JP2013171032A - Taste sensor - Google Patents

Taste sensor Download PDF

Info

Publication number
JP2013171032A
JP2013171032A JP2012048529A JP2012048529A JP2013171032A JP 2013171032 A JP2013171032 A JP 2013171032A JP 2012048529 A JP2012048529 A JP 2012048529A JP 2012048529 A JP2012048529 A JP 2012048529A JP 2013171032 A JP2013171032 A JP 2013171032A
Authority
JP
Japan
Prior art keywords
taste
sensor
film
hole
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012048529A
Other languages
Japanese (ja)
Inventor
Masahiro Akiya
昌宏 秋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012048529A priority Critical patent/JP2013171032A/en
Publication of JP2013171032A publication Critical patent/JP2013171032A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a taste sensor capable of obtaining stable and accurate measurement data, performing low concentration measurement and having a favorable response speed.SOLUTION: A taste sensor 10 includes a sensor electrode part 12, and a reference electrode part 13. The sensor electrode part 12 comprises an insulation substrate 22 installed on the sensor electrode part. An LB (Langmuir-Blodgett) film 24 is formed on the insulation substrate 22, and a hole 19 in which a taste sample flows is installed on one part of a side wall of the sensor electrode part 12. The area of the hole 19 in which the taste sample flows is retained within a favorable area. A solution entering from the hole comes into direct contact with the LB film 24 and a distance from the hole to the LB film is held constant. The taste sensor 10 can thus obtain highly accurate and stable measurement data at a favorable response speed.

Description

本発明は、化学センサ或いはバイオセンサの内、味覚センサに関する。The present invention relates to a taste sensor among chemical sensors or biosensors.

従来、化学センサとして、pH(ペーハ)センサ、イオンセンサ、酵素センサなどが知られている。これらは高選択性であるが、多数の物質で構成された味覚や臭覚に対して広範にわたり十分な感度を得ることは難しい。  Conventionally, pH sensors, ion sensors, enzyme sensors, and the like are known as chemical sensors. These are highly selective, but it is difficult to obtain a wide range of sufficient sensitivity to taste and smell composed of a large number of substances.

これに対し、LB膜(ラングミューア・ブロジェット法を用いて作られた膜)や人工脂質膜などを用いた味覚センサは、化学センサに比べれぱ選択性は低いが種々の味覚に対し応答を示す。特に、LB膜は単分子膜を常温、常圧の環境下で高い秩序で配列、配向制御が可能であり、人体の舌の構造に類似しているため、センサの膜物質として有望視されている。このような膜を用いた味覚センサは例えぱ特許丈献1に開示されている。In contrast, taste sensors using LB membranes (membranes made using the Langmuir-Blodgett method) or artificial lipid membranes are less selective than chemical sensors but respond to various tastes. Show. In particular, the LB film is highly promising as a film material for sensors because it can control the alignment and orientation of monomolecular films in a highly ordered environment at normal temperature and pressure, and is similar to the structure of the human tongue. Yes. A taste sensor using such a film is disclosed in, for example, Japanese Patent Publication No. 1.

従来の味覚センサの構成を図8に示す。味覚センサは、図8に示すように、センサ電極Aと、参照電極Bと、塩橋と、電圧計と、コンピュータとを備える。センサ電極は例えぱビーカ等の容器に入れられた10mM KCl溶液に浸されており、同様に参照電極もビーカ等の容器に入れられた飽和KCl溶液に浸されている。このビーカ等の容器内にシリンジから呈味サンブルが滴下され、センサ電極と参照電極との電位の変化を測定する。
特開2004−77394号公報
The configuration of a conventional taste sensor is shown in FIG. As shown in FIG. 8, the taste sensor includes a sensor electrode A, a reference electrode B, a salt bridge, a voltmeter, and a computer. The sensor electrode is immersed in a 10 mM KCl solution placed in a container such as a beaker. Similarly, the reference electrode is immersed in a saturated KCl solution placed in a container such as a beaker. A taste sample is dropped from a syringe into a container such as a beaker, and a change in potential between the sensor electrode and the reference electrode is measured.
JP 2004-77394 A

