceleration during vehicle deceleration is appropriately obtained.

また、第3の発明は、前記第1の発明又は第2の発明に記載の車両の制御装置において、前記車両減速中の減速度は、車両の前後加速度と車両の左右加速度との合成加速度であり、前記車両減速中の減速度のピーク値は、前記前後加速度がピーク値となったときの前記合成加速度であり、前記減速度の時間積分値は、前記前後加速度の時間積分値である。このようにすれば、車両減速中に再加速時の駆動要求量が適切に求められる。   According to a third aspect of the present invention, in the vehicle control device according to the first or second aspect of the invention, the deceleration during the deceleration of the vehicle is a combined acceleration of the longitudinal acceleration of the vehicle and the lateral acceleration of the vehicle. Yes, the peak value of deceleration during deceleration of the vehicle is the combined acceleration when the longitudinal acceleration reaches a peak value, and the time integral value of the deceleration is a time integral value of the longitudinal acceleration. If it does in this way, the required amount of drive at the time of reacceleration is appropriately calculated during vehicle deceleration.

また、第4の発明は、前記第1の発明乃至第3の発明の何れか1つに記載の車両の制御装置において、前記再加速時の駆動要求量を実現することができる前記自動変速機のギヤ比は、その駆動要求量を実現することができるそのギヤ比のうちの最高車速側のギヤ比である。このようにすれば、車両減速中や旋回中に不要なダウンシフトが回避される。また、再加速時に加速意図よりもギヤ比が低車速側とされていることでの違和感が抑制される。   According to a fourth aspect of the present invention, in the vehicle control apparatus according to any one of the first to third aspects of the invention, the automatic transmission capable of realizing the required drive amount during the reacceleration. The gear ratio is a gear ratio on the highest vehicle speed side among the gear ratios that can realize the required drive amount. In this way, unnecessary downshifts are avoided during vehicle deceleration and turning. In addition, a sense of incongruity due to the gear ratio being lower than the intention of acceleration at the time of reacceleration is suppressed.

また、第5の発明は、前記第1の発明乃至第4の発明の何れか1つに記載の車両の制御装置において、前記車両減速中の減速度の時間積分値が小さい場合は、その時間積分値が大きい場合よりも前記再加速時の駆動要求量を小さくするように補正することにある。このようにすれば、補正された再加速時の駆動要求量に基づいて、運転者の再加速意図に合ったギヤ比が適切に求められる。   According to a fifth aspect of the present invention, in the vehicle control device according to any one of the first to fourth aspects of the present invention, when the time integral value of deceleration during vehicle deceleration is small, the time is The correction is made so that the required drive amount during the re-acceleration is made smaller than when the integral value is large. In this way, a gear ratio suitable for the driver's intention to reaccelerate is appropriately obtained based on the corrected amount of driving required for reacceleration.

本発明が適用される車両に備えられた動力伝達経路の概略構成を説明する図であると共に、車両に設けられた制御系統の要部を説明する図である。It is a figure explaining the schematic structure of the power transmission path | route with which the vehicle to which this invention was applied was provided, and is a figure explaining the principal part of the control system provided in the vehicle. 電子制御装置の制御機能の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control function of an electronic controller. 自動変速機の基本変速制御においてギヤ段の決定に用いられる変速線図の一例を示す図である。It is a figure which shows an example of the shift map used for determination of a gear stage in the basic transmission control of an automatic transmission. コーナ進入時の減速度に基づいてコーナ立ち上がり時の加速意図にあった自動変速機のギヤ段を決定する制御を説明する為の図である。It is a figure for demonstrating the control which determines the gear stage of the automatic transmission suitable for the acceleration at the time of a corner start based on the deceleration at the time of a corner approach. 各ギヤ段毎に実現することができる車両駆動力と車速との予め定められた関係(ギヤ段毎駆動力マップ)上に要求加速度割合の一例を示す図である。It is a figure which shows an example of a request | requirement acceleration ratio on the predetermined relationship (drive power map for every gear stage) of the vehicle drive force and vehicle speed which can be implement | achieved for every gear stage. ピークGの値が同様であるときに、再加速意図が強い減速パターンと弱い減速パターンとを比較する為の図である。It is a figure for comparing the deceleration pattern with a strong re-acceleration intention with the weak deceleration pattern when the value of the peak G is the same. 車速変化量をパラメータとして、ピークGと要求加速度割合との予め定められた関係(要求加速度割合補正マップ)を示す図である。It is a figure which shows the predetermined relationship (request | requirement acceleration ratio correction map) of the peak G and a request | requirement acceleration ratio by making vehicle speed change amount into a parameter. 電子制御装置の制御作動の要部すなわち減速意図に応じてギヤ比を適切に設定し再加速時のドライバビリティを向上させる為の制御作動を説明するフローチャートである。It is a flowchart explaining the control operation | movement for improving the drivability at the time of re-acceleration by setting a gear ratio appropriately according to the principal part of the control operation | movement of an electronic controller, ie, the deceleration intention.

本発明において、好適には、前記駆動力源としては、例えば内燃機関等のエンジンが好適に用いられるが、電動機等の他の原動機を単独で或いはエンジンと組み合わせて採用することもできる。   In the present invention, an engine such as an internal combustion engine is preferably used as the driving force source, but other prime movers such as an electric motor can be used alone or in combination with the engine.

