JP2013173114A - Device for recovering carbon dioxide - Google Patents

Device for recovering carbon dioxide Download PDF

Info

Publication number
JP2013173114A
JP2013173114A JP2012039743A JP2012039743A JP2013173114A JP 2013173114 A JP2013173114 A JP 2013173114A JP 2012039743 A JP2012039743 A JP 2012039743A JP 2012039743 A JP2012039743 A JP 2012039743A JP 2013173114 A JP2013173114 A JP 2013173114A
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorption
tower
residue
regeneration tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012039743A
Other languages
Japanese (ja)
Inventor
Koichi Yokoyama
公一 横山
成仁 ▲高▼本
Naruhito Takamoto
Miho Yamahara
美穂 山原
Jun Shimamura
潤 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2012039743A priority Critical patent/JP2013173114A/en
Publication of JP2013173114A publication Critical patent/JP2013173114A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently decompose a by-product of amine recovered as a residue by a reclaimer of a COrecovery device so that incineration can be facilitated.SOLUTION: A COrecovery device includes: an absorption tower for bringing treated gas containing carbon dioxide into contact with an absorption liquid containing water and alkanolamine; a regeneration tower for recovering the carbon dioxide by heating the absorption liquid absorbing the carbon dioxide; a heat exchanger for conveying at least a part of the absorption liquid recovering the carbon dioxide in the absorption tower to the regeneration tower, conveying at least a part of the absorption liquid from which the carbon dioxide is separated in the regeneration tower to the absorption tower, and exchanging the heat with the liquid conveyed to the regeneration tower from the absorption tower; and a reclaimer device for recovering the absorption liquid containing alkanolamine by distillation after adding a neutralizer to a part or all of the liquid conveyed from the regeneration tower to the absorption tower. A device for irradiating ultraviolet rays to the residue after distillation by the reclaimer device is provided on the device for recovering the carbon dioxide.

Description

本発明は、ボイラなどの燃焼装置の排ガス中から二酸化炭素を回収する装置に係り、特にCO吸収液の再生塔に付設したリクレーマ装置からの蒸留残滓を効率よく除去する装置に関する。 The present invention relates to an apparatus that recovers carbon dioxide from exhaust gas from a combustion apparatus such as a boiler, and more particularly to an apparatus that efficiently removes distillation residue from a reclaimer apparatus attached to a regeneration tower of a CO 2 absorbent.

火力発電所等において、二酸化炭素(以下、CO)が石炭などの化石燃料の燃焼に伴って発生し、大気中のCO濃度を上昇させており、それに伴う気温の上昇により、各種の環境問題が生じると言われている。地球温暖化の防止のため1997年12月には温暖化防止京都会議(COP3)で京都議定書が採択された。該議定書は2005年2月に発効し、各国CO放出量の削減対策が実施されてきている。火力発電所等の酸素(O)や硫黄酸化物(SO)を含んだ燃焼排ガスからCOを回収する方法として現在、最も実用化に近い方法としてアルカノールアミン水溶液によるCO吸収方法が挙げられ、1990年代から盛んに検討されている(例えば特許文献1)。これに関して、アルカノールアミンの酸化分解による有機酸、排ガス中に含まれるNOxやSOxに由来する硝酸及び硫酸と該アミンが反応し、熱安定性塩(以下、HSS(Heat Stable Salt)という)を形成することが広く知られている(例えば非特許文献1)。これらは、金属腐食性を有したり、COを回収するアミン濃度を低下させるため、その対策として、吸収液へのアミンの補充量が増大する原因になっている。そこで、減圧蒸留法、イオン交換樹脂法や電気透析法などにより吸収液中のHSSをアミンに再生する方法が実用化されているが、各法に一長一短がある。特に石炭の燃焼排ガスからCOを回収する場合には、排ガス中のSO濃度によっては、吸収液中のHSS濃度が1重量パーセント以上の高濃度となる場合がある(特許文献1第3529855号)。このような場合、HSS濃度を一定以下にするため、例えば、連続的にリクレーマによる蒸留を行うことが望ましいが、濃縮分離した残滓の発生量が電気透析やイオン交換膜よりも多くり、この残滓の焼却処分が問題となる。また副生物の中には非イオン性の物質も存在することが知られており、電気透析やイオン交換膜法では分離が難しいという問題があった。 In thermal power plants and the like, carbon dioxide (hereinafter referred to as CO 2 ) is generated with the combustion of fossil fuels such as coal, increasing the concentration of CO 2 in the atmosphere. It is said that problems will arise. In December 1997, the Kyoto Protocol was adopted at the Kyoto Conference on Global Warming Prevention (COP3) to prevent global warming. The Protocol entered into force in February 2005, and measures to reduce CO 2 emissions in each country have been implemented. As a method for recovering CO 2 from combustion exhaust gas containing oxygen (O 2 ) and sulfur oxide (SO X ) in a thermal power plant or the like, a CO 2 absorption method using an alkanolamine aqueous solution is the most practical method at present. Have been actively studied since the 1990s (for example, Patent Document 1). In this regard, the organic acids by oxidative decomposition of the alkanolamine, nitric acid and sulfuric acid and the amine derived from NOx and SOx contained in the exhaust gas reacts, thermostable salt (hereinafter, referred to as HSS (H eat S table S alt ) ) Is widely known (for example, Non-Patent Document 1). Since these have metal corrosivity and reduce the concentration of amine that recovers CO 2 , as a countermeasure, the amount of amine replenished in the absorbing solution increases. Therefore, a method of regenerating HSS in the absorbing solution into an amine by a vacuum distillation method, an ion exchange resin method, an electrodialysis method, or the like has been put into practical use, but each method has advantages and disadvantages. In particular, when CO 2 is recovered from coal combustion exhaust gas, depending on the SO 2 concentration in the exhaust gas, the HSS concentration in the absorption liquid may be a high concentration of 1 weight percent or more (Japanese Patent No. 3529855). ). In such a case, in order to keep the HSS concentration below a certain level, for example, it is desirable to continuously perform distillation using a reclaimer. However, the amount of concentrated residue generated is larger than that of electrodialysis or ion exchange membrane, and this residue Incineration disposal of this becomes a problem. Further, it is known that non-ionic substances are also present in the by-products, and there is a problem that separation is difficult by electrodialysis or ion exchange membrane method.

