JP2013178154A - Absolute pressure measuring device - Google Patents

Absolute pressure measuring device Download PDF

Info

Publication number
JP2013178154A
JP2013178154A JP2012041929A JP2012041929A JP2013178154A JP 2013178154 A JP2013178154 A JP 2013178154A JP 2012041929 A JP2012041929 A JP 2012041929A JP 2012041929 A JP2012041929 A JP 2012041929A JP 2013178154 A JP2013178154 A JP 2013178154A
Authority
JP
Japan
Prior art keywords
measuring device
pressure measuring
absolute pressure
vacuum
zero drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012041929A
Other languages
Japanese (ja)
Other versions
JP5806145B2 (en
Inventor
Hirokazu Nagashima
裕和 永嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Yokogawa Meters and Instruments Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Meters and Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Meters and Instruments Corp filed Critical Yokogawa Electric Corp
Priority to JP2012041929A priority Critical patent/JP5806145B2/en
Publication of JP2013178154A publication Critical patent/JP2013178154A/en
Application granted granted Critical
Publication of JP5806145B2 publication Critical patent/JP5806145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absolute pressure measuring device capable of improving measurement accuracy by predicting a numerical value of zero drift and continuously performing correction on the basis of the numerical value.SOLUTION: In an absolute pressure measuring device 20 including a body capsule in which an enclosed liquid is enclosed, a vacuum chamber 11 which is provided on one side face of the body capsule and in which a vacuum pressure is enclosed, and a measurement chamber 10 which is provided on the other side face of the body capsule and receives a measurement pressure, the device includes: a correction operation circuit 224 for computing an inclination angle value of the absolute pressure measuring device capable of correcting a vacuum degree zero drift value by an inclination angle zero drift value continuously with the lapse of time from a vacuum degree zero drift predicted curve on which the absolute pressure measuring device 20 generates zero drift by the decline of a vacuum degree with the lapse of time and an inclination angle zero drift curve generated on the basis of the enclosed liquid by tilting the absolute pressure measuring device; and absolute pressure measuring device turning means 22 for continuously tilting the absolute pressure measuring device with the lapse of time on the basis of signals from the correction operation circuit.

Description

本発明は、絶対圧測定装置に関するものである。
更に詳述すれば、ゼロドリフトの数値を予測して、その数値をもとに連続的に補正することで、測定誤差を小さく出来、測定精度が向上出来る絶対圧測定装置に関するものである。
The present invention relates to an absolute pressure measuring device.
More specifically, the present invention relates to an absolute pressure measuring apparatus that can predict a zero drift value and continuously correct the value based on the value, thereby reducing measurement errors and improving measurement accuracy.

図3は従来より一般に使用されている従来例の要部構成説明図、図4〜図6は図3の動作説明図である。
図において、1は本体ボディで、円柱状の首部1Aと、首部1Aの端部外周縁部1Cにおいて溶接接続されたブロック状の受圧部1Bとよりなる。首部1Aと受圧部1Bとは、この場合は、ステンレス材よりなる。
本体ボディ1の両側に、高圧側フランジ2、低圧側フランジ3が溶接等によって固定されており、両フランジ2,3には測定せんとする高圧側圧力PHの高圧流体の導入口4、低圧側圧力PLの低圧流体の導入口5が設けられている。
FIG. 3 is a diagram for explaining the structure of the main part of a conventional example that is generally used, and FIGS. 4 to 6 are diagrams for explaining the operation of FIG.
In the figure, reference numeral 1 denotes a main body, which includes a columnar neck portion 1A and a block-shaped pressure receiving portion 1B welded and connected at an outer peripheral edge portion 1C of the neck portion 1A. In this case, the neck portion 1A and the pressure receiving portion 1B are made of stainless steel.
A high pressure side flange 2 and a low pressure side flange 3 are fixed to both sides of the main body 1 by welding or the like, and both flanges 2 and 3 have a high pressure fluid inlet port 4 having a high pressure side pressure PH to be measured, a low pressure side An inlet 5 for a low-pressure fluid having a pressure PL is provided.

本体ボディ1内に圧力測定室6が形成されており、この圧力測定室6内にセンタダイアフラム7とシリコンダイアフラム8が設けられている。
センタダイアフラム7とシリコンダイアフラム8は、それぞれ別個に圧力測定室6の壁に固定されており、センタダイアフラム7とシリコンダイアフラム8の両者でもって圧力測定室6を2分している。
A pressure measurement chamber 6 is formed in the main body 1, and a center diaphragm 7 and a silicon diaphragm 8 are provided in the pressure measurement chamber 6.
The center diaphragm 7 and the silicon diaphragm 8 are separately fixed to the wall of the pressure measurement chamber 6. The center diaphragm 7 and the silicon diaphragm 8 divide the pressure measurement chamber 6 into two.

