JP2013175751A - Light-emitting semiconductor device, mounting substrate, and method of manufacturing the same - Google Patents

Light-emitting semiconductor device, mounting substrate, and method of manufacturing the same Download PDF

Info

Publication number
JP2013175751A
JP2013175751A JP2013079124A JP2013079124A JP2013175751A JP 2013175751 A JP2013175751 A JP 2013175751A JP 2013079124 A JP2013079124 A JP 2013079124A JP 2013079124 A JP2013079124 A JP 2013079124A JP 2013175751 A JP2013175751 A JP 2013175751A
Authority
JP
Japan
Prior art keywords
emitting semiconductor
light emitting
semiconductor element
transparent
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013079124A
Other languages
Japanese (ja)
Inventor
Toshio Shiobara
利夫 塩原
Tsutomu Kashiwagi
努 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013079124A priority Critical patent/JP2013175751A/en
Publication of JP2013175751A publication Critical patent/JP2013175751A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting semiconductor device capable of preventing degradation in reflectivity of a reflector and preventing corrosion caused by intrusion of corrosive gas.SOLUTION: In a light-emitting semiconductor device, an electrode of a light-emitting semiconductor element housed in a reflector for the light-emitting semiconductor element is connected to an electrode of a lead by flip chip method. A gap between the element and a lead frame is filled with underfill material for curing. Further, the light-emitting semiconductor element is sealed with a transparent resin or a transparent resin containing phosphor. With surfaces of the sealing resin and the reflector being covered, perhydro polysilazane is cured by heating at 150-250°C, to form a transparent silicon oxide curing coat which has no cracking and has thickness of 0.05-10 μm.

Description

本発明は、ガス透過性を大幅に改善することでリフレクターの反射率低下に伴う輝度の低下を防止し得、また腐食性ガスの侵入による腐食を防止し得て、長期の信頼性を確保した発光半導体装置及びその製造方法、並びに該発光半導体装置が実装された実装基板及びその製造方法に関するものである。   In the present invention, the gas permeability can be greatly improved to prevent a decrease in luminance due to a decrease in the reflectance of the reflector, and corrosion due to the invasion of corrosive gas can be prevented, thereby ensuring long-term reliability. The present invention relates to a light emitting semiconductor device and a manufacturing method thereof, a mounting substrate on which the light emitting semiconductor device is mounted, and a manufacturing method thereof.

従来、光半導体素子を封止するために、エポキシ樹脂組成物やシリコーン樹脂組成物が広く用いられている。この種の樹脂組成物は、通常、キャスティング、トランスファー成形等により、光半導体素子が配置された金型に流しこみ硬化させることにより、光半導体素子を封止する。   Conventionally, epoxy resin compositions and silicone resin compositions have been widely used to seal optical semiconductor elements. This type of resin composition seals an optical semiconductor element by pouring and curing in a mold in which the optical semiconductor element is disposed, usually by casting, transfer molding, or the like.

近年、LEDの輝度アップ、及びパワーアップに伴い、エポキシ樹脂の変色劣化の問題が起こっている。特に、透明エポキシ樹脂は、青色光や紫外線により黄変するため素子の寿命を短くするという問題があった。   In recent years, with the increase in brightness and power of LEDs, there has been a problem of discoloration deterioration of epoxy resins. In particular, the transparent epoxy resin has a problem of shortening the lifetime of the element because it is yellowed by blue light or ultraviolet light.

特開2008−10591号公報(特許文献1)では、銀メッキ表面をH2Sの透過性の低い樹脂にて薄膜コートすることにより銀面の硫化を防ぐ装置を提案しているが、有機樹脂では光、熱に弱く長期の信頼性に劣る問題点があった。特開2009−33107号公報(特許文献2)では、Si−N結合を必須とするガラス膜により金属反射部分をコートする装置を提案しているが、Si−N結合をもつガラスは完全に反応が済んでいないことから不安定であり、加水分解等による経時変化等により硬化被膜の柔軟性が低下しミクロクラック等が発生し、パッケージへのダメージやバリア性が低下するという問題があった。 Japanese Patent Application Laid-Open No. 2008-10591 (Patent Document 1) proposes an apparatus for preventing the sulfidation of the silver surface by thin-film coating the silver plating surface with a resin having low H 2 S permeability. However, there is a problem that it is weak to light and heat and inferior in long-term reliability. Japanese Patent Application Laid-Open No. 2009-33107 (Patent Document 2) proposes an apparatus for coating a metal reflective portion with a glass film that requires Si—N bonds, but glass having Si—N bonds is completely reactive. However, there is a problem that the flexibility of the cured film is lowered due to a change with time due to hydrolysis or the like, microcracks or the like are generated, and damage to the package or barrier property is lowered.

そこで、耐熱性及び耐光性に優れたシリコーン樹脂が使用されるようになっているが、エポキシ樹脂に比べ硬化した樹脂のガス透過性が大きい上、強度が弱いという問題があった。このため、高硬度ゴム状シリコーン樹脂を封止用途に使用したものが提案されている(特開2002−314139号公報:特許文献3、特開2002−314143号公報:特許文献4)。   Therefore, although a silicone resin having excellent heat resistance and light resistance is used, there is a problem that the cured resin has a higher gas permeability and a lower strength than an epoxy resin. For this reason, what uses the high hardness rubber-like silicone resin for the sealing | blocking use is proposed (Unexamined-Japanese-Patent No. 2002-314139: Patent document 3 and Unexamined-Japanese-Patent No. 2002-314143: Patent document 4).

しかし、これらの高硬度シリコーン樹脂は接着性が乏しく、ケース型の発光半導体装置、即ち、セラミックス及び/又はプラスチック筐体内に発光素子を配置し、その筐体内部をシリコーン樹脂で充填した装置では、−40〜120℃での熱衝撃試験で、シリコーン樹脂が筐体のセラミックスやプラスチックから剥離してしまう問題点があった。
また、高硬度ゴム状シリコーン樹脂でも、ガスの透過性はエポキシ樹脂等に比べ大きく、窒素酸化物やイオウ酸化物等の腐食性ガスがシリコーン樹脂を透過し、リフレクター表面の銀メッキ部と反応する。その結果、光反射率が低下し輝度低下の原因となった。
However, these high-hardness silicone resins have poor adhesion, and case-type light-emitting semiconductor devices, that is, devices in which light-emitting elements are arranged in a ceramic and / or plastic housing and the interior of the housing is filled with silicone resin, In the thermal shock test at −40 to 120 ° C., there was a problem that the silicone resin was peeled off from the ceramic or plastic of the housing.
In addition, even in high hardness rubbery silicone resin, gas permeability is higher than epoxy resin, and corrosive gas such as nitrogen oxide and sulfur oxide permeates silicone resin and reacts with silver plating part on reflector surface. . As a result, the light reflectance was reduced, causing a reduction in luminance.

一方、耐熱衝撃性を増すために、エポキシ基を有するシリコーン樹脂が提案されている(特開平7−97433号公報:特許文献5)。しかし、該シリコーン樹脂は、エポキシ基を有するシランと、シラノールとを縮合させて合成されるものであり、その硬化物の弾性率が低くかつ脆い。そのため、この種の樹脂で封止したLEDは、温度サイクル試験において樹脂にクラックが入りやすいという問題があった。   On the other hand, in order to increase thermal shock resistance, a silicone resin having an epoxy group has been proposed (Japanese Patent Laid-Open No. 7-97433: Patent Document 5). However, the silicone resin is synthesized by condensing silane having an epoxy group and silanol, and the cured product has a low elastic modulus and is brittle. Therefore, the LED sealed with this kind of resin has a problem that the resin is easily cracked in the temperature cycle test.

これを解決するものとして、エポキシ樹脂と、エポキシ環を少なくとも2つ有するシルセスキオキサンを含む組成物(特開2005−263869号公報:特許文献6)、及び、エポキシ樹脂とイソシアヌル酸誘導体基を有するシリコーン樹脂を含む組成物(特開2004−99751号公報:特許文献7)が知られている。しかし、これらのいずれも、硬化物の温度サイクル試験での耐クラック性が満足のいくものとはいえない。   As a solution to this, a composition containing an epoxy resin and a silsesquioxane having at least two epoxy rings (Japanese Patent Laid-Open No. 2005-263869: Patent Document 6), and an epoxy resin and an isocyanuric acid derivative group There is known a composition containing a silicone resin (Japanese Patent Laid-Open No. 2004-99751: Patent Document 7). However, none of these are satisfactory in crack resistance in a temperature cycle test of the cured product.