燃焼排ガスには、CO以外に酸素、窒素、水蒸気、吸収液中のアミン類の蒸気の他に、酸性ガス成分であるHCl(塩化水素)、NOx(窒素酸化物)、SO等を含んでいる。そのため、燃焼排ガスと接触するアミン吸収液はCO以外に前記の酸性ガス成分も吸収する。これらの酸性ガス成分は最終的にはアミンと結合し、HClは塩酸塩、NOxは硝酸塩、SOは硫酸塩となる。これらの無機性塩の他に、吸収液中のアミンが分解した際に生成するギ酸、蓚酸、酢酸等の有機酸と結合して、それらの塩も形成する(前記非特許文献1)。以上の無機酸及び有機酸とアミンとの塩はいずれもHSSとなる。HSSは、COを吸収したアミンとは異なり、熱分解しないため、ガス条件が一定の場合はCO回収装置の運転時間に比例して液中に蓄積するが、HSSの増加に伴いCOを吸収可能なアミン濃度は低下し、同時にCO回収速度及び単位液量当たりのCO回収量も低下する。そこで、HSSが一定以上の濃度に達すると、リクレーマによる蒸留法、イオン交換樹脂法及び電気透析法などでHSSからアミンを回収していた。ボイラの燃焼排ガスからCOを回収する場合、前記のHSS処理方法の中で、ボイラで生成する水蒸気を利用したリクレーマによる蒸留法がよく利用される。 In addition to CO 2 , the combustion exhaust gas contains HCl (hydrogen chloride), NOx (nitrogen oxide), SO 2, etc., as well as oxygen, nitrogen, water vapor, and amine vapors in the absorption liquid. It is out. Therefore, the amine absorption liquid that comes into contact with the combustion exhaust gas absorbs the acidic gas component in addition to CO 2 . These acidic gas components eventually combine with amines, HCl becomes hydrochloride, NOx becomes nitrate, and SO 2 becomes sulfate. In addition to these inorganic salts, these salts are also formed by combining with organic acids such as formic acid, succinic acid, and acetic acid produced when the amine in the absorbing solution is decomposed (Non-patent Document 1). All the salts of the above inorganic acids and organic acids and amines are HSS. Unlike amines that have absorbed CO 2 , HSS is not thermally decomposed and therefore accumulates in the liquid in proportion to the operating time of the CO 2 recovery device when the gas conditions are constant. However, as HSS increases, CO 2 The amine concentration capable of absorbing CO 2 decreases, and at the same time, the CO 2 recovery rate and the CO 2 recovery amount per unit liquid amount also decrease. Therefore, when the HSS reached a certain concentration, the amine was recovered from the HSS by distillation using a reclaimer, ion exchange resin method, electrodialysis method, and the like. When recovering CO 2 from combustion exhaust gas from a boiler, a distillation method using a reclaimer using water vapor generated in a boiler is often used in the HSS treatment method.