また、好適には、前記自動変速機は、例えば複数のギヤ段が択一的に達成される公知の遊星歯車式自動変速機、2軸間に備えられた常時噛み合う複数対の変速ギヤの何れかを油圧アクチュエータにより駆動される同期装置によって択一的に動力伝達状態とすることでギヤ段が自動的に切換られる公知の同期噛合型平行2軸式自動変速機、入力軸を2系統備えて各系統の入力軸にクラッチがそれぞれ繋がり更にそれぞれ偶数段と奇数段へと繋がっている型式の同期噛合型平行2軸式自動変速機である所謂DCT(Dual Clutch Transmission)、変速比が無段階に連続的に変化させられる公知のベルト式無段変速機やトラクション型無段変速機、或いは電気的に変速比が変更される公知の電気式無段変速機などにより構成される。また、前記自動変速機の車両に対する搭載姿勢は、その自動変速機の軸線が車両の幅方向となるFF(フロントエンジン・フロントドライブ)車両などの横置き型でも、その自動変速機の軸線が車両の前後方向となるFR(フロントエンジン・リヤドライブ)車両などの縦置き型でも良い。   Preferably, the automatic transmission is, for example, a known planetary gear type automatic transmission in which a plurality of gear stages are alternatively achieved, and any one of a plurality of pairs of transmission gears that are always meshed and provided between two shafts. A known synchronous mesh type parallel two-shaft automatic transmission, in which the gear stage is automatically switched by selectively setting a power transmission state by a synchronizer driven by a hydraulic actuator, and two input shafts are provided. A so-called DCT (Dual Clutch Transmission), which is a type of synchronous meshing parallel two-shaft automatic transmission of the type in which the clutch is connected to the input shaft of each system and further connected to the even-numbered stage and the odd-numbered stage, respectively, and the gear ratio is continuously variable It is constituted by a known belt type continuously variable transmission or traction type continuously variable transmission that is continuously changed, or a known electric type continuously variable transmission that is electrically changed in gear ratio. Further, the mounting posture of the automatic transmission with respect to the vehicle may be a horizontal installation type such as an FF (front engine / front drive) vehicle in which the axis of the automatic transmission is in the width direction of the vehicle. It may be a vertical installation type such as an FR (front engine / rear drive) vehicle in the longitudinal direction.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明が適用される車両10に備えられたエンジン14から駆動輪30までの動力伝達経路の概略構成を説明する図であると共に、車両10に設けられた制御系統の要部を説明する図である。図1において、車両用動力伝達装置12(以下、動力伝達装置12という)は、車体にボルト止め等によって取り付けられる非回転部材としてのトランスアクスルケース20(以下、ケース20という)内において、エンジン14側から順番に、トルクコンバータ16、自動変速機18等を備えている。また、動力伝達装置12は、自動変速機18の出力回転部材と噛み合うデフリングギヤ24を一体的に備える差動歯車装置(ディファレンシャルギヤ)26、その差動歯車装置26に連結された1対の車軸28等を備えている。このように構成された動力伝達装置12は、例えばFF(フロントエンジン・フロントドライブ)型の車両10に好適に用いられるものである。動力伝達装置12において、駆動力源としてのエンジン14の動力は、トルクコンバータ16、自動変速機18、差動歯車装置26、及び1対の車軸28等を順次介して1対の駆動輪30へ伝達される。   FIG. 1 is a diagram illustrating a schematic configuration of a power transmission path from an engine 14 to a drive wheel 30 provided in a vehicle 10 to which the present invention is applied, and illustrates a main part of a control system provided in the vehicle 10. It is a figure explaining. In FIG. 1, a vehicle power transmission device 12 (hereinafter referred to as a power transmission device 12) includes an engine 14 in a transaxle case 20 (hereinafter referred to as a case 20) as a non-rotating member attached to a vehicle body by bolting or the like. In order from the side, a torque converter 16, an automatic transmission 18 and the like are provided. The power transmission device 12 includes a differential gear device (differential gear) 26 integrally including a differential ring gear 24 that meshes with an output rotation member of the automatic transmission 18, and a pair of axles coupled to the differential gear device 26. 28 etc. The power transmission device 12 configured in this manner is suitably used for, for example, an FF (front engine / front drive) type vehicle 10. In the power transmission device 12, the power of the engine 14 as a driving force source is sequentially supplied to the pair of driving wheels 30 through the torque converter 16, the automatic transmission 18, the differential gear device 26, the pair of axles 28, and the like. Communicated.

自動変速機18は、エンジン14から駆動輪30までの動力伝達経路の一部を構成し、複数組の遊星歯車装置の回転要素が複数の油圧式摩擦係合装置の何れかによって選択的に連結されることにより各々異なるギヤ比(変速比)を有する複数のギヤ段(変速段)が択一的に成立させられる遊星歯車式自動変速機である。例えば、自動変速機18は、公知の車両によく用いられる所謂クラッチツゥクラッチ変速を行う有段式自動変速機であり、運転者のアクセル操作や車速V等に応じて各ギヤ段が成立させられる。   The automatic transmission 18 constitutes a part of a power transmission path from the engine 14 to the drive wheels 30, and the rotating elements of a plurality of planetary gear units are selectively connected by any one of a plurality of hydraulic friction engagement devices. Thus, a planetary gear type automatic transmission in which a plurality of gear stages (shift stages) having different gear ratios (transmission ratios) are alternatively established. For example, the automatic transmission 18 is a stepped automatic transmission that performs a so-called clutch-to-clutch shift that is often used in known vehicles, and each gear stage is established according to the accelerator operation of the driver, the vehicle speed V, and the like. .

また、車両10には、例えばエンジン14の出力制御や自動変速機18の変速制御などに関連する制御装置を含む電子制御装置80が備えられている。電子制御装置80は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置80は、エンジン14の出力制御、自動変速機18の変速制御等を実行するようになっており、必要に応じてエンジン制御用や油圧制御用(変速制御用)等に分けて構成される。   Further, the vehicle 10 is provided with an electronic control unit 80 including a control unit related to output control of the engine 14 and shift control of the automatic transmission 18, for example. The electronic control unit 80 includes, for example, a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like, and the CPU uses a temporary storage function of the RAM according to a program stored in the ROM in advance. Various controls of the vehicle 10 are executed by performing signal processing. For example, the electronic control unit 80 executes output control of the engine 14, shift control of the automatic transmission 18, etc., and is divided into engine control, hydraulic control (shift control), etc. as necessary. Configured.

電子制御装置80には、各種センサ(例えばエンジン回転速度センサ50、変速機入力回転速度センサ52、変速機出力回転速度センサ54、アクセル開度センサ56、スロットル弁開度センサ58、前後加速度センサ60、左右加速度センサ62など)により検出された各種信号(例えばエンジン回転速度Ne、変速機入力回転速度Nin、車速Vに対応する変速機出力回転速度Nout、アクセルペダルの操作量であるアクセル開度Acc、スロットル弁開度θth、車両10の前後方向の加速度である前後加速度Gfb(前後Gともいう)、車両10の左右方向の加速度である左右加速度Grl(左右Gともいう)など)が、それぞれ供給される。また、電子制御装置80からは、例えばエンジン14の出力制御の為のエンジン出力制御指令信号Se、自動変速機18の変速制御の為に油圧制御回路70を作動させる為の油圧指令信号Spなどが、それぞれ出力される。   The electronic control unit 80 includes various sensors (for example, an engine speed sensor 50, a transmission input speed sensor 52, a transmission output speed sensor 54, an accelerator opening sensor 56, a throttle valve opening sensor 58, a longitudinal acceleration sensor 60). , Left and right acceleration sensor 62, etc. (for example, engine rotational speed Ne, transmission input rotational speed Nin, transmission output rotational speed Nout corresponding to vehicle speed V, and accelerator opening Acc that is the amount of operation of the accelerator pedal) , Throttle valve opening θth, longitudinal acceleration Gfb (also referred to as longitudinal G) which is the acceleration in the longitudinal direction of the vehicle 10, lateral acceleration Grl (also referred to as lateral G) which is the lateral acceleration of the vehicle 10, etc. Is done. Further, from the electronic control unit 80, for example, an engine output control command signal Se for output control of the engine 14, a hydraulic command signal Sp for operating the hydraulic control circuit 70 for shift control of the automatic transmission 18, and the like. , Respectively.

図2は、電子制御装置80による制御機能の要部を説明する機能ブロック線図である。図2において、変速制御手段すなわち変速制御部82は、自動変速機18の変速制御を実行する。具体的には、変速制御部82は、例えば図3に示すようなアップシフト線(実線)とダウンシフト線(破線)とを有する予め定められた関係(変速マップ)から実際の車速V及びアクセル開度Accで示される車両状態に基づいて自動変速機18のギヤ段を決定し、その決定したギヤ段が得られるように自動変速機18の自動変速制御を実行する油圧指令信号Spを油圧制御回路70へ出力する。   FIG. 2 is a functional block diagram for explaining the main part of the control function by the electronic control unit 80. In FIG. 2, the shift control means, that is, the shift control unit 82 executes shift control of the automatic transmission 18. Specifically, the shift control unit 82 determines the actual vehicle speed V and the accelerator from a predetermined relationship (shift map) having an upshift line (solid line) and a downshift line (broken line) as shown in FIG. Based on the vehicle state indicated by the opening Acc, the gear stage of the automatic transmission 18 is determined, and the hydraulic command signal Sp for executing the automatic shift control of the automatic transmission 18 is hydraulically controlled so that the determined gear stage is obtained. Output to the circuit 70.