従来の味覚センサはビーカに設置され、ビーカ内に味サンフルが滴下されるため、シリンジによって味覚試料が滴下される位置からセンサまでの距離によって、測定データのばらつき、溶媒を通して味サンプルが拡散し、センサ電極Aに味サンプルが到達するまでにサンプルの濃度が小さくなり、電極表面での感度が低下すると同時に、応答速度が遅くなるという問題があった。A conventional taste sensor is installed in a beaker, and taste sample is dripped in the beaker. Therefore, depending on the distance from the position where the taste sample is dripped by the syringe to the sensor, the measurement data varies, the taste sample diffuses through the solvent, There is a problem in that the concentration of the sample decreases before the taste sample reaches the sensor electrode A, the sensitivity on the electrode surface decreases, and at the same time, the response speed decreases.

本発明は上述した実情に鑑みてなされたものであり、測定精度が高く、低濃度での測定も可能で、応答速度も速い味覚センサを提供するものである。The present invention has been made in view of the above circumstances, and provides a taste sensor that has high measurement accuracy, can be measured at a low concentration, and has a fast response speed.

問題を解決するための手段Means to solve the problem

上述した目的を達成するため、本発明の第1の観点に係る味覚センサは、少なくとも一面から溶液が流入するための筐体が設けられ、前記筐体の溶液が流入する面とは別の面に設けられた絶縁基板と、該絶縁基板上に形成された金属電極と、該金属電極上に形成された感応膜と、前記絶縁基板の前記感応膜から所定距離だけ離間した位置に形成された空孔部と、を備えることを特徴とする味覚センサ。In order to achieve the above-described object, the taste sensor according to the first aspect of the present invention is provided with a housing for the solution to flow in from at least one surface, and a surface different from the surface into which the solution flows in the housing. An insulating substrate provided on the insulating substrate; a metal electrode formed on the insulating substrate; a sensitive film formed on the metal electrode; and a position separated from the sensitive film on the insulating substrate by a predetermined distance. A taste sensor comprising: a hole portion.

前記筐体と隣接するように設置され、基準溶液が入れられる容器を更に備えてもよい。You may further provide the container installed so that the said housing | casing may be adjoined and a reference | standard solution may be put.

前記絶縁基板は前記筐体に着脱可能に設けられてもよい。The insulating substrate may be detachably provided on the housing.

前記空孔部は、筐体の一部に形成されてもよい。The hole may be formed in a part of the housing.

前記空孔部は、円形状に形成されてもよい。The hole may be formed in a circular shape.

前記感応膜は、ラングミューア・ブロジェット法を用いて作られた膜から構成されてもよい。The sensitive film may be composed of a film made using the Langmuir-Blodgett method.

発明の効果Effect of the invention

本発明によれば、筐体にセンサを固定し、呈味サンプル溶液を直接味覚センサに触れることによってばらつきの少ない正確な測定データを得ることができ、しかも呈味サンプル溶液が薄まること無く直接味覚センサの感応膜に接触するため、低濃度な呈味サンプルまで測定可能で、且つ良好な応答速度を傭える味覚センサを提供できる。According to the present invention, it is possible to obtain accurate measurement data with little variation by fixing the sensor to the housing and directly touching the taste sample solution to the taste sensor, and directly taste without causing the taste sample solution to dilute. Since the sensor touches the sensitive film of the sensor, it is possible to provide a taste sensor that can measure even a low-concentration taste sample and has good response speed.

図1は、この発明の実施の形態に係る昧覚センサ10の構成例を示す図である。
味覚センサ10は、図1に示すようにセンサ電極部12とこの中にあるセンサ電極11と、参照電極部13とこの中にある参照電極32、更に塩橋14と、電圧計15と、コンピュータ16と、から構成される。
FIG. 1 is a diagram showing a configuration example of an illusion sensor 10 according to an embodiment of the present invention.
As shown in FIG. 1, the taste sensor 10 includes a sensor electrode unit 12, a sensor electrode 11 therein, a reference electrode unit 13, a reference electrode 32 therein, a salt bridge 14, a voltmeter 15, and a computer. 16.