蒸留法によるアミンの回収装置を含んだ従来のCO回収装置の例を図2に示す。燃焼排ガス1は吸収塔7内部の充填層11で再生塔8から循環されたリーン吸収液10と接触し、COを回収する。吸収塔7の塔底のリッチ吸収液9は熱交換器3で加熱された後、再生塔8に供給される。再生塔8内には、リボイラ21で加熱された吸収液の蒸気が吹き込まれたリッチ吸収液9は充填層11でCOを放出してリーン吸収液10となる。再生塔6からリーン吸収液10の一部を抜出し、リクレーマ25に供給する。リーン吸収液10を加熱しながら中和剤を添加することにより、HSSから酸成分が取り除かれる。HSSを除去された蒸気26は再生塔8に戻される。なお、HSSから回収された酸成分と中和剤との反応生成物は残滓28としてリクレーマ25から回収する。ここで、分解物の有機酸は中和剤と反応して極端に沸点が高くなることが知られている。例えばギ酸の沸点は100.5℃であるが、ギ酸ナトリウムの融点は253℃である。また蓚酸は180−190℃で分解し、100℃で昇華するが、蓚酸ナトリウムは400℃で分解する。 An example of a conventional CO 2 recovery apparatus including an amine recovery apparatus by distillation is shown in FIG. The combustion exhaust gas 1 comes into contact with the lean absorbent 10 circulated from the regeneration tower 8 in the packed bed 11 inside the absorption tower 7 and recovers CO 2 . The rich absorbent 9 at the bottom of the absorption tower 7 is heated by the heat exchanger 3 and then supplied to the regeneration tower 8. The rich absorbing liquid 9 into which the vapor of the absorbing liquid heated by the reboiler 21 is blown into the regeneration tower 8 releases CO 2 in the packed bed 11 to become the lean absorbing liquid 10. A part of the lean absorbent 10 is extracted from the regeneration tower 6 and supplied to the reclaimer 25. By adding the neutralizing agent while heating the lean absorbent 10, the acid component is removed from the HSS. The vapor 26 from which the HSS has been removed is returned to the regeneration tower 8. The reaction product of the acid component and the neutralizing agent recovered from the HSS is recovered from the reclaimer 25 as a residue 28. Here, it is known that the decomposed organic acid reacts with the neutralizing agent and has an extremely high boiling point. For example, formic acid has a boiling point of 100.5 ° C, while sodium formate has a melting point of 253 ° C. Succinic acid decomposes at 180-190 ° C. and sublimes at 100 ° C., whereas sodium oxalate decomposes at 400 ° C.

これらの副生物を分解するための方法としては、例えば活性炭に吸着する方法や、紫外線や過酸化水素とオゾンを組合せたAOP法があった。しかし、活性炭に吸着する方法では複製物以外にアミンも吸着・除去されてしまうという問題点があった。また、AOP法は吸収液中には炭酸イオンや重炭酸イオンが含まれており、これらのイオンがOHラジカルと反応するため、酸化の妨害物質(スカベンジャー)となる。そのため、紫外線照射の効果が減少してしまうという問題があった。   As a method for decomposing these by-products, there are, for example, a method of adsorbing on activated carbon and an AOP method combining ultraviolet rays, hydrogen peroxide and ozone. However, the method of adsorbing on activated carbon has a problem in that amines are also adsorbed and removed in addition to replicates. Further, in the AOP method, carbonate ions and bicarbonate ions are contained in the absorbing solution, and these ions react with OH radicals, so that they become an oxidation hindering substance (scavenger). Therefore, there has been a problem that the effect of ultraviolet irradiation is reduced.

特許第3529855号Japanese Patent No. 3529855

瀬瀬ほか:廃アミン類の移動再生システムに係る国内適用と経済性に関する調査(平成15年度調査事業成果発表会資料)、石油エネルギー技術センター(2004)Sase et al .: Survey on domestic application and economics related to the movement and recycling system of waste amines (2003 research project results presentation document), Petroleum Energy Technology Center (2004)

従来のCO回収技術では、アミンからの副生物が熱で分解しやすい場合は蒸留操作の際に初留分を十分除去する必要があり、その場合はアミンの回収率が低下する。また、焼却処分を容易にするためには副生物をできるだけ分解しておくことが望まれる。
本発明の課題は、CO回収装置のリクレーマで残滓として回収されるアミンの副生物を焼却処分しやすいように効率よく分解することにある。
In the conventional CO 2 recovery technique, when the by-product from the amine is easily decomposed by heat, it is necessary to sufficiently remove the initial fraction during the distillation operation, in which case the amine recovery rate is lowered. In order to facilitate incineration, it is desirable to decompose by-products as much as possible.
An object of the present invention is to efficiently decompose an amine by-product recovered as a residue by a reclaimer of a CO 2 recovery apparatus so as to be easily incinerated.

