JP2013175560A - Metal copper film obtained by forming into conductor at 140°c or less, metal copper pattern, and their manufacturing method - Google Patents

Metal copper film obtained by forming into conductor at 140°c or less, metal copper pattern, and their manufacturing method Download PDF

Info

Publication number
JP2013175560A
JP2013175560A JP2012038639A JP2012038639A JP2013175560A JP 2013175560 A JP2013175560 A JP 2013175560A JP 2012038639 A JP2012038639 A JP 2012038639A JP 2012038639 A JP2012038639 A JP 2012038639A JP 2013175560 A JP2013175560 A JP 2013175560A
Authority
JP
Japan
Prior art keywords
copper
bipyridyl
organic compound
compound containing
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012038639A
Other languages
Japanese (ja)
Inventor
Takeo Nakako
偉夫 中子
Yasushi Kamishiro
恭 神代
Takaaki Nodo
高明 納堂
Maki Inada
麻希 稲田
Kyoko Kuroda
杏子 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012038639A priority Critical patent/JP2013175560A/en
Publication of JP2013175560A publication Critical patent/JP2013175560A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a metal copper film obtained by forming a copper-based particle deposition layer into a conductor on a substrate with poor heat resistance, at a low temperature of 140°C or less and a manufacturing method thereof; and a metal copper pattern, and a conductor wiring, a metal copper bump, a heat conduction path and a bonding material using the same.SOLUTION: A metal copper film is obtained by treating a copper-based particle deposition layer in a treatment gas comprising both an organic compound containing phosphorus or nitrogen and formic acid at 120°C or more and 140°C or less. The copper-based particle deposition layer is patterned by printing with a liquid or paste-like copper ink, and the patterned layer is treated in a treatment gas comprising both an organic compound containing phosphorus or nitrogen and formic acid at 120°C or more and 140°C or less to obtain a metal copper pattern.

Description

本発明は、140℃以下の低温で銅系粒子堆積層を導体化して得られる金属銅膜及びその製造方法、金属銅パターン及びそれを用いた導体配線、金属銅バンプ、熱伝導路、接合材に関する。   The present invention relates to a metal copper film obtained by making a copper-based particle deposition layer into a conductor at a low temperature of 140 ° C. or less, a method for producing the same, a metal copper pattern, a conductor wiring using the same, a metal copper bump, a heat conduction path, and a bonding material About.

金属銅は高い電気伝導性と熱伝導性を有し、導体配線材料、熱伝達材料、熱交換材料、放熱材料として広く用いられている。これらの目的に用いられる銅のパターンを低コストで簡便に形成する手法として、銅インクを印刷により基板上に形成し、導体化処理により銅インクを銅に転換する方法が検討されている。
銅インクの導体化手法として、ギ酸ガス中での加熱処理が有効であることが報告されている(特許文献1)。本手法では200℃以下の処理温度で、低抵抗の導体層を生成する特徴がある。本手法では120℃以上で導体化が進行するとされており、比較例1に示したように確かに130℃や130℃でも120分で銅インクの変色が生じ反応が生じていることが分かるが導通は得られず、140℃以下の低温で60分以下の短時間での導体化処理に課題があった。なお、140℃以下、短時間での導体化が可能となれば、ポリエチレンテレフタレート(PET)などの耐熱性に乏しい廉価なフィルム上への銅インクの適用が可能となる。
Metallic copper has high electrical conductivity and thermal conductivity, and is widely used as a conductor wiring material, a heat transfer material, a heat exchange material, and a heat dissipation material. As a technique for easily and inexpensively forming a copper pattern used for these purposes, a method of forming a copper ink on a substrate by printing and converting the copper ink to copper by a conductor treatment has been studied.
It has been reported that heat treatment in formic acid gas is effective as a copper ink conductor method (Patent Document 1). This method is characterized by generating a low-resistance conductor layer at a processing temperature of 200 ° C. or lower. In this method, it is said that conductorization proceeds at 120 ° C. or higher, and as shown in Comparative Example 1, it can be seen that even at 130 ° C. or 130 ° C., the discoloration of the copper ink occurs and the reaction occurs in 120 minutes. There was no continuity, and there was a problem in the conductorization treatment in a short time of 60 minutes or less at a low temperature of 140 ° C. or less. If the conductor can be formed in a short time at 140 ° C. or less, the copper ink can be applied to an inexpensive film having poor heat resistance such as polyethylene terephthalate (PET).

国際公開第11/034016号パンフレットInternational Publication No. 11/034016 Pamphlet

本発明は、上記に鑑み、PETなどの耐熱性に乏しい基板上に銅インクにより印刷された層を基板にダメージを与えない低温、短時間で処理して低抵抗の金属銅に転換する方法及びPETなどの耐熱性に乏しい基板上に印刷で形成された金属銅パターンを有する積層体を提供する。すなわち、140℃以下の低温で銅系粒子堆積層を導体化して得られる金属銅膜及びその製造方法、金属銅パターン及びそれを用いた導体配線、金属銅バンプ、熱伝導路、接合材を提供する。   In view of the above, the present invention is a method of converting a layer printed with copper ink on a substrate having poor heat resistance such as PET into copper metal having low resistance by treating the layer at a low temperature and in a short time without damaging the substrate, and Provided is a laminate having a metal copper pattern formed by printing on a substrate having poor heat resistance such as PET. That is, a metal copper film obtained by making a copper-based particle deposition layer into a conductor at a low temperature of 140 ° C. or less, a manufacturing method thereof, a metal copper pattern, a conductor wiring using the metal copper bump, a heat conduction path, and a bonding material are provided. To do.

発明者らは、銅インクのガス中での加熱による導体化処理において、140℃以下で導体化を可能とする活性の高いガス成分に関し鋭意検討をおこない、140℃以下で60分以内に導体化できることを見出し本発明に達した。
本発明は、[1] 銅系粒子堆積層を、リンを含有する有機化合物又は窒素を含有する有機化合物、及びギ酸をともに含む処理ガス中、120℃以上、140℃以下で処理してなることを特徴とする金属銅膜に関する。
また、本発明は、[2] 窒素を含有する有機化合物が、窒素の複素環状構造を含む有機化合物であることを特徴とする上記[1]に記載の金属銅膜に関する。
また、本発明は、[3] 窒素の複素環状構造を含む有機化合物が、2,2´−ビピリジル、2,3´−ビピリジル、ピリジン、6−メチル−2,2´−ビピリジル、6,6´−ジメチル−2,2´−ビピリジル、5,5´−ジメチル−2,2´−ビピリジル、4,4´−ジメチル−2,2´−ビピリジル、6−ブロモ−2,2´−ビピリジル、4,4´−ジメトキシ−2,2´-ビピリジル、4,5−ジアザフルオレン,2,2´:6´,2″−ターピリジン、2−(2−ピリジニル)キノリン、2−メチルピリジン、4−メチルピリジン、2−メトキシピリジン、3−メトキシピリジン、4−メトキシピリジン、2,6−ジメトキシピリジン、2−クロロピリジン、3−クロロピリジン、4−クロロピリジン、2−フロロピリジン、3−フロロピリジン、4−フロロピリジン、2−ブロモピリジン、3−ブロモピリジン、4−ブロモピリジン、2−フェニルピリジン、3−フェニルピリジン、4−フェニルピリジン、5−メチルピリジン−3−カルボニトリル、2,4−ルチジン、ピリダジン、ピリミジン、キナゾリン、2,2´−ビピリミジン、ピラジン、キノキサリン、フタラジン、シンノリン、キナゾリン、1,10−フェナントロリン、4,7−フェナントロリン、1,7−フェナントロリン、キノリン、イソキノリン、ベンゾキノリン、アクリジン、ナフチリジンの群から選ばれる一つ以上である上記[2]に記載の金属銅膜に関する。
また、本発明は、[4] リンを含有する有機化合物が、トリフェニルホスフィン、メチルジフェニルホスフィン、ジメチルフェニルホスフィン、トリストリメチルフェニルホスフィン、トリス(4−トリフルオロメチルフェニル)ホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン、トリス[3,5−ビス(トリフルオロメチル)フェニル]ホスフィン、2,4,6−トリ−t−ブチル−ホスフィニン、2,6−ジフェニルホスフィニン、フェニルホスフィン、ジフェニルホスフィンの群から選ばれる一つ以上である上記[1]から[3]のいずれかに記載の金属銅膜に関する。
また、本発明は、[5] 前記銅系粒子堆積層を構成する銅系粒子が、酸化第二銅、酸化第一銅、又は金属銅のいずれか一つ以上である上記[1]から[4]のいずれかに記載の金属銅膜に関する。
The inventors have conducted intensive studies on highly active gas components that enable conductorization at 140 ° C. or lower in the conductor treatment by heating copper ink in gas, and made conductor within 60 minutes at 140 ° C. or lower. We have found that we have achieved the present invention.
In the present invention, [1] a copper-based particle deposition layer is processed at 120 ° C. or higher and 140 ° C. or lower in a processing gas containing an organic compound containing phosphorus or an organic compound containing nitrogen and formic acid. The present invention relates to a metal copper film characterized by
The present invention also relates to [2] the copper metal film according to the above [1], wherein the organic compound containing nitrogen is an organic compound containing a heterocyclic structure of nitrogen.
In the present invention, [3] the organic compound containing a heterocyclic structure of nitrogen is 2,2′-bipyridyl, 2,3′-bipyridyl, pyridine, 6-methyl-2,2′-bipyridyl, 6,6 '-Dimethyl-2,2'-bipyridyl, 5,5'-dimethyl-2,2'-bipyridyl, 4,4'-dimethyl-2,2'-bipyridyl, 6-bromo-2,2'-bipyridyl, 4,4'-dimethoxy-2,2'-bipyridyl, 4,5-diazafluorene, 2,2 ': 6', 2 "-terpyridine, 2- (2-pyridinyl) quinoline, 2-methylpyridine, 4 -Methylpyridine, 2-methoxypyridine, 3-methoxypyridine, 4-methoxypyridine, 2,6-dimethoxypyridine, 2-chloropyridine, 3-chloropyridine, 4-chloropyridine, 2-fluoropyridine, 3-fluoropyridi 4-fluoropyridine, 2-bromopyridine, 3-bromopyridine, 4-bromopyridine, 2-phenylpyridine, 3-phenylpyridine, 4-phenylpyridine, 5-methylpyridine-3-carbonitrile, 2,4- Lutidine, pyridazine, pyrimidine, quinazoline, 2,2′-bipyrimidine, pyrazine, quinoxaline, phthalazine, cinnoline, quinazoline, 1,10-phenanthroline, 4,7-phenanthroline, 1,7-phenanthroline, quinoline, isoquinoline, benzoquinoline, The metal copper film according to [2], which is one or more selected from the group of acridine and naphthyridine.
In the present invention, [4] the organic compound containing phosphorus is triphenylphosphine, methyldiphenylphosphine, dimethylphenylphosphine, tristrimethylphenylphosphine, tris (4-trifluoromethylphenyl) phosphine, tris (2,6 -Dimethoxyphenyl) phosphine, tris [3,5-bis (trifluoromethyl) phenyl] phosphine, 2,4,6-tri-t-butyl-phosphine, 2,6-diphenylphosphine, phenylphosphine, diphenylphosphine The metal copper film according to any one of [1] to [3], which is one or more selected from the group of
Moreover, this invention is [5] Said [1] to [1] whose copper type particles which constitute the above-mentioned copper type particle deposition layer are any one or more of cupric oxide, cuprous oxide, or metallic copper. 4]. The metal copper film according to any one of 4).