センタダイアフラム7と対向する圧力測定室6の壁には、バックプレ―ト6A,6Bが形成されている。センタダイアフラム7は周縁部を本体ボディ1に溶接されている。
シリコンダイアフラム8は全体が単結晶のシリコン基板から形成されている。
シリコン基板の一方の面にボロン等の不純物を選択拡散して4個のストレインゲ―ジ80を形成し、他方の面を機械加工、エッチングし、全体が凹形のダイアフラム8を形成する。
Back plates 6A and 6B are formed on the wall of the pressure measurement chamber 6 facing the center diaphragm 7. The center diaphragm 7 is welded to the main body 1 at the periphery.
The entire silicon diaphragm 8 is formed from a single crystal silicon substrate.
Impurities such as boron are selectively diffused on one surface of the silicon substrate to form four strain gauges 80, and the other surface is machined and etched to form a concave diaphragm 8 as a whole.

4個のストレインゲ―ジ80は、シリコンダイアフラム8が差圧ΔPを受けてたわむ時、2個が引張り、2個が圧縮を受けるようになっており、これらがホイ―トストン・ブリッジ回路に接続され、抵抗変化が差圧ΔPの変化として検出される。
シリコンダイアフラム8は、首部1Aを2個のセンサ室81,82に分ける。
支持体9の圧力測定室6側端面に、低融点ガラス接続等の方法でシリコンダイアフラム8が接着固定されている。
The four strain gauges 80 are designed such that when the silicon diaphragm 8 is bent under the differential pressure ΔP, two are tensioned and two are compressed, and these are connected to the Wheatstone bridge circuit. Then, a resistance change is detected as a change in the differential pressure ΔP.
The silicon diaphragm 8 divides the neck portion 1 </ b> A into two sensor chambers 81 and 82.
A silicon diaphragm 8 is bonded and fixed to the end surface of the support 9 on the pressure measurement chamber 6 side by a method such as low melting point glass connection.

本体ボディ1と高圧側フランジ2、および低圧側フランジ3との間に、圧力導入室10,11が形成されている。
この圧力導入室10,11内に高圧側,低圧側シールダイアフラム12,13を設け、このシールダイアフラム12,13と対向する本体ボディ1の壁にシールダイアフラム12,13と類似の形状のバックプレ―ト10A,11Aが形成されている。
シールダイアフラム12,13と高圧側,低圧側バックプレ―ト10A,11Aとにより、高圧側,低圧側シールダイアフラム室12A,13Aが構成される。
Pressure introduction chambers 10 and 11 are formed between the main body 1 and the high-pressure side flange 2 and the low-pressure side flange 3.
High pressure side and low pressure side seal diaphragms 12 and 13 are provided in the pressure introducing chambers 10 and 11, and a back plate having a shape similar to that of the seal diaphragms 12 and 13 is formed on the wall of the main body 1 facing the seal diaphragms 12 and 13. 10A, 11A are formed.
The seal diaphragms 12 and 13 and the high pressure side and low pressure side backplates 10A and 11A constitute high pressure side and low pressure side seal diaphragm chambers 12A and 13A.

シールダイアフラム12,13は、受圧部1Bに、シールリング121,131により周縁部が溶接されている。
この場合は、シールダイアフラム12,13と、シールリング121,131とは、ステンレス材よりなる。
シールダイアフラム室12A,13Aと圧力測定室6とは、連通孔14,15を介して導通されている。
The seal diaphragms 12 and 13 are welded to the pressure receiving portion 1B at the periphery by seal rings 121 and 131.
In this case, the seal diaphragms 12 and 13 and the seal rings 121 and 131 are made of stainless steel.
The seal diaphragm chambers 12 </ b> A and 13 </ b> A and the pressure measurement chamber 6 are electrically connected through the communication holes 14 and 15.