上記課題を解決するために、本願で特許請求される発明は以下のとおりである。
(1)二酸化炭素を含む被処理ガスを水とアルカノールアミンを含む吸収液と接触せしめる吸収塔と、二酸化炭素を吸収した吸収液を加熱し、二酸化炭素を回収する再生塔と、上記吸収塔で二酸化炭素を回収した吸収液の少なくとも一部を再生塔に搬送し、かつ再生塔で二酸化炭素を分離した吸収液の少なくとも一部を吸収塔に搬送し、前記の吸収塔から再生塔に搬送する液と熱交換させる熱交換器と、再生塔から吸収塔に搬送される液の一部又は全部に、中和剤を添加した後、蒸留によってアルカノールアミンを含む吸収液を回収するリクレーマ装置とを有するCO回収装置であって、リクレーマ装置で蒸留後の残滓に紫外線を照射する装置を付設したことを特徴とする二酸化炭素の回収装置。
(2)前記残滓に紫外線を照射する装置は、前記残滓をフラッシュして装置内に供給し、紫外線を照射するものである(1)に記載の二酸化炭素の回収装置。
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) An absorption tower for bringing a gas to be treated containing carbon dioxide into contact with an absorption liquid containing water and an alkanolamine, a regeneration tower for heating the absorption liquid that has absorbed carbon dioxide and recovering carbon dioxide, and the above absorption tower At least a part of the absorption liquid from which carbon dioxide has been recovered is transported to the regeneration tower, and at least a part of the absorption liquid from which carbon dioxide has been separated by the regeneration tower is transported to the absorption tower and transported from the absorption tower to the regeneration tower. A heat exchanger that exchanges heat with the liquid, and a reclaimer that recovers the absorption liquid containing alkanolamine by distillation after adding a neutralizing agent to a part or all of the liquid conveyed from the regeneration tower to the absorption tower. A CO 2 recovery apparatus comprising a CO 2 recovery apparatus that irradiates ultraviolet rays onto a residue after distillation by a reclaimer apparatus.
(2) The carbon dioxide recovery device according to (1), wherein the apparatus that irradiates the residue with ultraviolet rays flushes the residue, supplies the residue into the apparatus, and irradiates the ultraviolet rays.

本発明によれば、CO再生塔から熱交換器に供給される前のリーン吸収液に中和剤を加えて加熱し、蒸留後の残滓を紫外線照射処理することにより、アミンからの有害副生物の分解処理が可能になる。加えて従来の方法に比べて吸収液中のアミンの吸収・分解を抑制できるため、CO回収装置へのアミン補充量も低減できる。 According to the present invention, the neutral absorbent is added to the lean absorbent before being supplied to the heat exchanger from the CO 2 regeneration tower and heated, and the residue after the distillation is subjected to ultraviolet irradiation treatment, thereby causing harmful side effects from amines. Biological decomposition processing becomes possible. In addition, since the absorption / decomposition of amine in the absorption liquid can be suppressed as compared with the conventional method, the amount of amine replenishment to the CO 2 recovery apparatus can be reduced.

本発明の実施例で使用したCO回収装置の系統図。System diagram of a CO 2 recovery apparatus used in Examples of the present invention. 従来のCO回収装置の系統図。System diagram of a conventional CO 2 recovery apparatus. 実施例と比較例の液中のギ酸濃度の相対幅を比較したグラフ。The graph which compared the relative width of the formic acid density | concentration in the liquid of an Example and a comparative example.