さらに、本発明は、[6] 銅系粒子堆積層が、液状あるいはペースト状の銅インクの印刷によりパターニングされており、該パターニングされた層に対し、リンを含有する有機化合物又は窒素を含有する有機化合物、及びギ酸をともに含む処理ガス中、120℃以上、140℃以下で処理して得られる金属銅パターンに関する。
また、本発明は、[7] 前記銅系粒子堆積層のパターニングに用いられる印刷法が、インクジェット印刷、スーパーインクジェット印刷、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、及びグラビアコータからなる群より選択されるいずれか1種である上記[6]に記載の金属銅パターンに関する。
Further, according to the present invention, [6] the copper-based particle deposition layer is patterned by printing a liquid or paste-like copper ink, and the patterned layer contains an organic compound containing nitrogen or nitrogen. The present invention relates to a metal copper pattern obtained by processing at 120 ° C. or higher and 140 ° C. or lower in a processing gas containing both an organic compound and formic acid.
The present invention also provides [7] The printing method used for patterning the copper-based particle deposition layer is ink jet printing, super ink jet printing, screen printing, transfer printing, offset printing, jet printing method, dispenser, needle dispenser, comma coater The metal copper pattern according to [6], which is any one selected from the group consisting of a slit coater, a die coater, and a gravure coater.

さらに、本発明は、[8] 上記[6]又は[7]に記載の金属銅パターンを用いた導体配線に関する。
また、本発明は、[9] 上記[6]又は[7]に記載の金属銅パターンを用いた金属銅バンプに関する。
また、本発明は、[10] 上記[6]又は[7]に記載の金属銅パターンを用いた熱伝導路に関する。
また、本発明は、[11] 上記[6]又は[7]に記載の金属銅パターンを用いた接合材に関する。
Furthermore, the present invention relates to [8] a conductor wiring using the metal copper pattern according to [6] or [7].
The present invention also relates to [9] a metal copper bump using the metal copper pattern according to [6] or [7].
[10] The present invention also relates to a heat conduction path using the metal copper pattern according to [6] or [7].
The present invention also relates to [11] a bonding material using the metal copper pattern according to [6] or [7].

さらに、本発明は、[12] 銅系粒子堆積層を、リンを含有する有機化合物又は窒素を含有する有機化合物、及びギ酸をともに含む処理ガス中、120℃以上、140℃以下で処理して金属銅膜とすることを特徴とする金属銅膜の製造方法に関する。
また、本発明は、[13] 窒素を含有する有機化合物が、窒素の複素環状構造を含む有機化合物である上記[12]に記載の金属銅膜の製造方法に関する。
また、本発明は、[14] 窒素の複素環状構造を含む有機化合物が、2,2´−ビピリジル、2,3´−ビピリジル、ピリジン、6−メチル−2,2´−ビピリジル、6,6´−ジメチル−2,2´−ビピリジル、5,5´−ジメチル−2,2´-ビピリジル、4,4´−ジメチル−2,2´−ビピリジル、6−ブロモ−2,2´−ビピリジル、4,4´−ジメトキシ−2,2´-ビピリジル、4,5−ジアザフルオレン,2,2´:6´,2″−ターピリジン、2−(2−ピリジニル)キノリン、2−メチルピリジン、4−メチルピリジン、2−メトキシピリジン、3−メトキシピリジン、4−メトキシピリジン、2,6−ジメトキシピリジン、2−クロロピリジン、3−クロロピリジン、4−クロロピリジン、2−フロロピリジン、3−フロロピリジン、4−フロロピリジン、2−ブロモピリジン、3−ブロモピリジン、4−ブロモピリジン、2−フェニルピリジン、3−フェニルピリジン、4−フェニルピリジン、5−メチルピリジン−3−カルボニトリル、2,4−ルチジン、ピリダジン、ピリミジン、キナゾリン、2,2´−ビピリミジン、ピラジン、キノキサリン、フタラジン、シンノリン、キナゾリン、1,10−フェナントロリン、4,7−フェナントロリン、1,7−フェナントロリン、キノリン、イソキノリン、ベンゾキノリン、アクリジン、ナフチリジンの群から選ばれる一つ以上である上記[13]に記載の金属銅膜の製造方法に関する。
また、本発明は、[15] リンを含有する有機化合物が、トリフェニルホスフィン、メチルジフェニルホスフィン、ジメチルフェニルホスフィン、トリストリメチルフェニルホスフィン、トリス(4−トリフルオロメチルフェニル)ホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン、トリス[3,5−ビス(トリフルオロメチル)フェニル]ホスフィン、2,4,6−トリ−t−ブチル−ホスフィニン、2,6−ジフェニルホスフィニン、フェニルホスフィン、ジフェニルホスフィンの群から選ばれる一つ以上である上記[12]から[14]のいずれかに記載の金属銅膜の製造方法に関する。
また、本発明は、[16] 処理ガス中のリンを含有する有機化合物又は窒素を含有する有機化合物が、ギ酸に対し0.1mol%以上、40mol%以下である上記[12]から[15]のいずれかに記載の金属銅膜の製造方法に関する。
Furthermore, the present invention provides [12] treating the copper-based particle deposition layer at a temperature of 120 ° C. or higher and 140 ° C. or lower in a processing gas containing an organic compound containing phosphorus or an organic compound containing nitrogen and formic acid. The present invention relates to a method for producing a metal copper film, characterized in that the metal copper film is used.
The present invention also relates to [13] the method for producing a metallic copper film according to [12], wherein the organic compound containing nitrogen is an organic compound containing a heterocyclic structure of nitrogen.
In the present invention, [14] the organic compound containing a heterocyclic structure of nitrogen is 2,2′-bipyridyl, 2,3′-bipyridyl, pyridine, 6-methyl-2,2′-bipyridyl, 6,6 '-Dimethyl-2,2'-bipyridyl, 5,5'-dimethyl-2,2'-bipyridyl, 4,4'-dimethyl-2,2'-bipyridyl, 6-bromo-2,2'-bipyridyl, 4,4'-dimethoxy-2,2'-bipyridyl, 4,5-diazafluorene, 2,2 ': 6', 2 "-terpyridine, 2- (2-pyridinyl) quinoline, 2-methylpyridine, 4 -Methylpyridine, 2-methoxypyridine, 3-methoxypyridine, 4-methoxypyridine, 2,6-dimethoxypyridine, 2-chloropyridine, 3-chloropyridine, 4-chloropyridine, 2-fluoropyridine, 3-fluoropyridi 4-fluoropyridine, 2-bromopyridine, 3-bromopyridine, 4-bromopyridine, 2-phenylpyridine, 3-phenylpyridine, 4-phenylpyridine, 5-methylpyridine-3-carbonitrile, 2,4 -Lutidine, pyridazine, pyrimidine, quinazoline, 2,2'-bipyrimidine, pyrazine, quinoxaline, phthalazine, cinnoline, quinazoline, 1,10-phenanthroline, 4,7-phenanthroline, 1,7-phenanthroline, quinoline, isoquinoline, benzoquinoline , A method for producing a metallic copper film according to the above [13], which is one or more selected from the group consisting of acridine and naphthyridine.
In the present invention, the organic compound containing [15] phosphorus is triphenylphosphine, methyldiphenylphosphine, dimethylphenylphosphine, tristrimethylphenylphosphine, tris (4-trifluoromethylphenyl) phosphine, tris (2,6 -Dimethoxyphenyl) phosphine, tris [3,5-bis (trifluoromethyl) phenyl] phosphine, 2,4,6-tri-t-butyl-phosphine, 2,6-diphenylphosphine, phenylphosphine, diphenylphosphine The method for producing a copper metal film according to any one of [12] to [14], which is at least one selected from the group of
The present invention also provides [16] The above [12] to [15], wherein the organic compound containing phosphorus or the organic compound containing nitrogen in the processing gas is 0.1 mol% or more and 40 mol% or less with respect to formic acid. The manufacturing method of the metal copper film | membrane in any one of.

本発明によれば、PET等の基板の耐熱性が140℃以下の汎用基板上に形成された銅インクを、基板のそり、収縮、白濁などの熱ダメージ無く導体化することができる。   According to the present invention, copper ink formed on a general-purpose substrate having a heat resistance of a substrate such as PET of 140 ° C. or less can be made into a conductor without thermal damage such as warpage, shrinkage, and cloudiness of the substrate.

本発明の金属銅膜は、基板上に印刷された銅インクを、リンを含有する有機化合物又は窒素を含有する有機化合物と、ギ酸をともに含む処理ガス雰囲気下120℃以上に加熱処理してなることを特徴としている。処理ガス中にリンを含有する有機化合物あるいは窒素を含有する有機化合物を、ギ酸と混合することにより、酸化銅から金属銅への還元反応の活性が向上し、反応時間の短縮、反応温度の140℃以下への低温化が可能になる。
以下に本発明の金属銅膜及びその製造方法についてそれぞれを交えて説明する。
The metal copper film of the present invention is obtained by heat-treating a copper ink printed on a substrate at 120 ° C. or higher in a processing gas atmosphere containing an organic compound containing phosphorus or an organic compound containing nitrogen and formic acid. It is characterized by that. By mixing an organic compound containing phosphorus or nitrogen in the process gas with formic acid, the activity of the reduction reaction from copper oxide to metallic copper is improved, the reaction time is shortened, and the reaction temperature is 140. The temperature can be lowered to below ℃.
The metal copper film of the present invention and the manufacturing method thereof will be described below together.