そして、シールダイアフラム室12A,13Aにシリコンオイル等の封入液101,102が満たされ、この封入液101,102が高圧側,低圧側伝導穴16,17を介してシリコンダイアフラム8の上下面にまで至っている。
封入液101,102は、センタダイアフラム7とシリコンダイアフラム8とによって2分されているが、その量が、ほぼ均等になるように配慮されている。
The sealing diaphragm chambers 12A and 13A are filled with filled liquids 101 and 102 such as silicon oil, and the filled liquids 101 and 102 reach the upper and lower surfaces of the silicon diaphragm 8 through the high-pressure side and low-pressure side conduction holes 16 and 17, respectively. Has reached.
The encapsulated liquids 101 and 102 are divided into two by the center diaphragm 7 and the silicon diaphragm 8, and consideration is given so that the amounts thereof are substantially equal.

ここで、絶対圧測定装置20においては、圧力導入室10,11のいずれか一方に真空が封入されて絶対圧測定装置20として使用される。
この場合は、圧力導入室11に真空が封入され、圧力導入室10に測定圧が導入される。
Here, in the absolute pressure measuring device 20, a vacuum is sealed in one of the pressure introducing chambers 10 and 11 and used as the absolute pressure measuring device 20.
In this case, a vacuum is sealed in the pressure introduction chamber 11 and a measurement pressure is introduced into the pressure introduction chamber 10.

以上の構成において、圧力導入室10に測定圧が導入されると、高圧側シールダイアフラム12に作用する圧力が封入液101によってシリコンダイアフラム8に伝達される。
一方、圧力導入室11の真空の圧力は、低圧側シールダイアフラム13に作用し封入液102によってシリコンダイアフラム8に伝達される。
この結果、真空の圧力と測定圧との圧力差に応じてシリコンダイアフラム8が歪み、この歪み量がストレインゲ―ジ80によって電気的に取出され、絶対圧の測定が行なわれる。
In the above configuration, when the measurement pressure is introduced into the pressure introduction chamber 10, the pressure acting on the high-pressure side seal diaphragm 12 is transmitted to the silicon diaphragm 8 by the sealing liquid 101.
On the other hand, the vacuum pressure in the pressure introducing chamber 11 acts on the low-pressure side seal diaphragm 13 and is transmitted to the silicon diaphragm 8 by the sealing liquid 102.
As a result, the silicon diaphragm 8 is distorted in accordance with the pressure difference between the vacuum pressure and the measurement pressure, and the strain amount is electrically taken out by the strain gauge 80, and the absolute pressure is measured.

特開平05−172676号公報JP 05-172676 A 特開2005−049245号公報JP 2005-049245 A

このような装置においては、以下の問題点がある。
真空基準室である圧力導入室11の真空の圧力は、真空状態で維持できるよう設計されているが、使用している間に、真空度が低下し、図4に示す如く、圧力導入室11の真空度の低下によるゼロ点がドリフトする。
図4に示す如き、このドリフトを補正するために、定期的あるいは測定毎にゼロ点の調整を行う必要がある。
Such an apparatus has the following problems.
The pressure of the vacuum in the pressure introduction chamber 11 that is a vacuum reference chamber is designed to be maintained in a vacuum state, but the degree of vacuum decreases during use, and as shown in FIG. The zero point drifts due to a decrease in the degree of vacuum.
As shown in FIG. 4, in order to correct this drift, it is necessary to adjust the zero point periodically or every measurement.

なお、図4は、絶対圧測定装置20の圧力導入室11の真空度の低下によるゼロ点のドリフトを示すグラフである。
ゼロ点の調整は、真空ポンプと真空計等の大掛かりな装置が必要となり、調整に時間がかかる。
また、ゼロ調整直後と次のゼロ調整までの間においては、真空基準室11内の真空劣化から、測定誤差がどうしても発生する。
FIG. 4 is a graph showing a zero point drift due to a decrease in the degree of vacuum in the pressure introducing chamber 11 of the absolute pressure measuring device 20.
Adjustment of the zero point requires a large-scale device such as a vacuum pump and a vacuum gauge, and adjustment takes time.
In addition, a measurement error inevitably occurs due to vacuum deterioration in the vacuum reference chamber 11 immediately after the zero adjustment and until the next zero adjustment.

本発明の目的は、上記の課題を解決するもので、ゼロドリフトの数値を予測して、その数値をもとに連続的に補正することで、測定誤差を小さく出来、測定精度が向上出来る絶対圧測定装置を提供することにある。   The object of the present invention is to solve the above-mentioned problem. By predicting a numerical value of zero drift and correcting continuously based on the numerical value, the measurement error can be reduced and the measurement accuracy can be improved. The object is to provide a pressure measuring device.