特開2008−10591号公報JP 2008-10591 A 特開2009−33107号公報JP 2009-33107 A 特開2002−314139号公報JP 2002-314139 A 特開2002−314143号公報JP 2002-314143 A 特開平7−97433号公報Japanese Patent Laid-Open No. 7-97433 特開2005−263869号公報JP 2005-263869 A 特開2004−99751号公報JP 2004-99751 A

本発明は、上記問題点を改善するためになされたもので、ガス透過性を大幅に改善することでリフレクターの反射率低下に伴う輝度の低下を防止し、腐食性ガスの侵入による腐食を防止することができ、これにより長期の信頼性を確保した発光半導体装置及びその製造方法並びに該発光半導体装置を実装した実装基板及びその製造方法を提供することを目的とするものである。   The present invention was made in order to improve the above-mentioned problems. By significantly improving the gas permeability, the luminance is reduced due to the decrease in the reflectance of the reflector, and the corrosion due to the invasion of corrosive gas is prevented. Accordingly, it is an object of the present invention to provide a light-emitting semiconductor device and a method for manufacturing the light-emitting semiconductor device that can ensure long-term reliability, a mounting substrate on which the light-emitting semiconductor device is mounted, and a method for manufacturing the mounting substrate.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、ポリシラザンを硬化させることによって形成される酸化ケイ素硬化被膜により発光半導体素子、それにリフレクターや導電細線あるいはこれらを封止する封止樹脂の表面を被覆することによってガス透過性が顕著に改善され、上記目的が効果的に達成されることを知見し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have made a light emitting semiconductor element, a reflector, a conductive wire, or a seal for sealing these with a silicon oxide cured film formed by curing polysilazane. It has been found that the gas permeability is remarkably improved by coating the surface of the stop resin, and the above object is effectively achieved, and the present invention has been made.

従って、本発明は、下記のガス透過性を改善した発光半導体装置、発光半導体装置を実装した実装基板、及びそれらの製造方法を提供する。
請求項1:
発光半導体素子用リフレクターに収容された発光半導体素子の電極がリードの電極にフリップチップ方式で接続され、素子とリードフレームとの間隙部がアンダーフィル材で充填硬化され、更に上記発光半導体素子が透明樹脂又は蛍光体を含有する透明樹脂で封止されていると共に、該封止樹脂及びリフレクターの表面を覆ってパーハイドロポリシラザンを150〜250℃の熱をかけて硬化することにより得られた0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜が形成されてなることを特徴とする発光半導体装置。
請求項2:
発光半導体素子用リフレクターに収容され、ダイボンド材でダイパッドに固定された発光半導体素子の電極とリード電極とが導電細線で接続され、更に上記発光半導体素子及び導電細線が透明樹脂又は蛍光体を含有する透明樹脂で封止されていると共に、該封止樹脂及びリフレクターの表面を覆ってパーハイドロポリシラザンを150〜250℃の熱をかけて硬化することにより得られた0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜が形成されてなることを特徴とする発光半導体装置。
請求項3:
透明樹脂が、シリコーン樹脂を30質量%以上含有するものである請求項1又は2記載の発光半導体装置。
請求項4:
透明樹脂が、熱硬化性エポキシ−シリコーン樹脂組成物の硬化物である請求項3記載の発光半導体装置。
請求項5:
発光半導体素子用リフレクターに収容された発光半導体素子の電極がリードの電極にフリップチップ方式で接続され、素子とリードフレームとの間隙部がアンダーフィル材で充填硬化され、更に上記発光半導体素子が透明樹脂又は蛍光体を含有する透明樹脂で封止された発光半導体装置が、実装基板上にリード電極を導電接合材料で接合することによって実装されていると共に、実装基板上の装置表面にパーハイドロポリシラザンを150〜250℃の熱をかけて硬化することにより得られた0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜が形成されてなることを特徴とする実装基板。
請求項6:
発光半導体素子用リフレクターに収容され、ダイボンド材でダイパッドに固定された発光半導体素子の電極とリード電極とが導電細線で接続され、上記発光半導体素子及び導電細線を透明樹脂又は蛍光体を含有する透明樹脂で封止された発光半導体装置が、実装基板上にリード電極を導電接合材料で接合することによって実装されていると共に、実装基板上の装置表面にパーハイドロポリシラザンを150〜250℃の熱をかけて硬化することにより得られた0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜が形成されてなることを特徴とする実装基板。
請求項7:
透明樹脂が、シリコーン樹脂を30質量%以上含有するものである請求項5又は6記載の実装基板。
請求項8:
透明樹脂が、熱硬化性エポキシ−シリコーン樹脂組成物の硬化物である請求項7記載の実装基板。
請求項9:
発光半導体素子用リフレクターに収容された発光半導体素子の電極をリードの電極にフリップチップ方式で接続し、素子とリードフレームとの間隙部をアンダーフィル材で充填硬化させた後、上記発光半導体素子を透明樹脂又は蛍光体を含有する透明樹脂で封止し、次いで該封止樹脂及びリフレクターの表面を覆ってパーハイドロポリシラザン溶液を噴霧又は注型塗布し、パーハイドロポリシラザンを150〜250℃の熱をかけて硬化させて0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜を形成することを特徴とする発光半導体装置の製造方法。
請求項10:
発光半導体素子用リフレクターに収容され、ダイボンド材でダイパッドに固定された発光半導体素子の電極とリード電極とを導電細線で接続した後、上記発光半導体素子及び導電細線を透明樹脂又は蛍光体を含有する透明樹脂で封止し、次いで該封止樹脂及びリフレクターの表面を覆ってパーハイドロポリシラザン溶液を噴霧又は注型塗布し、パーハイドロポリシラザンを150〜250℃の熱をかけて硬化させて0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜を形成することを特徴とする発光半導体装置の製造方法。
請求項11:
透明樹脂が、シリコーン樹脂を30質量%以上含有するものである請求項9又は10記載の製造方法。
請求項12:
透明樹脂が、熱硬化性エポキシ−シリコーン樹脂組成物の硬化物である請求項11記載の製造方法。
請求項13:
発光半導体素子用リフレクターに収容された発光半導体素子の電極をリードの電極にフリップチップ方式で接続し、素子とリードフレームとの間隙部をアンダーフィル材で充填硬化させた後、上記発光半導体素子を透明樹脂又は蛍光体を含有する透明樹脂で封止し、得られた発光半導体装置を実装基板上にリード電極を導電接合材料で接合して実装し、次いで実装基板上の装置表面にパーハイドロポリシラザン溶液を噴霧又は注型塗布し、パーハイドロポリシラザンを150〜250℃の熱を加えて硬化させて0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜を形成することを特徴とする実装基板の製造方法。
請求項14:
発光半導体素子用リフレクターに収容され、ダイボンド材でダイパッドに固定された発光半導体素子の電極とリード電極とを導電細線で接続した後、上記発光半導体素子及び導電細線を透明樹脂又は蛍光体を含有する透明樹脂で封止し、得られた発光半導体装置を実装基板上にリード電極を導電接合材料で接合して実装し、次いで実装基板上の装置表面にパーハイドロポリシラザン溶液を噴霧又は注型塗布し、パーハイドロポリシラザンを150〜250℃の熱を加えて硬化させて0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜を形成することを特徴とする実装基板の製造方法。
請求項15:
透明樹脂が、シリコーン樹脂を30質量%以上含有するものである請求項13又は14記載の製造方法。
請求項16:
透明樹脂が、熱硬化性エポキシ−シリコーン樹脂組成物の硬化物である請求項15記載の製造方法。
Accordingly, the present invention provides the following light-emitting semiconductor device with improved gas permeability, a mounting substrate on which the light-emitting semiconductor device is mounted, and a method for manufacturing the same.
Claim 1:
The electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element is connected to the lead electrode by a flip chip method, the gap between the element and the lead frame is filled and cured with an underfill material, and the light emitting semiconductor element is transparent It was sealed by a transparent resin containing a resin or a phosphor, and obtained by curing perhydropolysilazane by applying heat of 150 to 250 ° C. while covering the surfaces of the sealing resin and the reflector. A light-emitting semiconductor device comprising a 05-10 μm-thick transparent silicon oxide cured film having no cracks.
Claim 2:
The electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element and fixed to the die pad with a die bonding material and the lead electrode are connected by a conductive fine wire, and the light emitting semiconductor element and the conductive thin wire contain a transparent resin or phosphor. A crack having a thickness of 0.05 to 10 μm obtained by curing the perhydropolysilazane by applying heat of 150 to 250 ° C. while being sealed with a transparent resin and covering the surfaces of the sealing resin and the reflector. A light-emitting semiconductor device comprising a transparent silicon oxide cured film having no surface.
Claim 3:
The light emitting semiconductor device according to claim 1, wherein the transparent resin contains 30% by mass or more of a silicone resin.
Claim 4:
4. The light emitting semiconductor device according to claim 3, wherein the transparent resin is a cured product of a thermosetting epoxy-silicone resin composition.
Claim 5:
The electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element is connected to the lead electrode by a flip chip method, the gap between the element and the lead frame is filled and cured with an underfill material, and the light emitting semiconductor element is transparent A light emitting semiconductor device sealed with a transparent resin containing resin or phosphor is mounted on a mounting substrate by bonding a lead electrode with a conductive bonding material, and perhydropolysilazane is mounted on the surface of the device on the mounting substrate. A mounting substrate comprising a 0.05 to 10 μm-thick crack-free transparent silicon oxide cured film obtained by curing with heating at 150 to 250 ° C.
Claim 6:
The electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element and fixed to the die pad with a die bond material and the lead electrode are connected by a conductive fine wire, and the light emitting semiconductor element and the conductive thin wire are transparent containing a transparent resin or phosphor The light emitting semiconductor device sealed with resin is mounted on the mounting substrate by bonding the lead electrode with a conductive bonding material, and perhydropolysilazane is applied to the surface of the device on the mounting substrate at a temperature of 150 to 250 ° C. A mounting substrate comprising a 0.05 to 10 μm-thick, transparent cracked silicon oxide film obtained by curing over time.
Claim 7:
The mounting substrate according to claim 5 or 6, wherein the transparent resin contains 30% by mass or more of a silicone resin.
Claim 8:
The mounting substrate according to claim 7, wherein the transparent resin is a cured product of a thermosetting epoxy-silicone resin composition.
Claim 9:
After connecting the electrode of the light emitting semiconductor element accommodated in the reflector for the light emitting semiconductor element to the electrode of the lead by a flip chip method, filling and curing the gap between the element and the lead frame with an underfill material, the light emitting semiconductor element is Seal with a transparent resin or a transparent resin containing a phosphor, and then spray or cast a perhydropolysilazane solution covering the surface of the sealing resin and reflector, and heat the perhydropolysilazane at 150 to 250 ° C. A method for producing a light-emitting semiconductor device comprising: forming a transparent silicon oxide cured film without cracks having a thickness of 0.05 to 10 μm by being cured.
Claim 10:
After connecting the electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element and fixed to the die pad with a die bond material and the lead electrode with a conductive thin wire, the light emitting semiconductor element and the conductive thin wire contain a transparent resin or a phosphor. Sealed with a transparent resin, and then sprayed or cast coated with a perhydropolysilazane solution covering the surface of the sealing resin and the reflector, and cured by applying heat of 150 to 250 ° C. A method for producing a light-emitting semiconductor device, comprising forming a transparent silicon oxide cured film having a thickness of 10 μm and no crack.
Claim 11:
The manufacturing method according to claim 9 or 10, wherein the transparent resin contains 30% by mass or more of a silicone resin.
Claim 12:
The method according to claim 11, wherein the transparent resin is a cured product of a thermosetting epoxy-silicone resin composition.
Claim 13:
After connecting the electrode of the light emitting semiconductor element accommodated in the reflector for the light emitting semiconductor element to the electrode of the lead by a flip chip method, filling and curing the gap between the element and the lead frame with an underfill material, the light emitting semiconductor element is Sealing with transparent resin or transparent resin containing phosphor, and mounting the obtained light emitting semiconductor device on the mounting substrate by bonding the lead electrode with a conductive bonding material, then perhydropolysilazane on the device surface on the mounting substrate The solution is sprayed or cast applied, and perhydropolysilazane is cured by applying heat at 150 to 250 ° C. to form a transparent silicon oxide cured film having a thickness of 0.05 to 10 μm without cracks. Manufacturing method of mounting substrate.
Claim 14:
After connecting the electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element and fixed to the die pad with a die bond material and the lead electrode with a conductive thin wire, the light emitting semiconductor element and the conductive thin wire contain a transparent resin or a phosphor. Seal with transparent resin, mount the resulting light-emitting semiconductor device on the mounting substrate by bonding the lead electrode with conductive bonding material, and then spray or cast the perhydropolysilazane solution on the surface of the device on the mounting substrate. A method for producing a mounting substrate, wherein perhydropolysilazane is cured by applying heat at 150 to 250 ° C. to form a transparent silicon oxide cured film having a thickness of 0.05 to 10 μm without cracks.
Claim 15:
The manufacturing method according to claim 13 or 14, wherein the transparent resin contains 30% by mass or more of a silicone resin.
Claim 16:
The method according to claim 15, wherein the transparent resin is a cured product of a thermosetting epoxy-silicone resin composition.