(導体化処理)
(処理ガス)
酸化銅から金属銅への還元反応を行う処理ガスとしては、ギ酸と、リンあるいは窒素を含有する有機化合物を共に含んだガスを用いる。
窒素を含有する有機化合物としては、窒素の複素環状構造を含む有機化合物が好ましく、中でも導体化処理温度で昇華等によりガス化するものが好ましい。このような化合物としては、2,2´−ビピリジル、6−メチル−2,2´−ビピリジル、6,6´−ジメチル−2,2´−ビピリジル、5,5´−ジメチル−2,2´−ビピリジル、4,4´−ジメチル−2,2´−ビピリジル、6−ブロモ−2,2´−ビピリジル、4,4´−ジメトキシ−2,2´−ビピリジル、2,3´−ビピリジル、4,5−ジアザフルオレン、2,2´:6´,2″−ターピリジン、2,2´−ビピリミジンなどのビピリジルやターピリジン類、ピリジン、2−メチルピリジン、4−メチルピリジン、2,4−ルチジン、2−メトキシピリジン、3−メトキシピリジン、4−メトキシピリジン、2,6−ジメトキシピリジン、2−クロロピリジン、3−クロロピリジン、4−クロロピリジン、2−フロロピリジン、3−フロロピリジン、4−フロロピリジン、2−ブロモピリジン、3−ブロモピリジン、4−ブロモピリジン、2−フェニルピリジン、3−フェニルピリジン、4−フェニルピリジン、2,6−ジフェニルピリジン、5−メチルピリジン−3−カルボニトリルなどのピリジン類;キノリン、イソキノリン、ベンゾキノリン、2−(2−ピリジニル)キノリンなどのキノリン類;ピリダジン、ピリミジン、ピラジンなどのジアジン類;キノキサリン、フタラジン、キナゾリン、シンノリンなどのキノキサリン類;1,10−フェナントロリン、4,7−フェナントロリン、1,7−フェナントロリンなどのフェナントロリン類;トリアジン、アクリジン、ナフチリジン、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、ピロール、インドール、プリンが挙げられる。
(Conductor treatment)
(Processing gas)
As a processing gas for performing a reduction reaction from copper oxide to metallic copper, a gas containing both formic acid and an organic compound containing phosphorus or nitrogen is used.
As the organic compound containing nitrogen, an organic compound containing a heterocyclic structure of nitrogen is preferable, and those which are gasified by sublimation or the like at a conductorization temperature are preferable. Such compounds include 2,2'-bipyridyl, 6-methyl-2,2'-bipyridyl, 6,6'-dimethyl-2,2'-bipyridyl, 5,5'-dimethyl-2,2 '. -Bipyridyl, 4,4'-dimethyl-2,2'-bipyridyl, 6-bromo-2,2'-bipyridyl, 4,4'-dimethoxy-2,2'-bipyridyl, 2,3'-bipyridyl, 4 , 5-diazafluorene, 2,2 ': 6', 2 "-terpyridine, bipyridyl and terpyridines such as 2,2'-bipyrimidine, pyridine, 2-methylpyridine, 4-methylpyridine, 2,4-lutidine 2-methoxypyridine, 3-methoxypyridine, 4-methoxypyridine, 2,6-dimethoxypyridine, 2-chloropyridine, 3-chloropyridine, 4-chloropyridine, 2-fluoropyridine, 3-fluoropyridine Pyridine, 4-fluoropyridine, 2-bromopyridine, 3-bromopyridine, 4-bromopyridine, 2-phenylpyridine, 3-phenylpyridine, 4-phenylpyridine, 2,6-diphenylpyridine, 5-methylpyridine-3 Pyridines such as carbonitrile; quinolines such as quinoline, isoquinoline, benzoquinoline, 2- (2-pyridinyl) quinoline; diazines such as pyridazine, pyrimidine, pyrazine; quinoxalines such as quinoxaline, phthalazine, quinazoline, cinnoline; Phenanthrolines such as 1,10-phenanthroline, 4,7-phenanthroline, 1,7-phenanthroline; triazine, acridine, naphthyridine, benzoxazole, benzothiazole, carbazole, pyrrole, indole, Phosphorus and the like.

リンを含有する有機化合物としては、導体化処理温度で昇華等によりガス化するものが好ましい。このような化合物としては、トリフェニルホスフィン、メチルジフェニルホスフィン、ジメチルフェニルホスフィン、トリストリメチルフェニルホスフィン、トリス(4−トリフルオロメチルフェニル)ホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン、トリス[3,5−ビス(トリフルオロメチル)フェニル]ホスフィン、2,4,6−トリ−t−ブチル−ホスフィニン、2,6−ジフェニルホスフィニン、フェニルホスフィン、ジフェニルホスフィンなどが挙げられる。   As the organic compound containing phosphorus, those which are gasified by sublimation or the like at a conductorization treatment temperature are preferable. Such compounds include triphenylphosphine, methyldiphenylphosphine, dimethylphenylphosphine, tristrimethylphenylphosphine, tris (4-trifluoromethylphenyl) phosphine, tris (2,6-dimethoxyphenyl) phosphine, tris [3, 5-bis (trifluoromethyl) phenyl] phosphine, 2,4,6-tri-t-butyl-phosphine, 2,6-diphenylphosphine, phenylphosphine, diphenylphosphine and the like.

ギ酸及び、含窒素有機化合物又はリンを含有する有機化合物の導入方法は、処理槽内の処理ガス濃度がそれぞれ所定の濃度となる方法であれば良い。ガスとして処理槽に導入する方法としては、ギ酸及び、含窒素有機化合物又はリンを含有する有機化合物をキャリヤガスに混合、加熱又は減圧によるガス化、あるいはこれらを組み合わせてガス状にした後、処理槽内に導入する方法がある。液体として処理槽に導入する方法としては、送液ポンプ、シリンジポンプ等流量の制御できる送液装置にて処理槽にギ酸及び、含窒素有機化合物又はリンを含有する有機化合物を導入し、加熱した処理槽内でガス化させても良い。なお、ギ酸と、含窒素有機化合物又はリンを含有する有機化合物をあらかじめ混合して導入しても良いし、別々に導入しても良い。ただし、ギ酸と、含窒素有機化合物又はリンを含有する有機化合物が反応し気化しにくくなる場合には別々に処理槽へ導入することが好ましい。
また、リンあるいは窒素を含有する有機化合物が常圧では気化しにくい場合には、ガス化の目的のため減圧下で処理しても良い。
The method for introducing the formic acid and the organic compound containing nitrogen-containing organic compound or phosphorus may be any method in which the processing gas concentration in the processing tank becomes a predetermined concentration. As a method of introducing the gas into the treatment tank, formic acid and a nitrogen-containing organic compound or phosphorus-containing organic compound are mixed with a carrier gas, gasified by heating or decompression, or combined to form a gas and then treated. There is a method to introduce into the tank. As a method of introducing into the treatment tank as a liquid, a formic acid and a nitrogen-containing organic compound or an organic compound containing phosphorus were introduced into the treatment tank and heated by a liquid feeding device capable of controlling the flow rate such as a liquid feeding pump and a syringe pump. You may gasify in a processing tank. Note that formic acid and a nitrogen-containing organic compound or an organic compound containing phosphorus may be mixed and introduced in advance, or may be introduced separately. However, when formic acid reacts with a nitrogen-containing organic compound or an organic compound containing phosphorus and is difficult to vaporize, it is preferably introduced separately into the treatment tank.
In addition, when an organic compound containing phosphorus or nitrogen is difficult to vaporize at normal pressure, it may be treated under reduced pressure for the purpose of gasification.

(処理条件)
リン又は窒素を含有する有機化合物の濃度の下限は、十分な導体化処理活性が得られる濃度以上であればよい。また、リン又は窒素を含有する有機化合物の濃度の上限は、導体化処理後の導体層への残留の観点から、十分な導体化処理活性が得られる濃度範囲で少ないほど良い。なお最適な濃度は、リン又は窒素を含有する有機化合物の種類、処理温度、ギ酸濃度、処理雰囲気の圧力、処理される銅インクの量に影響される。通常、処理雰囲気中のギ酸に対して0.1mol%以上、40mol%以下が好ましく、0.5mol%以上、10mol%以下がより好ましく、1mol%以上、5mol%以下がさらに好ましい。この範囲は、窒素を含有する有機化合物として、2,2´−ビピリジルを用いた場合に特に好ましい。
処理温度は、120℃以上が好ましく、十分な反応速度を得る点から130℃以上がより好ましい。処理温度の上限は基板の耐熱温度により規定され、150℃以下であればPET基板への適用が可能となる。処理温度の上限は、耐熱性に乏しい基板上に銅インクにより金属銅膜や金属銅パターンを形成する観点から140℃以下とする。
処理時間は、処理される銅インクの量に依存するが、通常5分以上、60分以下である。
(Processing conditions)
The minimum of the density | concentration of the organic compound containing phosphorus or nitrogen should just be more than the density | concentration from which sufficient conductorization process activity is obtained. Moreover, the upper limit of the density | concentration of the organic compound containing phosphorus or nitrogen is so good that it is small in the density | concentration range from which sufficient conductorization process activity is obtained from a viewpoint of the residual to the conductor layer after conductorization process. The optimum concentration is influenced by the type of organic compound containing phosphorus or nitrogen, the processing temperature, the formic acid concentration, the pressure of the processing atmosphere, and the amount of copper ink to be processed. Usually, 0.1 mol% or more and 40 mol% or less are preferable with respect to formic acid in the treatment atmosphere, 0.5 mol% or more and 10 mol% or less are more preferable, and 1 mol% or more and 5 mol% or less are more preferable. This range is particularly preferable when 2,2′-bipyridyl is used as the organic compound containing nitrogen.
The treatment temperature is preferably 120 ° C. or higher, and more preferably 130 ° C. or higher from the viewpoint of obtaining a sufficient reaction rate. The upper limit of the processing temperature is defined by the heat-resistant temperature of the substrate, and if it is 150 ° C. or lower, it can be applied to a PET substrate. The upper limit of the processing temperature is 140 ° C. or less from the viewpoint of forming a metal copper film or a metal copper pattern with a copper ink on a substrate having poor heat resistance.
The treatment time depends on the amount of copper ink to be treated, but is usually from 5 minutes to 60 minutes.