所で、封入液101,102が封入された絶対圧測定装置20においては、封入液101,102の影響により、図5に示す矢印B1の如く、絶対圧測定装置20を傾けると、図6に示すB2の範囲に示す如く、ゼロ点が変化する。
図5に示す矢印C1の如く、絶対圧測定装置20を傾けると、図6に示すC2の範囲に示す如く、ゼロ点が変化する。
なお、図6は、絶対圧測定装置20の姿勢角度の影響によるゼロ点のドリフトを示すグラフである。
By the way, in the absolute pressure measuring device 20 in which the sealed liquids 101 and 102 are sealed, when the absolute pressure measuring device 20 is tilted as shown by an arrow B1 in FIG. As shown in the range of B2 shown, the zero point changes.
When the absolute pressure measuring device 20 is tilted as indicated by an arrow C1 shown in FIG. 5, the zero point changes as shown in the range of C2 shown in FIG.
FIG. 6 is a graph showing the zero point drift due to the influence of the attitude angle of the absolute pressure measuring device 20.

本発明は、この絶対圧測定装置20の姿勢の影響を利用して、真空度の低下によるゼロ点がドリフトする方向と逆に、絶対圧測定装置の姿勢を変化させることでゼロ点の補正をかけるようにしたものである。   The present invention makes use of the influence of the attitude of the absolute pressure measuring device 20 to correct the zero point by changing the attitude of the absolute pressure measuring device, contrary to the direction in which the zero point drifts due to the decrease in the degree of vacuum. It's something that you want to call.

このような課題を達成するために、本発明では、請求項1の絶対圧測定装置においては、
封入液が封入された本体カプセルと、この本体カプセルの一方の側面に設けられ真空圧が封入された真空室と、前記本体カプセルの他方の側面に設けられ測定圧が受圧される測定室と、を具備する絶対圧測定装置において、前記絶対圧測定装置が時間の経過と共に真空度が低下してゼロドリフトを生ずる真空度ゼロドリフト予測曲線と、前記絶対圧測定装置を傾けたことにより前記封入液に基づき生ずる傾斜角度ゼロドリフト曲線とから、時間の経過と共に連続的に前記真空度ゼロドリフト値を前記傾斜角度ゼロドリフト値により補正出来る前記絶対圧測定装置の傾斜角度値を演算する補正演算回路と、この補正演算回路からの信号に基づき前記絶対圧測定装置を時間の経過と共に連続的に傾ける絶対圧測定装置回動手段と、を具備したことを特徴とする。
In order to achieve such a subject, in the present invention, in the absolute pressure measuring device of claim 1,
A main body capsule in which an encapsulating liquid is sealed, a vacuum chamber provided on one side surface of the main body capsule and sealed with a vacuum pressure, a measurement chamber provided on the other side surface of the main body capsule and receiving a measurement pressure; The absolute pressure measuring device comprises: a vacuum degree zero drift prediction curve in which the absolute pressure measuring device lowers the degree of vacuum as time elapses and causes zero drift; and the sealed liquid is obtained by tilting the absolute pressure measuring device. A correction calculation circuit for calculating a tilt angle value of the absolute pressure measuring device capable of continuously correcting the zero degree of vacuum drift value by the tilt angle zero drift value with the lapse of time from a tilt angle zero drift curve generated based on And an absolute pressure measuring device rotating means for continuously tilting the absolute pressure measuring device with the passage of time based on a signal from the correction calculation circuit. And features.

本発明の請求項2の絶対圧測定装置においては、請求項1記載の絶対圧測定装置において、
絶対圧測定装置回動手段は、絶対圧測定装置を載置する載置ステージと、この載置ステージの傾斜を検知する傾斜センサと、前記載置ステージの傾斜を駆動するモータと、前記傾斜センサの信号に基づき前記モータを制御する制御回路と、を具備したことを特徴とする。
In the absolute pressure measuring device according to claim 2 of the present invention, in the absolute pressure measuring device according to claim 1,
The absolute pressure measuring device rotating means includes a mounting stage for mounting the absolute pressure measuring device, a tilt sensor for detecting the tilt of the mounting stage, a motor for driving the tilt of the mounting stage, and the tilt sensor. And a control circuit for controlling the motor based on the above signal.