本発明によれば、ガス透過性を大幅に改善することでリフレクターの反射率低下を防止し、腐食性ガスの侵入による腐食を防止することができ、これにより長期の信頼性を確保した発光半導体装置を提供することができる。   According to the present invention, the gas permeability can be greatly improved to prevent the reflectivity of the reflector from decreasing, and corrosion due to the invasion of corrosive gas can be prevented, thereby ensuring long-term reliability. An apparatus can be provided.

代表的なリフレクターの構造を示し、(A)は断面図、(B)は平面図である。The structure of a typical reflector is shown, (A) is sectional drawing, (B) is a top view. フリップチップ方式で素子をリードフレーム上に接合した態様を示す断面図である。It is sectional drawing which shows the aspect which joined the element on the lead frame by the flip-chip system. パーハイドロポリシラザンを塗布し酸化ケイ素硬化被膜を形成した第1の態様を示す発光半導体装置の断面図である。It is sectional drawing of the light-emitting semiconductor device which shows the 1st aspect which apply | coated perhydropolysilazane and formed the silicon oxide cured film. リフレクターの凹部に透明封止材を注型硬化した第2の態様を示す発光半導体装置の断面図である。It is sectional drawing of the light-emitting semiconductor device which shows the 2nd aspect which cast-hardened the transparent sealing material to the recessed part of the reflector. リフレクターの凹部に透明封止材を注型硬化後、パーハイドロポリシラザンを塗布し硬化した第3の態様を示す発光半導体装置の断面図である。It is sectional drawing of the light-emitting semiconductor device which shows the 3rd aspect which apply | coated and hardened the perhydropolysilazane after casting hardening of the transparent sealing material to the recessed part of a reflector. 金線で結線した別の態様の発光半導体装置の断面図である。It is sectional drawing of the light-emitting semiconductor device of another aspect connected with the gold wire. 金線で素子電極とリード電極を接続後、パーハイドロポリシラザンを塗布し硬化させた第4の態様を示す発光半導体装置を示す断面図である。It is sectional drawing which shows the light-emitting semiconductor device which shows the 4th aspect which apply | coated and hardened the perhydropolysilazane after connecting an element electrode and a lead electrode with a gold wire. リフレクター凹部に透明封止材を注型し硬化させた第5の態様を示す発光半導体装置を示す断面図である。It is sectional drawing which shows the light-emitting semiconductor device which shows the 5th aspect which cast and hardened the transparent sealing material to the reflector recessed part. 実装基板上に発光半導体装置を実装後、パーハイドロポリシラザンを塗布し硬化させた発光半導体搭載実装基板の一例を示す断面図である。It is sectional drawing which shows an example of the light emitting semiconductor mounting mounting board | substrate which apply | coated and hardened the perhydropolysilazane after mounting the light emitting semiconductor device on the mounting board | substrate.

本発明に係る発光半導体装置は、発光半導体素子用リフレクターと、発光半導体素子と、リードフレームとを有する。   A light emitting semiconductor device according to the present invention includes a light emitting semiconductor element reflector, a light emitting semiconductor element, and a lead frame.

光半導体素子用リフレクターは、発光半導体素子を実装するためのダイパッドと、発光半導体素子電極と外部電極とを接続するためのリードを有する金属リードフレームのリードとの間の空隙部分を有機樹脂で充填した平面状、あるいはパッド表面とリードの先端表面部分が露出した底面をなす凹形状であるものである。   The reflector for an optical semiconductor element is filled with a gap between the die pad for mounting the light emitting semiconductor element and the lead of the metal lead frame having leads for connecting the light emitting semiconductor element electrode and the external electrode with an organic resin. Or a concave shape forming a bottom surface where the pad surface and the lead tip surface portion are exposed.

一般に表面銀メッキ銅のリードフレームをPPA(ポリフタルアミド)樹脂で成形した図1で示されるものが代表的なものである。光反射率を高めるため、リフレクターの底面や側面もまた銀でメッキされている。なお、図1において、1はリフレクター、2はリードフレームを示す。   In general, the one shown in FIG. 1 in which a lead frame of surface silver-plated copper is molded with PPA (polyphthalamide) resin is representative. In order to increase the light reflectivity, the bottom and side surfaces of the reflector are also plated with silver. In FIG. 1, 1 indicates a reflector, and 2 indicates a lead frame.

この種のリフレクターを用い、青色LED等の発光半導体素子をリフレクターのダイパッド上に金属や樹脂ダイボンド材を用いて接合する。更に、最近ではフリップチップ方式でLED素子にハンダボールや金バンプ等を取り付け、ボールやバンプを介して素子をパッドとリード電極に接合する方法も多く採用されている。
図2,3は、上記フリップチップ方式による本発明の一実施形態を示すもので、図1で示されるリフレクター1に収容された発光半導体素子10の電極とリードフレーム2,2におけるリード電極とをハンダや金、金/錫、あるいは他の金属のボール12を介してフリップチップ方式で接続し、発光半導体素子10を接合する。接合後、発光半導体素子10下部の間隙にシリコーンやエポキシ樹脂系アンダーフィル材14を侵入させ、隙間を充填し、熱で硬化させる(図2)。
Using this type of reflector, a light-emitting semiconductor element such as a blue LED is bonded onto a die pad of the reflector using a metal or a resin die bond material. Furthermore, recently, a method of attaching a solder ball, a gold bump, or the like to an LED element by a flip chip method and bonding the element to a pad and a lead electrode via the ball or the bump is often employed.
2 and 3 show an embodiment of the present invention using the flip-chip method. The electrodes of the light-emitting semiconductor element 10 accommodated in the reflector 1 shown in FIG. 1 and the lead electrodes in the lead frames 2 and 2 are shown. The light emitting semiconductor element 10 is joined by connecting in a flip chip manner through balls 12 of solder, gold, gold / tin, or other metal. After bonding, silicone or an epoxy resin-based underfill material 14 is made to enter the gap under the light emitting semiconductor element 10 to fill the gap and cure with heat (FIG. 2).