味覚センサ10はホルダー内に参照電極が入っている飽和KCl溶液部17と呈味サンプル溶液が流入するセンサ電極部12とが分離されていて、塩橋14で両溶液部の電位が等電位となる構造になっている。味覚センサ10を呈味サンプル溶液18に浸漬することにより、後述するセンサ電極が収容されている容器部に開けられた空孔19を通して呈味サンプル溶器内に呈味サンプル溶液が流入し、センサ電極11と参照電極32間の電位が変化し、この変化を電圧計で計測しデータをコンピュータに記録する。In the taste sensor 10, the saturated KCl solution portion 17 containing a reference electrode in the holder is separated from the sensor electrode portion 12 into which the taste sample solution flows, and the potential of both solution portions is equipotential at the salt bridge 14. It becomes the structure which becomes. By immersing the taste sensor 10 in the taste sample solution 18, the taste sample solution flows into the taste sample melter through a hole 19 opened in a container portion in which a sensor electrode to be described later is accommodated. The potential between the electrode 11 and the reference electrode 32 changes, and this change is measured with a voltmeter and the data is recorded in a computer.

図2は味覚センサ10の各断面図を示しており、背面図(C)の一部に前述した呈味サンプル溶液が流入する空孔19が空けられている。なお、この空孔の形状は丸型でも角型でも任意の形状で良いが面積が30平方mmを超えない大きさが良好である。空孔の位置はセンサ電極部筐体の側面でも底面でも、どの位置でも良い。また、背面図(c)にはセンサ電極11がはめ込まれるスリットが空けられており、センサ電極11の着脱が容易になっており、劣化したセンサ電極を簡単に入れ替えが出来るようになっている。FIG. 2 is a cross-sectional view of the taste sensor 10, and a hole 19 into which the above-described taste sample solution flows is formed in a part of the rear view (C). The shape of the pores has good size not exceeding good area of 30 square mm 2 in any shape in square even round. The position of the hole may be any position on the side surface or the bottom surface of the sensor electrode unit housing. Further, in the rear view (c), a slit into which the sensor electrode 11 is fitted is opened, so that the sensor electrode 11 can be easily attached and detached, and the deteriorated sensor electrode can be easily replaced.

図3に示すセンサ電極11の絶縁基板22はガラスで出来ており、この上にマスクパタンによりパタン化された金属薄膜25が蒸着あるいはスパッタリングにより形成されていてさらにその上にLB膜(Langmuir−Blodgett film)24が形成されている。The insulating substrate 22 of the sensor electrode 11 shown in FIG. 3 is made of glass, on which a metal thin film 25 patterned by a mask pattern is formed by vapor deposition or sputtering, and an LB film (Langmuir-Blodgett) is further formed thereon. film) 24 is formed.

LB膜(Langmuir−Blodgett film)24は、ラングミューア・ブロジェット法を用いて作られており、単分子膜を配向配置させた膜であり、分子間隔が10nm程度の分子構造を有する。また、図3に示すようにLB膜24は、絶縁基板22を覆うように形成される。もっとも引出電極26上には絶縁膜28が形成されており、LB膜24はこの絶縁膜28上にも形成される。しかし、LB膜24の電位の変化は金属電極25上に形成された領域でのみ検出されるため、味覚の識別に寄与するのは金属電極25上に形成された部分のみである。なお、LB膜24を選択的に金属電極25上のみに形成しても良い。The LB film (Langmuir-Blodgett film) 24 is made by using the Langmuir-Blodgett method, and is a film in which monomolecular films are aligned and has a molecular structure with a molecular interval of about 10 nm. Further, as shown in FIG. 3, the LB film 24 is formed so as to cover the insulating substrate 22. However, an insulating film 28 is formed on the extraction electrode 26, and the LB film 24 is also formed on the insulating film 28. However, since the change in the potential of the LB film 24 is detected only in the region formed on the metal electrode 25, only the portion formed on the metal electrode 25 contributes to taste discrimination. Note that the LB film 24 may be selectively formed only on the metal electrode 25.