本発明の請求項1によれば、次のような効果がある。
ゼロ調整直後から次のゼロ調整までの間において、ゼロドリフトの変化を予測し、補正を連続的にかけることで、真空劣化によるドリフト要因がキャンセルされ、より正確な測定が実現できる絶対圧測定装置が得られる。
ゼロ調整を繰り返す中で、変化予測の精度が高まる中で、調整期間を長く設定できる絶対圧測定装置が得られる。
調整期間を長く設定した場合でも、測定結果の信頼性が維持できる絶対圧測定装置が得られる。
ゼロ調整に伴う、作業負担が軽減できる絶対圧測定装置が得られる。
According to claim 1 of the present invention, there are the following effects.
Absolute pressure measuring device that can predict the change of zero drift between immediately after zero adjustment and continuously apply correction, cancel drift factor due to vacuum deterioration, and realize more accurate measurement Is obtained.
While repeating zero adjustment, the accuracy of change prediction is increased, and an absolute pressure measuring device capable of setting the adjustment period longer is obtained.
Even when the adjustment period is set to be long, an absolute pressure measuring device capable of maintaining the reliability of the measurement result can be obtained.
An absolute pressure measuring device that can reduce the work burden associated with zero adjustment is obtained.

本発明の請求項2によれば、次のような効果がある。
絶対圧測定装置回動手段は、絶対圧測定装置を載置する載置ステージと、載置ステージの傾斜を検知する傾斜センサと、載置ステージの傾斜を駆動するモータと、傾斜センサの信号に基づきモータを制御する制御回路とが設けられたので、精度が高いゼロドリフト補正が出来る絶対圧測定装置が得られる。
According to claim 2 of the present invention, there are the following effects.
The absolute pressure measuring device rotating means includes a mounting stage for mounting the absolute pressure measuring device, a tilt sensor for detecting the tilt of the mounting stage, a motor for driving the tilt of the mounting stage, and a signal of the tilt sensor. Since the control circuit for controlling the motor is provided based on this, an absolute pressure measuring device capable of highly accurate zero drift correction can be obtained.

本発明の一実施例の要部構成説明図である。It is principal part structure explanatory drawing of one Example of this invention. 図1の動作説明図である。It is operation | movement explanatory drawing of FIG. 従来より一般に使用されている従来例の要部構成説明図である。It is principal part structure explanatory drawing of the prior art example generally used conventionally. 図3の動作説明図である。It is operation | movement explanatory drawing of FIG. 図3の動作説明図である。It is operation | movement explanatory drawing of FIG. 図3の動作説明図である。It is operation | movement explanatory drawing of FIG.

以下本発明を図面を用いて詳細に説明する。
図1は本発明の一実施例の要部構成説明図、図2は図1の動作説明図である。
図において、図3と同一記号の構成は同一機能を表す。
以下、図3との相違部分のみ説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating the configuration of the main part of one embodiment of the present invention, and FIG. 2 is a diagram illustrating the operation of FIG.
In the figure, configurations with the same symbols as in FIG. 3 represent the same functions.
Only the difference from FIG. 3 will be described below.

図1において、補正演算回路21は、絶対圧測定装置20が時間の経過と共に真空度が低下してゼロドリフトを生ずる真空度ゼロドリフト予測曲線と、絶対圧測定装置20を傾けたことにより、封入液101,102に基づき生ずる傾斜角度ゼロドリフト曲線とから、時間の経過と共に連続的に、真空度ゼロドリフト値を傾斜角度ゼロドリフト値により補正する絶対圧測定装置20の傾斜角度値を演算する。   In FIG. 1, the correction arithmetic circuit 21 is sealed by tilting the absolute pressure measuring device 20 and the vacuum degree zero drift prediction curve in which the absolute pressure measuring device 20 decreases in vacuum with time and causes zero drift. The inclination angle value of the absolute pressure measuring device 20 that corrects the zero degree of vacuum drift value with the zero inclination angle drift value is calculated continuously from the inclination angle zero drift curve generated based on the liquids 101 and 102 with the passage of time.

絶対圧測定装置回動手段22は、この補正演算回路21からの信号に基づき、絶対圧測定装置20を時間の経過と共に連続的に傾ける。
この場合は、絶対圧測定装置回動手段22は、絶対圧測定装置20を載置する載置ステージ221と、この載置ステージの傾斜を検知する傾斜センサ222と、載置ステージの傾斜を駆動するモータ223と、傾斜センサ222の信号に基づき、モータ223を制御する制御回路224と、を有する。
The absolute pressure measuring device rotating means 22 continuously tilts the absolute pressure measuring device 20 over time based on the signal from the correction calculation circuit 21.
In this case, the absolute pressure measuring device rotating means 22 drives the mounting stage 221 on which the absolute pressure measuring device 20 is mounted, the tilt sensor 222 that detects the tilt of the mounting stage, and the tilt of the mounting stage. And a control circuit 224 for controlling the motor 223 based on a signal from the tilt sensor 222.