エンジン出力制御手段すなわちエンジン出力制御部84は、エンジン14の駆動を制御する。具体的には、エンジン出力制御部84は、アクセル開度Accをパラメータとして車速Vと目標駆動力Ftgtとの予め実験的或いは設計的に求められて記憶された(すなわち予め定められた)不図示の関係(駆動力マップ)から実際のアクセル開度Acc及び車速Vに基づいて、車両10に対する運転者の駆動要求量(すなわちドライバ要求量)としての目標駆動力Ftgtを算出する。この駆動力マップは、例えば車速Vが小さい程またアクセル操作量Accが大きい程目標駆動力Ftgtが大きくなるように設定されている。エンジン出力制御部84は、伝達損失、補機負荷、自動変速機18のギヤ段等を考慮して、その目標駆動力Ftgtが得られるエンジン14の出力トルク(エンジントルク)Teとなるように、スロットルアクチュエータにより電子スロットル弁を開閉制御する他、燃料噴射装置による燃料噴射量や噴射時期を制御し、点火装置による点火時期を制御するエンジン出力制御指令信号Seを出力する。前記駆動要求量としては、駆動輪30における目標駆動力Ftgt[N]の他に、駆動輪30における目標駆動トルク[Nm]や目標駆動パワー[W]、自動変速機18の出力回転部材における目標変速機出力トルク、目標エンジントルク等を用いることもできる。また、駆動要求量として、単にアクセル開度Acc[%]やスロットル弁開度θth[%]やエンジン14の吸入空気量[g/sec]等を用いることもできる。   The engine output control means, that is, the engine output control unit 84 controls the drive of the engine 14. Specifically, the engine output control unit 84 is obtained by experimental or design in advance and stored (that is, predetermined) of the vehicle speed V and the target driving force Ftgt using the accelerator opening Acc as a parameter (not shown). Based on the relationship (driving force map), based on the actual accelerator opening Acc and the vehicle speed V, the target driving force Ftgt as the driver's requested driving amount (that is, the requested driver amount) for the vehicle 10 is calculated. This driving force map is set so that the target driving force Ftgt increases as the vehicle speed V decreases or the accelerator operation amount Acc increases, for example. The engine output control unit 84 considers transmission loss, auxiliary load, gear stage of the automatic transmission 18, and the like so that the output torque (engine torque) Te of the engine 14 from which the target driving force Ftgt is obtained is obtained. In addition to controlling the opening and closing of the electronic throttle valve by a throttle actuator, the engine output control command signal Se for controlling the fuel injection amount and injection timing by the fuel injection device and controlling the ignition timing by the ignition device is output. As the drive request amount, in addition to the target drive force Ftgt [N] in the drive wheel 30, the target drive torque [Nm] and the target drive power [W] in the drive wheel 30 and the target in the output rotating member of the automatic transmission 18 Transmission output torque, target engine torque, etc. can also be used. Further, as the required drive amount, the accelerator opening Acc [%], the throttle valve opening θth [%], the intake air amount [g / sec] of the engine 14 or the like can be used.

ここで、電子制御装置80は、例えば図3の変速マップに従って自動変速機18のギヤ段(ギヤ比も同意)を決定することに加え、車両減速中の加速度(すなわち減速度(減速Gともいう))に基づいて自動変速機18のギヤ段を決定する機能を有している。つまり、電子制御装置80は、再加速時の駆動要求量(再加速要求量という)を実現する為の自動変速機18のギヤ段を減速Gに基づいて決定する機能を有している。具体的には、コーナ進入時の減速Gに基づいて、コーナを抜けた後の立ち上がりにおける運転者の加速意図にあった自動変速機18のギヤ段を決定する。以下、この機能について詳述する。   Here, the electronic control unit 80 determines, for example, the gear position of the automatic transmission 18 (which also agrees with the gear ratio) according to the shift map of FIG. )) To determine the gear position of the automatic transmission 18. That is, the electronic control unit 80 has a function of determining the gear stage of the automatic transmission 18 for realizing the drive request amount (referred to as the reacceleration request amount) at the time of reacceleration based on the deceleration G. Specifically, based on the deceleration G when entering the corner, the gear position of the automatic transmission 18 that matches the driver's intention to accelerate at the start after exiting the corner is determined. Hereinafter, this function will be described in detail.

本実施例では、コーナ進入時の減速Gと再加速要求量(例えば再加速時のアクセルペダルの踏み込み量)とは相関関係があり、その減速Gが大きい程、再加速要求量が大きくなることを実験的検証により見出した。図4に示すように、コーナへの進入からそのコーナを抜けて立ち上がるまでの走行は、大きく4つに分けることができる。すなわち、コーナへの進入に備えて減速する区間[1]、コーナ進入後からコーナ頂点までの区間[2]、コーナ頂点からコーナ出口までの区間[3]、コーナ出口から再加速する区間[4]の4つに分けることができる。図4において、上記区間[1]のコーナ進入時では、専ら前後Gが減速Gとなり、上記区間[2]及び区間[3]のコーナ旋回時では、前後Gと左右Gとの合成加速度(合成Gという)が減速Gとなり、上記区間[4]のコーナ立ち上がり時では、専ら前後Gが加速度となる。図4の実施例では、区間[1]の前後Gはコーナ進入までピーク値が更新されている。その為、本実施例では、前後Gがピーク値となったときの減速G(合成G)(以下、ピークGという)に基づいて再加速要求量を求める。つまり、前後Gのピーク値が更新される毎に、減速Gに基づいて再加速要求量を逐次求める。   In this embodiment, there is a correlation between the deceleration G when entering the corner and the reacceleration request amount (for example, the amount of depression of the accelerator pedal during reacceleration), and the greater the deceleration G, the greater the reacceleration request amount. Was found by experimental verification. As shown in FIG. 4, traveling from entering a corner to getting up through the corner can be roughly divided into four. That is, a section [1] that decelerates in preparation for entering the corner, a section [2] from the corner to the corner apex, a section [3] from the corner apex to the corner exit, and a section [4] that re-accelerates from the corner exit [4] ] Can be divided into four. In FIG. 4, when the vehicle enters the corner of the section [1], the front-rear G is the deceleration G, and when the corner is turned in the sections [2] and [3], the combined acceleration of the front and rear G and the left and right G (combined) G) is a deceleration G, and at the time of corner rise in the section [4], the front-rear G is exclusively the acceleration. In the embodiment of FIG. 4, the peak values of G before and after the section [1] are updated until entering the corner. Therefore, in this embodiment, the reacceleration request amount is obtained based on the deceleration G (combined G) (hereinafter referred to as the peak G) when the front and rear G have peak values. That is, each time the peak values of the front and rear G are updated, the reacceleration request amount is sequentially obtained based on the deceleration G.