また、図4に拡大して模式的に示すように、金属電極25の表面の平均粗さは、LB膜24の分子間隔と等しいかより小さい値を有する。また、LB膜24の膜物質として、基本五味の良好な識別が可能であるDiOctadecyldimethylAmmonium Bromide(DOABr)を使用し、また、ポリイオンコンプレツクス法で使用する下層の高分子としてPotassium Poly−vinyl Sulfate(以下、PVSK)を使用して、20層に堆積したLB膜24を生成した。なお、LB膜24の膜物質としては、Tri−OctadecylAmine−HydroChnoride(TOAHC)、を用いることも可能である。Further, as schematically shown in an enlarged manner in FIG. 4, the average roughness of the surface of the metal electrode 25 has a value equal to or smaller than the molecular interval of the LB film 24. In addition, as a film material of the LB film 24, Dioctadecyldimethyl Ammonium Bromide (DOABr), which allows good discrimination of the basic five tastes, is used, and Potassium Poly-Vinyl Sulfate (hereinafter referred to as a polymer under layer used in the polyion complex method). , PVSK) was used to produce an LB film 24 deposited in 20 layers. As the film material of the LB film 24, Tri-Octadecylamine-HydroChnoride (TOAHC) can be used.

また、LB膜24は、絶縁基板22の特定の位置に形成されているため、呈味サンプルが流入する空孔19の位置からLB膜24までの距離が一定に保たれる。従って膜変化電位、並びに応答速度がほぽ一定となり、膜電位変化、応答時間のばらつきを解消させることができ、測定精度を向上させることができる。さらに希釈されていない呈味サンプルが直接LB膜24の表面に接するため、低濃度の呈味サンプルまで測定が可能である。Further, since the LB film 24 is formed at a specific position of the insulating substrate 22, the distance from the position of the hole 19 into which the taste sample flows into the LB film 24 is kept constant. Therefore, the membrane change potential and the response speed become almost constant, and variations in the membrane potential and response time can be eliminated, and the measurement accuracy can be improved. Furthermore, since the undiluted taste sample directly contacts the surface of the LB film 24, it is possible to measure even a low-concentration taste sample.

金属電極25と引出電極26とは、絶縁基板22上に形成される。金属電極25と引出電極26とは、チタン(Ti)、クロム(Cr)等の高融点金属、金(Au)、白金(Pt)、銀(Ag)等の貴金属、アルミニウム(Al)、銅(Cu)等から構成され、薄膜堆積法、具体的には、真空蒸着などのPVD(PhisicalVaporDeposition)により堆積・形成されている。金属電極25は、例えぱ、縦横5〜10mm、厚さ1nm〜100μm程度のサイズで、その表面粗さ(金属電極25の表面の凸凹のピーク間隔)は、図4に拡大して示すように、10nm以下に設定されている。また、引出電極26の上面は、エポキシ樹脂等の絶縁材料からなる絶縁膜28によって覆われている。The metal electrode 25 and the extraction electrode 26 are formed on the insulating substrate 22. The metal electrode 25 and the extraction electrode 26 include a high melting point metal such as titanium (Ti) and chromium (Cr), a noble metal such as gold (Au), platinum (Pt), and silver (Ag), aluminum (Al), copper ( Cu) and the like, and is deposited and formed by a thin film deposition method, specifically, PVD (Physical Vapor Deposition) such as vacuum evaporation. For example, the metal electrode 25 has a size of about 5 to 10 mm in length and width and a thickness of about 1 nm to 100 μm, and its surface roughness (peak interval of unevenness on the surface of the metal electrode 25) is enlarged as shown in FIG. It is set to 10 nm or less. The upper surface of the extraction electrode 26 is covered with an insulating film 28 made of an insulating material such as an epoxy resin.

参照電極部13は、容器31と、参照電極32とから構成される。容器31は図1及び図2に示すように呈味サンプル容器に隣接して設置され、容器31内には飽和KCl溶液が入れられている。このように容器31を設置することにより、センサ電極部12と参照電極部13とを一体とすることができる。これにより、味覚センサ10を容易に持ち運ぷことが可能となる。参照電極32は、電圧計15に接続されており、参照電極32の電位を基準としてセンサ電極11との電位差が測定される。The reference electrode unit 13 includes a container 31 and a reference electrode 32. As shown in FIGS. 1 and 2, the container 31 is installed adjacent to the taste sample container, and a saturated KCl solution is placed in the container 31. By installing the container 31 in this way, the sensor electrode unit 12 and the reference electrode unit 13 can be integrated. Thereby, it becomes possible to carry the taste sensor 10 easily. The reference electrode 32 is connected to the voltmeter 15, and the potential difference from the sensor electrode 11 is measured based on the potential of the reference electrode 32.