(銅系粒子堆積層)
銅系粒子堆積層は、銅酸化物と、金属状の遷移金属若しくは合金、又は金属元素を含む遷移金属錯体とを共に含有してなる層であり、本発明においては、ギ酸を含む有機化合物により処理する前に形成される層である。
すなわち、銅系粒子堆積層は、酸化第一銅、酸化第二銅、金属銅、金属銅合金のいずれか一つ以上からなる粒子の堆積層である。粒子堆積層に酸化銅(酸化第一銅、酸化第二銅、これらの混合物)と金属銅成分を含む場合、金属銅成分が銅の還元触媒として働き導体化処理にかかる時間を短縮することができる。
前記遷移金属、合金、又は金属錯体は、それぞれ、Cu、Pd、Pt、Ni、Ag、Au、及びRhからなる群より選択される金属、これらの金属を含む合金、又はこれらの金属元素を含む遷移金属錯体である。
このような触媒作用を目的とした金属銅成分は、全銅系粒子中の1質量%以上であれば効果が期待でき、好ましくは3質量%以上、より好ましくは5質量%以上である。
本発明で使用される銅系粒子は、周囲が酸化物であるコアシェル金属粒子やそのほとんどすべてが酸化物である(例えば酸化銅)粒子であってもよく、1種を単独で又は2種以上を組み合わせて使用することができる。粒子形状は特に制限されず、略球状、扁平状、針状、ブロック状、板状、及び鱗片状等が挙げられる。中でも分散性の観点から、略球状、針状、及びブロック状の少なくとも1種であることが好ましい。粒子径は特に制限されないが、一次粒子の数平均粒子径が1nm〜50μmであることが好ましく、処理速度を速める観点から、1nm〜5μmであることがより好ましく、基板との接着性の観点から、10nm〜1μmであることがさらに好ましい。なお、粒子径は、走査型電子顕微鏡を用いた観察により測定することができる。
銅系粒子を液状あるいはペースト状の銅インクとするため、銅系粒子を溶媒に分散して用いる。
銅系粒子の含有率は、例えば1〜95質量%とすることができ、20〜80質量%であることがより好ましい。
(Copper particle deposition layer)
The copper-based particle deposition layer is a layer containing both a copper oxide and a metal-like transition metal or alloy, or a transition metal complex containing a metal element, and in the present invention, an organic compound containing formic acid is used. It is a layer formed before processing.
That is, the copper-based particle deposition layer is a particle deposition layer made of any one or more of cuprous oxide, cupric oxide, metallic copper, and metallic copper alloy. When the particle deposition layer contains copper oxide (cuprous oxide, cupric oxide, or a mixture thereof) and a metallic copper component, the metallic copper component can act as a copper reduction catalyst and reduce the time required for the conductor treatment. it can.
The transition metal, alloy, or metal complex includes a metal selected from the group consisting of Cu, Pd, Pt, Ni, Ag, Au, and Rh, an alloy containing these metals, or these metal elements, respectively. It is a transition metal complex.
The effect of such a metallic copper component for the purpose of catalysis can be expected if it is 1% by mass or more in the total copper-based particles, preferably 3% by mass or more, and more preferably 5% by mass or more.
The copper-based particles used in the present invention may be core-shell metal particles whose periphery is an oxide, or particles almost all of which are oxides (for example, copper oxide), and may be used alone or in combination of two or more. Can be used in combination. The particle shape is not particularly limited, and examples thereof include a substantially spherical shape, a flat shape, a needle shape, a block shape, a plate shape, and a scale shape. Among these, from the viewpoint of dispersibility, at least one of a substantially spherical shape, a needle shape, and a block shape is preferable. The particle diameter is not particularly limited, but the number average particle diameter of the primary particles is preferably 1 nm to 50 μm, more preferably 1 nm to 5 μm from the viewpoint of increasing the processing speed, and from the viewpoint of adhesiveness to the substrate. More preferably, it is 10 nm-1 micrometer. The particle diameter can be measured by observation using a scanning electron microscope.
In order to make the copper-based particles into a liquid or paste-like copper ink, the copper-based particles are dispersed in a solvent and used.
The content rate of copper-type particle | grains can be 1-95 mass%, for example, and it is more preferable that it is 20-80 mass%.

銅系粒子を溶媒に分散させることで、印刷法に適用可能なインクを得る場合、二次凝集体などを含めた平均体積粒径が500nm以下であることが好ましい。平均体積粒径が500nm以下であると、例えばインクジェット印刷法ではノズルの目詰まりなどの不具合が発生しにくく、より好ましい。体積粒径が500nm以上の粒子があっても良いが、最大体積粒径は2μm以下であるとインクジェット印刷での目詰まりの発生等がなく好ましい。   When an ink applicable to a printing method is obtained by dispersing copper-based particles in a solvent, the average volume particle size including secondary aggregates is preferably 500 nm or less. When the average volume particle size is 500 nm or less, for example, in the ink jet printing method, problems such as nozzle clogging hardly occur, which is more preferable. Although particles having a volume particle diameter of 500 nm or more may be present, it is preferable that the maximum volume particle diameter is 2 μm or less because clogging does not occur in ink jet printing.

銅インクは、銅系粒子を分散媒に分散させ液状あるいはペースト状のインクとする。前記分散媒は少なくとも1種の溶媒を含むことが好ましい。前記溶媒としては25℃における蒸気圧が1.34×10Pa未満であることが好ましく、1.0×10Pa未満であることがより好ましい。
このような溶媒としては、例えば以下に示すものが挙げられる。すなわち、ノナン、デカン、ドデカン、テトラデカン等の脂肪族炭化水素系溶剤;エチルベンゼン、アニソール、メシチレン、ナフタレン、シクロヘキシルベンゼン、ジエチルベンゼン、フェニルアセトニトリル、ベンゾニトリル等の芳香族炭化水素系溶剤;酢酸イソブチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン、グリコールスルファイト、乳酸エチル等のエステル系溶剤;1−ブタノール、シクロヘキサノール、α−テルピネオール、グリセリンなどのアルコ−ル系溶剤;シクロヘキサノン、2−ヘキサノン、2−ヘプタノン、2−オクタノン、1,3−ジオキソラン−2−オン、1,5,5−トリメチルシクロヘキセン−3−オン等のケトン系溶剤;ジエチレングリコールエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールプロピルエーテルアセテート、ジエチレングリコールイソプロピルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジエチレングリコール−t−ブチルエーテルアセテート、トリエチレングリコールメチルエーテルアセテート、トリエチレングリコールエチルエーテルアセテート、トリエチレングリコールプロピルエーテルアセテート、トリエチレングリコールイソプロピルエーテルアセテート、トリエチレングリコールブチルエーテルアセテート、トリエチレングリコール−t−ブチルエーテルアセテート、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノブチルエーテル等のアルキレングリコール系溶剤;ジヘキシルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル等のエーテル系溶剤;プロピレンカーボネート、エチレンカーボネート等のカーボネート系溶剤;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンなどのアミド系溶剤;スルホラン等のスルホン系溶剤;マロノニトリルなどのニトリル系溶剤が例示できる。中でも、γ−ブチロラクトン、N−メチルピロリドン、グリコールスルファイト、プロピレンカーボネート、及びスルホランから選ばれる少なくとも1種が好ましい。これらの溶媒は、1種を単独で又は2種以上を組み合わせて使用することができる。
The copper ink is made into liquid or paste ink by dispersing copper-based particles in a dispersion medium. The dispersion medium preferably contains at least one solvent. The solvent preferably has a vapor pressure at 25 ° C. of less than 1.34 × 10 3 Pa, and more preferably less than 1.0 × 10 3 Pa.
Examples of such a solvent include those shown below. That is, aliphatic hydrocarbon solvents such as nonane, decane, dodecane, and tetradecane; aromatic hydrocarbon solvents such as ethylbenzene, anisole, mesitylene, naphthalene, cyclohexylbenzene, diethylbenzene, phenylacetonitrile, benzonitrile; isobutyl acetate, propionic acid Ester solvents such as methyl, ethyl propionate, γ-butyrolactone, glycol sulfite, ethyl lactate; alcohol solvents such as 1-butanol, cyclohexanol, α-terpineol, glycerin; cyclohexanone, 2-hexanone, 2- Ketone solvents such as heptanone, 2-octanone, 1,3-dioxolan-2-one, 1,5,5-trimethylcyclohexen-3-one; diethylene glycol ethyl ether, diethylene glycol Diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol isopropyl ether acetate, diethylene glycol butyl ether acetate , Diethylene glycol-t-butyl ether acetate, triethylene glycol methyl ether acetate, triethylene glycol ethyl ether acetate, triethylene glycol propyl ether acetate, triethylene glycol isopropyl ether acetate Alkylene glycol solvents such as tate, triethylene glycol butyl ether acetate, triethylene glycol-t-butyl ether acetate, dipropylene glycol dimethyl ether, dipropylene glycol monobutyl ether; dihexyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl Ether solvents such as ether; carbonate solvents such as propylene carbonate and ethylene carbonate; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; sulfone solvents such as sulfolane; malononitrile And nitrile solvents such as Among these, at least one selected from γ-butyrolactone, N-methylpyrrolidone, glycol sulfite, propylene carbonate, and sulfolane is preferable. These solvents can be used alone or in combination of two or more.

銅系インクの粘度及び表面張力は、適用する印刷法によって適正な範囲が異なる。
例えば、インクジェット印刷法に適用する場合の粘度は、25℃で50mPa・s以下であることが好ましい。インクの粘度が50mPa・s以下であれば、インクジェット印刷時の不吐出ノズルの発生や、ノズルの目詰まりの発生を一層確実に防止することができる。また、インクの粘度は、25℃で1〜30mPa・sであることがより好ましい。インクの粘度を当該範囲とすることによって、液滴を小径化でき、インクの着弾径を一層小さくすることができる傾向がある。これにより、微細なパターンの形成が容易となる。
The appropriate range of the viscosity and surface tension of the copper-based ink varies depending on the printing method to be applied.
For example, the viscosity when applied to the inkjet printing method is preferably 50 mPa · s or less at 25 ° C. If the viscosity of the ink is 50 mPa · s or less, it is possible to more reliably prevent the occurrence of non-ejection nozzles during ink jet printing and the occurrence of nozzle clogging. Further, the viscosity of the ink is more preferably 1 to 30 mPa · s at 25 ° C. By setting the viscosity of the ink within this range, the diameter of the droplet can be reduced, and the landing diameter of the ink tends to be further reduced. Thereby, formation of a fine pattern becomes easy.

また、例えば、インクジェット印刷法に適用する場合の表面張力は、25℃で20mN/m以上であることが好ましい。インクの表面張力が20mN/m未満の場合、インク液滴が基材上に着弾後に濡れ広がり、平坦な厚膜を形成できない傾向がある。インクの表面張力は、20〜80mN/mの範囲であることがより好ましい。これは、インクの表面張力が80mN/mを超える場合、インクジェットノズル詰まりが発生し易くなる傾向があるためである。平坦な厚膜の形成性及び安定したインクジェット吐出性の観点から、20〜50mN/mであるとより好ましい。   For example, the surface tension when applied to the ink jet printing method is preferably 20 mN / m or more at 25 ° C. When the surface tension of the ink is less than 20 mN / m, the ink droplet tends to spread after landing on the substrate, and a flat thick film tends not to be formed. The surface tension of the ink is more preferably in the range of 20 to 80 mN / m. This is because when the surface tension of the ink exceeds 80 mN / m, the ink jet nozzles tend to be clogged. From the viewpoint of the formation of a flat thick film and stable inkjet discharge properties, it is more preferably 20 to 50 mN / m.