ピークGに基づいて求められた再加速要求量は、例えば駆動要求量の絶対値で表しても良いが、車種毎の適合を考えると、例えばそのときの車速Vにおいて発生させることが可能な最大駆動力に対する、コーナ立ち上がりの際に推測される再加速時の目標駆動力Ftgtの割合(要求加速度割合GRreq[%]と称す)で表すことが好適である。電子制御装置80は、この要求加速度割合GRreqを実現することができる自動変速機18のギヤ段を求める。例えば、電子制御装置80は、この要求加速度割合GRreqを実現することができる自動変速機18のギヤ段のうちの最高車速側のギヤ段(最ハイギヤ段)を求める。図5は、各ギヤ段(例えば第1速ギヤ段−第4速ギヤ段)毎に実現することができる車両駆動力(車両加速度)と車速Vとの予め定められた関係(ギヤ段毎駆動力マップ)上に要求加速度割合GRreqを示す図である。図5において、例えばある車速Vにおいて要求加速度割合GRreqが点Aの状態である場合、電子制御装置80は、その要求加速度割合GRreqを実現することができる第1速ギヤ段1st及び第2速ギヤ段2ndのうちの最ハイギヤ段である第2速ギヤ段2ndをコーナ立上がり時の自動変速機18のギヤ段として選択する。   The re-acceleration request amount obtained based on the peak G may be expressed by, for example, an absolute value of the drive request amount, but considering the adaptation for each vehicle type, for example, the maximum that can be generated at the vehicle speed V at that time It is preferable to represent the ratio of the target driving force Ftgt at the time of re-acceleration estimated at the time of corner rising with respect to the driving force (referred to as a requested acceleration ratio GRreq [%]). The electronic control unit 80 obtains a gear stage of the automatic transmission 18 that can realize the required acceleration ratio GRreq. For example, the electronic control unit 80 obtains the highest vehicle speed side gear (highest gear) among the gears of the automatic transmission 18 that can realize the required acceleration ratio GRreq. FIG. 5 shows a predetermined relationship between vehicle driving force (vehicle acceleration) and vehicle speed V that can be realized for each gear stage (for example, the first gear stage to the fourth gear stage) (drive for each gear stage). It is a figure which shows request | requirement acceleration ratio GRreq on a force map). In FIG. 5, for example, when the required acceleration rate GRreq is in the state of point A at a certain vehicle speed V, the electronic control unit 80 can realize the required acceleration rate GRreq at the first speed gear stage 1st and the second speed gear. The second speed gear stage 2nd, which is the highest gear stage of the stage 2nd, is selected as the gear stage of the automatic transmission 18 at the corner rising.

ところで、ピークGの値が同様であっても、運転者の減速意図(例えば減速の仕方)によっては、再加速意図は異なると考えられる。例えば、図6に示すように、ピークGの値が同様であっても、比較的短時間で減速する減速パターンの方が、比較的長時間で減速する減速パターンよりも運転者の減速意図が強く、再加速意図も強いと考えられる。その為、ピークGに基づいて求めた再加速要求量にて一律に設定した自動変速機18のギヤ段では、運転者の再加速意図と合わない可能性があり、再加速時のアクセル踏み込みによって更なるダウンシフトが必要となったり、反対にローギヤ段過ぎる為に再加速時に運転者が違和感を感じたりする可能性がある。また、ローギヤ段過ぎる場合は、減速中に不要なダウンシフトを実行していることにもなる。本実施例では、前後Gの時間積分値(図6の斜線部分)が大きい程、運転者の減速意図が大きいことを見出した。そこで、本実施例の電子制御装置80は、前述したピークGに基づいて自動変速機18のギヤ段を求める制御(ピークGに基づくギヤ段決定制御と称す)の開始条件が成立してからピークGが求められるまでの前後Gの時間積分値に基づいて、再加速要求量(例えば要求加速度割合GRreq)を補正する。例えば、電子制御装置80は、減速意図が比較的強い場合にはローギヤ側が設定され易く、減速意図が比較的弱い場合にはローギヤ側が設定され難くされるように、前後Gの時間積分値が小さい場合は、前後Gの時間積分値が大きい場合よりも再加速要求量を小さくするように補正する。上記前後Gの時間積分値は、上記ピークGに基づくギヤ段決定制御の開始条件が成立してから前後Gがピーク値に到達するまでの車速Vの変化量、すなわちギヤ段決定制御の開始条件が成立したときの車速(制御開始車速)とピークGが求められたときの車速(ピークG車速)との差分に当たる車速変化量(=制御開始車速−ピークG車速)に相当するものである。   By the way, even if the value of the peak G is the same, the intention of reacceleration is considered to be different depending on the driver's intention to decelerate (for example, how to decelerate). For example, as shown in FIG. 6, even if the peak G value is the same, the deceleration pattern that decelerates in a relatively short time has a driver's intention to decelerate than the deceleration pattern that decelerates in a relatively long time. It is considered strong and re-accelerated. For this reason, the gear position of the automatic transmission 18 that is uniformly set with the reacceleration request amount obtained based on the peak G may not match the driver's intention to reaccelerate. There is a possibility that further downshift is necessary, or on the contrary, the driver feels uncomfortable at the time of re-acceleration because the gear is too low. If the gear is too low, an unnecessary downshift is executed during deceleration. In this example, it was found that the driver's intention to decelerate is larger as the time integral value of the front and rear G (the hatched portion in FIG. 6) is larger. Therefore, the electronic control unit 80 according to the present embodiment performs the peak operation after the start condition of the control for obtaining the gear stage of the automatic transmission 18 based on the above-described peak G (referred to as gear stage determination control based on the peak G) is satisfied. The re-acceleration request amount (for example, the required acceleration ratio GRreq) is corrected based on the time integration values of the front and rear G until G is obtained. For example, the electronic control unit 80 has a small time integration value of the front and rear G so that the low gear side is easily set when the intention to decelerate is relatively strong, and the low gear side is difficult to set when the intention to decelerate is relatively weak. The correction is made so that the re-acceleration request amount is smaller than when the time integration values of the front and rear G are large. The time integral value of the front and rear G is the amount of change in the vehicle speed V from when the start condition for the gear position determination control based on the peak G is established until the front and rear G reaches the peak value, that is, the start condition for the gear position determination control. This corresponds to the amount of change in vehicle speed (= control start vehicle speed−peak G vehicle speed) corresponding to the difference between the vehicle speed (control start vehicle speed) when the above is established and the vehicle speed (peak G vehicle speed) when peak G is obtained.