本発明では、再生塔8でCOを回収した後のリーン液10をリクレーマ25に供給し、中和及び蒸留処理を行ない、アミンを回収した後の残滓28を紫外線照射装置36で照射する。この方法により、蒸留操作により残存した炭酸及び重炭酸イオンも除去できる。ただし、本発明では、リクレーマ25内でNaOH、KOH、Ca(OH)やCaOのような中和剤を加えるので、アミンと結合していた有機酸や無機酸性物質は中和剤と反応し、その際、残留していたCOもこれらの中和剤と反応する。中和剤とCOの結合は概ねアミンよりも強固であるため、HSSとの反応に必要な量よりも過剰にならないように注意が必要である。 In the present invention, the lean solution 10 after the CO 2 is recovered by the regeneration tower 8 is supplied to the reclaimer 25, neutralization and distillation are performed, and the residue 28 after recovering the amine is irradiated by the ultraviolet irradiation device 36. By this method, carbonic acid and bicarbonate ions remaining by distillation can be removed. However, in the present invention, since a neutralizing agent such as NaOH, KOH, Ca (OH) 2 or CaO is added in the reclaimer 25, the organic acid or inorganic acidic substance bonded to the amine reacts with the neutralizing agent. In this case, the remaining CO 2 also reacts with these neutralizing agents. Since the bond between the neutralizing agent and CO 2 is generally stronger than the amine, care must be taken not to exceed the amount required for the reaction with HSS.

さらに具体的には、図1に示すように、リクレーマ25の残滓28は排出ラインを介して紫外線照射装置35内にフラッシュすることにより、蒸気と残滓28中に残った僅かな炭酸及び重炭酸イオンをCOとして放出することができる。フラッシュするには、調圧弁33を設置し、残滓を常圧まで減圧した後、紫外線照射装置内に供給する。これにより、紫外線照射装置35内に供給された残滓28に、炭酸イオンや重炭酸イオンが残存していたとしても、COとして脱気できるため、紫外線照射を好適に行なうことができる。 More specifically, as shown in FIG. 1, the residue 28 of the reclaimer 25 is flushed into the ultraviolet irradiation device 35 through the discharge line, so that a small amount of carbonate and bicarbonate ions remaining in the residue 28 are obtained. Can be released as CO 2 . In order to flush, the pressure regulating valve 33 is installed, and the residue is reduced to normal pressure and then supplied into the ultraviolet irradiation device. Thereby, even if carbonate ions or bicarbonate ions remain in the residue 28 supplied in the ultraviolet irradiation device 35, it can be degassed as CO 2 , so that the ultraviolet irradiation can be suitably performed.

本発明で用いる中和剤としては、アルカリ又はアルカリ土類の水酸化物又は酸化物の1種以上を含む化合物があげられる。   Examples of the neutralizing agent used in the present invention include alkali or alkaline earth hydroxides or compounds containing one or more oxides.

また、紫外線としては近紫外光でも真空紫外光でも良いが、真空紫外光を用いる場合はアミンが分解しないように照射時間を考慮する必要がある。
また、中和剤を加えた後の吸収液中の炭酸イオン及び重炭酸イオンの濃度はできるだけ低いことが望ましい。そのため、中和剤を添加後、常圧、望ましくは減圧状態でアミンを加熱し、吸収液からの脱炭酸を十分に行なったほうが良い。
なお、本発明では波長 200-10 nm の真空紫外光よりも波長 380-200 nm の近紫外光の方が適する場合がある。これは、真空紫外光によってアミン自体が分解される場合があるからである。
Further, near ultraviolet light or vacuum ultraviolet light may be used as the ultraviolet light, but when using vacuum ultraviolet light, it is necessary to consider the irradiation time so that the amine is not decomposed.
Moreover, it is desirable that the concentration of carbonate ions and bicarbonate ions in the absorption liquid after adding the neutralizing agent is as low as possible. For this reason, after adding the neutralizing agent, it is better to heat the amine at normal pressure, preferably in a reduced pressure state, and sufficiently perform decarboxylation from the absorbent.
In the present invention, near ultraviolet light having a wavelength of 380-200 nm may be more suitable than vacuum ultraviolet light having a wavelength of 200-10 nm. This is because the amine itself may be decomposed by vacuum ultraviolet light.