アンダーフィル材が硬化した後、パーハイドロポリシラザン溶液を発光半導体素子10、リフレクター1の表面を覆うようにスプレー塗布や注型する。その後、180〜250℃の温度で溶剤の揮散と酸化硬化反応を行い、酸化ケイ素被膜16を形成する。被膜16の厚みは0.05〜10μm、望ましくは0.1〜5μmである(図3)。   After the underfill material is cured, the perhydropolysilazane solution is sprayed or cast so as to cover the surfaces of the light emitting semiconductor element 10 and the reflector 1. Thereafter, the solvent is volatilized and oxidative curing reaction is performed at a temperature of 180 to 250 ° C. to form the silicon oxide film 16. The thickness of the film 16 is 0.05 to 10 μm, desirably 0.1 to 5 μm (FIG. 3).

図3で示される発光半導体装置は、リフレクターの凹部に透明樹脂を注型する必要もない。この発光半導体装置は、発光素子上には透明樹脂が存在しないことから、近紫外領域の光を発する発光半導体素子用として非常に有益なものである。   The light emitting semiconductor device shown in FIG. 3 does not need to cast a transparent resin in the concave portion of the reflector. This light-emitting semiconductor device is very useful for a light-emitting semiconductor element that emits light in the near-ultraviolet region because there is no transparent resin on the light-emitting element.

青色LEDを使用し、白色に変換する場合は、発光素子表面に蛍光体を含有するシリコーンや蛍光体を含有するセラミックス基板を貼り合わせた後、パーハイドロポリシラザンを塗布すればよい。   When a blue LED is used and converted to white, a perhydropolysilazane may be applied after bonding a phosphor-containing silicone or a phosphor-containing ceramic substrate to the surface of the light-emitting element.

また、図3の発光半導体装置を作製した後、凹部に透明樹脂又は蛍光体を含有する透明樹脂18を注型、硬化させることで、図4の発光半導体装置を製造することができる。例えば、透明樹脂18が付加硬化型のシリコーン樹脂組成物の場合は、100〜150℃の温度で30分〜2時間硬化させることで、信頼性に優れた発光半導体装置が得られる。   In addition, after the light emitting semiconductor device of FIG. 3 is fabricated, the light emitting semiconductor device of FIG. 4 can be manufactured by casting and curing a transparent resin 18 containing a transparent resin or a phosphor in the recess. For example, when the transparent resin 18 is an addition-curable silicone resin composition, a light-emitting semiconductor device with excellent reliability can be obtained by curing at a temperature of 100 to 150 ° C. for 30 minutes to 2 hours.

更に、異なる製造工程で製造できる発光半導体装置として、図5の装置も例示できる。この方法は図2で示されるように、発光半導体素子10をフリップチップ方式でリフレクター1のリードフレーム2,2上に接合した後、図4で使用した透明樹脂18を図4同様にリフレクターの凹部に注型し硬化させる。透明樹脂18が硬化後、パーハイドロポリシラザンやその溶液をスプレー塗布や刷毛塗り等の方法で発光半導体装置の表面に塗布し、熱や湿気等でパーハイドロポリシラザンを硬化させて透明樹脂18、リフレクター1表面に酸化ケイ素の被膜16を作製する(図5)。   Furthermore, the device of FIG. 5 can be exemplified as a light emitting semiconductor device that can be manufactured by different manufacturing processes. In this method, as shown in FIG. 2, after the light emitting semiconductor element 10 is bonded onto the lead frames 2 and 2 of the reflector 1 by the flip chip method, the transparent resin 18 used in FIG. Cast and harden. After the transparent resin 18 is cured, perhydropolysilazane or a solution thereof is applied to the surface of the light emitting semiconductor device by a method such as spray coating or brush coating, and the perhydropolysilazane is cured by heat, moisture, or the like, so that the transparent resin 18 or the reflector 1 is cured. A silicon oxide film 16 is formed on the surface (FIG. 5).

図6は、上記フリップチップ方式とは異なり、発光素子電極とリード電極とを金線等の導電細線で結合する場合の態様を示す。即ち、リフレクター1のリードフレーム2上に発光半導体素子10を熱硬化性のエポキシダイボンド材やシリコーンダイボンド材等を用いて接着固定する(ダイパッド20)。その後、金線22で素子電極とリード電極を結線し、導通させる(図6)。   FIG. 6 shows a mode in which the light emitting element electrode and the lead electrode are coupled with a conductive thin wire such as a gold wire, unlike the flip chip method. That is, the light emitting semiconductor element 10 is bonded and fixed to the lead frame 2 of the reflector 1 using a thermosetting epoxy die bond material, a silicone die bond material, or the like (die pad 20). Thereafter, the element electrode and the lead electrode are connected by the gold wire 22 and are conducted (FIG. 6).

図6の発光半導体装置表面にパーハイドロポリシラザンやその溶液を塗布し、硬化させて酸化ケイ素被膜16を生成させる(図7)。必要により、その後透明樹脂や蛍光体を含有する透明樹脂18を図7の凹部に注型し、硬化させ、発光半導体装置を作製する(図8)。   Perhydropolysilazane or a solution thereof is applied to the surface of the light emitting semiconductor device of FIG. 6 and cured to form a silicon oxide film 16 (FIG. 7). If necessary, a transparent resin 18 containing a transparent resin or phosphor is then cast into the recesses in FIG. 7 and cured to produce a light emitting semiconductor device (FIG. 8).

更に、基板に実装した状態でもパーハイドロポリシラザンやその溶液を使用して酸化ケイ素被膜を生成させることができる。図9にその例を示した。
なお、図示していないが、図5の場合と同様に、図6の状態において、透明樹脂又は蛍光体を含有する透明樹脂により発光素子、金線を樹脂封止した後、この封止樹脂、リフレクターの表面に酸化ケイ素被膜を形成するようにしてもよい。
Furthermore, a silicon oxide film can be produced using perhydropolysilazane or a solution thereof even in a state where it is mounted on a substrate. An example is shown in FIG.
Although not shown, in the state of FIG. 6, after sealing the light emitting element and the gold wire with a transparent resin or a transparent resin containing a phosphor, the sealing resin, A silicon oxide film may be formed on the surface of the reflector.

図9は複数の発光半導体装置を実装基板上に実装した態様を示すもので、この例にあっては、図2の発光半導体装置の凹部に透明樹脂18を流し込み、硬化させた発光半導体装置を有機基板やセラミックス基板等の実装基板30上にハンダ32を使用して実装する。その後、発光装置が多数実装されている実装基板上にパーハイドロポリシラザンやその溶液をスプレー等で均一に塗布し硬化させる。これにより硬化後は基板やパッケージ上に酸化ケイ素被膜16が形成された発光半導体装置を実装した基板を容易に作製することができる。
なお、発光半導体装置として図2のものを用いる代りに図6のものを用い、図9の場合と同様にして実装基板を作製することもできる。
FIG. 9 shows an embodiment in which a plurality of light emitting semiconductor devices are mounted on a mounting substrate. In this example, a light emitting semiconductor device in which transparent resin 18 is poured into a recess of the light emitting semiconductor device of FIG. Mounting is performed using a solder 32 on a mounting substrate 30 such as an organic substrate or a ceramic substrate. Thereafter, perhydropolysilazane or a solution thereof is uniformly applied by a spray or the like on a mounting substrate on which a large number of light emitting devices are mounted, and cured. Thus, after curing, a substrate on which the light emitting semiconductor device having the silicon oxide film 16 formed on the substrate or package is mounted can be easily manufactured.
6 can be used instead of the light emitting semiconductor device shown in FIG. 2, and a mounting substrate can be manufactured in the same manner as in FIG.

ここで、本発明で使用するパーハイドロポリシラザンとは、原料であるジクロルシランとアンモニアガスを反応させることで得られる下記構造を有するものである。
−(SiH2NH)−
より具体的には、下記構造にて表すことができる。

Figure 2013175751
Here, the perhydropolysilazane used in the present invention has the following structure obtained by reacting dichlorosilane as a raw material with ammonia gas.
- (SiH 2 NH) -
More specifically, it can be represented by the following structure.
Figure 2013175751

このパーハイドロポリシラザンの重合度あるいは分子量は適宜選定されるが、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量が100〜30,000であることが好ましい。
このパーハイドロポリシラザンとしては市販品を用いることができ、例えばAZエレクトロニックマテリアルズ(株)製アクアミカ(Aquamica)等を使用することができる。
The degree of polymerization or molecular weight of this perhydropolysilazane is appropriately selected, but it is preferable that the weight average molecular weight in terms of polystyrene by gel permeation chromatography (GPC) is 100 to 30,000.
A commercial item can be used as this perhydropolysilazane, for example, AZ Electronic Materials Co., Ltd. Aquamica etc. can be used.

このパーハイドロポリシラザンを脱水処理した有機溶剤やシリコーン系溶剤と混合して使用する。パーハイドロポリシラザンの濃度としては形成する膜厚にもよるが、0.1〜30質量%の濃度としたほうがよく、0.05〜10μm程度の膜厚の酸化被膜を作製するには0.1〜30質量%の濃度にしたものを使用する。   This perhydropolysilazane is used by mixing with a dehydrated organic solvent or silicone solvent. Although the concentration of perhydropolysilazane depends on the thickness of the film to be formed, it is better to set the concentration to 0.1 to 30% by mass, and 0.1 to produce an oxide film with a thickness of about 0.05 to 10 μm. Use a concentration of ˜30 mass%.

なお、使用する溶剤としては、極性溶剤、例えばエーテル誘導体、ケトン系溶剤やテトラメチルジシロキサン、オクタメチルテトラシクロシロキサン等の環状シロキサンなどが使用可能である。これら溶剤の中でもジブチルエーテルが望ましい。   In addition, as a solvent to be used, polar solvents such as ether derivatives, ketone solvents, cyclic siloxanes such as tetramethyldisiloxane and octamethyltetracyclosiloxane can be used. Of these solvents, dibutyl ether is desirable.