図7は、前後Gの時間積分値に相当する車速変化量をパラメータとして、ピークGと要求加速度割合GRreqとの予め定められた関係(要求加速度割合補正マップ)を示す図である。図7において、実線で示すベース値は、例えば再加速意図が強い理想的な減速パターン(図6参照)、具体的には熟練したドライバがスポーツ走行を極めるときの減速の仕方として予め定められた減速パターンの場合に、ピークGと要求加速度割合GRreqとの予め定められた対応関係である。破線で示す補正値は、理想的な減速パターンでの車速変化量に対して実際の車速変化量が変動する場合であり、実際の車速変化量が大きい側に変動する程、要求加速度割合GRreqのベース値よりも補正後の要求加速度割合GRreqが大きくされる一方で、実際の車速変化量が小さい側に変動する程、要求加速度割合GRreqのベース値よりも補正後の要求加速度割合GRreqが小さくされる。ベース値よりも補正後の要求加速度割合GRreqが大きくされる側は、小さくされる側よりも補正幅が小さくされている。これは、再加速意図が強い理想的な減速パターンがスポーツ走行を略限界近くまで極めたものであると考えられる為である。また、補正後の要求加速度割合GRreqは、100[%]を超えることはない。   FIG. 7 is a diagram showing a predetermined relationship (required acceleration ratio correction map) between the peak G and the required acceleration ratio GRreq using the vehicle speed change amount corresponding to the time integral value of the front and rear G as a parameter. In FIG. 7, the base value indicated by the solid line is determined in advance as an ideal deceleration pattern (see FIG. 6) with a strong intention of reacceleration, for example, specifically as a method of deceleration when a skilled driver masters sports driving. In the case of the deceleration pattern, this is a predetermined correspondence relationship between the peak G and the required acceleration ratio GRreq. The correction value indicated by the broken line is a case where the actual vehicle speed change amount fluctuates with respect to the vehicle speed change amount in an ideal deceleration pattern. The more the actual vehicle speed change amount fluctuates, the more the required acceleration ratio GRreq is changed. While the required acceleration rate GRreq after correction is larger than the base value, the corrected required acceleration rate GRreq is smaller than the base value of the required acceleration rate GRreq as the actual vehicle speed change amount changes to a smaller side. The On the side where the required acceleration ratio GRreq after correction is larger than the base value, the correction width is smaller than on the side where the required acceleration ratio GRreq is smaller. This is because an ideal deceleration pattern with a strong intention to re-accelerate is considered to be a sport driving event that is almost to the limit. Further, the corrected required acceleration ratio GRreq does not exceed 100 [%].

より具体的には、開始条件成立判定手段すなわち開始条件成立判定部86は、ピークGに基づくギヤ段決定制御の開始条件が成立したか否かを判定する。例えば、開始条件成立判定部86は、前後Gが減速走行に移行していることを確実に判断できる為の予め定められた前後G判定値以上となったか否かに基づいて、ギヤ段決定制御の開始条件が成立したか否かを判定する。   More specifically, the start condition satisfaction determination means, that is, the start condition satisfaction determination unit 86 determines whether or not the start condition for the gear position determination control based on the peak G is satisfied. For example, the start condition establishment determination unit 86 determines whether the front / rear G is equal to or greater than a predetermined front / rear G determination value for reliably determining that the front / rear G has shifted to the deceleration travel. It is determined whether or not the start condition is satisfied.

制御開始車速保持手段すなわち制御開始車速保持部88は、開始条件成立判定部86によりギヤ段決定制御の開始条件が成立したと判定された場合は、その時の実際の車速Vを制御開始車速として保持する。   The control start vehicle speed holding means, that is, the control start vehicle speed holding unit 88 holds the actual vehicle speed V as the control start vehicle speed when the start condition establishment determination unit 86 determines that the start condition of the gear position determination control is satisfied. To do.

再加速要求量決定手段すなわち再加速要求量決定部90は、開始条件成立判定部86によりギヤ段決定制御の開始条件が成立したと判定された場合は、例えば図7に示すような要求加速度割合補正マップにおけるベース値(実線)から、実際のピークGに基づいて要求加速度割合GRreqを求める。再加速要求量決定部90は、制御開始車速保持部88により保持されている制御開始車速と上記要求加速度割合GRreqを求めた時点の車速VであるピークG車速との差分に当たる車速変化量を算出する。再加速要求量決定部90は、例えば図7に示すような要求加速度割合補正マップからその車速変化量に基づいて要求加速度割合GRreqを補正する。尚、制御作動においては、ピークGが更新される毎に要求加速度割合GRreqが求められるので、その都度、要求加速度割合GRreqも補正される。   The reacceleration request amount determination means, that is, the reacceleration request amount determination unit 90, for example, if the start condition establishment determination unit 86 determines that the start condition of the gear position determination control is satisfied, the required acceleration ratio as shown in FIG. Based on the actual peak G, the required acceleration ratio GRreq is obtained from the base value (solid line) in the correction map. The reacceleration request amount determination unit 90 calculates a vehicle speed change amount corresponding to the difference between the control start vehicle speed held by the control start vehicle speed holding unit 88 and the peak G vehicle speed that is the vehicle speed V at the time of obtaining the required acceleration ratio GRreq. To do. The reacceleration required amount determination unit 90 corrects the required acceleration rate GRreq based on the vehicle speed change amount from the required acceleration rate correction map as shown in FIG. 7, for example. In the control operation, since the required acceleration rate GRreq is obtained every time the peak G is updated, the required acceleration rate GRreq is also corrected each time.

減速時ギヤ段決定手段すなわち減速時ギヤ段決定部92は、例えば図5に示すようなギヤ段毎駆動力マップから再加速要求量決定部90により求められた要求加速度割合GRreq(補正後の要求加速度割合GRreq)に基づいて、その要求加速度割合GRreqを出力可能な自動変速機18の最ハイギヤ段を求める。   The gear stage determining means at the time of deceleration, that is, the gear stage determining unit 92 at the time of deceleration is, for example, the required acceleration ratio GRreq (required after correction) obtained by the reacceleration request amount determining unit 90 from the driving power map for each gear stage as shown in FIG. Based on the acceleration ratio GRreq), the highest gear stage of the automatic transmission 18 that can output the required acceleration ratio GRreq is obtained.

終了条件成立判定手段すなわち終了条件成立判定部94は、ピークGに基づくギヤ段決定制御の終了条件が成立したか否かを判定する。例えば、終了条件成立判定部94は、加速度がコーナを立ち上がった加速走行に移行していることを確実に判断できる為の予め定められた加速度判定値以上となったか否かに基づいて、ギヤ段決定制御の終了条件が成立したか否かを判定する。   The end condition establishment determining means, that is, the end condition establishment determining unit 94 determines whether or not the end condition of the gear position determination control based on the peak G is satisfied. For example, the end condition establishment determination unit 94 determines whether or not the gear stage is greater than a predetermined acceleration determination value that can reliably determine that the acceleration has shifted to the acceleration traveling at the corner. It is determined whether an end condition for decision control is satisfied.

変速制御部82は、終了条件成立判定部94によりギヤ段決定制御の終了条件が成立したと判定されるまでは、減速時ギヤ段決定部92により求められた自動変速機18のギヤ段へ変速し、そのギヤ段を保持する。一方で、変速制御部82は、終了条件成立判定部94によりギヤ段決定制御の終了条件が成立したと判定された場合には、減速時ギヤ段決定部92により求められた自動変速機18のギヤ段の保持を解除し、通常の変速制御(例えば図3の変速マップに従った変速制御)に復帰する。   The shift control unit 82 shifts to the gear stage of the automatic transmission 18 determined by the deceleration gear stage determination unit 92 until the end condition establishment determination unit 94 determines that the end condition of the gear stage determination control is satisfied. And the gear stage is held. On the other hand, when it is determined by the end condition establishment determination unit 94 that the end condition of the gear position determination control is satisfied, the transmission control unit 82 determines the automatic transmission 18 determined by the deceleration gear stage determination unit 92. The holding of the gear stage is released, and the normal shift control (for example, shift control according to the shift map of FIG. 3) is restored.