図1のCO吸収装置を用いて燃焼排ガスのCO吸収実験を行なった。主な実験条件は、吸収塔入口ガス及び液温度40℃、再生塔入口液温度100℃、再生塔内圧力160kPa(ゲージ)、液温度:最高120℃、冷却器温度30℃、ガス量500m/h、液ガス比3.0(L/m)であった。循環液量は1500Lであった。前述のように、排ガス1中のCOは吸収塔7で回収され、吸収塔下部タンク30内にリッチ吸収液9として収集される。リッチ吸収液9は熱交換器3で加熱された後、再生塔8に供給される。再生塔8内では、リッチ吸収液9はリボイラ21により更に加熱されることにより、COを放出し、リーン吸収液10として再生塔下部タンク31に回収される。ここでリーン吸収液10は熱交換器3を経て再び、吸収塔7に供給される。また、別の吸収液10の一部はリクレーマ25に供給され、中和剤を添加される。そして、HSSの酸成分は加熱しながら中和剤で取り除かれ、アミンと水からなる蒸気26となり、再生塔8に戻される。ここで、中和剤を添加する前に、アミン濃度とHSS濃度をイオンクロマトグラフで確認し、適切な中和剤添加量を求めた。なお、HSSから回収された酸成分と中和剤との反応生成物はリクレーマ25の残滓排出ライン28から回収する。これにより、吸収液10は連続的にHSSの除去・吸収液としての再生が可能になる。なお、吸収液には30%MEA(モノエタノールアミン)液を用い、中和剤にはNaOHを用いた。ここでリクレーマ内の加熱温度を152℃とすることにより、蒸気26中のアミン/水蒸気重量比を30/70にできる。蒸気26を蒸気圧縮ポンプ32で160kPa以上に加圧して、再生塔8に供給することにより、 連続的にリクレーマを稼働させることが可能になる。この際、残滓は排出ライン28から抜き出し、紫外線照射装置35内にフラッシュした。紫外線源としては石英管の保護管内にブラックライトを設置したものを用いた。照射時間と残滓中のギ酸濃度の関係を測定した。ギ酸濃度は、残滓をイオンクロマトグラフで分析することにより計測した。 A CO 2 absorption experiment of combustion exhaust gas was performed using the CO 2 absorption device of FIG. The main experimental conditions were absorption tower inlet gas and liquid temperature 40 ° C., regeneration tower inlet liquid temperature 100 ° C., regeneration tower pressure 160 kPa (gauge), liquid temperature: maximum 120 ° C., cooler temperature 30 ° C., gas amount 500 m 3. / h, liquid gas ratio was 3.0 (L / m 3 ). The amount of circulating fluid was 1500L. As described above, CO 2 in the exhaust gas 1 is collected by the absorption tower 7 and collected as the rich absorbent 9 in the absorption tower lower tank 30. The rich absorbent 9 is heated by the heat exchanger 3 and then supplied to the regeneration tower 8. In the regeneration tower 8, the rich absorbent 9 is further heated by the reboiler 21, thereby releasing CO 2 and being collected in the regeneration tower lower tank 31 as the lean absorbent 10. Here, the lean absorbent 10 is supplied again to the absorption tower 7 via the heat exchanger 3. Moreover, a part of another absorption liquid 10 is supplied to the reclaimer 25, and a neutralizing agent is added. Then, the acid component of HSS is removed with a neutralizing agent while heating to become a vapor 26 composed of amine and water, and returned to the regeneration tower 8. Here, before adding the neutralizing agent, the amine concentration and the HSS concentration were confirmed by ion chromatography, and an appropriate amount of neutralizing agent added was determined. Note that the reaction product of the acid component and the neutralizing agent recovered from the HSS is recovered from the residue discharge line 28 of the reclaimer 25. Thereby, the absorption liquid 10 can be continuously regenerated as an HSS removal / absorption liquid. A 30% MEA (monoethanolamine) solution was used as the absorbing solution, and NaOH was used as the neutralizing agent. Here, by setting the heating temperature in the reclaimer to 152 ° C., the amine / water vapor weight ratio in the vapor 26 can be made 30/70. The reclaimer can be operated continuously by pressurizing the steam 26 to 160 kPa or more with the steam compression pump 32 and supplying it to the regeneration tower 8. At this time, the residue was extracted from the discharge line 28 and flushed into the ultraviolet irradiation device 35. As an ultraviolet ray source, a quartz tube with a black light installed in a protective tube was used. The relationship between irradiation time and formic acid concentration in the residue was measured. The formic acid concentration was measured by analyzing the residue with an ion chromatograph.