(パターニングされた金属銅パターン)
本発明のパターニングされた金属銅パターンは、銅系粒子堆積層が印刷によりパターニングされており、該パターニングされた層を前述の導体化処理により金属銅に転化して得られる。
すなわち、本発明のパターニングされた金属銅パターンは、銅系粒子堆積層形成用の液状あるいはペースト状の銅インクを配線パターン様に基板上に印刷して配線パターンとなる層を形成し、その配線パターンに対し、前述の導体化処理を施す。
(Patterned metal copper pattern)
The patterned metallic copper pattern of the present invention is obtained by converting a copper-based particle deposition layer into a metallic copper by printing, and the patterned layer is converted into metallic copper by the above-described conductive treatment.
That is, the patterned metal copper pattern of the present invention forms a layer to be a wiring pattern by printing a liquid or paste-like copper ink for forming a copper-based particle deposition layer on the substrate like a wiring pattern to form a wiring pattern layer. The pattern is subjected to the above-described conductor processing.

前記銅系粒子堆積層のパターニングに用いる印刷法は、銅系粒子堆積層を任意の場所に付着させられる手法であればよく、このような手法として、インクジェット印刷、スーパーインクジェット印刷、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサ、ジェットディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、凸版印刷、凹版印刷、グラビア印刷、ソフトリソグラフ、ディップペンリソグラフ、粒子堆積法、スプレーコータ、スピンコータ、アプリケータ、ディップコータ、電着塗装を用いることができ、中でも、インクジェット印刷、スーパーインクジェット印刷、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、及びグラビアコータからなる群より選択されるいずれか1種が好ましい。
以上のようにして銅系粒子堆積層パターンを描画した後は、前述の導体化処理により金属銅に転化してパターニングされた金属銅パターンが得られる。
基板としては、具体的には、ポリイミド、ポリエチレンナフレタート、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリアミドイミド、ポリエーテルエーテルケトン、ポリカーボネート、液晶ポリマー、エポキシ樹脂、フェノール樹脂、シアネートエステル樹脂、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリフェニレンスルフィド、架橋ポリビニル樹脂、さらに前記樹脂を使用した繊維強化樹脂、無機粒子充填樹脂やガラス、セラミックス等からなるフィルム、シート、板が挙げられる。
なお、本発明においては、比較的低温での処理を可能としているため、耐熱性が低い基板を使用することができるなど、使用する基板の制約が少ない。
The printing method used for the patterning of the copper-based particle deposition layer may be any method that allows the copper-based particle deposition layer to adhere to an arbitrary location. Examples of such a method include inkjet printing, super inkjet printing, screen printing, and transfer. Printing, offset printing, jet printing method, dispenser, jet dispenser, needle dispenser, comma coater, slit coater, die coater, gravure coater, letterpress printing, intaglio printing, gravure printing, soft lithography, dip pen lithography, particle deposition method, spray coater, Spin coaters, applicators, dip coaters, and electrodeposition coatings can be used. Among them, inkjet printing, super inkjet printing, screen printing, transfer printing, offset printing, jet printing, Supensa needle dispenser, Kanmakota, slit coater, die coater, and any one selected from the group consisting of a gravure coater are preferred.
After the copper-based particle deposition layer pattern is drawn as described above, a patterned copper metal pattern is obtained by converting to copper metal by the above-described conductive process.
Specifically, as the substrate, polyimide, polyethylene naphthalate, polyethersulfone, polyethylene terephthalate, polyamideimide, polyetheretherketone, polycarbonate, liquid crystal polymer, epoxy resin, phenol resin, cyanate ester resin, polyolefin such as polypropylene, Examples thereof include polyamide, polyphenylene sulfide, cross-linked polyvinyl resin, fiber reinforced resin using the resin, inorganic particle-filled resin, glass, ceramics, and other films, sheets, and plates.
In the present invention, since processing at a relatively low temperature is possible, there are few restrictions on the substrate to be used, for example, a substrate having low heat resistance can be used.

(導体配線、金属銅バンプ、熱伝導路、接合材)
本発明のパターニングされた金属銅パターンは、例えば、導体配線、金属銅バンプ、熱伝導路、接合材に適用することで、基板密着性に優れ、低体積抵抗率で、基板ダメージなく印刷形成することができ、好適に利用することが可能である。ここでいう、接合材とは、金属・金属間を接着剤やロウ付けのように力学的に接着するものである。
(Conductor wiring, metal copper bump, heat conduction path, bonding material)
The patterned metal copper pattern of the present invention is applied to, for example, a conductor wiring, a metal copper bump, a heat conduction path, and a bonding material, thereby being excellent in substrate adhesion, printed with low volume resistivity and without substrate damage. Can be used suitably. Here, the bonding material is a material that dynamically bonds metal to metal like an adhesive or brazing.

以下、本発明を実施例により具体的に説明するが、本発明はこれに制限されるものではない。
[実施例1]
(銅分散液1の調製)
250mLのポリ容器に、炭酸プロピレン90gを秤量し、CuOナノ粒子(平均粒径、70nm)110gを加え、株式会社日本精機製作所製超音波ホモジナイザUS−600CCVPの超音波端子を混合液中に約3cmつかるようにポリ容器の高さを調製し、混合液の入ったポリ容器を冷却しながら、出力600W、振動数19.5kHz、振幅26.5μmで5分間分散処理を行った。分散処理後、蓋付きのポリ瓶に内容物を移し、室温(25℃)で冷却して固形分55質量%の銅分散液1を得た。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[Example 1]
(Preparation of copper dispersion 1)
In a 250 mL plastic container, 90 g of propylene carbonate is weighed, 110 g of CuO nanoparticles (average particle size, 70 nm) are added, and an ultrasonic terminal of an ultrasonic homogenizer US-600CCVP manufactured by Nippon Seiki Seisakusho Co., Ltd. is about 3 cm in the liquid mixture. The height of the plastic container was adjusted so that it could be used, and a dispersion process was performed for 5 minutes at an output of 600 W, a frequency of 19.5 kHz, and an amplitude of 26.5 μm while cooling the plastic container containing the mixed solution. After the dispersion treatment, the contents were transferred to a plastic bottle with a lid and cooled at room temperature (25 ° C.) to obtain a copper dispersion 1 having a solid content of 55% by mass.

(銅分散液1を用いた塗布試験片の作製)
ガラス基板上に銅分散液1を滴下し、ギャップ75μmに調整したベーカーアプリケータを用いて塗り広げた。その後、室温で10時間放置し、140℃に設定した温風乾燥機で乾燥して銅分散液1塗布試験片を得た。
(Preparation of coated test piece using copper dispersion 1)
Copper dispersion 1 was dropped on a glass substrate and spread using a Baker applicator adjusted to a gap of 75 μm. Then, it was left to stand at room temperature for 10 hours, and dried with a warm air dryer set at 140 ° C. to obtain a copper dispersion 1 coating test piece.

(低温導体化処理)
ギ酸27.15gに、窒素を含有する有機化合物として2,2´−ビピリジル2.85gを溶解して導体化処理液とした。銅分散液1塗布試験片は、オイルバスで加熱した平底のセパラブルフラスコの底に5mm厚のアルミ板を敷いた上にセットした。同アルミ板上にアルミカップを置き、シリンジポンプにより直径1mmのポリテトラフルオロエチレンチューブを通じて導体化処理液をアルミカップ内に0.036ml/minで送液して、加熱気化させた。銅分散液1塗布試験片に用いたガラス基板にクロメルアルメル熱電対をセットしアルミ板上にセットし試験片の温度を測定した。
銅分散液1塗布試験片をセットしたセパラブルフラスコに、窒素を0.3L/minで流しながら、146℃のオイルバスで加熱した。銅分散液1塗布試験片の温度が一定(130℃)になった後、上記の導体化処理液の送液を開始し、60分間処理した。処理後、窒素のみを流しながら130℃、10分保持し、その後セパラブルフラスコを放冷し、銅分散液1塗布試験片が50℃以下になった後、銅分散液1塗布試験片を空気中に取り出した。銅分散液1塗布層は、塗布・乾燥後の黒色から銅色に変化していた。
(Low-temperature conductor treatment)
2.27 g of 2,2′-bipyridyl as an organic compound containing nitrogen was dissolved in 27.15 g of formic acid to prepare a conductor treatment solution. The copper dispersion 1 coating test piece was set on a flat bottom separable flask heated in an oil bath with a 5 mm thick aluminum plate laid on it. An aluminum cup was placed on the same aluminum plate, and the conductive treatment solution was fed into the aluminum cup at 0.036 ml / min through a polytetrafluoroethylene tube having a diameter of 1 mm by a syringe pump, and was vaporized by heating. A chromel alumel thermocouple was set on the glass substrate used for the copper dispersion 1 coating test piece and set on an aluminum plate, and the temperature of the test piece was measured.
The separable flask in which the copper dispersion 1 coating test piece was set was heated in an oil bath at 146 ° C. while flowing nitrogen at 0.3 L / min. After the temperature of the copper dispersion liquid 1 coating test piece became constant (130 ° C.), feeding of the above-mentioned conductor treatment liquid was started and processed for 60 minutes. After the treatment, hold nitrogen at 130 ° C. for 10 minutes, and then cool the separable flask. After the copper dispersion 1 coating test piece became 50 ° C. or less, the copper dispersion 1 coating test piece was air Removed inside. The copper dispersion 1 coating layer was changed from black after coating and drying to copper color.

導体化処理して得られた銅分散液1塗布試験片の金属銅膜を、四探針法低抵抗率計(ロレスタ−GP、三菱化学株式会社製)を用いて表面抵抗を測定した(0.046 Ω/□)。そして、銅分散液1塗布試験片の金属銅膜をFIB(Focused Ion Beam System (集束イオンビーム装置))を用いて加工断面の観察から膜厚を求めた(膜厚28.8μm)。表面抵抗と膜厚から算出した体積抵抗は、1.3×10−6Ω・mであった。 The surface resistance of the metallic copper film of the copper dispersion 1 coating test piece obtained by conducting the conductor was measured using a four-probe method low resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical Corporation) (0 .046 Ω / □). And the film thickness was calculated | required from the observation of the process cross section using the FIB (Focused Ion Beam System (focused ion beam apparatus)) for the metal copper film | membrane of the copper dispersion liquid 1 application | coating test piece (film thickness 28.8 micrometers). The volume resistance calculated from the surface resistance and the film thickness was 1.3 × 10 −6 Ω · m.