塗布方法としては、発光半導体装置上に刷毛やスプレーガン又は注型等で容易に塗布コートできる。また、パーハイドロポリシラザンを原料として使用することから、通常のシランカップリング剤やテトラメトキシシラン等を用いてケイ素含有被膜を生成する場合に対し、硬化時の収縮応力も少なく、クラック等も入らない良好な被膜が得られる。また、パーハイドロポリシラザンを使用することで、硬化した透明樹脂であるシリコーン樹脂、発光素子表面、リフレクター表面等に対する接着も強く、硬化被膜の硬さも硬く、鉛筆硬度で8H以上の強固な被膜が得られる。   As a coating method, the light-emitting semiconductor device can be easily coated with a brush, a spray gun, or casting. In addition, since perhydropolysilazane is used as a raw material, the shrinkage stress during curing is small and cracks do not occur compared to the case where a silicon-containing film is produced using a normal silane coupling agent or tetramethoxysilane. A good film can be obtained. In addition, by using perhydropolysilazane, adhesion to the cured transparent resin such as silicone resin, light emitting element surface, reflector surface, etc. is strong, the hardness of the cured film is hard, and a strong film with a pencil hardness of 8H or more is obtained. It is done.

パーハイドロポリシラザンの硬化方法としては、以下の反応で空気中の水分と反応することで硬化させる方法や、150〜250℃の熱をかけて硬化させる方法で容易に良質な酸化ケイ素の薄膜が生成できる。

Figure 2013175751
Perhydropolysilazane can be cured by reacting with moisture in the air in the following reaction, or by applying heat at 150 to 250 ° C to easily produce a high-quality silicon oxide thin film. it can.
Figure 2013175751

次に、封止材料として使用する透明樹脂としては、シリコーン樹脂、更にはシリコーン樹脂と有機樹脂の混成樹脂等が例示される。   Next, examples of the transparent resin used as the sealing material include a silicone resin, and a hybrid resin of a silicone resin and an organic resin.

シリコーン樹脂としては、縮合硬化型や付加硬化型の熱硬化性シリコーン樹脂組成物を代表的なものとして例示することができる。   Typical examples of the silicone resin include condensation curable and addition curable thermosetting silicone resin compositions.

縮合硬化型のシリコーン樹脂組成物としては、下記平均組成式(1)
1 aSi(OR2b(OH)c(4-a-b-c)/2 (1)
(式中、R1は同一又は異種の炭素数1〜20の一価炭化水素基等の有機基、R2は同一又は異種の炭素数1〜4の一価炭化水素基等の有機基を示し、0.8≦a≦1.5、0≦b≦0.3、0.001≦c≦0.5、0.801≦a+b+c<2を満たす数である。)
で示されるようなシリコーン樹脂(オルガノポリシロキサン)が用いられ、これに縮合触媒等を配合した公知の縮合硬化型シリコーン樹脂組成物を使用することができる。
As the condensation curable silicone resin composition, the following average composition formula (1)
R 1 a Si (OR 2 ) b (OH) c O (4-abc) / 2 (1)
(In the formula, R 1 represents the same or different organic group such as a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 2 represents the same or different organic group such as a monovalent hydrocarbon group having 1 to 4 carbon atoms. And a number satisfying 0.8 ≦ a ≦ 1.5, 0 ≦ b ≦ 0.3, 0.001 ≦ c ≦ 0.5, and 0.801 ≦ a + b + c <2.
A silicone resin (organopolysiloxane) represented by the above can be used, and a known condensation-curable silicone resin composition in which a condensation catalyst or the like is blended can be used.

付加硬化型シリコーン樹脂組成物は、ビニル基を含有するシリコーン樹脂(オルガノポリシロキサン)、硬化剤としてヒドロシリル基を有するシリコーン樹脂(オルガノハイドロジェンポリシロキサン)、白金触媒を含むシリコーン樹脂組成物を挙げることができる。   Examples of the addition curable silicone resin composition include a silicone resin containing a vinyl group (organopolysiloxane), a silicone resin having a hydrosilyl group as a curing agent (organohydrogenpolysiloxane), and a silicone resin composition containing a platinum catalyst. Can do.

混成樹脂としては、トリアジン誘導体エポキシ樹脂、シリコーン樹脂、酸無水物、硬化促進剤からなる熱硬化性エポキシ−シリコーン樹脂組成物が硬化性に優れ、耐熱性、耐光性に優れると共に、良好な強度を有することから望ましい。   As a hybrid resin, a thermosetting epoxy-silicone resin composition comprising a triazine derivative epoxy resin, a silicone resin, an acid anhydride, and a curing accelerator has excellent curability, heat resistance, light resistance, and good strength. It is desirable because it has.

更に、本発明は成形性や良好な硬化物物性を得るために、予めエポキシ樹脂及び/又は一分子中に少なくとも1個のエポキシ基を有するシリコーン樹脂と酸無水物とを予め予備反応させ重合度を高めたものを使用することもできる。   Furthermore, in order to obtain moldability and good cured product properties, the present invention preliminarily reacts an epoxy resin and / or a silicone resin having at least one epoxy group in one molecule with an acid anhydride in advance. It is also possible to use the one with higher

耐熱性や耐光性、強度の面からシリコーン成分と有機樹脂成分の質量比率は20/80〜80/20の範囲のものが望ましい。   From the viewpoint of heat resistance, light resistance, and strength, the mass ratio of the silicone component to the organic resin component is preferably in the range of 20/80 to 80/20.

本発明に係る透明樹脂には、後述する蛍光体の他に無機充填剤を含有させることができる。無機充填剤としては、溶融シリカ粉末、結晶シリカ粉末、アエロジルのような微粉末シリカ、微粉末アルミナ、球状の溶融シリカやクリストバライト、アルミナ粉末、ガラス粉末等が代表的なものである。これら粉末の平均粒径としては、2〜10μm程度のものが望ましい。微粉末シリカや微粉末アルミナは蛍光体等の沈降防止のために組成物中1〜10質量%使用したほうがよい。酸化チタン微粉末のような光散乱剤等を添加することもできる。なお、この平均粒径は、例えばレーザー光回折法等の分析手段を使用した粒度分布計により、重量平均値(メジアン径)として求めることができる。   In addition to the phosphor described later, the transparent resin according to the present invention can contain an inorganic filler. Typical examples of the inorganic filler include fused silica powder, crystalline silica powder, fine powder silica such as Aerosil, fine powder alumina, spherical fused silica, cristobalite, alumina powder, glass powder, and the like. The average particle size of these powders is preferably about 2 to 10 μm. Fine powder silica or fine powder alumina is preferably used in an amount of 1 to 10% by mass in the composition to prevent sedimentation of phosphors and the like. A light scattering agent such as titanium oxide fine powder can also be added. In addition, this average particle diameter can be calculated | required as a weight average value (median diameter) with the particle size distribution meter which uses analysis means, such as a laser beam diffraction method, for example.

また、本発明の樹脂組成物に波長変更するための蛍光体を添加することもできる。
例えば、青色LEDを用いて白色化するために各種公知の蛍光体粉末を添加することができる。代表的な黄色蛍光体として一般式A35012:M(式中、成分Aは、Y,Gd,Tb,La,Lu,Se及びSmからなるグループからなる少なくとも1つの元素を有し、成分Bは、Al,Ga及びInからなるグループからなる少なくとも1つの元素を有し、成分MはCe,Pr,Eu,Nd及びErからなるグループからなる少なくとも1つの元素を有する)のガーネットのグループからなる蛍光体粒子を含有するのが特に有利である。青色光を放射する発光ダイオードチップを備えた白色光を放射する発光ダイオード素子用に蛍光体として、Y3Al512:Ce蛍光体及び/又は(Y,Gd、Tb)3(Al,Ga)512:Ce蛍光体が適している。その他の蛍光体として、例えば、CaGa24:Ce3+及びSrGa24:Ce3+、YAlO3:Ce3+,YGaO3:Ce3+、Y(Al,Ga)O3:Ce3+、Y2SiO5:Ce3+等が挙げられる。また、混合色光を作製するためにはこれらの蛍光体の他に希土類でドープされたアルミン酸塩や希土類でドープされたオルトケイ酸塩等が適している。青色発光ダイオード(LED)の封止樹脂として使用し、白色化する場合は、イットリウム・アルミニウム・ガーネット系(YAG)、ナイトライドシリケート類、更に希土類でドープされたチオガレート等の蛍光体を含有してもよい。蛍光体の含有量については限定されないが、組成物中1〜30質量%の範囲内が望ましい。特に望ましくは5〜20質量%である。
Moreover, the fluorescent substance for changing a wavelength can also be added to the resin composition of this invention.
For example, various known phosphor powders can be added for whitening using a blue LED. As a typical yellow phosphor, a general formula A 3 B 50 O 12 : M (wherein component A has at least one element consisting of a group consisting of Y, Gd, Tb, La, Lu, Se and Sm) , Component B has at least one element consisting of a group consisting of Al, Ga and In, and component M has at least one element consisting of a group consisting of Ce, Pr, Eu, Nd and Er) It is particularly advantageous to contain phosphor particles consisting of groups. Y 3 Al 5 O 12 : Ce phosphor and / or (Y, Gd, Tb) 3 (Al, Ga) as a phosphor for a light emitting diode element that emits white light with a light emitting diode chip that emits blue light. ) 5 O 12 : Ce phosphor is suitable. Other phosphors include, for example, CaGa 2 S 4 : Ce 3+ and SrGa 2 S 4 : Ce 3+ , YAlO 3 : Ce 3+ , YGaO 3 : Ce 3+ , Y (Al, Ga) O 3 : Ce 3+ , Y 2 SiO 5 : Ce 3+ and the like. In addition to these phosphors, aluminates doped with rare earths and orthosilicates doped with rare earths are suitable for producing mixed color light. When used as a sealing resin for blue light emitting diodes (LEDs) and whitening, it contains phosphors such as yttrium, aluminum, garnet (YAG), nitride silicates, and thiogallate doped with rare earths. Also good. Although it is not limited about content of fluorescent substance, The inside of the range of 1-30 mass% in a composition is desirable. The amount is particularly preferably 5 to 20% by mass.