[比較例]
図2に示すようにHSSを含むリーン吸収液10をリクレーマ25に供給し、中和剤27を加えて、残滓は排出ライン28からフラッシュタンク36にフラッシュした。フラッシュタンク中の残滓の保管時間と残滓中のギ酸濃度を測定した。それ以外は実施例と同じ条件で実施した。
紫外線10分照射後の実施例と比較例の試験結果を比較すると実施例では1/2に低減されている。照射直前は等濃度であったので、紫外線照射の効果と推定される。
なお、本発明ではCO吸収液としてMEAを用いたが、他のアミンでも同様の効果があることは明らかである。また、中和剤もNaOHに限らず、他のアルカリ金属及びアルカリ土類金属の水酸化物、酸化物でも良い。また、有機酸の種類が蓚酸でも同様脳効果が見られた。
[Comparative example]
As shown in FIG. 2, the lean absorbent 10 containing HSS was supplied to the reclaimer 25, the neutralizing agent 27 was added, and the residue was flushed from the discharge line 28 to the flash tank 36. The storage time of the residue in the flash tank and the formic acid concentration in the residue were measured. The other conditions were the same as in the example.
When the test results of the example and the comparative example after irradiation with ultraviolet rays for 10 minutes are compared, the value is reduced to ½ in the example. Since the concentration was equal immediately before the irradiation, it is estimated that the effect of ultraviolet irradiation.
In the present invention, MEA is used as the CO 2 absorbent, but it is clear that other amines have the same effect. Further, the neutralizing agent is not limited to NaOH, but may be hydroxides or oxides of other alkali metals and alkaline earth metals. Similar brain effects were observed when the organic acid was oxalic acid.

1:燃焼排ガス、3:熱交換器、 5:クーラー、7:吸収塔、8:再生塔、9:リッチ吸収液、10:リーン吸収液、11:充填層、12:水スプレー、18:コレクタ、19:還流水、14:ポンプ、16:CO除去後の排ガス、17:洗浄水、 21:リボイラ、22:送風機、23:水洗部 、25:リクレーマ、26:リクレーマからの蒸気、27:中和剤、28:残滓排出ライン、29:タンクからの蒸気、30:吸収塔下部タンク、31:再生塔下部タンク、32:蒸気圧縮ポンプ
33:調圧弁、35:紫外光照射装置、36:フラッシュタンク
1: combustion exhaust gas, 3: heat exchanger, 5: cooler, 7: absorption tower, 8: regeneration tower, 9: rich absorption liquid, 10: lean absorption liquid, 11: packed bed, 12: water spray, 18: collector , 19: reflux water, 14: pump, 16: exhaust gas after removing CO 2 , 17: washing water, 21: reboiler, 22: blower, 23: washing section, 25: reclaimer, 26: steam from the reclaimer, 27: Neutralizing agent, 28: residue discharge line, 29: steam from tank, 30: absorption tower lower tank, 31: regeneration tower lower tank, 32: steam compression pump 33: pressure regulating valve, 35: ultraviolet light irradiation device, 36: Flash tank

Claims (2)

二酸化炭素を含む被処理ガスを水とアルカノールアミンを含む吸収液と接触せしめる吸収塔と、二酸化炭素を吸収した吸収液を加熱し、二酸化炭素を回収する再生塔と、上記吸収塔で二酸化炭素を回収した吸収液の少なくとも一部を再生塔に搬送し、かつ再生塔で二酸化炭素を分離した吸収液の少なくとも一部を吸収塔に搬送し、前記の吸収塔から再生塔に搬送する液と熱交換させる熱交換器と、再生塔から吸収塔に搬送される液の一部又は全部に、中和剤を添加した後、蒸留によってアルカノールアミンを含む吸収液を回収するリクレーマ装置とを有するCO回収装置であって、リクレーマ装置で蒸留後の残滓に紫外線を照射する装置を付設したことを特徴とする二酸化炭素の回収装置。 An absorption tower for bringing a gas to be treated containing carbon dioxide into contact with an absorption liquid containing water and an alkanolamine, a regeneration tower for heating the absorption liquid that has absorbed carbon dioxide to recover carbon dioxide, and carbon dioxide in the absorption tower. At least a part of the collected absorption liquid is transported to the regeneration tower, and at least a part of the absorption liquid from which carbon dioxide has been separated in the regeneration tower is transported to the absorption tower, and the liquid and heat transported from the absorption tower to the regeneration tower. CO 2 having a heat exchanger to be exchanged, and a reclaimer device that collects an absorbent containing alkanolamine by distillation after adding a neutralizing agent to a part or all of the liquid conveyed from the regeneration tower to the absorption tower A carbon dioxide recovery device, which is a recovery device, and is provided with a device for irradiating the residue after distillation with a reclaimer device with ultraviolet rays. 前記残滓に紫外線を照射する装置は、前記残滓をフラッシュして装置内に供給し、紫外線を照射するものである請求項1に記載の二酸化炭素の回収装置。 The carbon dioxide recovery apparatus according to claim 1, wherein the apparatus for irradiating the residue with ultraviolet rays flushes the residue, supplies the residue into the apparatus, and irradiates the residue with ultraviolet rays.
JP2012039743A 2012-02-27 2012-02-27 Device for recovering carbon dioxide Pending JP2013173114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012039743A JP2013173114A (en) 2012-02-27 2012-02-27 Device for recovering carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012039743A JP2013173114A (en) 2012-02-27 2012-02-27 Device for recovering carbon dioxide