[実施例2]
(銅インク2の調製)
炭酸プロピレン146g及びCuOナノ粒子54gを用いた以外は実施例1と同様にして27質量%の銅分散液2を得た。
50mLの遠沈管に銅分散液2を約40mL入れ、株式会社トミー精工製高速遠心機Suprema25(ロータ:NA−8)を使用し、25℃、1500rpmで5分間遠心分離処理を行い沈降粒径0.9μm以上の粒子を除去した。遠心分離後、遠沈管を静かに取り出し、沈殿物を巻き上げないよう注意しながら上液をポリスポイトで回収して銅インク2を得た。
[Example 2]
(Preparation of copper ink 2)
A 27% by mass copper dispersion 2 was obtained in the same manner as in Example 1 except that 146 g of propylene carbonate and 54 g of CuO nanoparticles were used.
About 40 mL of the copper dispersion 2 is placed in a 50 mL centrifuge tube, and a high-speed centrifuge Suprema 25 (rotor: NA-8) manufactured by Tommy Seiko Co., Ltd. is used. Particles of 9 μm or more were removed. After centrifugation, the centrifuge tube was gently taken out, and the upper liquid was collected with a poly dropper while taking care not to wind up the precipitate, so that a copper ink 2 was obtained.

(銅インク2印刷試験片の作製)
ガラスプレパラートに5分間UV−O照射し、この表面に銅インク2をインクジェット印刷し、銅インク2印刷試験片を得た。
(Preparation of copper ink 2 print test piece)
The glass preparation was irradiated with UV-O 3 for 5 minutes, and copper ink 2 was inkjet printed on the surface to obtain a copper ink 2 print test piece.

(低温導体化処理)
実施例1と同様にして銅インク2印刷試験片を処理した。
(Low-temperature conductor treatment)
The copper ink 2 print test piece was treated in the same manner as in Example 1.

[比較例1]
実施例1と同様に調製した銅分散液1塗布試験片を作製した。
(低温導体化処理)
銅分散液1塗布試験片をギ酸と2,2´−ビピリジルの混合液の代わりにギ酸のみを用い、処理時間を2時間とした以外は実施例1と同様に低温導体化処理した。その結果、銅分散液1塗布試験片の表面は、実施例1のような銅色にはならず、表面のみこげ茶色に変化した。表面抵抗を測定したところ測定上限以上、すなわち導電性はなかった。
[Comparative Example 1]
A copper dispersion 1 coating test piece prepared in the same manner as in Example 1 was prepared.
(Low-temperature conductor treatment)
The copper dispersion 1 coating test piece was subjected to low-temperature conductor treatment in the same manner as in Example 1 except that only formic acid was used instead of the mixed liquid of formic acid and 2,2′-bipyridyl, and the treatment time was 2 hours. As a result, the surface of the copper dispersion 1 coated test piece did not have a copper color as in Example 1, but changed to a dark brown surface. When the surface resistance was measured, it was above the upper limit of measurement, that is, there was no conductivity.

[実施例3]
基板にPETフィルム(東レ株式会社、ルミラー、50μm)を用い、乾燥方法を常温減圧乾燥とした以外は、実施例1と同様に銅分散液1塗布試験片を作製した。
(低温導体化処理)
処理温度を110℃、120℃、130℃、140℃、160℃、180℃と変えた以外は実施例1と同様に低温導体化処理した。処理結果を表1にまとめて示した。この低温導体化手法では、130℃以上で導体化が可能であるが、150℃以上では基板のPET樹脂が変形した。なお、180℃では基板の変形が激しく銅インクの状態は評価できなかった。
[Example 3]
A copper dispersion 1 coating test piece was prepared in the same manner as in Example 1 except that a PET film (Toray Industries, Lumirror, 50 μm) was used as the substrate and the drying method was room temperature vacuum drying.
(Low-temperature conductor treatment)
Low-temperature conductorization treatment was performed in the same manner as in Example 1 except that the treatment temperature was changed to 110 ° C, 120 ° C, 130 ° C, 140 ° C, 160 ° C, and 180 ° C. The processing results are summarized in Table 1. With this low-temperature conductorization method, conductorization is possible at 130 ° C. or higher, but the PET resin of the substrate was deformed at 150 ° C. or higher. At 180 ° C., the substrate was severely deformed, and the state of the copper ink could not be evaluated.

Figure 2013175560
処理後の基板状態: ○;変形、変色無し、×;変形、変色あり
処理後の銅インク状態:○;銅色に変色、△;こげ茶色、×;黒色(銅インク色)
Figure 2013175560
Substrate state after treatment: ○: Deformation, no discoloration, ×: Copper ink state after deformation, discoloration: ○: Discoloration to copper color, Δ: Dark brown, ×: Black (copper ink color)

[実施例4]
実施例1と同様に銅分散液1塗布試験片を作製した。
(低温導体化処理)
ギ酸と2,2´−ビピリジルの混合処理液中の2,2´−ビピリジル濃度を、0.003、0.3、2、3、5mol%と変えた以外は実施例1と同様に低温導体化処理した。処理結果をまとめて表2に示した。
[Example 4]
A copper dispersion 1 coating test piece was prepared in the same manner as in Example 1.
(Low-temperature conductor treatment)
Low-temperature conductor as in Example 1 except that the concentration of 2,2′-bipyridyl in the mixed treatment solution of formic acid and 2,2′-bipyridyl was changed to 0.003, 0.3, 2, 3, 5 mol%. Processed. The processing results are summarized in Table 2.

Figure 2013175560
処理後の銅インク状態:○;銅色に変色、△;こげ茶色、×;黒色(銅インク色)
Figure 2013175560
Copper ink state after treatment: ○: Changed to copper color, △: Dark brown, ×: Black (copper ink color)

[実施例5]
実施例1と同様に銅分散液1塗布試験片を作製した。
(低温導体化処理)
ギ酸と2,2´−ビピリジルの混合処理液中の2,2´−ビピリジルを他の含窒素有機化合物と変えた以外は実施例1と同様に低温導体化処理した。処理結果を表3にまとめて示した。
[Example 5]
A copper dispersion 1 coating test piece was prepared in the same manner as in Example 1.
(Low-temperature conductor treatment)
The low-temperature conductorization treatment was performed in the same manner as in Example 1 except that 2,2′-bipyridyl in the mixed treatment solution of formic acid and 2,2′-bipyridyl was changed to other nitrogen-containing organic compounds. The processing results are summarized in Table 3.

Figure 2013175560
処理後の銅インク状態: ○;銅色に変色、△;こげ茶色、×;黒色(銅インク色)
Figure 2013175560
Copper ink state after treatment: ○: Change to copper color, Δ: Dark brown, ×: Black (copper ink color)

[実施例6]
銅系粒子としてCuOナノ粒子99gと表面自然酸化Cuナノ粒子(平均粒径60nm、日清エンジニアリング株式会社製)11gを用いた(銅分散液3とする)以外は実施例1と同様に銅分散液3塗布試験片を作製した。
(低温導体化処理)
実施例1と同様に銅分散液3塗布試験片を処理したところ、実施例1では銅分散液1塗布試験片表面の色が黒色から銅色に変色するのに50分かかったところ、銅分散液3塗布試験片では30分で銅色に変色し導体化時間が短縮した。
表面抵抗(0.087Ω/□)にFIB加工断面の観察から求めた膜厚16μmを乗算して求めた体積抵抗率は、1.4×10−6Ω・mであった。
[Example 6]
Copper dispersion as in Example 1 except that 99 g of CuO nanoparticles and 11 g of surface natural oxidation Cu nanoparticles (average particle diameter 60 nm, manufactured by Nissin Engineering Co., Ltd.) were used as copper-based particles (referred to as “copper dispersion 3”). A liquid 3 coating test piece was prepared.
(Low-temperature conductor treatment)
When the copper dispersion 3 coating test piece was treated in the same manner as in Example 1, it took 50 minutes for the color of the surface of the copper dispersion 1 coating test piece to change from black to copper in Example 1. In the liquid 3 coating test piece, the color changed to copper color in 30 minutes and the conductorization time was shortened.
The volume resistivity obtained by multiplying the surface resistance (0.087Ω / □) by the film thickness of 16 μm obtained from the observation of the FIB processed cross section was 1.4 × 10 −6 Ω · m.

[実施例7]
実施例1と同様に銅分散液1塗布試験片を作製した。
(低温導体化処理)
銅分散液1塗布試験片は、オイルバスで加熱した平底のセパラブルフラスコの底に5mm厚のアルミ板を敷いた上にセットした。同アルミ板上にアルミカップを置き、2,2´−ビピリジル3gを入れた。銅分散液1塗布試験片に用いたガラス基板にクロメルアルメル熱電対をセットしアルミ板上にセットし試験片の温度を測定した。洗気瓶にギ酸を入れ窒素をバブリングしながら110℃のオイルバスで加熱してギ酸ガスの発生装置とした。
銅インク印刷パターン試験片をセットしたセパラブルフラスコに窒素を流しながら145℃のオイルバスで加熱し銅インク印刷パターン試験片の温度が一定(130℃)になった後、ギ酸ガスの発生装置で発生させたギ酸ガスを含む窒素ガスをこのセパラブルフラスコに通じ、60分間処理した。処理後、ギ酸ガスの発生装置をはずし、窒素のみを流しながらセパラブルフラスコを放冷し、銅インク印刷パターン試験片が50℃以下になった後、銅インク印刷パターン試験片を空気中に取り出した。
銅分散液1塗布層は、塗布・乾燥後の黒色から銅色に変化した。
表面抵抗は、0.033Ω/□であった。
[Example 7]
A copper dispersion 1 coating test piece was prepared in the same manner as in Example 1.
(Low-temperature conductor treatment)
The copper dispersion 1 coating test piece was set on a flat bottom separable flask heated in an oil bath with a 5 mm thick aluminum plate laid on it. An aluminum cup was placed on the same aluminum plate, and 3 g of 2,2′-bipyridyl was added. A chromel alumel thermocouple was set on the glass substrate used for the copper dispersion 1 coating test piece and set on an aluminum plate, and the temperature of the test piece was measured. A formic acid gas generator was prepared by putting formic acid into a washing bottle and heating it in an oil bath at 110 ° C. while bubbling nitrogen.
After flowing the nitrogen into the separable flask with the copper ink print pattern test piece set in an oil bath at 145 ° C and the temperature of the copper ink print pattern test piece becomes constant (130 ° C), use a formic acid gas generator. Nitrogen gas containing the generated formic acid gas was passed through the separable flask and treated for 60 minutes. After the treatment, remove the formic acid gas generator, allow the separable flask to cool while flowing only nitrogen, and after the copper ink print pattern test piece has reached 50 ° C or less, take out the copper ink print pattern test piece in the air. It was.
The copper dispersion 1 coating layer changed from black after coating and drying to copper.
The surface resistance was 0.033Ω / □.