上記のようにポリシラザンを硬化させた0.05μm以上の酸化ケイ素被膜を有する発光半導体装置は、SOxやNOx等の腐食性ガスの透過を抑制することから、リフレクターの銀メッキ部の硫化銀等の生成が抑制され、輝度低下を防止することができる。 Since the light emitting semiconductor device having a silicon oxide film of 0.05 μm or more in which polysilazane is cured as described above suppresses the permeation of corrosive gases such as SO x and NO x , the silver sulfide in the silver plating portion of the reflector Etc. are suppressed, and a decrease in luminance can be prevented.

また、シリコーン樹脂の硬化物表面は粘着性があり、ゴミの付着や発光半導体装置同士が固着するといった不具合が発生している。しかし、本発明のポリシラザンを用いて発光半導体装置表面に酸化ケイ素被膜を作製したものは、この種の不具合が全く発生しないものである。   In addition, the cured surface of the silicone resin is sticky, causing problems such as dust adhering and light emitting semiconductor devices sticking together. However, when a silicon oxide film is formed on the surface of the light emitting semiconductor device using the polysilazane of the present invention, this type of problem does not occur at all.

以下、本発明について実施例で詳細に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited to the following Example.

[実施例1]
熱硬化性シリコーン樹脂組成物(SWC7200T、信越化学工業(株)製)で成形した図1の構造のリフレクターに青色LEDをシリコーンダイボンド剤(KJR−632DA−1、信越化学工業(株)製)を用いて固定し、150℃で1時間加熱することで発光素子をダイパッド状に固着させた。
その後、金線で素子とリード先端を電気的に接続した(図6)。その後、透明なシリコーン樹脂組成物(LPS−3410、信越化学工業(株)製)にYAG系蛍光体を5質量%配合したシリコーン樹脂組成物をポッティングによりリフレクターの凹部に流し込み、120℃で1時間、更に150℃で2時間加熱硬化させることで封止した。
得られた発光半導体装置をパーハイドロポリシラザン(AZエレクトロニックマテリアルズ(株)の商品名:アクアミカ)を25質量%含有するテトラブチルエーテル溶液でスプレー塗布した。塗布後、発光半導体装置を200℃で20分処理し、硬化させることで、クラックのない透明な酸化ケイ素被膜を形成させた。膜厚は約1μmであった。これを発光半導体装置No.1とした。
[Example 1]
A blue LED and a silicone die-bonding agent (KJR-632DA-1, manufactured by Shin-Etsu Chemical Co., Ltd.) are applied to the reflector having the structure shown in FIG. The light emitting element was fixed in a die pad shape by heating at 150 ° C. for 1 hour.
Thereafter, the element and the lead tip were electrically connected with a gold wire (FIG. 6). Thereafter, a silicone resin composition in which 5% by mass of a YAG-based phosphor is blended into a transparent silicone resin composition (LPS-3410, manufactured by Shin-Etsu Chemical Co., Ltd.) is poured into the concave portion of the reflector by potting, and then at 120 ° C. for 1 hour. Further, it was sealed by heat curing at 150 ° C. for 2 hours.
The obtained light emitting semiconductor device was spray-coated with a tetrabutyl ether solution containing 25% by mass of perhydropolysilazane (trade name: Aquamica, AZ Electronic Materials Co., Ltd.). After the application, the light emitting semiconductor device was treated at 200 ° C. for 20 minutes and cured to form a transparent silicon oxide film without cracks. The film thickness was about 1 μm. The light emitting semiconductor device No. It was set to 1.

[比較例1]
実施例1で作製したパーハイドロポリシラザンで処理をしていない発光半導体装置をNo.2とした。
[Comparative Example 1]
A light emitting semiconductor device not treated with perhydropolysilazane produced in Example 1 was No. 1. 2.

[参考例1]
熱硬化性シリコーン樹脂組成物(SWC7200T、信越化学工業(株)製)で成形した図1の構造のリフレクターに青色LEDを金バンプを介して図2のように接続した。接続後、平均粒径が5μmの球状シリカを50質量%含有するシリコーン樹脂組成物(製品名、信越化学工業(株)製)を素子と基板の間隙に流し込み、120℃で1時間硬化させた。シリコーン樹脂組成物が硬化した後、リフレクター凹部にパーハイドロポリシラザン(アクアミカ)を25質量%含有するテトラブチルエーテル溶液を流し込み、180℃で30分硬化させた。その後、再度パーハイドロポリシラザン溶液を流し込み、180℃で1時間硬化させることで、膜厚平均2μmのクラックのない透明な酸化ケイ素被膜を生成した(図3)。これを発光半導体装置No.3とした。
[Reference Example 1]
A blue LED was connected as shown in FIG. 2 via a gold bump to a reflector having the structure of FIG. 1 formed with a thermosetting silicone resin composition (SWC7200T, manufactured by Shin-Etsu Chemical Co., Ltd.). After the connection, a silicone resin composition (product name, manufactured by Shin-Etsu Chemical Co., Ltd.) containing 50% by mass of spherical silica having an average particle diameter of 5 μm was poured into the gap between the device and the substrate and cured at 120 ° C. for 1 hour. . After the silicone resin composition was cured, a tetrabutyl ether solution containing 25% by mass of perhydropolysilazane (Aquamica) was poured into the reflector recess and cured at 180 ° C. for 30 minutes. Thereafter, a perhydropolysilazane solution was poured again and cured at 180 ° C. for 1 hour to produce a transparent silicon oxide film having an average film thickness of 2 μm and no cracks (FIG. 3). The light emitting semiconductor device No. It was set to 3.

[参考例2]
No.3の発光半導体装置を用い、凹部に実施例1で使用した付加型シリコーン樹脂組成物をポッティングによりリフレクターの凹部に流し込み、120℃で1時間、更に150℃で2時間加熱硬化させることで封止した(図4)。これを発光半導体装置No.4とした。
[Reference Example 2]
No. Sealing is performed by pouring the addition-type silicone resin composition used in Example 1 into the concave portion of the reflector by potting and heating and curing at 120 ° C. for 1 hour and further at 150 ° C. for 2 hours. (FIG. 4). The light emitting semiconductor device No. It was set to 4.

[実施例2]
フリップチップ方式で素子をリードフレーム上に接合した後(図2)、実施例1で使用した付加型シリコーン樹脂組成物をポッティングによりリフレクターの凹部に流し込み、120℃で1時間、更に150℃で2時間加熱硬化させることで封止した。
得られた発光半導体装置をパーハイドロポリシラザン(アクアミカ)を25質量%含有するテトラブチルエーテル溶液でスプレー塗布した。塗布後、発光半導体装置を200℃で20分処理し、硬化させることでクラックのない透明な酸化ケイ素被膜を形成させた(図5)。膜厚は約1μmであった。これを発光半導体装置No.5とした。
[Example 2]
After the device was bonded on the lead frame by the flip chip method (FIG. 2), the addition type silicone resin composition used in Example 1 was poured into the concave portion of the reflector by potting, and it was then heated at 120 ° C. for 1 hour and further at 150 ° C. for 2 hours. Sealed by heat curing for hours.
The obtained light emitting semiconductor device was spray-coated with a tetrabutyl ether solution containing 25% by mass of perhydropolysilazane (Aquamica). After the application, the light emitting semiconductor device was treated at 200 ° C. for 20 minutes and cured to form a transparent silicon oxide film without cracks (FIG. 5). The film thickness was about 1 μm. The light emitting semiconductor device No. It was set to 5.

[実施例3]
フリップチップ方式で素子をリードフレーム上に接合した後(図2)、実施例1で使用した付加型シリコーン樹脂組成物をポッティングによりリフレクターの凹部に流し込み、120℃で1時間、更に150℃で2時間加熱硬化させることで封止した。
得られた3個の発光半導体装置をセラミックス製実装基板上にハンダを使用し、リフレクターの電極と基板電極を接続させた。その後、パーハイドロポリシラザン(アクアミカ)を25質量%含有するテトラブチルエーテル溶液でスプレー塗布した。塗布後、発光半導体装置を200℃で20分処理し、硬化させることでクラックのない透明な酸化ケイ素被膜を形成させた(図9)。膜厚は約1μmであった。これを発光半導体装置No.6とした。
[Example 3]
After the device was bonded on the lead frame by the flip chip method (FIG. 2), the addition type silicone resin composition used in Example 1 was poured into the concave portion of the reflector by potting, and it was then heated at 120 ° C. for 1 hour and further at 150 ° C. for 2 hours. Sealed by heat curing for hours.
The obtained three light-emitting semiconductor devices were soldered on a ceramic mounting substrate to connect the reflector electrode and the substrate electrode. Thereafter, spray application was performed with a tetrabutyl ether solution containing 25% by mass of perhydropolysilazane (Aquamica). After coating, the light emitting semiconductor device was treated at 200 ° C. for 20 minutes and cured to form a transparent silicon oxide film without cracks (FIG. 9). The film thickness was about 1 μm. The light emitting semiconductor device No. It was set to 6.