図8は、電子制御装置80の制御作動の要部すなわち減速意図に応じてギヤ比を適切に設定し再加速時のドライバビリティを向上させる為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。   FIG. 8 is a flowchart for explaining the control operation for improving the drivability during re-acceleration by appropriately setting the gear ratio according to the main part of the control operation of the electronic control unit 80, that is, the intention of deceleration. It is repeatedly executed with an extremely short cycle time of about several tens of milliseconds.

図8において、先ず、開始条件成立判定部86に対応するS10において、例えばピークGに基づくギヤ段決定制御の開始条件が成立したか否かが判定される。このS10の判断が否定される場合は本ルーチンが終了させられるが肯定される場合は制御開始車速保持部88に対応するS20において、例えばその時の実際の車速Vが制御開始車速として保持される。次いで、再加速要求量決定部90に対応するS30において、例えば図7に示すような要求加速度割合補正マップにおけるベース値(実線)から、実際のピークGに基づいて要求加速度割合GRreqが求められる。次いで、同じく再加速要求量決定部90に対応するS40において、例えば上記S20にて保持されている制御開始車速とこの時点の車速VであるピークG車速との差分に当たる車速変化量(=制御開始車速−ピークG車速)が算出され、図7に示すような要求加速度割合補正マップからその車速変化量に基づいて要求加速度割合GRreqが補正される。次いで、減速時ギヤ段決定部92に対応するS50において、例えば図5に示すようなギヤ段毎駆動力マップから、上記S40により求められた要求加速度割合GRreqを出力可能な自動変速機18の最ハイギヤ段が求められる。次いで、終了条件成立判定部94に対応するS60において、例えばピークGに基づくギヤ段決定制御の終了条件が成立したか否かが判定される。このS60の判断が否定される場合は変速制御部82に対応するS70において、上記S50にて求められた自動変速機18のギヤ段への変速が実行されそのギヤ段が保持されるか或いは現ギヤ段がS50にて求められた自動変速機18のギヤ段であるときにはそのギヤ段がそのまま保持される。このS70の実行後は上記S30へ戻される。一方で、上記S60の判断が肯定される場合は変速制御部82に対応するS80において、現在の自動変速機18のギヤ段の保持が解除されると共に例えば図3の変速マップに従った通常の変速制御が実行される。   In FIG. 8, first, in S10 corresponding to the start condition establishment determination unit 86, it is determined whether a start condition for gear position determination control based on the peak G is satisfied, for example. If the determination in S10 is negative, this routine is terminated. If the determination is positive, in S20 corresponding to the control start vehicle speed holding unit 88, for example, the actual vehicle speed V at that time is held as the control start vehicle speed. Next, in S30 corresponding to the reacceleration required amount determining unit 90, the required acceleration ratio GRreq is determined based on the actual peak G from the base value (solid line) in the required acceleration ratio correction map as shown in FIG. Next, in S40 corresponding to the re-acceleration request amount determining unit 90, for example, the vehicle speed change amount corresponding to the difference between the control start vehicle speed held in S20 and the peak G vehicle speed that is the vehicle speed V at this time (= control start) (Vehicle speed−peak G vehicle speed) is calculated, and the required acceleration ratio GRreq is corrected based on the change amount of the vehicle speed from the required acceleration ratio correction map as shown in FIG. Next, in S50 corresponding to the gear stage determining unit 92 at the time of deceleration, for example, the maximum transmission speed of the automatic transmission 18 that can output the required acceleration ratio GRreq obtained in S40 from the driving power map for each gear stage as shown in FIG. A high gear stage is required. Next, in S60 corresponding to the end condition establishment determination unit 94, for example, it is determined whether or not the end condition of the gear position determination control based on the peak G is satisfied. If the determination in S60 is negative, in S70 corresponding to the shift control unit 82, the shift to the gear stage of the automatic transmission 18 obtained in S50 is executed, and the gear stage is maintained or present. When the gear stage is the gear stage of the automatic transmission 18 obtained in S50, the gear stage is maintained as it is. After execution of S70, the process returns to S30. On the other hand, if the determination in S60 is affirmative, in S80 corresponding to the shift control unit 82, the current holding of the gear position of the automatic transmission 18 is released and, for example, a normal map according to the shift map of FIG. Shift control is executed.

上述のように、本実施例によれば、前後Gの時間積分値は、ピークGに基づくギヤ段決定制御の開始条件が成立してから前後Gがピーク値に到達するまでの車速変化量に相当するものであり、運転者がどのように車両10を減速させてきたかをすなわち運転者の減速意図を反映していることから、その減速意図に応じて再加速要求量を補正することで、運転者の再加速意図に合った自動変速機18のギヤ段が求められる。例えば、再加速時の目標駆動力Ftgtを満たすことができるギヤ段が適切に設定され、その再加速時のアクセル踏み込みによって更なるダウンシフトが実行されることが回避乃至抑制される。よって、減速意図に応じてギヤ段を適切に設定し、再加速時のドライバビリティ(例えば再加速意図に応じた加速性能)を向上させることができる。   As described above, according to the present embodiment, the time integral value of the front and rear G is the vehicle speed change amount from when the start condition of the gear position determination control based on the peak G is satisfied until the front and rear G reach the peak value. It is equivalent and reflects how the driver has decelerated the vehicle 10, i.e., the driver's intention to decelerate, so by correcting the re-acceleration request amount according to the intention of deceleration, The gear position of the automatic transmission 18 that matches the driver's intention to re-accelerate is required. For example, the gear stage that can satisfy the target driving force Ftgt at the time of re-acceleration is appropriately set, and further downshifting is prevented or suppressed due to depression of the accelerator at the time of re-acceleration. Therefore, the gear stage can be appropriately set according to the intention of deceleration, and drivability during re-acceleration (for example, acceleration performance according to the intention of re-acceleration) can be improved.

また、本実施例によれば、ピークGと再加速要求量(例えば要求加速度割合GRreq)との予め定められた関係から、実際のピークGに基づいてその再加速要求量を求めるので、ピークGに応じた再加速要求量が適切に求められる。   Further, according to the present embodiment, since the reacceleration request amount is obtained based on the actual peak G from the predetermined relationship between the peak G and the reacceleration request amount (for example, the requested acceleration ratio GRreq), the peak G The amount of re-acceleration required according to

また、本実施例によれば、減速Gは、前後Gと左右Gとの合成Gであるので、前後Gのピーク値に応じた再加速要求量が適切に求められる。   Further, according to the present embodiment, the deceleration G is a composite G of the front and rear G and the left and right G, so that the re-acceleration request amount corresponding to the peak value of the front and rear G is appropriately obtained.

また、本実施例によれば、再加速要求量を実現することができる自動変速機18のギヤ段は、その再加速要求量を実現することができるギヤ段のうちの最ハイギヤ段であるので、車両減速中や旋回中に不要なダウンシフトが回避される。また、再加速時に加速意図よりもギヤ段が低車速側とされていることでの違和感が抑制される。   Further, according to the present embodiment, the gear stage of the automatic transmission 18 that can realize the re-acceleration request amount is the highest gear stage among the gear stages that can realize the re-acceleration request amount. Unnecessary downshifts are avoided during vehicle deceleration and turning. In addition, a sense of incongruity due to the gear speed being set to a lower vehicle speed side than the intention of acceleration at the time of reacceleration is suppressed.