以上の構成において、
経過時間を含めた場合、以下のようにして計算できる。
いま、
P1:T1の日時におけるゼロ点のオフセット
P2:T2の日時におけるゼロ点のオフセット
この変化は、リニアであると仮定できるので、
傾きの変化率αは、α=(P2−P1)/(T2−T1)となる。
In the above configuration,
When the elapsed time is included, it can be calculated as follows.
Now
P1: Zero point offset at T1 date and time P2: Zero point offset at T2 date and time Since this change can be assumed to be linear,
The change rate α of the inclination is α = (P2−P1) / (T2−T1).

この式は、直線近似に拘っているわけではなく、ゼロ点の変化を予測するための近似式である。
ゼロ点の調整を繰り返すことにより、最良の近似式で、補正することが、可能となり、予測精度も高まると考えられる。

T1の日時での初期オフセット値をP0とすると、あるT3の日時でのゼロ点オフセット値Pzは、
以下のように推測できる。
Pz=P0+α・(T3−T1)
This equation is not concerned with linear approximation, but is an approximation equation for predicting a change in the zero point.
By repeating the adjustment of the zero point, it is possible to correct with the best approximation formula, and it is considered that the prediction accuracy is improved.

When the initial offset value at the date and time of T1 is P0, the zero point offset value Pz at the date and time of T3 is
It can be guessed as follows.
Pz = P0 + α. (T3-T1)

一方、ゼロ点における姿勢変化は、傾斜であるので、sin近似として仮定し、姿勢傾斜における、ゼロ点の変化量を求める。

傾斜角θ度傾斜したときのゼロ点のオフセット値をPcとすると、ゼロ点のオフセット値Pcは、以下のように変化する。
Pc=P0+Pm・sinθ
P0:初期状態でのオフセット値、
Pm:90度傾けたとき、姿勢誤差が最大となり、そのときのゼロ点のオフセット値
θ:傾斜角度
On the other hand, since the posture change at the zero point is an inclination, it is assumed as sin approximation, and the change amount of the zero point in the posture inclination is obtained.

Assuming that the offset value of the zero point when the tilt angle is inclined by θ degrees is Pc, the offset value Pc of the zero point changes as follows.
Pc = P0 + Pm · sin θ
P0: offset value in the initial state,
Pm: When tilted 90 degrees, the posture error becomes the maximum, and the zero point offset value at that time θ: Tilt angle

センサの姿勢を、真空劣化によるゼロ点変化に対し、逆相に変化させ補正する。
その時の傾斜角θは、以下のようになる。
Pz−Pc=0
α・(T3−T1)−Pm・sinθ=0
θ=sin-1(α・(T3−T1)/Pm)
The sensor posture is corrected by changing it in the opposite phase to the zero point change due to vacuum deterioration.
The inclination angle θ at that time is as follows.
Pz-Pc = 0
α · (T3−T1) −Pm · sin θ = 0
θ = sin −1 (α · (T3−T1) / Pm)

より具体的には、図2に示す如く、例えば、
姿勢特性10Pa/1.5deg、ゼロドリフトが約12Paの場合。
リニア変化として想定すると、絶対圧測定装置20を1.8deg回動傾斜させるとゼロ点のドリフトがキャンセル出来る。
図1に、矢印Dに示す如く、回動方向を示す。なお、
図2は、絶対圧測定装置20の圧力導入室11の真空度の低下によるゼロ点のドリフトを示すグラフである。
More specifically, as shown in FIG.
When the posture characteristic is 10 Pa / 1.5 deg and the zero drift is about 12 Pa.
Assuming a linear change, the zero point drift can be canceled by tilting the absolute pressure measuring device 20 by 1.8 deg.
FIG. 1 shows the direction of rotation as indicated by arrow D. In addition,
FIG. 2 is a graph showing a zero point drift due to a decrease in the degree of vacuum in the pressure introducing chamber 11 of the absolute pressure measuring device 20.