[実験例1]
タック性試験
実施例1と比較例1の発光半導体装置No.1とNo.2を用い、シリコーン樹脂表面のタック性を比較した。評価方法は粒度1μmのアルミニウム粉末5gをそれぞれの発光半導体装置上に振りかけて、シリコーン樹脂表面に付着した度合いで行った。
パーハイドロポリシラザン(アクアミカ)で表面に酸化被膜を形成させたNo.1は全くアルミニウム粉末が付着しないのに対し、No.2は表面全体に粉末が付着した。
[Experimental Example 1]
Tack property test The light emitting semiconductor device No. 1 of Example 1 and Comparative Example 1. 1 and No. 2 was used to compare the tackiness of the silicone resin surface. The evaluation method was performed by sprinkling 5 g of aluminum powder having a particle size of 1 μm on each light emitting semiconductor device and adhering it to the surface of the silicone resin.
No. 1 in which an oxide film was formed on the surface with perhydropolysilazane (AQUAMICA). No. 1 has no aluminum powder attached, whereas no. In No. 2, powder adhered to the entire surface.

[実験例2]
耐硫化試験結果
密閉することができるガラス容器(30cm×10cm×15cm)中に実施例1〜3、参考例1,2、比較例1で製造した発光半導体装置、及び硫化アンモニウム40グラムと水40グラムを入れて、室温で48時間放置し、銀メッキ表面の変色状態を観察した。
実施例1〜3、参考例1,2で製造した発光半導体装置No.1、No.3、No.4、No.5、No.6はいずれも銀メッキ表面は全く変色しないが、No.2は黒色に変色していた。
[Experiment 2]
Sulfurization resistance test results Light emitting semiconductor devices manufactured in Examples 1 to 3, Reference Examples 1 and 2, and Comparative Example 1 in a glass container (30 cm × 10 cm × 15 cm) that can be sealed, and 40 grams of ammonium sulfide and 40 water Grams were added and allowed to stand at room temperature for 48 hours, and the discolored state of the silver plating surface was observed.
The light emitting semiconductor devices No. 1 to No. 1 manufactured in Examples 1 to 3 and Reference Examples 1 and 2 were used. 1, no. 3, no. 4, no. 5, no. In all cases, the surface of the silver plating is not discolored at all. 2 turned black.

1 リフレクター
2 リードフレーム
10 発光半導体素子
12 ボール
14 アンダーフィル材
16 酸化ケイ素被膜
18 透明樹脂
20 ダイパッド
22 金線
30 実装基板
32 ハンダ
DESCRIPTION OF SYMBOLS 1 Reflector 2 Lead frame 10 Light emitting semiconductor element 12 Ball 14 Underfill material 16 Silicon oxide film 18 Transparent resin 20 Die pad 22 Gold wire 30 Mounting board 32 Solder

Claims (16)

発光半導体素子用リフレクターに収容された発光半導体素子の電極がリードの電極にフリップチップ方式で接続され、素子とリードフレームとの間隙部がアンダーフィル材で充填硬化され、更に上記発光半導体素子が透明樹脂又は蛍光体を含有する透明樹脂で封止されていると共に、該封止樹脂及びリフレクターの表面を覆ってパーハイドロポリシラザンを150〜250℃の熱をかけて硬化することにより得られた0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜が形成されてなることを特徴とする発光半導体装置。   The electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element is connected to the lead electrode by a flip chip method, the gap between the element and the lead frame is filled and cured with an underfill material, and the light emitting semiconductor element is transparent It was sealed by a transparent resin containing a resin or a phosphor, and obtained by curing perhydropolysilazane by applying heat of 150 to 250 ° C. while covering the surfaces of the sealing resin and the reflector. A light-emitting semiconductor device comprising a 05-10 μm-thick transparent silicon oxide cured film having no cracks. 発光半導体素子用リフレクターに収容され、ダイボンド材でダイパッドに固定された発光半導体素子の電極とリード電極とが導電細線で接続され、更に上記発光半導体素子及び導電細線が透明樹脂又は蛍光体を含有する透明樹脂で封止されていると共に、該封止樹脂及びリフレクターの表面を覆ってパーハイドロポリシラザンを150〜250℃の熱をかけて硬化することにより得られた0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜が形成されてなることを特徴とする発光半導体装置。   The electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element and fixed to the die pad with a die bonding material and the lead electrode are connected by a conductive fine wire, and the light emitting semiconductor element and the conductive thin wire contain a transparent resin or phosphor. A crack having a thickness of 0.05 to 10 μm obtained by curing the perhydropolysilazane by applying heat of 150 to 250 ° C. while being sealed with a transparent resin and covering the surfaces of the sealing resin and the reflector. A light-emitting semiconductor device comprising a transparent silicon oxide cured film having no surface. 透明樹脂が、シリコーン樹脂を30質量%以上含有するものである請求項1又は2記載の発光半導体装置。   The light emitting semiconductor device according to claim 1, wherein the transparent resin contains 30% by mass or more of a silicone resin. 透明樹脂が、熱硬化性エポキシ−シリコーン樹脂組成物の硬化物である請求項3記載の発光半導体装置。   4. The light emitting semiconductor device according to claim 3, wherein the transparent resin is a cured product of a thermosetting epoxy-silicone resin composition. 発光半導体素子用リフレクターに収容された発光半導体素子の電極がリードの電極にフリップチップ方式で接続され、素子とリードフレームとの間隙部がアンダーフィル材で充填硬化され、更に上記発光半導体素子が透明樹脂又は蛍光体を含有する透明樹脂で封止された発光半導体装置が、実装基板上にリード電極を導電接合材料で接合することによって実装されていると共に、実装基板上の装置表面にパーハイドロポリシラザンを150〜250℃の熱をかけて硬化することにより得られた0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜が形成されてなることを特徴とする実装基板。   The electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element is connected to the lead electrode by a flip chip method, the gap between the element and the lead frame is filled and cured with an underfill material, and the light emitting semiconductor element is transparent A light emitting semiconductor device sealed with a transparent resin containing resin or phosphor is mounted on a mounting substrate by bonding a lead electrode with a conductive bonding material, and perhydropolysilazane is mounted on the surface of the device on the mounting substrate. A mounting substrate comprising a 0.05 to 10 μm-thick crack-free transparent silicon oxide cured film obtained by curing with heating at 150 to 250 ° C. 発光半導体素子用リフレクターに収容され、ダイボンド材でダイパッドに固定された発光半導体素子の電極とリード電極とが導電細線で接続され、上記発光半導体素子及び導電細線を透明樹脂又は蛍光体を含有する透明樹脂で封止された発光半導体装置が、実装基板上にリード電極を導電接合材料で接合することによって実装されていると共に、実装基板上の装置表面にパーハイドロポリシラザンを150〜250℃の熱をかけて硬化することにより得られた0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜が形成されてなることを特徴とする実装基板。   The electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element and fixed to the die pad with a die bond material and the lead electrode are connected by a conductive fine wire, and the light emitting semiconductor element and the conductive thin wire are transparent containing a transparent resin or phosphor The light emitting semiconductor device sealed with resin is mounted on the mounting substrate by bonding the lead electrode with a conductive bonding material, and perhydropolysilazane is applied to the surface of the device on the mounting substrate at a temperature of 150 to 250 ° C. A mounting substrate comprising a 0.05 to 10 μm-thick, transparent cracked silicon oxide film obtained by curing over time. 透明樹脂が、シリコーン樹脂を30質量%以上含有するものである請求項5又は6記載の実装基板。   The mounting substrate according to claim 5 or 6, wherein the transparent resin contains 30% by mass or more of a silicone resin. 透明樹脂が、熱硬化性エポキシ−シリコーン樹脂組成物の硬化物である請求項7記載の実装基板。   The mounting substrate according to claim 7, wherein the transparent resin is a cured product of a thermosetting epoxy-silicone resin composition. 発光半導体素子用リフレクターに収容された発光半導体素子の電極をリードの電極にフリップチップ方式で接続し、素子とリードフレームとの間隙部をアンダーフィル材で充填硬化させた後、上記発光半導体素子を透明樹脂又は蛍光体を含有する透明樹脂で封止し、次いで該封止樹脂及びリフレクターの表面を覆ってパーハイドロポリシラザン溶液を噴霧又は注型塗布し、パーハイドロポリシラザンを150〜250℃の熱をかけて硬化させて0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜を形成することを特徴とする発光半導体装置の製造方法。   After connecting the electrode of the light emitting semiconductor element accommodated in the reflector for the light emitting semiconductor element to the electrode of the lead by a flip chip method, filling and curing the gap between the element and the lead frame with an underfill material, the light emitting semiconductor element is Seal with a transparent resin or a transparent resin containing a phosphor, and then spray or cast a perhydropolysilazane solution covering the surface of the sealing resin and reflector, and heat the perhydropolysilazane at 150 to 250 ° C. A method for producing a light-emitting semiconductor device comprising: forming a transparent silicon oxide cured film without cracks having a thickness of 0.05 to 10 μm by being cured. 発光半導体素子用リフレクターに収容され、ダイボンド材でダイパッドに固定された発光半導体素子の電極とリード電極とを導電細線で接続した後、上記発光半導体素子及び導電細線を透明樹脂又は蛍光体を含有する透明樹脂で封止し、次いで該封止樹脂及びリフレクターの表面を覆ってパーハイドロポリシラザン溶液を噴霧又は注型塗布し、パーハイドロポリシラザンを150〜250℃の熱をかけて硬化させて0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜を形成することを特徴とする発光半導体装置の製造方法。   After connecting the electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element and fixed to the die pad with a die bond material and the lead electrode with a conductive thin wire, the light emitting semiconductor element and the conductive thin wire contain a transparent resin or a phosphor. Sealed with a transparent resin, and then sprayed or cast coated with a perhydropolysilazane solution covering the surface of the sealing resin and the reflector, and cured by applying heat of 150 to 250 ° C. A method for producing a light-emitting semiconductor device, comprising forming a transparent silicon oxide cured film having a thickness of 10 μm and no crack. 透明樹脂が、シリコーン樹脂を30質量%以上含有するものである請求項9又は10記載の製造方法。   The manufacturing method according to claim 9 or 10, wherein the transparent resin contains 30% by mass or more of a silicone resin. 透明樹脂が、熱硬化性エポキシ−シリコーン樹脂組成物の硬化物である請求項11記載の製造方法。   The method according to claim 11, wherein the transparent resin is a cured product of a thermosetting epoxy-silicone resin composition. 発光半導体素子用リフレクターに収容された発光半導体素子の電極をリードの電極にフリップチップ方式で接続し、素子とリードフレームとの間隙部をアンダーフィル材で充填硬化させた後、上記発光半導体素子を透明樹脂又は蛍光体を含有する透明樹脂で封止し、得られた発光半導体装置を実装基板上にリード電極を導電接合材料で接合して実装し、次いで実装基板上の装置表面にパーハイドロポリシラザン溶液を噴霧又は注型塗布し、パーハイドロポリシラザンを150〜250℃の熱を加えて硬化させて0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜を形成することを特徴とする実装基板の製造方法。   After connecting the electrode of the light emitting semiconductor element accommodated in the reflector for the light emitting semiconductor element to the electrode of the lead by a flip chip method, filling and curing the gap between the element and the lead frame with an underfill material, the light emitting semiconductor element is Sealing with transparent resin or transparent resin containing phosphor, and mounting the obtained light emitting semiconductor device on the mounting substrate by bonding the lead electrode with a conductive bonding material, then perhydropolysilazane on the device surface on the mounting substrate The solution is sprayed or cast applied, and perhydropolysilazane is cured by applying heat at 150 to 250 ° C. to form a transparent silicon oxide cured film having a thickness of 0.05 to 10 μm without cracks. Manufacturing method of mounting substrate. 発光半導体素子用リフレクターに収容され、ダイボンド材でダイパッドに固定された発光半導体素子の電極とリード電極とを導電細線で接続した後、上記発光半導体素子及び導電細線を透明樹脂又は蛍光体を含有する透明樹脂で封止し、得られた発光半導体装置を実装基板上にリード電極を導電接合材料で接合して実装し、次いで実装基板上の装置表面にパーハイドロポリシラザン溶液を噴霧又は注型塗布し、パーハイドロポリシラザンを150〜250℃の熱を加えて硬化させて0.05〜10μm厚さのクラックのない透明な酸化ケイ素硬化被膜を形成することを特徴とする実装基板の製造方法。   After connecting the electrode of the light emitting semiconductor element housed in the reflector for the light emitting semiconductor element and fixed to the die pad with a die bond material and the lead electrode with a conductive thin wire, the light emitting semiconductor element and the conductive thin wire contain a transparent resin or a phosphor. Seal with transparent resin, mount the resulting light-emitting semiconductor device on the mounting substrate by bonding the lead electrode with conductive bonding material, and then spray or cast the perhydropolysilazane solution on the surface of the device on the mounting substrate. A method for producing a mounting substrate, wherein perhydropolysilazane is cured by applying heat at 150 to 250 ° C. to form a transparent silicon oxide cured film having a thickness of 0.05 to 10 μm without cracks. 透明樹脂が、シリコーン樹脂を30質量%以上含有するものである請求項13又は14記載の製造方法。   The manufacturing method according to claim 13 or 14, wherein the transparent resin contains 30% by mass or more of a silicone resin. 透明樹脂が、熱硬化性エポキシ−シリコーン樹脂組成物の硬化物である請求項15記載の製造方法。   The method according to claim 15, wherein the transparent resin is a cured product of a thermosetting epoxy-silicone resin composition.
JP2013079124A 2013-04-05 2013-04-05 Light-emitting semiconductor device, mounting substrate, and method of manufacturing the same Pending JP2013175751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013079124A JP2013175751A (en) 2013-04-05 2013-04-05 Light-emitting semiconductor device, mounting substrate, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013079124A JP2013175751A (en) 2013-04-05 2013-04-05 Light-emitting semiconductor device, mounting substrate, and method of manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010155362A Division JP2012019062A (en) 2010-07-08 2010-07-08 Light emitting semiconductor device, mounting board, and method for manufacturing the light emitting semiconductor device and the mounting board