[実施例8]
実施例1と同様に銅分散液1塗布試験片を作製した。
(低温導体化処理)
銅分散液1塗布試験片は、オイルバスで加熱した平底のセパラブルフラスコの底に5mm厚のアルミ板を敷いた上にセットした。同アルミ板上にアルミカップを置き、シリンジポンプと直径1mmのポリテトラフルオロエチレンチューブを2組通じてギ酸とα−ピコリン(2−メチルピリジン)を別々にアルミカップ内に送液して加熱気化させた。ギ酸とα−ピコリンの送液速度はそれぞれ0.036ml/min及び0.006ml/minとした。銅分散液1塗布試験片に用いたガラス基板にクロメルアルメル熱電対をセットしアルミ板上にセットし試験片の温度を測定した。
銅分散液1塗布試験片をセットしたセパラブルフラスコに、ギ酸とα−ピコリンを送液せずに窒素を0.3L/minで流しながら、146℃のオイルバスで加熱した。銅分散液1塗布試験片の温度が一定(130℃)になった後、ギ酸とα−ピコリンの送液を開始し、60分間処理した。処理後、窒素のみを流しながら130℃、10分保持し、その後セパラブルフラスコを放冷し、銅分散液1塗布試験片が50℃以下になった後、銅分散液1塗布試験片を空気中に取り出した。銅分散液1塗布層は、黒色から銅色に変化した。表面抵抗は、0.064Ω/□であった。
[Example 8]
A copper dispersion 1 coating test piece was prepared in the same manner as in Example 1.
(Low-temperature conductor treatment)
The copper dispersion 1 coating test piece was set on a flat bottom separable flask heated in an oil bath with a 5 mm thick aluminum plate laid on it. Place an aluminum cup on the same aluminum plate, and pass through two sets of syringe pump and 1mm diameter polytetrafluoroethylene tube to separate formic acid and α-picoline (2-methylpyridine) into the aluminum cup and heat to vaporize. I let you. The liquid feeding rates of formic acid and α-picoline were 0.036 ml / min and 0.006 ml / min, respectively. A chromel alumel thermocouple was set on the glass substrate used for the copper dispersion 1 coating test piece and set on an aluminum plate, and the temperature of the test piece was measured.
The separable flask in which the copper dispersion 1 coating test piece was set was heated in an oil bath at 146 ° C. while flowing formic acid and α-picoline at a rate of 0.3 L / min without feeding formic acid and α-picoline. After the temperature of the copper dispersion 1 coating test piece became constant (130 ° C.), the feeding of formic acid and α-picoline was started and treated for 60 minutes. After the treatment, hold nitrogen at 130 ° C. for 10 minutes, and then cool the separable flask. After the copper dispersion 1 coating test piece became 50 ° C. or less, the copper dispersion 1 coating test piece was air Removed inside. The copper dispersion 1 coating layer changed from black to copper. The surface resistance was 0.064Ω / □.

比較例1に示したように、還元剤としてキ酸を単独で用いた場合、130℃で2時間処理してもこげ茶色の状態で導電性は得られなかったが、本発明のギ酸に、リン又は窒素を含有する有機化合物を併用した処理とすることで130℃の低温でも酸化銅を還元し金属銅膜にすることができる。そのため、耐熱性に乏しい基板上に銅インクにより印刷された層を基板にダメージを与えない低温、短時間で処理して低抵抗の金属銅、金属銅パターンに転換することができる。   As shown in Comparative Example 1, when oxalic acid was used alone as a reducing agent, conductivity was not obtained in a dark brown state even when treated at 130 ° C. for 2 hours. By treating with an organic compound containing phosphorus or nitrogen, copper oxide can be reduced to a metal copper film even at a low temperature of 130 ° C. Therefore, a layer printed with copper ink on a substrate having poor heat resistance can be processed at a low temperature and in a short time without damaging the substrate, and converted into a low-resistance metal copper or metal copper pattern.

Claims (16)

銅系粒子堆積層を、リンを含有する有機化合物又は窒素を含有する有機化合物、及びギ酸をともに含む処理ガス中、120℃以上、140℃以下で処理してなることを特徴とする金属銅膜。   A copper metal particle film obtained by treating a copper-based particle deposition layer at a temperature of 120 ° C. or higher and 140 ° C. or lower in a processing gas containing an organic compound containing phosphorus or an organic compound containing nitrogen and formic acid. . 窒素を含有する有機化合物が、窒素の複素環状構造を含む有機化合物であることを特徴とする請求項1に記載の金属銅膜。   The metal compound film according to claim 1, wherein the organic compound containing nitrogen is an organic compound containing a heterocyclic structure of nitrogen. 窒素の複素環状構造を含む有機化合物が、2,2´−ビピリジル、2,3´−ビピリジル、ピリジン、6−メチル−2,2´−ビピリジル、6,6´−ジメチル−2,2´−ビピリジル、5,5´−ジメチル−2,2´−ビピリジル、4,4´−ジメチル−2,2´−ビピリジル、6−ブロモ−2,2´−ビピリジル、4,4´−ジメトキシ−2,2´-ビピリジル、4,5−ジアザフルオレン,2,2´:6´,2″−ターピリジン、2−(2−ピリジニル)キノリン、2−メチルピリジン、4−メチルピリジン、2−メトキシピリジン、3−メトキシピリジン、4−メトキシピリジン、2,6−ジメトキシピリジン、2−クロロピリジン、3−クロロピリジン、4−クロロピリジン、2−フロロピリジン、3−フロロピリジン、4−フロロピリジン、2−ブロモピリジン、3−ブロモピリジン、4−ブロモピリジン、2−フェニルピリジン、3−フェニルピリジン、4−フェニルピリジン、5−メチルピリジン−3−カルボニトリル、2,4−ルチジン、ピリダジン、ピリミジン、キナゾリン、2,2´−ビピリミジン、ピラジン、キノキサリン、フタラジン、シンノリン、キナゾリン、1,10−フェナントロリン、4,7−フェナントロリン、1,7−フェナントロリン、キノリン、イソキノリン、ベンゾキノリン、アクリジン、ナフチリジンの群から選ばれる一つ以上である請求項2に記載の金属銅膜。   Organic compounds containing a heterocyclic structure of nitrogen are 2,2′-bipyridyl, 2,3′-bipyridyl, pyridine, 6-methyl-2,2′-bipyridyl, 6,6′-dimethyl-2,2′- Bipyridyl, 5,5′-dimethyl-2,2′-bipyridyl, 4,4′-dimethyl-2,2′-bipyridyl, 6-bromo-2,2′-bipyridyl, 4,4′-dimethoxy-2, 2'-bipyridyl, 4,5-diazafluorene, 2,2 ': 6', 2 "-terpyridine, 2- (2-pyridinyl) quinoline, 2-methylpyridine, 4-methylpyridine, 2-methoxypyridine, 3-methoxypyridine, 4-methoxypyridine, 2,6-dimethoxypyridine, 2-chloropyridine, 3-chloropyridine, 4-chloropyridine, 2-fluoropyridine, 3-fluoropyridine, 4-fluoropyridine 2-bromopyridine, 3-bromopyridine, 4-bromopyridine, 2-phenylpyridine, 3-phenylpyridine, 4-phenylpyridine, 5-methylpyridine-3-carbonitrile, 2,4-lutidine, pyridazine, pyrimidine, From the group of quinazoline, 2,2'-bipyrimidine, pyrazine, quinoxaline, phthalazine, cinnoline, quinazoline, 1,10-phenanthroline, 4,7-phenanthroline, 1,7-phenanthroline, quinoline, isoquinoline, benzoquinoline, acridine, naphthyridine The metal copper film according to claim 2, which is one or more selected. リンを含有する有機化合物が、トリフェニルホスフィン、メチルジフェニルホスフィン、ジメチルフェニルホスフィン、トリストリメチルフェニルホスフィン、トリス(4−トリフルオロメチルフェニル)ホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン、トリス[3,5−ビス(トリフルオロメチル)フェニル]ホスフィン、2,4,6−トリ−t−ブチル−ホスフィニン、2,6−ジフェニルホスフィニン、フェニルホスフィン、ジフェニルホスフィンの群から選ばれる一つ以上である請求項1から3のいずれかに記載の金属銅膜。   The organic compound containing phosphorus is triphenylphosphine, methyldiphenylphosphine, dimethylphenylphosphine, tristrimethylphenylphosphine, tris (4-trifluoromethylphenyl) phosphine, tris (2,6-dimethoxyphenyl) phosphine, tris [3 , 5-bis (trifluoromethyl) phenyl] phosphine, 2,4,6-tri-t-butyl-phosphine, 2,6-diphenylphosphine, phenylphosphine, diphenylphosphine The metal copper film according to any one of claims 1 to 3. 前記銅系粒子堆積層を構成する銅系粒子が、酸化第二銅、酸化第一銅、又は金属銅のいずれか一つ以上である請求項1から4のいずれかに記載の金属銅膜。   5. The metal copper film according to claim 1, wherein the copper-based particles constituting the copper-based particle deposition layer are any one or more of cupric oxide, cuprous oxide, and metal copper. 銅系粒子堆積層が、液状あるいはペースト状の銅インクの印刷によりパターニングされており、該パターニングされた層に対し、リンを含有する有機化合物又は窒素を含有する有機化合物、及びギ酸をともに含む処理ガス中、120℃以上、140℃以下で処理して得られる金属銅パターン。   The copper-based particle deposition layer is patterned by printing a liquid or paste-like copper ink, and the patterned layer includes a phosphorus-containing organic compound or a nitrogen-containing organic compound, and formic acid. A metallic copper pattern obtained by treatment at 120 ° C. or higher and 140 ° C. or lower in a gas. 前記銅系粒子堆積層のパターニングに用いられる印刷法が、インクジェット印刷、スーパーインクジェット印刷、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、及びグラビアコータからなる群より選択されるいずれか1種である請求項6に記載の金属銅パターン。   Printing methods used for patterning the copper-based particle deposition layer include inkjet printing, super inkjet printing, screen printing, transfer printing, offset printing, jet printing method, dispenser, needle dispenser, comma coater, slit coater, die coater, and gravure coater. The metal copper pattern according to claim 6, which is any one selected from the group consisting of: 請求項6又は請求項7に記載の金属銅パターンを用いた導体配線。   Conductor wiring using the metal copper pattern according to claim 6 or 7. 請求項6又は請求項7に記載の金属銅パターンを用いた金属銅バンプ。   A metal copper bump using the metal copper pattern according to claim 6. 請求項6又は請求項7に記載の金属銅パターンを用いた熱伝導路。   A heat conduction path using the metal copper pattern according to claim 6. 請求項6又は請求項7に記載の金属銅パターンを用いた接合材。   A bonding material using the metal copper pattern according to claim 6. 銅系粒子堆積層を、リンを含有する有機化合物又は窒素を含有する有機化合物、及びギ酸をともに含む処理ガス中、120℃以上、140℃以下で処理して金属銅膜とすることを特徴とする金属銅膜の製造方法。   The copper-based particle deposition layer is treated at 120 ° C. or higher and 140 ° C. or lower in a processing gas containing both an organic compound containing phosphorus or an organic compound containing nitrogen and formic acid, to form a metallic copper film. A method for producing a metallic copper film. 窒素を含有する有機化合物が、窒素の複素環状構造を含む有機化合物である請求項12に記載の金属銅膜の製造方法。   The method for producing a metallic copper film according to claim 12, wherein the organic compound containing nitrogen is an organic compound containing a heterocyclic structure of nitrogen. 窒素の複素環状構造を含む有機化合物が、2,2´−ビピリジル、2,3´−ビピリジル、ピリジン、6−メチル−2,2´−ビピリジル、6,6´−ジメチル−2,2´−ビピリジル、5,5´−ジメチル−2,2´-ビピリジル、4,4´−ジメチル−2,2´−ビピリジル、6−ブロモ−2,2´−ビピリジル、4,4´−ジメトキシ−2,2´-ビピリジル、4,5−ジアザフルオレン,2,2´:6´,2″−ターピリジン、2−(2−ピリジニル)キノリン、2−メチルピリジン、4−メチルピリジン、2−メトキシピリジン、3−メトキシピリジン、4−メトキシピリジン、2,6−ジメトキシピリジン、2−クロロピリジン、3−クロロピリジン、4−クロロピリジン、2−フロロピリジン、3−フロロピリジン、4−フロロピリジン、2−ブロモピリジン、3−ブロモピリジン、4−ブロモピリジン、2−フェニルピリジン、3−フェニルピリジン、4−フェニルピリジン、5−メチルピリジン−3−カルボニトリル、2,4−ルチジン、ピリダジン、ピリミジン、キナゾリン、2,2´−ビピリミジン、ピラジン、キノキサリン、フタラジン、シンノリン、キナゾリン、1,10−フェナントロリン、4,7−フェナントロリン、1,7−フェナントロリン、キノリン、イソキノリン、ベンゾキノリン、アクリジン、ナフチリジンの群から選ばれる一つ以上である請求項13に記載の金属銅膜の製造方法。   Organic compounds containing a heterocyclic structure of nitrogen are 2,2′-bipyridyl, 2,3′-bipyridyl, pyridine, 6-methyl-2,2′-bipyridyl, 6,6′-dimethyl-2,2′- Bipyridyl, 5,5′-dimethyl-2,2′-bipyridyl, 4,4′-dimethyl-2,2′-bipyridyl, 6-bromo-2,2′-bipyridyl, 4,4′-dimethoxy-2, 2'-bipyridyl, 4,5-diazafluorene, 2,2 ': 6', 2 "-terpyridine, 2- (2-pyridinyl) quinoline, 2-methylpyridine, 4-methylpyridine, 2-methoxypyridine, 3-methoxypyridine, 4-methoxypyridine, 2,6-dimethoxypyridine, 2-chloropyridine, 3-chloropyridine, 4-chloropyridine, 2-fluoropyridine, 3-fluoropyridine, 4-fluoropyridine, -Bromopyridine, 3-bromopyridine, 4-bromopyridine, 2-phenylpyridine, 3-phenylpyridine, 4-phenylpyridine, 5-methylpyridine-3-carbonitrile, 2,4-lutidine, pyridazine, pyrimidine, quinazoline 2,2'-bipyrimidine, pyrazine, quinoxaline, phthalazine, cinnoline, quinazoline, 1,10-phenanthroline, 4,7-phenanthroline, 1,7-phenanthroline, quinoline, isoquinoline, benzoquinoline, acridine, naphthyridine The method for producing a metal copper film according to claim 13, wherein the metal copper film is one or more of the above. リンを含有する有機化合物が、トリフェニルホスフィン、メチルジフェニルホスフィン、ジメチルフェニルホスフィン、トリストリメチルフェニルホスフィン、トリス(4−トリフルオロメチルフェニル)ホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン、トリス[3,5−ビス(トリフルオロメチル)フェニル]ホスフィン、2,4,6−トリ−t−ブチル−ホスフィニン、2,6−ジフェニルホスフィニン、フェニルホスフィン、ジフェニルホスフィンの群から選ばれる一つ以上である請求項12から14のいずれかに記載の金属銅膜の製造方法。   The organic compound containing phosphorus is triphenylphosphine, methyldiphenylphosphine, dimethylphenylphosphine, tristrimethylphenylphosphine, tris (4-trifluoromethylphenyl) phosphine, tris (2,6-dimethoxyphenyl) phosphine, tris [3 , 5-bis (trifluoromethyl) phenyl] phosphine, 2,4,6-tri-t-butyl-phosphine, 2,6-diphenylphosphine, phenylphosphine, diphenylphosphine The manufacturing method of the metallic copper film in any one of Claim 12 to 14. 処理ガス中のリンを含有する有機化合物又は窒素を含有する有機化合物が、ギ酸に対し0.1mol%以上、40mol%以下である請求項12から15のいずれかに記載の金属銅膜の製造方法。   The method for producing a metallic copper film according to any one of claims 12 to 15, wherein the organic compound containing phosphorus or the organic compound containing nitrogen in the processing gas is 0.1 mol% or more and 40 mol% or less with respect to formic acid. .
JP2012038639A 2012-02-24 2012-02-24 Metal copper film obtained by forming into conductor at 140°c or less, metal copper pattern, and their manufacturing method Pending JP2013175560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038639A JP2013175560A (en) 2012-02-24 2012-02-24 Metal copper film obtained by forming into conductor at 140°c or less, metal copper pattern, and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038639A JP2013175560A (en) 2012-02-24 2012-02-24 Metal copper film obtained by forming into conductor at 140°c or less, metal copper pattern, and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2013175560A true JP2013175560A (en) 2013-09-05