この結果、
ゼロ調整直後から次のゼロ調整までの間において、ゼロドリフトの変化を予測し、補正を連続的にかけることで、真空劣化によるドリフト要因がキャンセルされ、より正確な測定が実現できる絶対圧測定装置が得られる。
ゼロ調整を繰り返す中で、変化予測の精度が高まる中で、調整期間を長く設定できる絶対圧測定装置が得られる。
調整期間を長く設定した場合でも、測定結果の信頼性が維持できる絶対圧測定装置が得られる。
ゼロ調整に伴う、作業負担が軽減できる絶対圧測定装置が得られる。
As a result,
Absolute pressure measuring device that can predict the change of zero drift between immediately after zero adjustment and continuously apply correction, cancel drift factor due to vacuum deterioration, and realize more accurate measurement Is obtained.
While repeating zero adjustment, the accuracy of change prediction is increased, and an absolute pressure measuring device capable of setting the adjustment period longer is obtained.
Even when the adjustment period is set to be long, an absolute pressure measuring device capable of maintaining the reliability of the measurement result can be obtained.
An absolute pressure measuring device that can reduce the work burden associated with zero adjustment is obtained.

絶対圧測定装置回動手段22は、絶対圧測定装置20を載置する載置ステージ221と、載置ステージ221の傾斜を検知する傾斜センサ222と、載置ステージ221の傾斜を駆動するモータ223と、傾斜センサ222の信号に基づきモータ223を制御する制御回路224とが設けられたので、精度が高いゼロドリフト補正が出来る絶対圧測定装置が得られる。   The absolute pressure measuring device rotating means 22 includes a mounting stage 221 on which the absolute pressure measuring device 20 is mounted, a tilt sensor 222 that detects the tilt of the mounting stage 221, and a motor 223 that drives the tilt of the mounting stage 221. And a control circuit 224 for controlling the motor 223 based on the signal from the tilt sensor 222, an absolute pressure measuring device capable of highly accurate zero drift correction can be obtained.

なお、本発明は、高精度気圧計に使用されて、特に有効である。
また、本発明は、図3従来例に示す絶対圧測定装置に付いて説明したが、封入液が封入された絶対圧測定装置であれば、適用できることは勿論である。
また、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。
したがって本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形をも含むものである。
The present invention is particularly effective when used in a high-precision barometer.
Further, the present invention has been described with reference to the absolute pressure measuring device shown in the conventional example of FIG. 3, but it is needless to say that the present invention can be applied to any absolute pressure measuring device in which a sealing liquid is sealed.
Further, the above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

1 本体ボディ
2 高圧側フランジ
3 低圧側フランジ
10 圧力導入室
11 圧力導入室
20 絶対圧測定装置
21 補正演算回路
22 絶対圧測定装置回動手段
221 載置ステージ
222 傾斜センサ
223 モータ
224 制御回路
DESCRIPTION OF SYMBOLS 1 Main body body 2 High pressure side flange 3 Low pressure side flange 10 Pressure introducing chamber 11 Pressure introducing chamber 20 Absolute pressure measuring device 21 Correction arithmetic circuit 22 Absolute pressure measuring device rotating means 221 Mounting stage 222 Inclination sensor 223 Motor 224 Control circuit

Claims (2)

封入液が封入された本体カプセルと、
この本体カプセルの一方の側面に設けられ真空圧が封入された真空室と、
前記本体カプセルの他方の側面に設けられ測定圧が受圧される測定室と、
を具備する絶対圧測定装置において、
前記絶対圧測定装置が時間の経過と共に真空度が低下してゼロドリフトを生ずる真空度ゼロドリフト予測曲線と、前記絶対圧測定装置を傾けたことにより前記封入液に基づき生ずる傾斜角度ゼロドリフト曲線とから、時間の経過と共に連続的に前記真空度ゼロドリフト値を前記傾斜角度ゼロドリフト値により補正出来る前記絶対圧測定装置の傾斜角度値を演算する補正演算回路と、
この補正演算回路からの信号に基づき前記絶対圧測定装置を時間の経過と共に連続的に傾ける絶対圧測定装置回動手段と、
を具備したことを特徴とする絶対圧測定装置。
A body capsule encapsulating the encapsulating liquid;
A vacuum chamber provided on one side of the main capsule and sealed with vacuum pressure;
A measurement chamber provided on the other side surface of the main capsule and receiving a measurement pressure;
In an absolute pressure measuring device comprising:
A vacuum degree zero drift prediction curve in which the absolute pressure measuring device causes a zero drift due to a decrease in the degree of vacuum over time, and a tilt angle zero drift curve generated based on the sealed liquid by tilting the absolute pressure measuring device; From the correction arithmetic circuit that calculates the inclination angle value of the absolute pressure measuring device that can continuously correct the vacuum zero drift value with the inclination angle zero drift value over time,
An absolute pressure measuring device rotating means for continuously tilting the absolute pressure measuring device with the passage of time based on a signal from the correction arithmetic circuit;
An absolute pressure measuring device comprising:
絶対圧測定装置回動手段は、絶対圧測定装置を載置する載置ステージと、
この載置ステージの傾斜を検知する傾斜センサと、
前記載置ステージの傾斜を駆動するモータと、
前記傾斜センサの信号に基づき前記モータを制御する制御回路と、
を具備したことを特徴とする請求項1記載の絶対圧測定装置。
The absolute pressure measuring device rotating means includes a mounting stage for mounting the absolute pressure measuring device;
An inclination sensor for detecting the inclination of the mounting stage;
A motor for driving the inclination of the mounting stage as described above;
A control circuit for controlling the motor based on a signal from the tilt sensor;
The absolute pressure measuring device according to claim 1, comprising:
JP2012041929A 2012-02-28 2012-02-28 Absolute pressure measuring device Active JP5806145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041929A JP5806145B2 (en) 2012-02-28 2012-02-28 Absolute pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041929A JP5806145B2 (en) 2012-02-28 2012-02-28 Absolute pressure measuring device