Publications (1)

Publication Number Publication Date
JP2013175751A true JP2013175751A (en) 2013-09-05

Family

ID=49268344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013079124A Pending JP2013175751A (en) 2013-04-05 2013-04-05 Light-emitting semiconductor device, mounting substrate, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013175751A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094128A (en) * 2000-09-20 2002-03-29 Stanley Electric Co Ltd Light emitting diode and its manufacturing method
JP2007059419A (en) * 2005-08-22 2007-03-08 Showa Denko Kk Led package with compound semiconductor light emitting element
JP2007517388A (en) * 2003-12-30 2007-06-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Photoelectric module and manufacturing method thereof
JP2009033107A (en) * 2007-07-04 2009-02-12 Nichia Corp Light emitting device
JP2009055006A (en) * 2007-07-27 2009-03-12 Nichia Corp Light emitting device, and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094128A (en) * 2000-09-20 2002-03-29 Stanley Electric Co Ltd Light emitting diode and its manufacturing method
JP2007517388A (en) * 2003-12-30 2007-06-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Photoelectric module and manufacturing method thereof
JP2007059419A (en) * 2005-08-22 2007-03-08 Showa Denko Kk Led package with compound semiconductor light emitting element
JP2009033107A (en) * 2007-07-04 2009-02-12 Nichia Corp Light emitting device
JP2009055006A (en) * 2007-07-27 2009-03-12 Nichia Corp Light emitting device, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2012019062A (en) Light emitting semiconductor device, mounting board, and method for manufacturing the light emitting semiconductor device and the mounting board
JP4872296B2 (en) Silicone rubber-sealed light emitting device and method for manufacturing the light emitting device
JP6213585B2 (en) Semiconductor device member and semiconductor light emitting device
EP2371888B1 (en) Resin composition, reflector for light-emitting semiconductor device, and light-emitting semiconductor unit
JP5526823B2 (en) Optical semiconductor device sealed with silicone resin
JP5552748B2 (en) Curable polysiloxane composition, and cured polysiloxane using the same, optical member, member for aerospace industry, semiconductor light emitting device, lighting device, and image display device
EP2589642B1 (en) Wavelength conversion sheet filled with large amount of phosphor, method of producing light emitting semiconductor device using the sheet, and light emitting semiconductor device
TWI628234B (en) Curable silicone composition and optical semiconductor device
US9117978B2 (en) Thermosetting silicone resin sheet and method for producing the same, and light-emitting apparatus using the thermosetting silicone resin sheet and method for producing the same
TWI621664B (en) Semiconductor device and curable silicone composition for sealing a semiconductor element
WO2006090804A1 (en) Semiconductor light emitting device member, method for manufacturing such semiconductor light emitting device member and semiconductor light emitting device using such semiconductor light emitting device member
JP5760655B2 (en) RESIN PACKAGE FOR SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE HAVING THE RESIN PACKAGE AND METHOD FOR MANUFACTURING THE SAME
KR20130014401A (en) Surface-mount light emitting device
JP5446078B2 (en) SEMICONDUCTOR DEVICE MEMBER, SEMICONDUCTOR DEVICE MEMBER FORMING METHOD AND SEMICONDUCTOR DEVICE MEMBER MANUFACTURING METHOD, SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME, SEMICONDUCTOR DEVICE MEMBER FORMING SOLUTION, AND PHOSPHOR COMPOSITION
US20070298268A1 (en) Encapsulated optoelectronic device
JP2013175751A (en) Light-emitting semiconductor device, mounting substrate, and method of manufacturing the same
JP7003075B2 (en) Wafer-level optical semiconductor device resin composition and wafer-level optical semiconductor device using the composition
JP2013144770A (en) Thermosetting silicone resin composition, molded product formed from the composition, optical semiconductor device, and method of producing the thermosetting silicone resin composition
JP2009188167A (en) Method for manufacturing light-emitting device
TW201409772A (en) Method for making phosphor and a corresponding method for package light emitting diode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520