Family

ID=49268229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038639A Pending JP2013175560A (en) 2012-02-24 2012-02-24 Metal copper film obtained by forming into conductor at 140°c or less, metal copper pattern, and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2013175560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164225A (en) * 2015-03-06 2016-09-08 コニカミノルタ株式会社 Electric conductive ink

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314866A (en) * 2006-02-23 2007-12-06 Air Products & Chemicals Inc Method for producing electrical conductor
WO2009078448A1 (en) * 2007-12-18 2009-06-25 Hitachi Chemical Company, Ltd. Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment solution
JP2010504409A (en) * 2006-09-22 2010-02-12 フライズ・メタルズ・インコーポレイテッド Solvent system for metals and inks
WO2010024385A1 (en) * 2008-08-29 2010-03-04 石原産業株式会社 Metallic copper dispersion, process for producing the metallic copper dispersion, electrode, wiring pattern, and coating film formed using the metallic copper dispersion, decorative article and antimicrobial article with the coating film formed thereon, and processes for producing the decorative article and the antimicrobial article
WO2011034016A1 (en) * 2009-09-16 2011-03-24 日立化成工業株式会社 Copper metal film, method for producing same, copper metal pattern, conductive wiring line using the copper metal pattern, copper metal bump, heat conduction path, bonding material, and liquid composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314866A (en) * 2006-02-23 2007-12-06 Air Products & Chemicals Inc Method for producing electrical conductor
JP2010504409A (en) * 2006-09-22 2010-02-12 フライズ・メタルズ・インコーポレイテッド Solvent system for metals and inks
WO2009078448A1 (en) * 2007-12-18 2009-06-25 Hitachi Chemical Company, Ltd. Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment solution
WO2010024385A1 (en) * 2008-08-29 2010-03-04 石原産業株式会社 Metallic copper dispersion, process for producing the metallic copper dispersion, electrode, wiring pattern, and coating film formed using the metallic copper dispersion, decorative article and antimicrobial article with the coating film formed thereon, and processes for producing the decorative article and the antimicrobial article
WO2011034016A1 (en) * 2009-09-16 2011-03-24 日立化成工業株式会社 Copper metal film, method for producing same, copper metal pattern, conductive wiring line using the copper metal pattern, copper metal bump, heat conduction path, bonding material, and liquid composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164225A (en) * 2015-03-06 2016-09-08 コニカミノルタ株式会社 Electric conductive ink

Similar Documents

Publication Publication Date Title
TWI494471B (en) Metal copper film and fabricating method thereof, metal copper pattern and conductor wiring using the same, metal copper bump, heat conducting path, bonding material, and liquid composition
US7820232B2 (en) Method for forming fine copper particle sintered product type of electric conductor having fine shape, and process for forming copper fine wiring and thin copper film by applying said method
US9676969B2 (en) Composition set, conductive substrate and method of producing the same, and conductive adhesive composition
KR101398821B1 (en) Method of manufacturing metal nano-particle, conductive ink composition having the metal nano-particle and method of forming conductive pattern using the same
TW201117231A (en) Ink for printing, metal nanoparticle utilized in ink, wiring, circuit substrate and semiconductor package
TW201432726A (en) Method for producing conductive film, printed circuit board
JP2011142052A (en) Copper conductor ink, conductive substrate, and method of manufacturing the same
US20070281091A1 (en) Polyimide insulative layers in multi-layered printed electronic features
TW201805391A (en) Bonding composition and production method thereof, bonding laminate, and cladded silver nanoparticle
JP2013175560A (en) Metal copper film obtained by forming into conductor at 140°c or less, metal copper pattern, and their manufacturing method
JP5495044B2 (en) Dense metal copper film manufacturing method and liquid composition used therefor, dense metal copper film obtained therefrom, conductor wiring, heat conduction path, joined body
JP5713181B2 (en) LIQUID COMPOSITION FOR PRINTING, CONDUCTIVE WIRING OBTAINED BY USING THE SAME, METHOD FOR FORMING THE SAME, HEAT CONDUCTIVE CIRCUIT, JOINT
JP5945913B2 (en) Metallic copper film, metallic copper pattern obtained by converting copper-based particle deposition layer into conductor in a short time, metallic copper pattern and manufacturing method thereof
CN100488339C (en) Method for forming fine copper particle sintered product type of electric conductor having fine shape
TW201344712A (en) Method for producing conductor film
JP2013008907A (en) Copper oxide powder for conductive paste, method for producing copper oxide powder for conductive paste, conductive paste, and copper wiring layer obtained using the conductive paste
JP6200304B2 (en) Continuous superheated steam heat treatment apparatus and method for producing conductive coating film
JP5983096B2 (en) Ink for printing method, printed wiring board, method for manufacturing printed wiring board, display device and solar cell module
JP5447961B2 (en) Metal copper film manufacturing method and metal copper pattern
JP7238352B2 (en) Bonding paste and articles bonded with the bonding paste
KR20240031329A (en) Metal paste for joining, joined body, and method of manufacturing the same
JP2012018946A (en) METHOD FOR MANUFACTURING SUBSTRATE WITH Cu PATTERN AND SUBSTRATE WITH Cu PATTERN OBTAINED THEREBY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160225