塩橋14は、例えば、塩化カリウム水溶液を寒天等によって固めることにより作成される。塩橋14の一端は、センサ電極部12の容器内に設置され呈味溶液に浸されており、他端は参照電極部13の飽和KCl溶液17中に浸されている。塩橋14によって、センサ電極部12と参照電極部13との2種類の溶液が混合されないで電位的に連結される。The salt bridge 14 is created, for example, by hardening a potassium chloride aqueous solution with agar or the like. One end of the salt bridge 14 is installed in the container of the sensor electrode unit 12 and immersed in the taste solution, and the other end is immersed in the saturated KCl solution 17 of the reference electrode unit 13. By the salt bridge 14, the two kinds of solutions of the sensor electrode unit 12 and the reference electrode unit 13 are connected in potential without being mixed.

上述の構成を採る味覚センサにおいては、センサ電極部12と参照電極部13との間に発生する電位差を測定する静止膜電位測定法によって測定を行う。静止膜電位測定法では、例えぱ図5に示すようにセンサ電極部12を呈味サンプル溶液18に浸けない状態で、先ず膜電位差の測定を行う。次に安定状態に移行した後、呈味サンプル溶液18に味覚センサ10を浸し、再ぴ安定状態に至るまで電位差を測定する。呈味サンプル溶液中に味覚センサ10が浸されると図5に示すように最大ビーク値を最大膜電位変化、最大ピーク値をとってから、3分後の電位が下降した時の電位を安定膜電位変化とする。例えぱクエン酸、塩化ナトリウム等の呈味物質その物によって、これらの電位が異なり、更に呈味物質の濃度、によっても電位の値が変わる。これによって、どの味を示す物質がどの濃度含まれるかを知ることができる。混合された呈味サンプルについても同様なことがいえる。In the taste sensor employing the above-described configuration, measurement is performed by a stationary membrane potential measurement method that measures a potential difference generated between the sensor electrode unit 12 and the reference electrode unit 13. In the resting membrane potential measurement method, for example, as shown in FIG. 5, the membrane potential difference is first measured in a state where the sensor electrode portion 12 is not immersed in the taste sample solution 18. Next, after shifting to the stable state, the taste sensor 10 is immersed in the taste sample solution 18, and the potential difference is measured until the stable state is reached again. When the taste sensor 10 is immersed in the taste sample solution, as shown in FIG. 5, the maximum beak value is changed to the maximum membrane potential, and the potential when the potential drops 3 minutes after the maximum peak value is obtained is stabilized. Change in membrane potential. For example, the potential varies depending on the taste substance such as citric acid and sodium chloride, and the potential value also varies depending on the concentration of the taste substance. Thereby, it is possible to know which concentration contains a substance exhibiting which taste. The same is true for the mixed taste samples.

上述した構成を採る本実施の形態の味覚センサでは、LB膜24は、絶縁基板22の所定位置に設置されているため、呈味サンプルが流入する位置からLB膜24までの距離が一定に保たれる。従って最大膜電位変化、安定膜電位変化がほぼ一定となり、膜電位変化のぱらつきを解消させることができ、測定精度を向上させることができる。また、呈味サンプル溶液が流入する空孔19の位置からLB膜24の位置を近づけることができ、応答速度を向上させることが出来る。このように本実施形態によれぱ、電位変化のばらつきが小さく安定した測定データを得ることができ、良好な電位変化を備える味覚センサを提供することができる。また、センサ電極部12と参照電極部13とを一体に形成することにより、それぞれが別個に形成される場合と比較し、味覚センサ10の可搬性を向上させることができる。In the taste sensor according to the present embodiment having the above-described configuration, the LB film 24 is installed at a predetermined position on the insulating substrate 22, so that the distance from the position where the taste sample flows into the LB film 24 is kept constant. Be drunk. Therefore, the maximum membrane potential change and the stable membrane potential change are almost constant, and the fluctuation of the membrane potential change can be eliminated, and the measurement accuracy can be improved. Further, the position of the LB film 24 can be brought closer to the position of the hole 19 into which the taste sample solution flows, and the response speed can be improved. As described above, according to the present embodiment, stable measurement data with small variations in potential change can be obtained, and a taste sensor having a favorable potential change can be provided. Moreover, by forming the sensor electrode part 12 and the reference electrode part 13 integrally, the portability of the taste sensor 10 can be improved compared with the case where each is formed separately.

以下、本発明の実施の形態に係る味覚センサ10による実施例を説明する。
一方、測定系としては、味覚センサ及ぴ参照電極間に発生する電位差を測定する静止膜電位測定法に基づき、測定を行った。まず、呈味サンプル溶液18に浸けない状態で膜電位差の測定を行い、次に、安定状態(膜電位1mV/5min)に移行後、味覚センサ10を呈味サンプル容器20中にある呈味サンプル溶液18中に投入し、再ぴ安定状態に移行した後、測定を終了とした。また、センサは、純水に20分間浸漬して、これを洗浄し再度使用した。図5に示すように滴下時からのピーク値を最大膜電位変化(Vm)、ピーク値を取ってから3分後の電位変化を安定膜電位変化(Vs)とし、2つのパラメータを使用した応答評価を行った。
Examples of the taste sensor 10 according to the embodiment of the present invention will be described below.
On the other hand, as a measurement system, measurement was performed based on a resting membrane potential measurement method for measuring a potential difference generated between a taste sensor and a reference electrode. First, the membrane potential difference is measured without being immersed in the taste sample solution 18, and then the taste sensor 10 is placed in the taste sample container 20 after shifting to a stable state (membrane potential 1 mV / 5 min). The solution was put into the solution 18 and transferred to a stable state, and the measurement was terminated. The sensor was immersed in pure water for 20 minutes, washed and used again. As shown in FIG. 5, the peak value from the time of dropping is the maximum membrane potential change (Vm), the potential change 3 minutes after the peak value is taken is the stable membrane potential change (Vs), and the response using two parameters. Evaluation was performed.

なお、呈味サンプルとして、塩味を呈する物質として塩化ナトリウムを用い、酸味を呈する物質としてクエン酸を用い、甘味を呈する物質としてスクロースを用い、苦昧を呈する物質としてテオフィリンを用い、旨味を呈する物質としてグルタミン酸(MSG)を用いた。呈味サンプル濃度は10mMと従来の1/10の物を使用した。As a taste sample, sodium chloride is used as a salty substance, citric acid is used as a sour substance, sucrose is used as a sweet substance, theophylline is used as a bitter substance, and a delicious substance Glutamic acid (MSG) was used. The taste sample concentration was 10 mM, which was 1/10 of the conventional one.

また、図8に示す構成の従来の味党センサにおける測定結果を図7に示す。従来の味覚センサにおいては、測定方法は上述した静止膜電位測定法とほぼ同様であるが、パラメータとして呈味サンプルを滴下してから最大膜電位変化に至るまでの応答時間をもう一つのパラメータとして用い、呈味サンプル濃度は100mMとなっている点が異なる。Moreover, the measurement result in the conventional taste party sensor of the structure shown in FIG. 8 is shown in FIG. In the conventional taste sensor, the measurement method is almost the same as the above-mentioned resting membrane potential measurement method, but the response time from when a taste sample is dropped until the maximum membrane potential change is set as another parameter. The difference is that the taste sample concentration is 100 mM.

具体的に、図7に示すように塩味を呈する物質として塩化ナトリウムを用い、酸味を呈する物質としてクエン酸を用い、甘みを呈する物質としてスクロースを用い、苦味を呈する物質として、テオフィリンの代わりにカフェインを用い、旨味を呈する物質としてグルタミン酸(MSG)を用いた。Specifically, as shown in FIG. 7, sodium chloride is used as a substance that exhibits a salty taste, citric acid is used as a substance that exhibits a sour taste, sucrose is used as a substance that exhibits a sweet taste, and a cafetery is used instead of theophylline as a substance that exhibits a bitter taste. IN was used, and glutamic acid (MSG) was used as a substance exhibiting umami.

図6と図7とを比較すれぱ明らかなように、従来型の味覚センサでは各呈味物質について、縦軸の最大膜電位変化が高々20mV程度であったのが、本発明の味覚センサでは210mV以上と10倍以上大きくなっている。しかも、呈味濃度は10mMであり従来の1/10の低濃度となっている。このことから、従来のセンサよりも大幅な高感度化が図られている。As is clear from comparison between FIG. 6 and FIG. 7, in the conventional taste sensor, the maximum membrane potential change on the vertical axis was about 20 mV at most for each taste substance. It is more than 10 times larger than 210 mV. Moreover, the taste concentration is 10 mM, which is 1/10 of the conventional low concentration. For this reason, a significant increase in sensitivity is achieved compared to conventional sensors.

なお、本発明は上述した実施の形態に限られず、種々の変形及ぴ応用が可能である。
例えば、上述した実施形態では、呈味サンプル溶液が流入する空孔19をセンサホルダーの側壁に設けているが、センサホルダーの底面に空孔19を設けてもよい。
The present invention is not limited to the above-described embodiments, and various modifications and applications are possible.
For example, in the embodiment described above, the holes 19 into which the taste sample solution flows are provided in the side wall of the sensor holder, but the holes 19 may be provided in the bottom surface of the sensor holder.

また、LB膜の材質なども任意であり、例えば、ポリイオンコンプレックス法で使用する下層の高分子として、PVSKに代えて、或いは、PVSKと共にChondroition Sulhite Asodium Salt(Chondroitin)を使用すること等も可能である。In addition, the material of the LB film is also arbitrary. For example, as a lower layer polymer used in the polyion complex method, it is possible to use a Chondulite Sulfite Asodium Salt (Condolotin) instead of PVSK or together with PVSK. is there.

本発明の実施の形態に係る味覚センサの構成例を示す図である。It is a figure which shows the structural example of the taste sensor which concerns on embodiment of this invention. は、味覚センサホルダーの構成例を示す断面図であり、(a)は正面図、(b)は右側面図、(c)は背面図、(d)は左側面図である。These are sectional drawings which show the structural example of a taste sensor holder, (a) is a front view, (b) is a right view, (c) is a rear view, (d) is a left view. (a)は、センサ電極部のLB膜の構成例を示す平面図であり、(b)はLB膜の構成例を示す断面図である。(A) is a top view which shows the structural example of LB film | membrane of a sensor electrode part, (b) is sectional drawing which shows the structural example of LB film | membrane. LB膜の構成例を示す断面図である。It is sectional drawing which shows the structural example of LB film | membrane. 本実施の形態の味覚センサによる測定パラメータを示す図である。It is a figure which shows the measurement parameter by the taste sensor of this Embodiment. 本実施の形態の味覚センサによる最大膜電位変化と安定膜電位変化を示すグラフである。It is a graph which shows the maximum membrane potential change and stable membrane potential change by the taste sensor of this Embodiment. 従来の味覚センサによる最大膜電位変化と応答時間を示すグラフである。It is a graph which shows the maximum membrane potential change and response time by the conventional taste sensor. 従来の味覚センサの構成例を示す図である。It is a figure which shows the structural example of the conventional taste sensor.

10味覚センサ
11センサ電極
12センサ電極部
13参照電極部
14塩橋
15電圧計
16コンピュータ
17飽和KCl溶液
18呈味サンプル溶液
19空孔
20呈味サンプル容器
22絶縁基板
24LB膜
25金属電極
26引出電極
28絶縁膜
31容器
32参照電極
10 taste sensor 11 sensor electrode 12 sensor electrode part 13 reference electrode part 14 salt bridge 15 voltmeter 16 computer 17 saturated KCl solution 18 taste sample solution 19 hole 20 taste sample container 22 insulating substrate 24 LB film 25 metal electrode 26 extraction electrode 28 Insulating film 31 Container 32 Reference electrode

Claims (5)

少なくとも一面から溶液が流入するための筐体が設けられ、前記筐体の溶液が流入する面とは別の面に設けられた絶縁基板と、該絶縁基板上に形成された金属電極と、該金属電極上に形成された感応膜と、前記絶縁基板の前記感応膜から所定距離だけ離間した位置に形成された空孔部と、を備えることを特徴とする味覚センサ。A housing for inflow of the solution from at least one surface is provided, an insulating substrate provided on a surface different from the surface into which the solution flows in the housing, a metal electrode formed on the insulating substrate, A taste sensor comprising: a sensitive film formed on a metal electrode; and a hole formed at a position spaced apart from the sensitive film of the insulating substrate by a predetermined distance. 前記筐体と隣接するように設置され、基準溶液が入れられる容器を更に備えることを特徴とする請求項1に記載の味覚センサThe taste sensor according to claim 1, further comprising a container that is installed adjacent to the housing and into which a reference solution is placed. 前記絶縁基板は前記筐体に着脱可能に設けられることを特徴とする請求項1または2に記載の味覚センサ。The taste sensor according to claim 1, wherein the insulating substrate is detachably provided on the housing. 前記空孔部は、筐体の一部に形成されることを特徴とする請求項1乃至3のいずれか1項に記載の味覚センサ。The taste sensor according to claim 1, wherein the hole is formed in a part of the housing. 前記感応膜は、ラングミューア・ブロジェット法を用いて作られた膜から構成されている、ことを特徴とする請求項1乃至4のいずれか1項に記載の味覚センサ。The taste sensor according to any one of claims 1 to 4, wherein the sensitive film is made of a film made by using a Langmuir-Blodgett method.
JP2012048529A 2012-02-17 2012-02-17 Taste sensor Pending JP2013171032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012048529A JP2013171032A (en) 2012-02-17 2012-02-17 Taste sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012048529A JP2013171032A (en) 2012-02-17 2012-02-17 Taste sensor

Publications (1)

Publication Number Publication Date
JP2013171032A true JP2013171032A (en) 2013-09-02

Family

ID=49265044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012048529A Pending JP2013171032A (en) 2012-02-17 2012-02-17 Taste sensor

Country Status (1)

Country Link
JP (1) JP2013171032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717314A (en) * 2016-01-29 2016-06-29 浙江大学 Automatic electronic tongue equipment for drink detection
ITUA20164123A1 (en) * 2016-06-06 2017-12-06 Univ Degli Studi Cagliari DEVICE, SYSTEM AND ITS METHOD FOR THE QUANTITATIVE EVALUATION OF TASTE SENSITIVITY

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717314A (en) * 2016-01-29 2016-06-29 浙江大学 Automatic electronic tongue equipment for drink detection
ITUA20164123A1 (en) * 2016-06-06 2017-12-06 Univ Degli Studi Cagliari DEVICE, SYSTEM AND ITS METHOD FOR THE QUANTITATIVE EVALUATION OF TASTE SENSITIVITY
WO2017212377A1 (en) * 2016-06-06 2017-12-14 Universita' Degli Studi Di Cagliari Device, system and relating method for the quantitative assessment of taste sensitivity

Similar Documents

Publication Publication Date Title
EP0408575B1 (en) Reference electrode
Mourzina et al. Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition
US9513247B2 (en) Electrochemical sensor
Lewenstam et al. All-solid-state reference electrode with heterogeneous membrane
JPWO2010137266A1 (en) Biosensor system and method for measuring concentration of analyte
Mourzina et al. A new thin-film Pb microsensor based on chalcogenide glasses
JP2015505618A (en) Electrochemical analytical test strip with filling rate setting reagent layer
US8877023B2 (en) Electrochemical-based analytical test strip with intersecting sample-receiving chambers
JPH06508432A (en) Electrical analysis of liquids and detection elements used for it
JP2021001881A (en) Hydrogen sensor and production method of hydrogen sensor, measurement device, and method for measuring hydrogen concentration
JP2013171032A (en) Taste sensor
WO2016032314A1 (en) An egfet phosphate sensor device
JP2019078573A (en) Biosensor manufacturing method
JP2007046914A (en) Reference electrode for detecting acidity and basicity of oil
US8529742B2 (en) Electrochemical sensor with controlled variation of working electrode
TWI539153B (en) Flexible dissolved oxygen sensor
JP2008107163A (en) Biosensor
JP5540382B2 (en) Lipid membrane sensor and manufacturing method thereof
Schöning et al. Voltohmmetry—a novel sensing principle for heavy metal determination in aqueous solutions
JP2007271287A (en) Detection sensor of oxidation stress substance
Iken et al. Novel thin-film polymeric materials for the detection of heavy metals
JPH03246459A (en) Reference electrode
Lau et al. Determination of glucose using a piezoelectric quartz crystal and the silver mirror reaction
JP5895404B2 (en) Measuring apparatus and measuring method
JPH055717A (en) Ph-measuring electrode and its manufacture