また、本実施例によれば、前後Gの時間積分値が小さい場合は、その時間積分値が大きい場合よりも再加速要求量を小さくするように補正するので、補正された再加速要求量に基づいて、運転者の再加速意図に合ったギヤ段が適切に求められる。   Further, according to the present embodiment, when the time integral value of the front and rear G is small, the reacceleration request amount is corrected to be smaller than that when the time integral value is large. Based on this, a gear that matches the driver's intention to re-accelerate is appropriately obtained.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.

例えば、前述の実施例では、ピークGが更新される毎に再加速要求量を更新したが、図4(c)に示すように、旋回に入ったらこの更新処理を停止し、この時点でのギヤ段を保持するようにしても良い。これにより、旋回中の変速が回避される。上記更新処理では、ピークGが1つであれば高車速側のギヤ段へ更新されることはないが、例えばピークGが2つ発生するような減速パターンとなる場合(減速Gの谷が2つできるような場合)には高車速側のギヤ段へ更新される可能性もあることから、このような場合には高車速側のギヤ段への更新は行わない。また、旋回に入ったことは、例えば左右Gがコーナに進入したと判断できる為の予め定められた旋回判定値を超えたか否かで判定される。   For example, in the above-described embodiment, the reacceleration request amount is updated every time the peak G is updated. However, as shown in FIG. You may make it hold | maintain a gear stage. This avoids shifting during turning. In the above update process, if there is one peak G, the gear stage on the high vehicle speed side is not updated. However, for example, when the deceleration pattern is such that two peaks G occur (the valley of the deceleration G is 2). In such a case, there is a possibility that the gear is updated to the high vehicle speed side gear stage. In such a case, the high vehicle speed side gear stage is not updated. In addition, it is determined whether or not the vehicle has entered a turn by, for example, exceeding a predetermined turn determination value for determining that the left and right G have entered the corner.

また、前述の実施例では、コーナを立ち上がった後に、ギヤ比保持を解除して通常の変速制御に復帰したが、これに限らない。例えば、コーナが終了したときに変速制御に復帰しても良い。例えばコーナが終了したことは、コーナが終了したと判断できる為の予め定められたコーナ終了判定値を左右Gが下回ったか否かで判定される。   Further, in the above-described embodiment, after the corner is raised, the gear ratio holding is canceled and the normal shift control is resumed. However, the present invention is not limited to this. For example, the shift control may be returned to when the corner is finished. For example, the end of the corner is determined by whether the left and right G have fallen below a predetermined corner end determination value for determining that the corner has ended.

また、前述の実施例では、再加速要求量として要求加速度割合GRreqを例示したが、これに限らない。例えば、再加速要求量として、再加速時の目標駆動力Ftgt、アクセル開度Acc等を用いても良い。   In the above-described embodiment, the required acceleration ratio GRreq is exemplified as the re-acceleration required amount, but the present invention is not limited to this. For example, the target driving force Ftgt at the time of reacceleration, the accelerator opening Acc, or the like may be used as the reacceleration request amount.

また、前述の実施例では、要求加速度割合GRreqを出力可能な自動変速機18の最ハイギヤ段を求めたが、必ずしも最ハイギヤ段でなくても良い。このようにしても、一定の効果は得られる。   In the above-described embodiment, the highest gear stage of the automatic transmission 18 that can output the required acceleration ratio GRreq is obtained. However, the highest gear stage is not necessarily required. Even in this way, a certain effect can be obtained.

また、前述の実施例では、前後Gの時間積分値或いは車速変化量に基づいて、再加速要求量(例えば要求加速度割合GRreq)を補正したが、これに限らない。例えば、ピークG発生時点での車速Vの変化勾配やピークGに基づくギヤ段決定制御の開始条件が成立してから前後Gがピーク値に到達するまでの前後Gの平均値等であっても良い。また、前後Gに替えて減速Gを用いても良い。要は、運転者の減速意図を反映したものであれば良い。   Further, in the above-described embodiment, the reacceleration request amount (for example, the requested acceleration ratio GRreq) is corrected based on the time integral value of the front and rear G or the vehicle speed change amount, but the present invention is not limited to this. For example, even if the change gradient of the vehicle speed V at the time of occurrence of the peak G, the average value of the front and rear G until the front and rear G reach the peak value after the start condition of the gear position determination control based on the peak G is satisfied, etc. good. Further, the deceleration G may be used instead of the front and rear G. In short, what reflects the driver's intention to slow down may be used.

また、前述の実施例では、自動変速機18は遊星歯車式自動変速機であったが、無段変速機や所謂DCT(Dual Clutch Transmission)などの自動変速機であっても本発明を適用することができる。尚、無段変速機の場合には、自動変速機18のギヤ段に相当するギヤ比が用いられる。或いは、そのギヤ比に対応する変速機の入力回転速度等が用いられる。   In the above-described embodiment, the automatic transmission 18 is a planetary gear type automatic transmission. However, the present invention is applied to an automatic transmission such as a continuously variable transmission or a so-called DCT (Dual Clutch Transmission). be able to. In the case of a continuously variable transmission, a gear ratio corresponding to the gear stage of the automatic transmission 18 is used. Alternatively, the input rotational speed of the transmission corresponding to the gear ratio is used.

また、前述の実施例では、流体伝動装置としてトルクコンバータ16が用いられていたが、トルク増幅作用のないフルードカップリングが用いられても良い。また、流体伝動装置は必ずしも備えられる必要はない。   In the above-described embodiment, the torque converter 16 is used as the fluid transmission device. However, a fluid coupling having no torque amplification function may be used. Further, the fluid transmission device is not necessarily provided.

尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

10:車両
14:エンジン(駆動力源)
18:自動変速機
30:駆動輪
80:電子制御装置(制御装置)
10: Vehicle 14: Engine (drive power source)
18: Automatic transmission 30: Drive wheel 80: Electronic control device (control device)

Claims (5)