Publications (2)

Publication Number Publication Date
JP2013178154A true JP2013178154A (en) 2013-09-09
JP5806145B2 JP5806145B2 (en) 2015-11-10

Family

ID=49269924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041929A Active JP5806145B2 (en) 2012-02-28 2012-02-28 Absolute pressure measuring device

Country Status (1)

Country Link
JP (1) JP5806145B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131036U (en) * 1983-02-22 1984-09-03 横河電機株式会社 Differential pressure measuring device
JP2010025582A (en) * 2008-07-15 2010-02-04 Epson Toyocom Corp Pressure sensor
JP2010525324A (en) * 2007-04-16 2010-07-22 エム ケー エス インストルメンツ インコーポレーテッド Capacitance manometer and method for automatic drift correction
JP2010169665A (en) * 2008-12-24 2010-08-05 Canon Anelva Corp Electrostatic capacitance type diaphragm vacuum gage, and vacuum device
US20110203380A1 (en) * 2010-02-19 2011-08-25 Endress + Hauser Gmbh + Co. Kg Pressure Sensor and Pressure Difference Sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131036U (en) * 1983-02-22 1984-09-03 横河電機株式会社 Differential pressure measuring device
JP2010525324A (en) * 2007-04-16 2010-07-22 エム ケー エス インストルメンツ インコーポレーテッド Capacitance manometer and method for automatic drift correction
JP2010025582A (en) * 2008-07-15 2010-02-04 Epson Toyocom Corp Pressure sensor
JP2010169665A (en) * 2008-12-24 2010-08-05 Canon Anelva Corp Electrostatic capacitance type diaphragm vacuum gage, and vacuum device
US20110203380A1 (en) * 2010-02-19 2011-08-25 Endress + Hauser Gmbh + Co. Kg Pressure Sensor and Pressure Difference Sensor

Also Published As

Publication number Publication date
JP5806145B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
US8276457B2 (en) Pressure sensor and pressure difference sensor
US8042401B2 (en) Isolation system for process pressure measurement
US20180180505A1 (en) Diaphragm seal assembly with evacuated double diaphragm and vacuum monitoring
KR20160051743A (en) Absolute and differential pressure transducer
JP2010169665A (en) Electrostatic capacitance type diaphragm vacuum gage, and vacuum device
CN102472677A (en) Pressure transmitter
US8770032B2 (en) Relative pressure sensor
TW200806964A (en) Thermal type mass flow meter, and thermal type mass flow control device
KR20210034084A (en) Pressure sensor
JP2012189349A (en) Flow velocity sensor
JP5806145B2 (en) Absolute pressure measuring device
JP2005114453A (en) Differential pressure measuring system
US11745288B2 (en) Pressure measuring device having a membrane edge and mounting element connected by a diffusion weld
JP2013170979A (en) Method of determining replacement period of differential pressure-pressure composite sensor
JP3178564B2 (en) Differential pressure measuring device
JP2013050400A (en) Dual physical quantity sensor
JPH046890B2 (en)
JP3080212B2 (en) Semiconductor differential pressure measuring device
JP6591325B2 (en) Auxiliary water level gauge auxiliary system, its auxiliary method, its auxiliary program and auxiliary water level gauge with auxiliary functions
JP2015194343A (en) differential pressure transmitter
JP2012189329A (en) Flow velocity sensor
JP3180512B2 (en) Differential pressure measuring device
JP3185956B2 (en) Differential pressure measuring device
JPH09218121A (en) Semiconductor differential pressure measuring device
JPH0783777A (en) Differential pressure measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5806145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350