Publications (1)

Publication Number Publication Date
JP2013173114A true JP2013173114A (en) 2013-09-05

Family

ID=49266566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012039743A Pending JP2013173114A (en) 2012-02-27 2012-02-27 Device for recovering carbon dioxide

Country Status (1)

Country Link
JP (1) JP2013173114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107958A1 (en) * 2014-01-17 2015-07-23 三菱重工業株式会社 Reclaiming device and method, and recovery device for co2 or h2s or both
US9862280B2 (en) 2013-01-10 2018-01-09 Jaguar Land Rover Limited Systems and methods for determining relative position and orientation of a vehicle with respect to a charging station
KR20230040647A (en) * 2021-09-16 2023-03-23 유와텍 주식회사 Apparatus for regeneration of activated carbon using supercritical carbon dioxide and ozone

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9862280B2 (en) 2013-01-10 2018-01-09 Jaguar Land Rover Limited Systems and methods for determining relative position and orientation of a vehicle with respect to a charging station
US10000131B2 (en) 2013-01-10 2018-06-19 Jaguar Land Rover Limited Systems for determining relative position and orientation of a vehicle with respect to a charging station
WO2015107958A1 (en) * 2014-01-17 2015-07-23 三菱重工業株式会社 Reclaiming device and method, and recovery device for co2 or h2s or both
AU2015207219B2 (en) * 2014-01-17 2017-09-14 Mitsubishi Heavy Industries, Ltd. Reclaiming device and method, and recovery device for CO2 or H2S or both
US10471379B2 (en) 2014-01-17 2019-11-12 Mitsubishi Heavy Industries Engineering, Ltd. Reclaiming device, reclaiming method, and recovery unit for CO2 or H2S or both
US10940431B2 (en) 2014-01-17 2021-03-09 Mitsubishi Heavy Industries Engineering, Ltd. Reclaiming method
KR20230040647A (en) * 2021-09-16 2023-03-23 유와텍 주식회사 Apparatus for regeneration of activated carbon using supercritical carbon dioxide and ozone
KR102584746B1 (en) 2021-09-16 2023-10-06 유와텍 주식회사 Apparatus for regeneration of activated carbon using supercritical carbon dioxide and ozone

Similar Documents

Publication Publication Date Title
JP5507584B2 (en) Method and plant for amine emissions control
WO2012153812A1 (en) Co2 recovery device, and co2 recovery method
KR101170891B1 (en) Removal of carbon dioxide from flue gas with ammonia comprising medium
JP6057545B2 (en) Exhaust gas treatment equipment
JP5968159B2 (en) CO2 recovery apparatus and CO2 recovery method
WO2015107958A1 (en) Reclaiming device and method, and recovery device for co2 or h2s or both
WO2013039041A1 (en) Co2 recovery device and co2 recovery method
EP2883594B1 (en) Co2 recovery device and co2 recovery method
EP2609987A1 (en) Discharge gas treatment system having co2 removal equipment.
EP2230000B1 (en) Flue gas treatment system and method using ammonia solution
JP6634395B2 (en) Exhaust gas treatment device and CO2 recovery device using the same
JP5738137B2 (en) CO2 recovery apparatus and CO2 recovery method
JP4831833B2 (en) CO2 recovery device and waste treatment method in CO2 recovery device
GB2517052A (en) Acid gas recovery system and acid gas recovery apparatus
CA2814354C (en) Co2 recovery system
JP5812847B2 (en) Carbon dioxide recovery apparatus and method
JP2013173114A (en) Device for recovering carbon dioxide
KR20140042393A (en) Apparatus for treating acidic gas and methof thereof
KR101527452B1 (en) Method for Preventing Ammonia Slip Using Carbonic Acid Washing Water
KR20130076596A (en) Method for simultaneous removal of co2, h2s and hcn using ammonia
JP5881498B2 (en) Nitrogen oxide and sulfur oxide removal system, nitrogen oxide and sulfur oxide removal method, and carbon dioxide recovery system
JP2014171932A (en) Method and apparatus for removing carbon dioxide
JP2020195998A (en) Gas treatment method, and gas treatment device
JP2013184079A (en) Carbon dioxide recovery device
JP2019135034A (en) Acidic gas recovery apparatus and acidic gas recovery method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141217