駆動力源からの動力を駆動輪側へ伝達する自動変速機を備え、車両減速中の減速度に基づいて該自動変速機のギヤ比を決定する車両の制御装置であって、
車両減速中の減速度に基づいて再加速時の駆動要求量を求め、
前記再加速時の駆動要求量を実現することができる前記自動変速機のギヤ比を求めるものであり、
前記ギヤ比を求める制御の開始条件が成立してから前記車両減速中の減速度のピーク値が求められるまでの該減速度の時間積分値に基づいて、前記再加速時の駆動要求量を補正することを特徴とする車両の制御装置。
A vehicle control device that includes an automatic transmission that transmits power from a driving force source to a driving wheel, and that determines a gear ratio of the automatic transmission based on deceleration during vehicle deceleration,
Based on the deceleration while the vehicle is decelerating, the required amount of driving during re-acceleration is obtained,
Obtaining a gear ratio of the automatic transmission capable of realizing the required drive amount during the re-acceleration;
Based on the time integral value of deceleration until the peak value of deceleration during deceleration of the vehicle after the start condition of control for obtaining the gear ratio is satisfied, the drive request amount at the time of reacceleration is corrected. A control apparatus for a vehicle.
前記車両減速中の減速度と前記再加速時の駆動要求量との予め定められた関係から、実際の該減速度に基づいて該駆動要求量を求めることを特徴とする請求項1に記載の車両の制御装置。   The drive request amount is obtained based on the actual deceleration from a predetermined relationship between the deceleration during deceleration of the vehicle and the drive request amount during the reacceleration. Vehicle control device. 前記車両減速中の減速度は、車両の前後加速度と車両の左右加速度との合成加速度であり、
前記車両減速中の減速度のピーク値は、前記前後加速度がピーク値となったときの前記合成加速度であり、
前記減速度の時間積分値は、前記前後加速度の時間積分値であることを特徴とする請求項1又は2に記載の車両の制御装置。
The deceleration during vehicle deceleration is a combined acceleration of the longitudinal acceleration of the vehicle and the lateral acceleration of the vehicle,
The peak value of deceleration during vehicle deceleration is the combined acceleration when the longitudinal acceleration becomes a peak value,
3. The vehicle control device according to claim 1, wherein the time integral value of the deceleration is a time integral value of the longitudinal acceleration. 4.
前記再加速時の駆動要求量を実現することができる前記自動変速機のギヤ比は、該駆動要求量を実現することができる該ギヤ比のうちの最高車速側のギヤ比であることを特徴とする請求項1乃至3の何れか1項に記載の車両の制御装置。   The gear ratio of the automatic transmission capable of realizing the required drive amount at the time of reacceleration is a gear ratio on the highest vehicle speed side of the gear ratio capable of realizing the required drive amount. The vehicle control device according to any one of claims 1 to 3. 前記車両減速中の減速度の時間積分値が小さい場合は、該時間積分値が大きい場合よりも前記再加速時の駆動要求量を小さくするように補正することを特徴とする請求項1乃至4の何れか1項に記載の車両の制御装置。   5. The correction according to claim 1, wherein when the time integration value of deceleration during deceleration of the vehicle is small, the required drive amount at the time of reacceleration is made smaller than when the time integration value is large. The vehicle control device according to any one of the above.
JP2012053758A 2012-03-09 2012-03-09 Vehicle control device Expired - Fee Related JP5780184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012053758A JP5780184B2 (en) 2012-03-09 2012-03-09 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012053758A JP5780184B2 (en) 2012-03-09 2012-03-09 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2013185696A true JP2013185696A (en) 2013-09-19
JP5780184B2 JP5780184B2 (en) 2015-09-16

Family

ID=49387292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012053758A Expired - Fee Related JP5780184B2 (en) 2012-03-09 2012-03-09 Vehicle control device

Country Status (1)

Country Link
JP (1) JP5780184B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137704A (en) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 Control device for vehicle
US9416872B2 (en) 2012-11-02 2016-08-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
JP2016173177A (en) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 Driving force control device
JP2017058008A (en) * 2015-09-18 2017-03-23 トヨタ自動車株式会社 Drive force control device
JP2017058007A (en) * 2015-09-18 2017-03-23 トヨタ自動車株式会社 Drive force control device
JP2017058006A (en) * 2015-09-18 2017-03-23 トヨタ自動車株式会社 Drive force control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146737A (en) * 1985-12-23 1987-06-30 Fuji Heavy Ind Ltd Control device of stepless speed changer
JPH08152062A (en) * 1994-11-29 1996-06-11 Unisia Jecs Corp Shift control device for automatic transmission
JPH08200139A (en) * 1995-01-18 1996-08-06 Honda Motor Co Ltd Driving force calculating device for vehicle
JP2000027981A (en) * 1998-07-08 2000-01-25 Aqueous Reserch:Kk Speed change control device for vehicle
JP2000039062A (en) * 1998-07-23 2000-02-08 Equos Research Co Ltd Speed change control device for vehicle
JP2005297855A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Deceleration control device of vehicle
JP2011207465A (en) * 2009-08-18 2011-10-20 Toyota Motor Corp Control device and control method for vehicle
JP2012197818A (en) * 2011-03-18 2012-10-18 Toyota Motor Corp Control device of power transmission device for vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146737A (en) * 1985-12-23 1987-06-30 Fuji Heavy Ind Ltd Control device of stepless speed changer
JPH08152062A (en) * 1994-11-29 1996-06-11 Unisia Jecs Corp Shift control device for automatic transmission
JPH08200139A (en) * 1995-01-18 1996-08-06 Honda Motor Co Ltd Driving force calculating device for vehicle
JP2000027981A (en) * 1998-07-08 2000-01-25 Aqueous Reserch:Kk Speed change control device for vehicle
JP2000039062A (en) * 1998-07-23 2000-02-08 Equos Research Co Ltd Speed change control device for vehicle
JP2005297855A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Deceleration control device of vehicle
JP2011207465A (en) * 2009-08-18 2011-10-20 Toyota Motor Corp Control device and control method for vehicle
JP2012197818A (en) * 2011-03-18 2012-10-18 Toyota Motor Corp Control device of power transmission device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416872B2 (en) 2012-11-02 2016-08-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
JP2015137704A (en) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 Control device for vehicle
JP2016173177A (en) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 Driving force control device
JP2017058008A (en) * 2015-09-18 2017-03-23 トヨタ自動車株式会社 Drive force control device
JP2017058007A (en) * 2015-09-18 2017-03-23 トヨタ自動車株式会社 Drive force control device
JP2017058006A (en) * 2015-09-18 2017-03-23 トヨタ自動車株式会社 Drive force control device

Also Published As

Publication number Publication date
JP5780184B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
US10166974B2 (en) Control system of power transmission system of vehicle
JP4265625B2 (en) Vehicle driving force control device
JP4639834B2 (en) Control device for automatic transmission
JP4367425B2 (en) Vehicle control device
JP5780184B2 (en) Vehicle control device
CN109383489B (en) Vehicle control device
JP5307587B2 (en) Vehicle power transmission control device
CN108725421B (en) Vehicle driving force control device
JP5780104B2 (en) Vehicle control device
US20160236674A1 (en) Control device of hybrid vehicle including multi-stage automatic transmission
JP2010208520A (en) Vehicular power transmission control apparatus
JP5285684B2 (en) Control device for continuously variable transmission
JP2008286087A (en) Internal combustion engine control device and internal combustion engine control system
JP2010208521A (en) Vehicular power transmission control apparatus
JP4923547B2 (en) Shift control device for automatic transmission for vehicle
JP6191474B2 (en) Vehicle control device
JP5664377B2 (en) Control device for vehicle power transmission device
JP6690428B2 (en) Vehicle driving force control method and driving force control device
JP6213721B2 (en) Control device for automatic transmission
JP4207482B2 (en) Shift control device for automatic transmission
WO2020234973A1 (en) Gear shift control method and gear shift control system
JP2009275558A (en) Control device of vehicle and control method
JP5322707B2 (en) Vehicle power transmission control device
JP2016060421A (en) vehicle
JP2010175063A (en) Speed change control device and speed change control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R151 Written notification of patent or utility model registration

Ref document number: 5780184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees