JP2013169191A - Method for preparing yeast having reduced 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one formation ability - Google Patents

Method for preparing yeast having reduced 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one formation ability Download PDF

Info

Publication number
JP2013169191A
JP2013169191A JP2012035773A JP2012035773A JP2013169191A JP 2013169191 A JP2013169191 A JP 2013169191A JP 2012035773 A JP2012035773 A JP 2012035773A JP 2012035773 A JP2012035773 A JP 2012035773A JP 2013169191 A JP2013169191 A JP 2013169191A
Authority
JP
Japan
Prior art keywords
gene
region
yeast
homologous
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012035773A
Other languages
Japanese (ja)
Inventor
Ko Wakabayashi
興 若林
Atsuko Isotani
敦子 磯谷
Daisuke Watanabe
大輔 渡辺
Akiko Fujita
晃子 藤田
Shigetoshi Sudo
茂俊 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute of Brewing
Original Assignee
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute of Brewing filed Critical National Research Institute of Brewing
Priority to JP2012035773A priority Critical patent/JP2013169191A/en
Publication of JP2013169191A publication Critical patent/JP2013169191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Alcoholic Beverages (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new means capable of suppressing the occurrence of DMTS in liquors such as sake, etc.SOLUTION: There is provided yeast having reduced or deleted expression of at least one gene selected from the group consisting of MDE1 gene, MRI1 gene, SPE2 gene, ARO9 gene, MEU1 gene and UTR4 gene and low 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one (DMTS-P1) formation ability. When sake is produced using the yeast in alcohol fermentation, since the content of DMTS-P1 is lowered, the occurrence of DMTS during sake preservation is suppressed and a deteriorated smell is suppressed.

Description

本発明は、清酒の老香成分ジメチルトリスルフィド(DMTS)の前駆体である1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オン(DMTS-P1)の生成能が低下した酵母の作出方法、該酵母を利用した、DMTSの生成が抑制された酒類の製造方法、特には老香の発生が抑制された清酒の製造方法、及び、特定の栄養要求性を利用した、DMTS-P1生成能が低い酵母の育種方法に関する。   The present invention relates to a method for producing yeast having a reduced ability to produce 1,2-dihydroxy-5-methylsulfinylpentan-3-one (DMTS-P1), which is a precursor of scented liquor component dimethyl trisulfide (DMTS) , A method for producing alcoholic beverages in which the production of DMTS is suppressed using the yeast, in particular, a method for producing sake with reduced generation of scent, and the ability to produce DMTS-P1 using specific auxotrophy The present invention relates to a method for breeding yeast having a low level.

ジメチルトリスルフィド(DMTS)は清酒の貯蔵により生成する物質で、硫黄様、タマネギ様のにおいを呈する。清酒の劣化臭である老香の主要構成成分であり(非特許文献1)、市販清酒中のDMTS含有量は検出限界以下〜2.4μg/L程度、弁別閾値は0.18μg/Lである。   Dimethyl trisulfide (DMTS) is a substance produced by the storage of sake and has a sulfur-like and onion-like odor. It is a major component of scent, which is a deteriorated odor of sake (Non-Patent Document 1), and the DMTS content in commercial sake is below the detection limit to about 2.4 μg / L, and the discrimination threshold is 0.18 μg / L.

これまでに、清酒のDMTSの主な前駆物質として、新規化合物1,2-dihydroxy-5-(methylsulfinyl) pentan-3-one (DMTS-P1)が同定されている(特許文献1、及び非特許文献2、3)。しかしながら、酵母内でDMTS-P1がどのように生成されているかは未だ明らかにされていない。   So far, a novel compound 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one (DMTS-P1) has been identified as the main precursor of Sake DMTS (Patent Document 1 and non-patent) References 2, 3). However, how DMTS-P1 is produced in yeast has not yet been clarified.

老香の制御方法としては、低温貯蔵、溶存酸素濃度の制御(非特許文献4)等が知られている。しかし、これらの手法は冷房設備や窒素置換装置といった設備が必要であり、製造した全ての清酒についてこうした老香制御を均一に行なうこととするとコストがかかる。   Known methods for controlling scent are low temperature storage, control of dissolved oxygen concentration (Non-Patent Document 4), and the like. However, these methods require facilities such as a cooling system and a nitrogen replacement device, and it is costly to perform such aroma control uniformly for all the sake produced.

特開2010-203780号公報JP 2010-203780 A

日本醸造協会誌, 101, 125-131, 2006Journal of Japan Brewing Association, 101, 125-131, 2006 J. Agric. Food Chem., 2009, 57 (1), 189-195J. Agric. Food Chem., 2009, 57 (1), 189-195 J. Agric. Food Chem., 2010, 58 (13), 7756-7761J. Agric. Food Chem., 2010, 58 (13), 7756-7761 日本醸造協会誌, 94, 827-832, 1999Journal of Japan Brewing Association, 94, 827-832, 1999

本発明は、清酒等の酒類におけるDMTSの発生を抑制することができる新規な手段を提供することを目的とする。   An object of this invention is to provide the novel means which can suppress generation | occurrence | production of DMTS in alcoholic beverages, such as sake.

本願発明者らは、DMTS-P1が発酵中に増加すること、その構造がメチオニン再生経路の代謝中間体の構造と類似していることから、酵母メチオニン再生経路がDMTS-P1生成に関与する可能性があると考えた。そこで、実験室酵母BY4743の非必須遺伝子破壊ライブラリからメチオニン再生経路の遺伝子が破壊された株を選び出し、清酒小仕込み試験を行なった。その結果、Δaro9, Δspe2, Δmeu1, Δmri1, Δmde1, Δutr4破壊株でDMTS-P1およびDMTSの減少がみられ、このうちΔspe2, Δmri1, Δmde1破壊株ではDMTSの閾値以下への減少が確認された。なかでもΔmri1、Δmde1でDMTS-P1の減少が顕著であったため、MRI1遺伝子とMDE1遺伝子について、清酒酵母きょうかい7号(K7)で遺伝子破壊株を構築し確認したところ、いずれもDMTS-P1が顕著に減少し、DMTSも親株と比較して大幅に減少していた。これにより、MRI1遺伝子、MDE1遺伝子、又はSPE2遺伝子の破壊が清酒の老香抑制に有効であることを見出した。さらに、SPE2遺伝子破壊株は、パントテン酸非存在下で生育できず、スペルミン添加によりこのパントテン酸要求性が相補されるという表現型を有するため(White WH, Gunyuzlu PL, Toyn JH. Journal of Biological Chemistry. 2001 Apr 6; 276(14):10794-800.)、この表現型に基づいて酵母株を選抜することでDMTS-P1の生成能が低い酵母株を取得できることを見出し、本願発明を完成した。   The present inventors found that DMTS-P1 increases during fermentation and that the structure is similar to that of the metabolic intermediate of the methionine regeneration pathway, so that the yeast methionine regeneration pathway may be involved in DMTS-P1 production. I thought that there was sex. Therefore, a strain in which a gene in the methionine regeneration pathway was disrupted was selected from a non-essential gene disruption library of laboratory yeast BY4743, and a small sake preparation test was conducted. As a result, a decrease in DMTS-P1 and DMTS was observed in the Δaro9, Δspe2, Δmeu1, Δmri1, Δmde1, and Δutr4 disrupted strains, and among these, the Δspe2, Δmri1, and Δmde1 disrupted strains were confirmed to decrease below the DMTS threshold. In particular, the decrease in DMTS-P1 was significant for Δmri1 and Δmde1, and as a result of constructing and confirming the MRI1 gene and the MDE1 gene in sake yeast 7 (K7), DMTS-P1 There was a marked decrease, and DMTS was also significantly reduced compared to the parent strain. As a result, it was found that disruption of the MRI1 gene, the MDE1 gene, or the SPE2 gene is effective in suppressing the aroma of sake. Furthermore, the SPE2 gene disruption strain cannot grow in the absence of pantothenic acid, and has a phenotype that the requirement for pantothenic acid is complemented by the addition of spermine (White WH, Gunyuzlu PL, Toyn JH. Journal of Biological Chemistry). 2001 Apr 6; 276 (14): 10794-800.) And found that a yeast strain with low DMTS-P1 production ability can be obtained by selecting a yeast strain based on this phenotype, and completed the present invention. .

すなわち、本発明は、MDE1遺伝子、MRI1遺伝子、SPE2遺伝子、ARO9遺伝子、MEU1遺伝子、及びUTR4遺伝子からなる群より選択される少なくとも1つの遺伝子の発現が低下又は欠失した、1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オンの生成能が低い酵母を提供する。また、本発明は、上記本発明の酵母を用いてアルコール発酵を行なうことを含む、ジメチルトリスルフィドの生成が抑制された酒類の製造方法を提供する。さらに、本発明は、上記本発明の酵母を用いてアルコール発酵を行ない、清酒を製造することを含む、老香の発生が抑制された清酒の製造方法を提供する。さらに、本発明は、上記本発明の方法により製造された、老香の発生が抑制された清酒を提供する。さらに、本発明は、酵母において、MDE1遺伝子、MRI1遺伝子、SPE2遺伝子、ARO9遺伝子、MEU1遺伝子、及びUTR4遺伝子からなる群より選択される少なくとも1つの遺伝子の発現を低下又は欠失させることを含む、1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オンの生成能が低下した酵母の作出方法を提供する。さらに、本発明は、配列番号3に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号3に示す塩基配列中の1836nt〜2935ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なMDE1遺伝子を含まないDNA断片からなる、MDE1遺伝子破壊用DNA断片を提供する。さらに、本発明は、配列番号6に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号6に示す塩基配列中の2337nt〜3436ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なMRI1遺伝子を含まないDNA断片からなる、MRI1遺伝子破壊用DNA断片を提供する。さらに、本発明は、配列番号9に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号9に示す塩基配列中の2292nt〜3391ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なSPE2遺伝子を含まないDNA断片からなる、SPE2遺伝子破壊用DNA断片を提供する。さらに、本発明は、配列番号12に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号12に示す塩基配列中の2643nt〜3742ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なARO9遺伝子を含まないDNA断片からなる、ARO9遺伝子破壊用DNA断片を提供する。さらに、本発明は、配列番号15に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号15に示す塩基配列中の2115nt〜3214ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なMEU1遺伝子を含まないDNA断片からなる、MEU1遺伝子破壊用DNA断片を提供する。さらに、本発明は、配列番号18に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号18に示す塩基配列中の1785nt〜2884ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なUTR4遺伝子を含まないDNA断片からなる、UTR4遺伝子破壊用DNA断片を提供する。さらに、本発明は、パントテン酸非存在下では生育できないパントテン酸要求性を示し、かつ、スペルミン添加により当該パントテン酸要求性が相補される酵母株を選抜することを含む、1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オンの生成能が低い酵母の育種方法を提供する。   That is, the present invention relates to 1,2-dihydroxy-, wherein the expression of at least one gene selected from the group consisting of MDE1 gene, MRI1 gene, SPE2 gene, ARO9 gene, MEU1 gene, and UTR4 gene is reduced or deleted. Provided is a yeast having a low ability to produce 5-methylsulfinylpentan-3-one. Moreover, this invention provides the manufacturing method of liquor in which the production | generation of dimethyl trisulfide was suppressed including performing alcoholic fermentation using the yeast of the said invention. Furthermore, this invention provides the manufacturing method of the sake by which generation | occurrence | production of old perfume was suppressed including performing alcoholic fermentation using the yeast of the said invention and manufacturing refined sake. Furthermore, the present invention provides a sake that is produced by the method of the present invention and that suppresses the generation of scent. Furthermore, the present invention includes reducing or deleting the expression of at least one gene selected from the group consisting of MDE1 gene, MRI1 gene, SPE2 gene, ARO9 gene, MEU1 gene, and UTR4 gene in yeast. Provided is a method for producing a yeast having a reduced ability to produce 1,2-dihydroxy-5-methylsulfinylpentan-3-one. Furthermore, the present invention relates to a first homologous region composed of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 3, and 1836nt to 2935nt in the base sequence shown in SEQ ID NO: 3. A DNA fragment for MDE1 gene disruption comprising a DNA fragment not containing a normal MDE1 gene, comprising a second homologous region comprising a region homologous to a partial region in the region. Furthermore, the present invention relates to a first homologous region consisting of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 6, and 2337nt to 3436nt in the base sequence shown in SEQ ID NO: 6. A DNA fragment for MRI1 gene disruption comprising a DNA fragment not containing a normal MRI1 gene, comprising a second homologous region comprising a region homologous to a partial region in the region. Furthermore, the present invention relates to a first homologous region consisting of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 9, and 2292nt to 3391nt in the base sequence shown in SEQ ID NO: 9. Provided is a DNA fragment for SPE2 gene disruption comprising a DNA fragment not containing a normal SPE2 gene, comprising a second homologous region comprising a region homologous to a partial region in the region. Furthermore, the present invention relates to a first homologous region consisting of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 12, and from 2463nt to 3742nt in the base sequence shown in SEQ ID NO: 12. A DNA fragment for ARO9 gene disruption comprising a DNA fragment not containing a normal ARO9 gene, comprising a second homologous region consisting of a region homologous to a partial region in the region. Furthermore, the present invention relates to a first homologous region consisting of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 15, and 2115nt to 3214nt in the base sequence shown in SEQ ID NO: 15. There is provided a DNA fragment for MEU1 gene disruption comprising a DNA fragment not containing a normal MEU1 gene, comprising a second homologous region comprising a region homologous to a partial region in the region. Furthermore, the present invention relates to a first homologous region consisting of a region homologous to a partial region within the 1 nt to 1100 nt region in the base sequence shown in SEQ ID NO: 18, and 1785 nt to 2884 nt in the base sequence shown in SEQ ID NO: 18. Provided is a DNA fragment for UTR4 gene disruption comprising a DNA fragment not containing a normal UTR4 gene, comprising a second homologous region comprising a region homologous to a partial region in the region. Furthermore, the present invention includes selecting a yeast strain that exhibits a pantothenic acid requirement that cannot grow in the absence of pantothenic acid and that is supplemented with the addition of spermine. Provided is a method for breeding yeast having a low ability to produce 5-methylsulfinylpentan-3-one.

本発明により、清酒の老香成分DMTSの発生に関与する酵母遺伝子が初めて同定され、清酒における老香の発生を低コストで抑制できる手段が初めて提供された。本発明の酵母をアルコール発酵に用いて清酒を製造すれば、DMTS-P1の含有量が低く抑えられるので、清酒貯蔵中のDMTSの発生が抑制され、老香が抑制される。従って、本発明によれば、低温貯蔵や溶存酸素濃度の制御のようなコストのかかる手段を講じなくとも、老香の発生を抑制することができる。   According to the present invention, a yeast gene involved in the generation of the scent component DMTS of sake is identified for the first time, and a means for suppressing the generation of scent in sake at a low cost is provided for the first time. If the yeast of the present invention is used for alcoholic fermentation to produce sake, the DMTS-P1 content can be kept low, so that the occurrence of DMTS during sake storage is suppressed, and scent is suppressed. Therefore, according to the present invention, it is possible to suppress the generation of old perfume without taking costly measures such as low-temperature storage and control of dissolved oxygen concentration.

メチオニン再生経路の各酵素遺伝子が破壊された13種の酵母BY4743株を用いて清酒小仕込み試験を行ない、製成酒試料中のDMTS-P1と熟成促進(70℃、7日間)した試料中のDMTSを測定した結果である。We conducted a small sake preparation test using 13 kinds of yeast BY4743 strains in which each enzyme gene of the methionine regeneration pathway was disrupted, and DMTS-P1 in the sake sample and ripening promotion (70 ° C, 7 days) in the sample It is the result of measuring DMTS. 遺伝子破壊株の構築について説明した図である。It is a figure explaining construction of a gene disruption strain. きょうかい7号で作出した遺伝子破壊株(Δmri1、Δmde1)を用いて清酒小仕込み試験を行ない、製成酒試料中のDMTS-P1と熟成促進(70℃、7日間)した試料中のDMTSを測定した結果である。We conducted a small sake preparation test using gene disruption strains (Δmri1, Δmde1) produced in Kyokai No. 7, and DMTS-P1 in the sake sample and DMTS in the sample that had been ripened (70 ° C, 7 days). It is the result of measurement. メチオニン再生経路及び該経路とパントテン酸合成の関係を示す図である。It is a figure which shows the relationship between a methionine regeneration pathway and this pathway, and pantothenic acid synthesis. BY4743メチオニン再生経路遺伝子破壊株をSC/-パントテン酸/-スペルミン培地及びSC/-パントテン酸/+スペルミン培地上に植菌し、生育を観察した結果である。It is the result of inoculating the BY4743 methionine regeneration pathway gene disruption strain on SC / -pantothenic acid / -spermine medium and SC / -pantothenic acid / + spermine medium and observing its growth.

本発明のDMTS-P1低生成酵母は、MDE1遺伝子、MRI1遺伝子、SPE2遺伝子、ARO9遺伝子、MEU1遺伝子、及びUTR4遺伝子からなる群より選択される少なくとも1つの遺伝子、好ましくはMDE1遺伝子、MRI1遺伝子、及びSPE2遺伝子からなる群より選択される少なくとも1つの遺伝子の発現が低下又は欠失していることを特徴とする。   The DMTS-P1 low-producing yeast of the present invention comprises at least one gene selected from the group consisting of MDE1 gene, MRI1 gene, SPE2 gene, ARO9 gene, MEU1 gene, and UTR4 gene, preferably MDE1 gene, MRI1 gene, and The expression of at least one gene selected from the group consisting of SPE2 genes is decreased or deleted.

上記6遺伝子のうちの少なくともいずれか1つの発現が低下又は欠失した酵母では、DMTS前駆体であるDMTS-P1(1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オン)の生成能が低下する。すなわち、正常な該遺伝子を有する酵母株と比較して、DMTS-P1を生成する能力が有意に低い。とりわけ、MDE1遺伝子、MRI1遺伝子、及びSPE2遺伝子からなる群より選択される少なくとも1つの遺伝子が破壊された酵母株では、DMTS-P1生成能が親株の30%未満、例えば15%未満に低下し得る。本発明の酵母を用いてアルコール発酵を行ない製造された酒類は、DMTS-P1の含量が低く、そのためDMTSの生成が抑制される。例えば、本発明の酵母が清酒酵母であれば、本発明の酵母を用いてアルコール発酵を行ない、清酒を製造することにより、清酒貯蔵中のDMTSの生成が抑制されるので、老香の発生を抑制することができる。   In yeast in which the expression of at least one of the above six genes is reduced or deleted, the ability to produce DMTS-P1 (1,2-dihydroxy-5-methylsulfinylpentan-3-one), which is a DMTS precursor, is improved. descend. That is, the ability to produce DMTS-P1 is significantly lower than that of a yeast strain having the normal gene. In particular, in a yeast strain in which at least one gene selected from the group consisting of the MDE1 gene, the MRI1 gene, and the SPE2 gene is disrupted, the DMTS-P1 production ability can be reduced to less than 30%, for example, less than 15% of the parent strain. . Alcoholic beverages produced by alcohol fermentation using the yeast of the present invention have a low DMTS-P1 content, and therefore production of DMTS is suppressed. For example, if the yeast of the present invention is sake yeast, by performing alcoholic fermentation using the yeast of the present invention and producing sake, the production of DMTS during sake storage is suppressed, so the occurrence of scent Can be suppressed.

本発明の酵母は、好ましくは醸造酵母であり、特に好ましくは清酒酵母である。本発明の酵母は、DMTS-P1の含量が低く、DMTSの生成が抑制された酒類の製造に好ましく用いることができる。とりわけ、本発明の酵母は、DMTSの生成が抑制され、老香の発生が抑制された清酒の製造に好ましく用いることができる。   The yeast of the present invention is preferably a brewing yeast, and particularly preferably a sake yeast. The yeast of the present invention can be preferably used for the production of alcoholic beverages having a low DMTS-P1 content and suppressed production of DMTS. In particular, the yeast of the present invention can be preferably used for the production of sake with suppressed production of DMTS and generation of scent.

上記6遺伝子は、メチオニン再生経路で働く酵素をコードする遺伝子であることが知られており(図4)、それらの配列もサッカロミセスゲノムデータベース(SGD、http://www.yeastgenome.org/)及びGenBankに登録され公知である。酵母の各遺伝子のcDNA配列、アミノ酸配列、及び近傍領域を含むゲノム配列を下記表1の通りに配列表に示す(表中「K7」とは清酒酵母「きょうかい7号」である)。   The above 6 genes are known to be genes encoding enzymes that act in the methionine regeneration pathway (FIG. 4), and their sequences are also Saccharomyces genome database (SGD, http://www.yeastgenome.org/) and Registered in GenBank and well known. The cDNA sequence of each gene of yeast, the amino acid sequence, and the genomic sequence including the neighboring region are shown in the sequence table as shown in Table 1 below (in the table, “K7” is sake yeast “Kyokai No. 7”).

もっとも、配列表に上記の通り示した配列は野生型配列の一例であり、公知の酵母系統や天然に存在する酵母には、各酵素タンパク質の活性は正常であるが塩基配列ないしアミノ酸配列が一部相違するものも存在し得る。本発明において、例えば「MDE1遺伝子」「MDE1タンパク質」といった場合には、配列表に示した野生型の塩基配列又はアミノ酸配列と完全に同一の配列を有するものだけではなく、酵素活性を損なわない天然の変異を含む配列を有するものも包含される。他の遺伝子についても同様である。そのような天然の変異配列は、通常、配列表に示した各野生型配列と90%以上、例えば95%以上、又は98%以上の同一性を有する。あるいは、そのような天然の変異配列は、野生型配列において1又は数個の塩基又はアミノ酸が置換し、欠失し、挿入され、及び/又は付加された配列であり得る。   However, the sequences shown above in the sequence listing are examples of wild-type sequences. In known yeast strains and naturally occurring yeasts, each enzyme protein has a normal activity but has a single base sequence or amino acid sequence. There may be some differences. In the present invention, for example, in the case of “MDE1 gene” and “MDE1 protein”, not only those having completely the same sequence as the wild-type base sequence or amino acid sequence shown in the sequence listing, but also natural products that do not impair the enzyme activity. Those having a sequence containing these mutations are also included. The same applies to other genes. Such natural variant sequences usually have 90% or more, for example 95% or more, or 98% or more identity with each wild type sequence shown in the sequence listing. Alternatively, such natural variant sequences can be sequences in which one or several bases or amino acids are substituted, deleted, inserted, and / or added in the wild type sequence.

本発明において、上記遺伝子の発現の欠失又は低下は、天然の変異によるものであってもよいし、また、人為的な変異処理により生じた変異によるものであってもよい。上記の通り、各遺伝子の配列は公知であるので、変異により上記遺伝子のいずれかの発現が欠失又は低下しているかどうかは、常法により調べることができる。例えば、ゲノム配列を決定して野生型配列と比較する、ノザンブロットやリアルタイムPCR等によりmRNAの発現量を調べる、ウエスタンブロット等により各酵素タンパク質の発現量を調べる、等の方法で遺伝子発現の欠失や低下を調べることができる。あるいは、後述する通り、上記遺伝子の発現が欠失又は低下した酵母株が有する表現型を指標としてスクリーニングを行なうことで、上記遺伝子の発現の欠失又は低下によりDMTS-P1生成能が低下した酵母株を取得することもできる。あるいはまた、本発明の酵母における上記遺伝子の欠失又は低下は、遺伝子工学的手法によるものであってもよい。   In the present invention, the deletion or reduction in the expression of the gene may be caused by a natural mutation or may be caused by a mutation caused by artificial mutation treatment. As described above, since the sequence of each gene is known, whether or not the expression of any of the above genes is deleted or decreased due to mutation can be examined by a conventional method. For example, by determining the genomic sequence and comparing it with the wild-type sequence, examining the expression level of mRNA by Northern blot, real-time PCR, etc., or examining the expression level of each enzyme protein by Western blot, etc. And can be examined for decline. Alternatively, as described later, by performing screening using the phenotype of a yeast strain in which expression of the above gene is deleted or reduced as an index, yeast in which DMTS-P1 production ability is reduced due to deletion or reduction of the expression of the above gene Stocks can also be acquired. Alternatively, the deletion or reduction of the gene in the yeast of the present invention may be caused by genetic engineering techniques.

本発明の酵母では、遺伝子破壊等により上記少なくとも1つの遺伝子の発現が欠失していることが好ましい。遺伝子発現の欠失とは、酵母細胞内において、当該遺伝子から転写されるmRNA、又は該mRNAから翻訳されるタンパク質が、検出可能なレベルで産生されないことをいう。また、「遺伝子が破壊された」とは、酵母ゲノムの少なくとも一方のアレルにおいて、好ましくは全てのアレルにおいて、ゲノム上の目的遺伝子のコード領域が欠失していること又は正常な遺伝子産物(mRNA又はタンパク質)が産生されないように変異していることをいい、典型的にはゲノム上の目的遺伝子のコード領域が欠失していることをいう。遺伝子の欠失は、コード領域の全体の欠失でもよく、また一部の欠失でもよい。コード領域全体の欠失の場合には、目的遺伝子に隣接する領域もあわせて広く欠失していてもよい。一部の欠失の場合には、特に限定されないが、目的遺伝子のコード領域の半分以上が欠失していることが好ましい。目的遺伝子の破壊がコード領域の変異による場合の具体例としては、例えば、コード領域の好ましくは中央よりも上流の部位にナンセンス変異又はフレームシフト変異を有する態様が挙げられる。このような態様では、目的遺伝子がコードする酵素の活性が損なわれた短縮型のタンパク質又は全く無関係なタンパク質が産生され得る。目的遺伝子の一部又は全部が他の配列(例えばマーカー遺伝子配列)に置き換わっていてもよい。   In the yeast of the present invention, the expression of at least one gene is preferably deleted due to gene disruption or the like. Deletion of gene expression means that mRNA transcribed from the gene or protein translated from the mRNA is not produced at a detectable level in yeast cells. In addition, “gene is disrupted” means that the coding region of the target gene on the genome is deleted or a normal gene product (mRNA) in at least one allele of the yeast genome, preferably in all alleles. (Or protein) is mutated so that it is not produced, and typically the coding region of the target gene on the genome is deleted. The deletion of the gene may be a complete deletion of the coding region or a partial deletion. In the case of deletion of the entire coding region, the region adjacent to the target gene may also be extensively deleted. In the case of partial deletion, although not particularly limited, it is preferable that at least half of the coding region of the target gene is deleted. Specific examples of the case where the target gene is disrupted by a coding region mutation include, for example, an embodiment having a nonsense mutation or a frameshift mutation at a site preferably upstream of the coding region. In such an embodiment, a truncated protein or a completely unrelated protein in which the activity of the enzyme encoded by the target gene is impaired can be produced. Part or all of the target gene may be replaced with another sequence (for example, a marker gene sequence).

人為的な変異処理の方法としては、紫外線照射、放射線照射等の物理的変異処理、及びエチルメタンスルフォン酸等の変異剤で処理する化学的変異処理等が挙げられるが、これらに限定されない。人為的な変異処理によると、少数の塩基の置換・欠失・付加等によりナンセンス変異やフレームシフト変異が生じた変異株や、比較的広いゲノム領域が欠失した変異株等を得ることができる。   Artificial mutagenesis methods include, but are not limited to, physical mutagenesis such as ultraviolet irradiation and radiation irradiation, and chemical mutagenesis treatment with a mutagen such as ethyl methanesulfonic acid. Artificial mutagenesis can yield mutants in which nonsense mutations or frameshift mutations have occurred due to substitution, deletion, or addition of a small number of bases, or mutants in which a relatively large genomic region has been deleted. .

遺伝子工学的手法により遺伝子の発現を低下又は欠失させる方法はこの分野で広く知られており、当業者であれば適宜選択して実行できる。DMTS-P1低生成酵母を遺伝子工学的手法により作出する場合、その手法はいずれであってもよい。具体例としては、アンチセンス法、RNAi、遺伝子破壊法等を挙げることができるが、これらに限定されない。   Methods for reducing or deleting gene expression by genetic engineering techniques are widely known in this field, and those skilled in the art can appropriately select and execute them. When producing a DMTS-P1 low-producing yeast by a genetic engineering technique, any technique may be used. Specific examples include, but are not limited to, antisense method, RNAi, gene disruption method and the like.

酵母の遺伝子破壊方法は公知であり、例えば、相同組換えを利用した手法により目的遺伝子を破壊することができる(特開2009-142161号公報、Amberg D.C., Botstein D., Beasley E.M., Yeast, 11, 1275-1280, 1995等を参照)。具体的には、例えば、目的遺伝子の上流及び下流のゲノム領域を酵母ゲノムからPCRにより増幅して上流側相同領域(第1の相同領域)及び下流側相同領域(第2の相同領域)を調製し、正常な目的遺伝子を含まない配列の両末端に2つの相同領域をそれぞれ連結して遺伝子破壊用DNA断片(遺伝子破壊カセット)を調製し、これを酵母細胞に導入すればよい。酵母が有する内在の酵素の働きで、相同な領域間で相同組換えが生じ、ゲノム中の目的遺伝子領域が遺伝子破壊用DNA断片と置き換わるので、ゲノムから目的遺伝子を欠失させることができる。   Yeast gene disruption methods are known, and for example, a target gene can be disrupted by a technique utilizing homologous recombination (Japanese Patent Laid-Open No. 2009-142161, Amberg DC, Botstein D., Beasley EM, Yeast, 11 , 1275-1280, 1995). Specifically, for example, the upstream and downstream genomic regions of the target gene are amplified from the yeast genome by PCR to prepare the upstream homologous region (first homologous region) and the downstream homologous region (second homologous region). Then, two homologous regions are ligated to both ends of the sequence not containing the normal target gene to prepare a DNA fragment for gene disruption (gene disruption cassette), which is introduced into yeast cells. By the action of the endogenous enzyme of yeast, homologous recombination occurs between homologous regions, and the target gene region in the genome is replaced with a DNA fragment for gene disruption, so that the target gene can be deleted from the genome.

相同領域としては、通常、酵母ゲノム中の対応する領域と同一の塩基配列からなる断片が用いられるが、対応領域と一部が異なる配列であっても、酵母細胞内で相同組換えが生じる程度の配列同一性を有していれば、相同領域として使用することができる。すなわち、相同領域には、配列表にも示した各遺伝子の野生型ゲノム配列(配列番号3、6、9、12、15又は18)中の対応する部分と同一の塩基配列からなるものの他、該塩基配列において相同組換えが起きる程度に少数(好ましくは1個又は数個)の塩基が置換し、欠失し、挿入され又は付加された塩基配列からなる断片も包含される。相同領域と各野生型配列中の対応領域との同一性は90%以上、好ましくは95%以上、より好ましくは98%以上であり、最も好ましくは100%である。本発明において、ある領域と「相同な領域」とは、その領域と上記の通りの同一性を有する塩基配列からなる領域をいう。   As a homologous region, a fragment having the same base sequence as the corresponding region in the yeast genome is usually used, but even if the sequence is partially different from the corresponding region, homologous recombination occurs in yeast cells. Can be used as a homologous region. That is, the homologous region includes the same base sequence as the corresponding portion in the wild-type genome sequence (SEQ ID NO: 3, 6, 9, 12, 15 or 18) of each gene shown in the sequence listing, Also included are fragments comprising a base sequence in which a small number (preferably one or several) of bases are substituted, deleted, inserted or added to such an extent that homologous recombination occurs in the base sequence. The identity between the homologous region and the corresponding region in each wild-type sequence is 90% or more, preferably 95% or more, more preferably 98% or more, and most preferably 100%. In the present invention, a “homology region” with a certain region refers to a region comprising a base sequence having the same identity as that region as described above.

相同領域のサイズは特に限定されず、一般に鎖長が長い方が相同組換えの効率が高まるが、出芽酵母では相同組換え活性が強いため、数十bp(例えば30〜50bp)程度の相同領域を設ければ十分である(特開2009-142161号公報等を参照)。もっとも、より長い相同領域、例えば300bp程度以上、又は500bp程度以上、又は700bp程度以上の相同領域を用いてもよい。サイズの上限は特に限定されないが、DNA合成の便宜から通常は10000bp以下、好ましくは2500bp以下である。   The size of the homologous region is not particularly limited. In general, the longer the chain length, the higher the efficiency of homologous recombination. Is sufficient (see JP 2009-142161 A). However, longer homologous regions, for example, about 300 bp or more, or about 500 bp or more, or about 700 bp or more may be used. The upper limit of the size is not particularly limited, but is usually 10,000 bp or less, preferably 2500 bp or less for the convenience of DNA synthesis.

相同組換え法自体は周知の常法であり、当業者であれば、配列番号3、6、9、12、15、18に示される塩基配列をもとにして、所望の遺伝子破壊カセットを容易に調製することができる。なお、本発明において、「Xnt」という表記は「第X番塩基」の意味である。   The homologous recombination method itself is a well-known conventional method, and those skilled in the art can easily obtain a desired gene disruption cassette based on the nucleotide sequences shown in SEQ ID NOs: 3, 6, 9, 12, 15, and 18. Can be prepared. In the present invention, the expression “Xnt” means “the Xth base”.

例えば、配列番号3の1101nt〜1835ntがMDE1遺伝子コード領域のゲノム配列であるから、MDE1遺伝子を破壊するための遺伝子破壊カセットは、配列番号3の1nt〜1100ntの上流領域のうちの数十bp程度以上の部分領域を増幅して上流側相同領域(第1の相同領域)を、1836nt〜2935ntの下流領域のうちの数十bp程度以上の部分領域を増幅して下流側相同領域(第2の相同領域)を調製し、これら2つの相同領域を正常なMDE1遺伝子を含まない配列の両末端にそれぞれ連結して調製することができる。このようにして調製されたMDE1遺伝子破壊カセットは、配列番号3に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号3に示す塩基配列中の1836nt〜2935ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なMDE1遺伝子を含まないDNA断片からなる。   For example, since 1101nt to 1835nt of SEQ ID NO: 3 is the genomic sequence of the MDE1 gene coding region, the gene disruption cassette for destroying the MDE1 gene is about several tens of bp in the upstream region of 1nt to 1100nt of SEQ ID NO: 3. The above partial region is amplified to amplify the upstream homologous region (first homologous region), and the partial region of about several tens of bp of the downstream region of 1836nt to 2935nt is amplified to the downstream homologous region (second Homologous region) can be prepared and these two homologous regions can be prepared by ligating to both ends of a sequence not containing the normal MDE1 gene. The MDE1 gene disruption cassette thus prepared has a first homologous region consisting of a region homologous to a partial region within the region of 1nt to 1100nt in the nucleotide sequence shown in SEQ ID NO: 3, and a base shown in SEQ ID NO: 3. It comprises a second homologous region consisting of a region homologous to a partial region within the region of 1836 nt to 2935 nt in the sequence, and consists of a DNA fragment that does not contain the normal MDE1 gene.

また、MRI1遺伝子については、配列番号6の1101nt〜2336ntがMRI1遺伝子コード領域のゲノム配列であるから、MRI1遺伝子を破壊するための遺伝子破壊カセットは、配列番号6の1nt〜1100ntの上流領域から数十bp程度以上の部分領域を増幅して上流側相同領域(第1の相同領域)を、2337nt〜3436ntの下流領域から数十bp程度以上の部分領域を増幅して下流側相同領域(第2の相同領域)を調製し、これら2つの相同領域を正常なMRI1遺伝子を含まない配列の両末端にそれぞれ連結して調製することができる。このようにして調製されたMRI1遺伝子破壊カセットは、配列番号6に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号6に示す塩基配列中の2337nt〜3436ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なMRI1遺伝子を含まないDNA断片からなる。   In addition, for the MRI1 gene, 1101nt to 2336nt of SEQ ID NO: 6 is the genomic sequence of the MRI1 gene coding region, so there are several gene disruption cassettes for destroying the MRI1 gene from the upstream region of 1nt to 1100nt of SEQ ID NO: 6. Amplify a partial region of about 10 bp or more to amplify an upstream homologous region (first homologous region), amplify a partial region of about several tens of bp or more from a downstream region of 2337nt to 3436nt to form a downstream homologous region (second The two homologous regions can be prepared by ligating these two homologous regions to both ends of a sequence that does not contain the normal MRI1 gene. The MRI1 gene disruption cassette thus prepared has a first homologous region consisting of a region homologous to a partial region within the region of 1nt to 1100nt in the nucleotide sequence shown in SEQ ID NO: 6, and a base shown in SEQ ID NO: 6. It comprises a second homologous region consisting of a region homologous to a partial region within the region of 2337nt to 3436nt in the sequence, and consists of a DNA fragment that does not contain a normal MRI1 gene.

SPE2遺伝子については、配列番号9の1101nt〜2291ntがSPE2遺伝子コード領域のゲノム配列であるから、SPE2遺伝子を破壊するための遺伝子破壊カセットは、配列番号9の1nt〜1100ntの上流領域から数十bp程度以上の部分領域を増幅して上流側相同領域(第1の相同領域)を、2292nt〜3391ntの下流領域から数十bp程度以上の部分領域を増幅して下流側相同領域(第2の相同領域)を調製し、これら2つの相同領域を正常なSPE2遺伝子を含まない配列の両末端にそれぞれ連結して調製することができる。このようにして調製されたSPE2遺伝子破壊カセットは、配列番号9に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号9に示す塩基配列中の2292nt〜3391ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なSPE2遺伝子を含まないDNA断片からなる。   For the SPE2 gene, 1101nt to 2291nt of SEQ ID NO: 9 is the genomic sequence of the SPE2 gene coding region, so the gene disruption cassette for destroying the SPE2 gene is several tens of bp from the upstream region of 1nt to 1100nt of SEQ ID NO: 9. Amplify a partial region more than the extent to amplify the upstream homologous region (first homologous region), amplify a partial region of about several tens of bp from the downstream region of 2292 nt to 3391 nt to the downstream homologous region (second homologous region) Region) and these two homologous regions can be prepared by ligating to both ends of a sequence not containing the normal SPE2 gene. The SPE2 gene disruption cassette thus prepared has a first homologous region consisting of a region homologous to a partial region within the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 9, and a base shown in SEQ ID NO: 9. It comprises a second homologous region consisting of a region homologous to a partial region in the region of 2292 nt to 3391 nt in the sequence, and consists of a DNA fragment that does not contain the normal SPE2 gene.

ARO9遺伝子については、配列番号12の1101nt〜2642ntがARO9遺伝子コード領域のゲノム配列であるから、ARO9遺伝子を破壊するための遺伝子破壊カセットは、配列番号12の1nt〜1100ntの上流領域から数十bp程度以上の部分領域を増幅して上流側相同領域(第1の相同領域)を、2643nt〜3742ntの下流領域から数十bp程度以上の部分領域を増幅して下流側相同領域(第2の相同領域)を調製し、これら2つの相同領域を正常なARO9遺伝子を含まない配列の両末端にそれぞれ連結して調製することができる。このようにして調製されたARO2遺伝子破壊カセットは、配列番号12に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号12に示す塩基配列中の2643nt〜3742ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なARO9遺伝子を含まないDNA断片からなる。   For the ARO9 gene, 1101nt to 2642nt of SEQ ID NO: 12 is the genomic sequence of the ARO9 gene coding region, so the gene disruption cassette for disrupting the ARO9 gene is several tens of bp from the upstream region of 1nt to 1100nt of SEQ ID NO: 12. Amplify a partial region more than about 1 to amplify the upstream homologous region (first homologous region), amplify a partial region of about several tens of bp from the downstream region of 2643 nt to 3742 nt Region) and these two homologous regions can be prepared by ligating to both ends of a sequence not containing the normal ARO9 gene. The ARO2 gene disruption cassette thus prepared has a first homologous region consisting of a region homologous to a partial region within the region of 1nt to 1100nt in the nucleotide sequence shown in SEQ ID NO: 12, and It comprises a second homologous region consisting of a region homologous to a partial region within the region of 2643 nt to 3742 nt in the sequence, and consists of a DNA fragment that does not contain a normal ARO9 gene.

MEU1遺伝子については、配列番号15の1101nt〜2114ntがMEU1遺伝子コード領域のゲノム配列であるから、MEU1遺伝子を破壊するための遺伝子破壊カセットは、配列番号15の1nt〜1100ntの上流領域から数十bp程度以上の部分領域を増幅して上流側相同領域(第1の相同領域)を、2115nt〜3214ntの下流領域から数十bp程度以上の部分領域を増幅して下流側相同領域(第2の相同領域)を調製し、これら2つの相同領域を正常なMEU1遺伝子を含まない配列の両末端にそれぞれ連結して調製することができる。このようにして調製されたMEU1遺伝子破壊カセットは、配列番号15に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号15に示す塩基配列中の2115nt〜3214ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なMEU1遺伝子を含まないDNA断片からなる。   For the MEU1 gene, 1101nt to 2114nt of SEQ ID NO: 15 is the genomic sequence of the MEU1 gene coding region. Therefore, the gene disruption cassette for destroying the MEU1 gene is several tens of bp from the upstream region of 1nt to 1100nt of SEQ ID NO: 15. Amplify a partial region more than about 1 to amplify the upstream homologous region (first homologous region), amplify a partial region of about several tens of bp from the downstream region of 2115 nt to 3214 nt to a downstream homologous region (second homologous region) Region) and these two homologous regions can be prepared by ligating to both ends of a sequence not containing the normal MEU1 gene. The MEU1 gene disruption cassette thus prepared has a first homologous region consisting of a region homologous to a partial region within the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 15, and a base shown in SEQ ID NO: 15. It comprises a second homologous region consisting of a region homologous to a partial region within the region of 2115 nt to 3214 nt in the sequence, and consists of a DNA fragment that does not contain the normal MEU1 gene.

UTR4遺伝子については、配列番号18の1101nt〜1784ntがUTR4遺伝子コード領域のゲノム配列であるから、UTR4遺伝子を破壊するための遺伝子破壊カセットは、配列番号18の1nt〜1100ntの上流領域から数十bp程度以上の部分領域を増幅して上流側相同領域(第1の相同領域)を、1785nt〜2884ntの下流領域から数十bp程度以上の部分領域を増幅して下流側相同領域(第2の相同領域)を調製し、これら2つの相同領域を正常なUTR4遺伝子を含まない配列の両末端にそれぞれ連結して調製することができる。このようにして調製されたUTR4遺伝子破壊カセットは、配列番号18に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号18に示す塩基配列中の1785nt〜2884ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なUTR4遺伝子を含まないDNA断片からなる。   For the UTR4 gene, 1101nt to 1784nt of SEQ ID NO: 18 is the genomic sequence of the UTR4 gene coding region. Therefore, the gene disruption cassette for destroying the UTR4 gene is several tens of bp from the upstream region of 1nt to 1100nt of SEQ ID NO: 18. Amplify a partial region more than the extent to amplify the upstream homologous region (first homologous region), amplify a partial region of about several tens of bp from the downstream region of 1785nt to 2884nt, to the downstream homologous region (second homologous region) Region) and these two homologous regions can be prepared by ligating to both ends of a sequence not containing the normal UTR4 gene. The UTR4 gene disruption cassette thus prepared has a first homologous region consisting of a region homologous to a partial region within the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 18, and a base shown in SEQ ID NO: 18. It comprises a second homologous region consisting of a region homologous to a partial region within the region of 1785 nt to 2884 nt in the sequence, and consists of a DNA fragment that does not contain a normal UTR4 gene.

なお、配列番号3、6、9、12、15、18の領域のさらに上流及び下流の領域のゲノム塩基配列は、サッカロミセスゲノムデータベースやGenBankから容易に取得することができる。   In addition, the genome base sequence of the area | region further upstream and downstream of the area | region of sequence number 3, 6, 9, 12, 15, 18 can be easily acquired from a Saccharomyces genome database or GenBank.

正常な各遺伝子を含まない配列は、標的遺伝子以外の他の遺伝子配列でもよいし、また、メチオニン再生経路の酵素として正常に機能するタンパク質をコードしない変異mde1、変異mri1、又は変異spe2遺伝子であってもよい。他の遺伝子配列としてマーカー遺伝子を用いることで、形質転換体(遺伝子破壊株)のスクリーニングが容易になる。   The sequence not including each normal gene may be a gene sequence other than the target gene, or may be a mutant mde1, mutant mri1, or mutant spe2 gene that does not encode a protein that functions normally as an enzyme in the methionine regeneration pathway. May be. By using a marker gene as another gene sequence, screening of transformants (gene-disrupted strains) is facilitated.

マーカー遺伝子としては、導入する酵母株の栄養要求性に適合した栄養要求性相補遺伝子や、各種薬剤耐性遺伝子等を適宜選択して用いることができる。栄養要求性マーカーの場合は、遺伝子破壊の親株として、該当するマーカー遺伝子をもともと欠失している酵母株を用いる必要があるが、酵母遺伝子破壊株を用いて製造された食品に対する消費者の安心を得る観点からは栄養要求性マーカー遺伝子が有利である。一方、薬剤耐性マーカーは、使用する親株の遺伝的背景に制限がなく、より広い範囲の酵母に対し利用することができ有利である。各種のマーカー遺伝子が公知であり、適宜選択して使用することができる。例えば、栄養要求性マーカー遺伝子としては、URA3遺伝子(ウラシル生合成関連遺伝子)等が知られている。これら遺伝子の配列は公知であり、上述のサッカロミセスゲノムデータベースやGenBank等から配列情報を入手できる。薬剤耐性マーカー遺伝子としては、例えば、natMX4(Goldstein, A. L. et. al, Yeast, 15, 1541-1553, 1999)、kanMX4(Wach A., et al., Yeast, 10, 1793-1808, 1994)等を挙げることができる。   As the marker gene, an auxotrophic complementary gene suitable for the auxotrophy of the yeast strain to be introduced, various drug resistance genes and the like can be appropriately selected and used. In the case of an auxotrophic marker, it is necessary to use a yeast strain that originally lacked the corresponding marker gene as the parent strain for gene disruption. However, consumers can be assured of food produced using the yeast gene disruption strain. From the viewpoint of obtaining the above, an auxotrophic marker gene is advantageous. On the other hand, the drug resistance marker is advantageous because it has no limitation on the genetic background of the parent strain used, and can be used for a wider range of yeast. Various marker genes are known and can be appropriately selected and used. For example, as an auxotrophic marker gene, URA3 gene (uracil biosynthesis related gene) and the like are known. The sequences of these genes are known, and sequence information can be obtained from the Saccharomyces genome database, GenBank, etc. described above. Examples of drug resistance marker genes include natMX4 (Goldstein, AL et. Al, Yeast, 15, 1541-1553, 1999), kanMX4 (Wach A., et al., Yeast, 10, 1793-1808, 1994) and the like. Can be mentioned.

2つの相同領域とマーカー遺伝子DNAとの連結はFusion PCR法により行うことができる(図2参照)。上流側相同領域及び下流側相同領域をゲノムから増幅する際、マーカー遺伝子配列の末端領域とハイブリダイズする相補領域をプライマー対の一方(図2ではD及びE)に付加しておき、この相補領域において3つの断片をハイブリダイズさせて1本のDNA断片に融合し、これを鋳型としてPCRを行えば、[上流側相同領域]−[マーカー遺伝子]−[下流側相同領域]が連結した構造の遺伝子破壊用DNA断片を増幅することができる。この工程は、図2に示すように、2段階に分けて順次に行なってもよい。また、マーカー遺伝子の向きは、破壊対象の遺伝子と同じ向きでも逆向きであってもよい。   The two homologous regions and the marker gene DNA can be linked by the Fusion PCR method (see FIG. 2). When the upstream homologous region and the downstream homologous region are amplified from the genome, a complementary region that hybridizes with the terminal region of the marker gene sequence is added to one of the primer pairs (D and E in FIG. 2). When three fragments are hybridized and fused to a single DNA fragment and PCR is performed using this fragment as a template, the [upstream homologous region]-[marker gene]-[downstream homologous region] are linked. A DNA fragment for gene disruption can be amplified. This step may be performed sequentially in two stages as shown in FIG. Further, the direction of the marker gene may be the same as or opposite to the gene to be destroyed.

遺伝子破壊カセットの酵母細胞内への導入は、酢酸リチウム法等の常法により行なうことができる。下記実施例には、酢酸リチウム法による遺伝子破壊カセットの導入の具体例が記載されている。   The gene disruption cassette can be introduced into yeast cells by a conventional method such as a lithium acetate method. In the following examples, specific examples of introduction of gene disruption cassettes by the lithium acetate method are described.

目的遺伝子を破壊する他の方法としては、例えばAritomiらのBiosci. Biotechnol. Biochem., 68(1), 206-214, 2004に記載されるようなセルフクローニング法を利用することができる。該方法は、遺伝子導入用の薬剤耐性マーカーとカウンターセレクション用の生育抑制マーカーとを含むプラスミドベクターを利用して、ゲノム中の正常遺伝子を変異遺伝子に置き換える方法である。該方法によれば、遺伝子導入のためだけに必要な外来DNA配列を変異遺伝子の導入後に除去できるため、食品産業で用いられる醸造酵母の育成に好ましい。以下、MDE1遺伝子を例に用いて、セルフクローニング法にて遺伝子を破壊する方法を具体的に説明する。   As another method for disrupting a target gene, for example, a self-cloning method described in Aritomi et al., Biosci. Biotechnol. Biochem., 68 (1), 206-214, 2004 can be used. This method is a method of replacing a normal gene in a genome with a mutant gene using a plasmid vector containing a drug resistance marker for gene introduction and a growth suppression marker for counter selection. According to this method, a foreign DNA sequence required only for gene introduction can be removed after introduction of the mutated gene, which is preferable for growing brewing yeast used in the food industry. Hereinafter, using the MDE1 gene as an example, a method for disrupting the gene by the self-cloning method will be specifically described.

用いる上記2種類のマーカーは特に限定されず、例えば、薬剤耐性マーカーとしてはYAP1等、生育抑制マーカーとしてはGIN11等の公知のマーカーを用いることができる。これら2種類のマーカーを含むプラスミドベクター中に、変異を導入したmde1遺伝子(例えば、コード領域の上流側にストップコドンを導入した変異mde1遺伝子)を挿入し、該変異mde1遺伝子配列中の適当な制限酵素部位で切断してリニア化したものを酵母細胞内に導入すれば、相同組換えにより該リニア化プラスミドがゲノム中のMDE1遺伝子座に組み込まれる。その結果、ゲノム中にはプラスミド配列を介して正常MDE1遺伝子と変異mde1遺伝子が縦列して存在するようになる。薬剤耐性マーカーにより、リニア化プラスミドがゲノム中に組み込まれた酵母を容易に選択することができる。   The two types of markers to be used are not particularly limited. For example, YAP1 or the like can be used as a drug resistance marker, and a known marker such as GIN11 can be used as a growth suppression marker. Inserting a mde1 gene into which a mutation has been introduced (for example, a mutant mde1 gene into which a stop codon has been introduced upstream of the coding region) into a plasmid vector containing these two types of markers, and appropriate restriction in the mutant mde1 gene sequence When linearized by cleaving at the enzyme site is introduced into yeast cells, the linearized plasmid is integrated into the MDE1 locus in the genome by homologous recombination. As a result, the normal MDE1 gene and the mutated mde1 gene are present in tandem through the plasmid sequence in the genome. A drug resistance marker allows easy selection of yeasts that have linearized plasmids integrated into their genome.

その後、ゲノム中で縦列して存在する正常MDE1遺伝子と変異mde1遺伝子との間で相同組換えが生じると、生育抑制マーカーを含むプラスミド配列が脱落する。そのため、生育抑制マーカーを発現させる条件下で(例えば、生育抑制マーカーがガラクトース誘導性過剰発現プロモーターの制御下にある場合には、ガラクトース培地上で)選択を行なえば、プラスミド配列が残存する酵母は生育抑制マーカーの作用により生育することができず、一方、相同組換えによりプラスミド配列が脱落した酵母は生育することができるので、プラスミド配列が脱落し正常MDE1遺伝子又は変異mde1遺伝子のみがゲノム中に残存する酵母を得ることができる。ゲノム中に残存したMDE1遺伝子が所期の変異を有するか否かは、例えば変異を含む領域をPCR増幅してシークエンス解析を行なうことにより容易に調べることができる。   Thereafter, when homologous recombination occurs between the normal MDE1 gene and the mutated mde1 gene that exist in tandem in the genome, the plasmid sequence containing the growth suppression marker is lost. Therefore, if selection is performed under conditions for expressing a growth suppression marker (for example, on a galactose medium when the growth suppression marker is under the control of a galactose-inducible overexpression promoter), the yeast in which the plasmid sequence remains is On the other hand, yeasts that cannot grow due to the action of the growth-inhibiting marker, but that have lost the plasmid sequence due to homologous recombination can grow, so the plasmid sequence is dropped and only the normal MDE1 gene or mutant mde1 gene is present in the genome. The remaining yeast can be obtained. Whether or not the MDE1 gene remaining in the genome has a desired mutation can be easily examined by, for example, PCR amplification of a region containing the mutation and performing a sequence analysis.

二倍体の酵母を親株として遺伝子破壊処理を行なった場合、スクリーニング後に得られる形質転換体は、2つのアレルの目的遺伝子がどちらも破壊されたホモ破壊株か、又は、一方のアレルの遺伝子が破壊され、他方のアレルの遺伝子が破壊されずに残っているヘテロ破壊株であるが、遺伝子破壊カセットが異所的に組み込まれた非破壊株が得られることもある。従って、マーカーによるスクリーニング後、適宜サザン解析やPCR増幅産物サイズの確認、ダイレクトシークエンシング等を行ない、目的通りの位置に遺伝子破壊カセットが挿入され目的遺伝子が破壊されていることを直接確認することが望ましい。   When gene disruption treatment is performed using a diploid yeast as a parent strain, the transformant obtained after screening is a homo-disrupted strain in which both target genes of the two alleles are disrupted, or the gene of one allele is Although it is a hetero-disrupted strain that is destroyed and the gene of the other allele remains undisrupted, a non-destructive strain in which a gene disruption cassette is ectopically integrated may be obtained. Therefore, after screening with a marker, it is possible to directly confirm that the target gene has been destroyed by inserting a gene disruption cassette at the intended position by performing Southern analysis, confirmation of PCR amplification product size, direct sequencing, etc. desirable.

実用される醸造酵母は通常二倍体である。従って、本発明の方法により前駆物質DMTS-P1の生成能が低下した酵母を酒類製造に用いる場合には、特に限定されないが、二倍体で目的遺伝子アレルが共に破壊されたホモ破壊株を用いることが好ましい。   Practical brewing yeast is usually diploid. Accordingly, when yeast for which the ability to produce the precursor DMTS-P1 is reduced by the method of the present invention is used for alcoholic beverage production, a homozygous strain in which the target gene allele is disrupted together with a diploid is used. It is preferable.

ホモ破壊株を作出する方法としては、下記実施例で行なっているように、二倍体でアレルの一方が破壊された酵母を作製し、次いで、該酵母に対し再度遺伝子破壊処理を行なう方法が挙げられる。上記した遺伝子破壊カセットを用いる方法により目的遺伝子を破壊する場合には、例えば、1回目の遺伝子破壊処理と2回目の遺伝子破壊処理とで異なる薬剤耐性マーカーを用いればよい。上記したセルフクローニング法を用いる場合であれば、アレルの一方が破壊された二倍体酵母は、ゲノム中にマーカー遺伝子を有しないため、2回目でも1回目と同一の遺伝子破壊用プラスミドベクターを用いることができる。なお、取得の頻度は落ちるが、二倍体の酵母に対して上記した遺伝子破壊方法を実施した場合には、2つのアレルが同時に破壊された株も生じ得る。   As a method for producing a homo-disrupted strain, there is a method of producing a yeast in which one of the alleles is disrupted by diploid, and then performing gene disruption treatment again on the yeast, as in the following examples. Can be mentioned. When the target gene is disrupted by the method using the gene disruption cassette described above, for example, different drug resistance markers may be used in the first gene disruption process and the second gene disruption process. If the above-described self-cloning method is used, the diploid yeast in which one of the alleles is disrupted does not have a marker gene in the genome, so the same plasmid vector for gene disruption is used at the second time as the first time. be able to. Although the frequency of acquisition is reduced, when the gene disruption method described above is performed on diploid yeast, a strain in which two alleles are destroyed at the same time may also occur.

あるいは、他の方法として、接合型の異なる一倍体(a型及びα型)で遺伝子破壊株を作製し、両者を接合させて二倍体の遺伝子破壊株を得る方法も挙げられる。二倍体の酵母から一倍体を得る方法は、この分野で周知の常法により行なうことができる。例えば、特開2009-142161号公報に記載される通り、酵母を特開平5-317035号公報等に記載されるような公知の胞子形成用培地中にて培養することにより胞子形成させて胞子を得て、該胞子を発芽させて一倍体を得ることができる。   Alternatively, as another method, there may be mentioned a method in which gene disruption strains are prepared with haploids (a type and α type) having different mating types, and both are joined to obtain a diploid gene disruption strain. A method for obtaining a haploid from a diploid yeast can be performed by a conventional method well known in the art. For example, as described in JP-A-2009-142161, spore formation is performed by culturing yeast in a known spore-forming medium as described in JP-A-5-317035 and the like. Thus, the spore can be germinated to obtain a haploid.

本発明において、酵母は好ましくは醸造酵母であり、より好ましくは清酒酵母である。   In the present invention, the yeast is preferably a brewing yeast, and more preferably a sake yeast.

Δspe2遺伝子破壊株は、パントテン酸の非存在下では生育できないが、スペルミンを添加するとパントテン酸非存在下でも生育可能になるという特徴的な表現型を示すことが知られている(White WH, Gunyuzlu PL, Toyn JH. Journal of Biological Chemistry. 2001 Apr 6; 276(14):10794-800.)。従って、自然界から分離した酵母、又は該分離酵母若しくは既存の酵母を変異処理したものの中から、上記の表現型を示す株を選抜することで、DMTS-P1の生成能が低い酵母株を取得することができる。すなわち、本発明は、パントテン酸非存在下では生育できないパントテン酸要求性を示し、かつ、スペルミン添加により当該パントテン酸要求性が相補される酵母株を選抜することを含む、1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オンの生成能が低下した酵母の育種方法を提供する。   The Δspe2 gene-disrupted strain is known to exhibit a characteristic phenotype that cannot grow in the absence of pantothenic acid, but can grow even in the absence of pantothenic acid when spermine is added (White WH, Gunyuzlu PL, Toyn JH. Journal of Biological Chemistry. 2001 Apr 6; 276 (14): 10794-800.). Therefore, a yeast strain having a low ability to produce DMTS-P1 is obtained by selecting a strain exhibiting the above-mentioned phenotype from yeast isolated from nature, or a strain obtained by mutating the isolated yeast or existing yeast. be able to. That is, the present invention includes selecting a yeast strain that exhibits pantothenic acid requirement that cannot grow in the absence of pantothenic acid and that is supplemented with the addition of spermine. Provided is a method for breeding yeast having a reduced ability to produce 5-methylsulfinylpentan-3-one.

変異処理方法については上述した通りであり、物理的変異処理でも化学的処理でもよく、特に限定されない。   The mutation treatment method is as described above, and may be physical mutation treatment or chemical treatment, and is not particularly limited.

スクリーニングは、パントテン酸を含有しない培地を用いて、次の通りに行なうことができる。パントテン酸非含有培地にスペルミンを添加したものと添加しないものの2種類を準備し、変異処理した又は分離した酵母株のシングルコロニーをこれらの培地に植菌して、酵母の通常の培養条件下(通常25℃〜30℃程度)で1〜5日間程度インキュベートする。パントテン酸(-)/スペルミン(+)の培地では生育しているが、パントテン酸(-)/スペルミン(-)の培地では生育していない株が、spe2変異株候補、すなわち1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オンの生成能が低下した酵母株の候補である。候補の株が得られたら、これを用いて小スケールで清酒製造試験(小仕込み試験)を行ない、清酒試料中の1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オンの含有量と熟成促進(70℃で7日間保存)した後のDMTS生成量を確認すればよい。   Screening can be performed as follows using a medium not containing pantothenic acid. Prepare two types of pantothenic acid-free medium with or without spermine, inoculate a single colony of the mutant or isolated yeast strain in these mediums, under normal culture conditions for yeast ( Incubate at about 25 ° C to 30 ° C for about 1 to 5 days. A strain that grows in the pantothenic acid (-) / spermine (+) medium but does not grow in the pantothenic acid (-) / spermine (-) medium is a spe2 mutant candidate, that is, 1,2-dihydroxy It is a candidate yeast strain with reduced ability to produce -5-methylsulfinylpentan-3-one. Once a candidate strain is obtained, it is used to conduct a sake production test (small preparation test) on a small scale, and the content and aging of 1,2-dihydroxy-5-methylsulfinylpentan-3-one in the sake sample What is necessary is just to confirm the DMTS production amount after acceleration (storage at 70 ° C for 7 days).

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

1.メチオニン再生経路の各遺伝子破壊株(Saccharomyces cerevisiae BY4743)での清酒小仕込試験
[方法]
酵母BY4743で作製された公知の非必須遺伝子破壊ライブラリーのうち、メチオニン再生経路の各酵素遺伝子が破壊された株(Δaro8, Δaro9, Δbat2, Δsam1, Δsam2, Δspe2, Δspe3, Δspe4, Δmeu1, Δmri1, Δmde1, Δutr4, Δadi1)、および野生型親株を用いて、総米83gの小仕込み試験を行った。掛米には精米歩合70%のα化米を60g、麹米は精米歩合70%の乾燥麹を23g(いずれも徳島製麹株式会社製)、汲水にはイオン交換水を200mL使用した。仕込みは1段の酵母仕込み(初期菌体数1×107cells/mL)で行い、乳酸を0.02%となるよう添加した。15℃で19日間発酵を行い、遠心とフィルターろ過(0.20μm)により上槽し、清酒試料を得た。この清酒試料中のDMTS-P1量を下記の手順で測定した。また、各清酒試料を70℃で7日間熟成促進させ、得られた熟成清酒試料中のDMTS量を下記の手順で測定した。
1. Sake small preparation test in each gene disruption strain (Saccharomyces cerevisiae BY4743) of methionine regeneration pathway
[Method]
Among the known non-essential gene disruption libraries prepared in yeast BY4743, strains in which each enzyme gene in the methionine regeneration pathway is disrupted (Δaro8, Δaro9, Δbat2, Δsam1, Δsam2, Δspe2, Δspe3, Δspe4, Δmeu1, Δmri1, A small preparation test of 83 g of total rice was performed using Δmde1, Δutr4, Δadi1) and a wild type parent strain. Kake rice was 60 g of 70% α-milled rice, and rice was 23 g of 70% dried rice koji (both made by Tokushima Seikan Co., Ltd.). The preparation was carried out with a one-stage yeast preparation (initial cell number 1 × 10 7 cells / mL), and lactic acid was added to 0.02%. Fermentation was performed at 15 ° C. for 19 days, and the mixture was centrifuged and filtered (0.20 μm) to obtain a sake sample. The amount of DMTS-P1 in this sake sample was measured by the following procedure. In addition, each sake sample was allowed to ripen at 70 ° C. for 7 days, and the DMTS amount in the obtained aged sake sample was measured by the following procedure.

<DMTS-P1の分析(LC/MS)>
得られた清酒試料1 mLに、内部標準として20ppmの1,2-dihydroxy-5-(methyl(d3)sulfinyl)pentan-3-one (methyl(d3)DMTS-P1)を25μL添加し、蒸留水で2mLにメスアップした。これを約1mLの陽イオン交換樹脂(Dowex50WX4)に通液し、蒸留水6 mLで洗浄した。通過液を合併して凍結乾燥し、蒸留水1 mLに溶解し、フィルターろ過してLC/MS試料とした。LC/MSの条件は以下のとおり。
装置:サーモフィッシャーサイエンティフィック社製Surveyor HPLCシステムおよびLCQ Advantageイオントラップ質量分析計
カラム:BDS Hypersil C18 (3.0×150mm)
移動相:超純水、0.3mL/min
インジェクション:10μL
Ion spray voltage:5.0 kV
Capillary temperature:250℃
Sheath gas pressure:30arb
MS/MS条件
collision energy:30%
DMTS-P1:プレカーサーイオン;m/z 181, モニターイオン;m/z 117
Methyl(d3)DMTS-P1:プレカーサーイオン;m/z 184, モニターイオン;m/z 117
<Analysis of DMTS-P1 (LC / MS)>
To 1 mL of the resulting sake sample, add 25 μL of 20 ppm 1,2-dihydroxy-5- (methyl (d3) sulfinyl) pentan-3-one (methyl (d3) DMTS-P1) as an internal standard, and add distilled water. The volume up to 2 mL. This was passed through about 1 mL of cation exchange resin (Dowex50WX4) and washed with 6 mL of distilled water. The passing solution was combined and freeze-dried, dissolved in 1 mL of distilled water, and filtered to obtain an LC / MS sample. LC / MS conditions are as follows.
Instrument: Surveyor HPLC system from Thermo Fisher Scientific and LCQ Advantage ion trap mass spectrometer Column: BDS Hypersil C18 (3.0 x 150 mm)
Mobile phase: Ultrapure water, 0.3 mL / min
Injection: 10μL
Ion spray voltage: 5.0 kV
Capillary temperature: 250 ℃
Sheath gas pressure: 30arb
MS / MS conditions
collision energy: 30%
DMTS-P1: Precursor ion; m / z 181, Monitor ion; m / z 117
Methyl (d3) DMTS-P1: Precursor ion; m / z 184, Monitor ion; m / z 117

<DMTSの分析(GC/MS)>
stir bar sorptive extraction (SBSE)により行った。エタノール10%となるように加水した試料10mlに、塩化ナトリウム2g、および内部標準として3-octanolを5 mg/Lとなるように添加し、攪拌子(Twister、Gerstel社製)を入れて700 rpm、30分間攪拌し、香気成分の抽出を行った。香気成分を吸着したTwisterをGerstel社製の加熱脱着装置(TDSA)に装着した。
加熱脱着条件
TDSA:20℃(1min)→60℃/min→230℃(4min)
CIS4:-150℃(0.7min)→12℃/sec→250℃(10min)
GC/MS条件
装置:Agilent社製 GC6890およびMSD5973
カラム:HP-INNOWax(30 m×0.25 mm×0.25 μm)
オーブン温度:40℃(5min)→5℃/min→120℃→15℃/min→240℃(10min)
キャリアガス:He, 1.0 mL/min
インジェクション:スプリットレス
SIMモード
モニターイオン:DMTS; m/z 126, 3-octanol; m/z 83
<DMTS analysis (GC / MS)>
Stir bar sorptive extraction (SBSE) was used. Add 2g of sodium chloride and 3-octanol as an internal standard to 5mg / L to 10ml sample watered to 10% ethanol, and add a stirrer (Twister, manufactured by Gerstel) to 700 rpm The mixture was stirred for 30 minutes to extract aroma components. The Twister that adsorbed the aroma component was attached to a heat desorption device (TDSA) manufactured by Gerstel.
Thermal desorption conditions
TDSA: 20 ℃ (1min) → 60 ℃ / min → 230 ℃ (4min)
CIS4: -150 ℃ (0.7min) → 12 ℃ / sec → 250 ℃ (10min)
GC / MS condition equipment: Agilent GC6890 and MSD5973
Column: HP-INNOWax (30 m × 0.25 mm × 0.25 μm)
Oven temperature: 40 ℃ (5min) → 5 ℃ / min → 120 ℃ → 15 ℃ / min → 240 ℃ (10min)
Carrier gas: He, 1.0 mL / min
Injection: Splitless
SIM mode monitor ion: DMTS; m / z 126, 3-octanol; m / z 83

[結果]
DMTS-P1及びDMTSの分析結果を図1に示す。野生型親株(WT)と比較して、Δaro9, Δspe2, Δmeu1, Δmri1, Δmde1, Δutr4破壊株でDMTS-P1およびDMTSの有意な減少がみられた。中でも、Δspe2、Δmeu1、Δmri1、Δmde1では、WTと比較してDMTS-P1が大幅に減少しており、特にΔmeu1、Δmri1、Δmde1でDMTS-P1の顕著な減少が見られた。DMTS量は、Δspe2, Δmri1, Δmde1で弁別閾値0.18μg/L以下に減少していた。
[result]
The analysis results of DMTS-P1 and DMTS are shown in FIG. Compared with the wild-type parent strain (WT), DMTS-P1 and DMTS were significantly decreased in the Δaro9, Δspe2, Δmeu1, Δmri1, Δmde1, and Δutr4 disrupted strains. Above all, Δspe2, Δmeu1, Δmri1, and Δmde1 showed a significant decrease in DMTS-P1 compared to WT. In particular, a significant decrease in DMTS-P1 was observed in Δmeu1, Δmri1, and Δmde1. The amount of DMTS was decreased to 0.18 μg / L or less at Δspe2, Δmri1, Δmde1.

なお、各清酒試料の一般成分分析結果は下記の通りである。日本酒度には差異があったが、いずれの変異株も醸造能力は正常であった。   In addition, the general component analysis result of each sake sample is as follows. Although there was a difference in the degree of sake, all the mutant strains had normal brewing ability.

2.きょうかい7号酵母(K7)のΔmri1、Δmde1遺伝子破壊株構築
DMTS-P1, DMTSともに減少したΔmri1とΔmde1について、清酒酵母でも同様の現象がみられるかを確認するため、きょうかい7号酵母(K7)を用いて遺伝子破壊株Δmri1及びΔmde1を構築した。
2. Construction of Δmri1 and Δmde1 gene disruption strains of Kyokai No. 7 yeast (K7)
In order to confirm whether Δmri1 and Δmde1 decreased in both DMTS-P1 and DMTS also in sake yeast, gene disruption strains Δmri1 and Δmde1 were constructed using Kyoto 7 yeast (K7).

(1) 遺伝子破壊用DNA断片の作製
まず、薬剤耐性遺伝子を持つ公知のプラスミドpAG25:natMX4(Goldstein, A. L.. et. al, Yeast, 15, 1541-1553, 1999)およびpFA6:kanMX4(Wach A., et al., Yeast, 10, 1793-1808, 1994)から、通常のPCRにより、薬剤耐性遺伝子natMX4およびkanMX4をそれぞれ増幅した(図2a)。2つのプラスミドは薬剤耐性遺伝子ORFの前後に共通の配列を含んでおり、この共通配列部分を用いて設計したプライマーA及びBを用いてPCRを行なった。また、TaKaRa社製Genとるくん(酵母用)High Recoveryを用いてK7のゲノムDNAを抽出し、標的遺伝子の前後1kbをPCRにより増幅した(図2b)。次に、増幅した3つの断片(すなわち、標的遺伝子の上流側断片、薬剤耐性遺伝子(natMX4またはkanMX4)、および標的遺伝子の下流側断片)をFusion PCR法により融合、増幅し、標的遺伝子を薬剤耐性遺伝子に置き換えるための遺伝子破壊カセット計4種(薬剤耐性遺伝子2種類×標的遺伝子2種類)を作製した(図2d)。これらのPCR用酵素には東洋紡績社製のKOD FXを使用し、各PCR産物の精製、濃縮にはQIAGEN社製のGel Extraction Kitを用いた。各PCRに用いたプライマーA〜Fの配列は下記表3の通りである。
(1) Preparation of DNA fragment for gene disruption First, known plasmids pAG25: natMX4 (Goldstein, AL. Et. Al, Yeast, 15, 1541-1553, 1999) and pFA6: kanMX4 (Wach A. , et al., Yeast, 10, 1793-1808, 1994), the drug resistance genes natMX4 and kanMX4 were amplified by ordinary PCR, respectively (FIG. 2a). The two plasmids contain a common sequence before and after the drug resistance gene ORF, and PCR was performed using primers A and B designed using this common sequence portion. In addition, Gento-kun (for yeast) High Recovery manufactured by TaKaRa was used to extract K7 genomic DNA, and 1 kb before and after the target gene was amplified by PCR (FIG. 2b). Next, the three amplified fragments (that is, the upstream fragment of the target gene, the drug resistance gene (natMX4 or kanMX4), and the downstream fragment of the target gene) are fused and amplified by the Fusion PCR method, and the target gene is drug resistant. A total of 4 gene disruption cassettes (2 types of drug resistance genes x 2 types of target genes) for replacement with genes were prepared (Fig. 2d). KOD FX manufactured by Toyobo Co., Ltd. was used for these PCR enzymes, and Gel Extraction Kit manufactured by QIAGEN was used for purification and concentration of each PCR product. The sequences of primers A to F used for each PCR are shown in Table 3 below.

(2) K7の形質転換
作製した各遺伝子破壊カセットを酢酸リチウム法によりK7に導入し、相同組換えにより標的遺伝子を破壊した。
(2) Transformation of K7 Each gene disruption cassette prepared was introduced into K7 by the lithium acetate method, and the target gene was disrupted by homologous recombination.

親株を2mLのYPD液体培地で30℃、一晩振盪培養し、10mLの2×YPD液体培地に培養液を100μL入れて30℃、4時間振盪培養した。培養液を遠心(1000G・5分間)集菌して5mLのTEに懸濁後、集菌して100μLのSol Aに懸濁、30℃で1時間インキュベートした。1時間後にPCR産物10μL、Carrier DNA (Salmon SPErm由来DNA) 10μL、Sol B 850μLを添加、混合して30℃、3時間インキュベートした。3時間後、室温で10分間静置し、集菌して5mLのYPD液体培地で30℃、2時間振盪培養後、集菌して薬剤入りのYPDプレートで4日間培養した。
Sol A : 酢酸リチウム0.1M、Tris-HCl 10mM、EDTA 1mM
Sol B : Polyethylene Glycol 4000 400mg/mL となるようSol Aに溶解
The parent strain was cultured with shaking in 2 mL of YPD liquid medium at 30 ° C. overnight, and 100 μL of the culture solution was placed in 10 mL of 2 × YPD liquid medium and cultured with shaking at 30 ° C. for 4 hours. The culture broth was collected by centrifugation (1000 G for 5 minutes), suspended in 5 mL of TE, collected, suspended in 100 μL of Sol A, and incubated at 30 ° C. for 1 hour. After 1 hour, 10 μL of PCR product, 10 μL of Carrier DNA (Salmon SPErm-derived DNA), and 850 μL of Sol B were added, mixed, and incubated at 30 ° C. for 3 hours. After 3 hours, the mixture was allowed to stand at room temperature for 10 minutes, and the cells were collected and cultured in a 5 mL YPD liquid medium at 30 ° C. for 2 hours with shaking.
Sol A: Lithium acetate 0.1M, Tris-HCl 10mM, EDTA 1mM
Sol B: Polyethylene Glycol 4000 Dissolved in Sol A to be 400mg / mL

K7は2倍体なので、それぞれのアレルの標的遺伝子をnatMX4、kanMX4で置き換えた。具体的には、まず、natMX4を含む遺伝子破壊カセットをK7に導入して遺伝子破壊株を取得し、その中から、後述のPCRにより、一方のアレルが破壊された株を選択した。続いて、選択された株にkanMX4を含む遺伝子破壊カセットを導入することで、もう一方のアレルを破壊した。あるいは、先にkanMX4で一方のアレルを破壊し、次いでnatMX4で他方のアレルを破壊した。   Since K7 is a diploid, the target genes of each allele were replaced with natMX4 and kanMX4. Specifically, first, a gene disruption cassette containing natMX4 was introduced into K7 to obtain a gene disruption strain, and a strain in which one allele was disrupted was selected by PCR described below. Subsequently, the other allele was destroyed by introducing a gene disruption cassette containing kanMX4 into the selected strain. Alternatively, one allele was first destroyed with kanMX4, and then the other allele was destroyed with natMX4.

(3) 遺伝子破壊の確認
形質転換後、薬剤プレートに出てきたコロニーを2mLのYPD液体培地で30℃、一晩振盪培養し、TaKaRa社製Genとるくん(酵母用)High Recoveryを用いてゲノムDNAを抽出した。抽出したDNAを破壊確認用プライマーG〜J(表3、上掲)を用いてPCRし、バンドの長さで標的遺伝子の破壊を確認した(図2e、表4、4)。MRI1遺伝子はnatMX4と鎖長が近く、増幅断片のバンドサイズでの判断が難しいため、PCR増幅断片をBamHIで消化し、消化断片の長さの違いで確認した(表6)。
(3) Confirmation of gene disruption After transformation, the colonies that appeared on the drug plate were cultured with shaking in 2 mL of YPD liquid medium at 30 ° C overnight, and the genome was collected using TaKaRa's Gen Toru-kun (for yeast) High Recovery. DNA was extracted. PCR was performed on the extracted DNA using the primers G to J for confirmation of destruction (Table 3, above), and the destruction of the target gene was confirmed by the length of the band (FIG. 2e, Tables 4, 4). Since the MRI1 gene has a chain length close to that of natMX4 and it is difficult to judge the band size of the amplified fragment, the PCR amplified fragment was digested with BamHI and confirmed by the difference in length of the digested fragment (Table 6).

以上により、Δmri1、Δmde1各2ラインずつ構築した(表7)。なお、構築した遺伝子破壊株のうち、K7-mri1_1、K7-mri1_2、K7-mde1_1の3株は、独立行政法人製品評価技術基盤機構 特許微生物寄託センターにそれぞれ表7に示した受領番号で寄託されている(受領日:2012年2月2日)。   As described above, two lines each of Δmri1 and Δmde1 were constructed (Table 7). Of the constructed gene-disrupted strains, three strains K7-mri1_1, K7-mri1_2, and K7-mde1_1 were deposited with the receipt numbers shown in Table 7 at the National Institute of Technology and Evaluation Patent Microorganism Depositary, respectively. (Receipt date: February 2, 2012).

3.K7のΔmri1 ,Δmde1破壊株の清酒小仕込試験
[方法]
K7のΔmri1、Δmde1破壊株(表7)および親株(K7 WT)を用いて総米500gの小仕込み試験を行った。掛米には精米歩合70%のα化米を400g、麹米は精米歩合70%の乾燥麹を100g(いずれも徳島製麹株式会社製)、汲水にはイオン交換水を790mL使用した。
3. Sake preparation test of K7 Δmri1 and Δmde1 disruption strains
[Method]
A small preparation test of 500 g of total rice was performed using Δmri1 and Δmde1 disrupted strains of K7 (Table 7) and parent strain (K7 WT). Kake rice used 400g of 70% rice-purified α-rice, 100% rice milled 70% dried rice koji (both made by Tokushima Seikan Co., Ltd.), and 790mL ion-exchanged water used for pumping.

仕込みは3段仕込みで行った(表8)。1日目に水こうじ(汲水161mL、乾燥麹25g、初期菌体数1×107cells/mL、乳酸を0.14%、15℃)、2日目に添(α米62.5g、15℃)、4日目に仲(汲水234mL、乾燥麹25g、α米137.5g、9℃)、5日目に留(汲水395mL、乾燥麹50g、α米200g、7℃)を行い、留後7〜15℃で31日間発酵を行い、遠心とフィルターろ過(0.45μm)により上槽した。この清酒試料中のDMTS-P1量を上記と同様の手順で測定した。また、各清酒試料を70℃で7日間熟成促進させ、得られた熟成清酒試料中のDMTS量を上記と同様の手順で測定した。 The preparation was performed in three stages (Table 8). On the first day, water koji (161 mL of pumped water, 25 g of dried rice cake, initial cell count 1 × 10 7 cells / mL, lactic acid 0.14%, 15 ° C), and on the second day (α rice 62.5 g, 15 ° C) On the 4th day, Naka (drawn water 234mL, dried rice cake 25g, α rice 137.5g, 9 ℃), and on the 5th day, distilled water (395mL, dried rice cake 50g, α rice 200g, 7 ℃). Fermentation was performed at 7 to 15 ° C. for 31 days, and the upper tank was collected by centrifugation and filter filtration (0.45 μm). The amount of DMTS-P1 in this sake sample was measured by the same procedure as described above. In addition, each sake sample was ripened at 70 ° C. for 7 days, and the DMTS amount in the obtained aged sake sample was measured in the same procedure as described above.

[結果]
DMTS-P1及びDMTSの分析結果を図3に示す。Δmri1, Δmde1ともにDMTS-P1の顕著な減少が見られた。K7の仕込ではBY4743に比べてDMTSが全体的に高かったものの、親株と比較してDMTS量は大幅に低下していた。清酒酵母においても、MRI1, MDE1遺伝子はDMTS-P1の生成に大きく寄与し、これらの遺伝子を破壊すると、DMTSの生成も減少することが確認された。なお、各清酒試料の一般成分分析結果は下記の通りであり、いずれの変異株も清酒を製造する能力は正常であった。
[result]
The analysis results of DMTS-P1 and DMTS are shown in FIG. In both Δmri1 and Δmde1, DMTS-P1 markedly decreased. In the preparation of K7, although DMTS was generally higher than BY4743, the amount of DMTS was significantly lower than that of the parent strain. In sake yeast, it was confirmed that MRI1 and MDE1 genes greatly contributed to the production of DMTS-P1, and that disruption of these genes also reduced the production of DMTS. In addition, the general component analysis result of each sake sample was as follows, and all the mutant strains had normal ability to produce sake.

4.Δspe2破壊株の表現型の確認
SPE2遺伝子はスペルミン合成に関与しており、スペルミンはパントテン酸の合成に使われる(図4)。そのため、Δspe2破壊株はパントテン酸要求性を示し、パントテン酸の非存在下では生育できない。この表現型を確認するため、SC(Simmon's Citrate)培地を用いてSC/-パントテン酸/-スペルミン培地とSC/-パントテン酸/+スペルミン培地(スペルミン濃度0.25mM)を調製し、Δspe2破壊株を植菌して30℃、4日間インキュベートし、生育を確認した。
4). Confirmation of phenotype of Δspe2 disruption strain
The SPE2 gene is involved in spermine synthesis, which is used for the synthesis of pantothenic acid (Fig. 4). Therefore, the Δspe2-disrupted strain exhibits pantothenic acid requirement and cannot grow in the absence of pantothenic acid. In order to confirm this phenotype, SC / -pantothenic acid / -spermine medium and SC / -pantothenic acid / + spermine medium (spermine concentration 0.25 mM) were prepared using SC (Simmon's Citrate) medium. After inoculation and incubation at 30 ° C. for 4 days, growth was confirmed.

結果を図5に示す。Δspe2破壊株はSC/-パントテン酸/-スペルミン培地では生育できないが、SC/-パントテン酸/+スペルミン培地では生育できることが確認された。Δspe4破壊株もΔspe2破壊株と同様の表現型を示した。パントテン酸要求性とスペルミンによる相補を指標としてスクリーニングを行うことで、SPE2遺伝子の発現の欠失又は低下によりDMTS生産能が低下した酵母株を取得できると考えられる。   The results are shown in FIG. It was confirmed that the Δspe2-disrupted strain could not grow on the SC / -pantothenic acid / -spermine medium but could grow on the SC / -pantothenic acid / + spermine medium. The Δspe4 disruption strain also showed the same phenotype as the Δspe2 disruption strain. By performing screening using pantothenic acid requirement and complementation with spermine as indicators, it is considered that a yeast strain having a reduced ability to produce DMTS due to deletion or reduction in the expression of the SPE2 gene can be obtained.

Claims (21)

MDE1遺伝子、MRI1遺伝子、SPE2遺伝子、ARO9遺伝子、MEU1遺伝子、及びUTR4遺伝子からなる群より選択される少なくとも1つの遺伝子の発現が低下又は欠失した、1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オンの生成能が低い酵母。   1,2-dihydroxy-5-methylsulfinylpentane- in which the expression of at least one gene selected from the group consisting of MDE1 gene, MRI1 gene, SPE2 gene, ARO9 gene, MEU1 gene, and UTR4 gene is reduced or deleted Yeast with low 3-one production ability. MDE1遺伝子、MRI1遺伝子、及びSPE2遺伝子からなる群より選択される少なくとも1つの遺伝子の発現が低下又は欠失した請求項1記載の酵母。   The yeast according to claim 1, wherein the expression of at least one gene selected from the group consisting of MDE1 gene, MRI1 gene, and SPE2 gene is reduced or deleted. 前記少なくとも1つの遺伝子の発現が欠失した請求項1又は2記載の酵母。   The yeast according to claim 1 or 2, wherein expression of the at least one gene is deleted. 前記酵母は醸造酵母である請求項1ないし3のいずれか1項に記載の酵母。   The yeast according to any one of claims 1 to 3, wherein the yeast is a brewing yeast. 前記酵母は清酒酵母である請求項4記載の酵母。   The yeast according to claim 4, wherein the yeast is sake yeast. 1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オンの含量が低い酒類の製造用の酵母である請求項4又は5記載の酵母。   The yeast according to claim 4 or 5, which is a yeast for producing alcoholic beverages having a low content of 1,2-dihydroxy-5-methylsulfinylpentan-3-one. 請求項1ないし6のいずれか1項に記載の酵母を用いてアルコール発酵を行なうことを含む、ジメチルトリスルフィドの生成が抑制された酒類の製造方法。   A method for producing an alcoholic beverage in which production of dimethyltrisulfide is suppressed, comprising performing alcoholic fermentation using the yeast according to any one of claims 1 to 6. 請求項5記載の酵母を用いてアルコール発酵を行ない、清酒を製造することを含む、老香の発生が抑制された清酒の製造方法。   The manufacturing method of the sake by which generation | occurrence | production of scent was suppressed including performing alcoholic fermentation using the yeast of Claim 5, and manufacturing refined sake. 請求項8記載の方法により製造された、老香の発生が抑制された清酒。   A refined sake produced by the method according to claim 8, wherein generation of scent is suppressed. 酵母において、MDE1遺伝子、MRI1遺伝子、SPE2遺伝子、ARO9遺伝子、MEU1遺伝子、及びUTR4遺伝子からなる群より選択される少なくとも1つの遺伝子の発現を低下又は欠失させることを含む、1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オンの生成能が低下した酵母の作出方法。   1,2-dihydroxy-, comprising reducing or deleting the expression of at least one gene selected from the group consisting of MDE1 gene, MRI1 gene, SPE2 gene, ARO9 gene, MEU1 gene, and UTR4 gene in yeast A method for producing yeast having a reduced ability to produce 5-methylsulfinylpentan-3-one. 前記少なくとも1つの遺伝子が、MDE1遺伝子、MRI1遺伝子、及びSPE2遺伝子からなる群より選択される少なくとも1つである請求項10記載の方法。   The method according to claim 10, wherein the at least one gene is at least one selected from the group consisting of an MDE1 gene, an MRI1 gene, and an SPE2 gene. 酵母ゲノム中の前記少なくとも1つの遺伝子を破壊することを含む請求項10又は11記載の方法。   12. The method of claim 10 or 11, comprising disrupting the at least one gene in the yeast genome. 前記酵母は醸造酵母である請求項10ないし12のいずれか1項に記載の方法。   The method according to any one of claims 10 to 12, wherein the yeast is a brewing yeast. 前記酵母は清酒酵母である請求項13記載の方法。   The method according to claim 13, wherein the yeast is sake yeast. 配列番号3に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号3に示す塩基配列中の1836nt〜2935ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なMDE1遺伝子を含まないDNA断片からなる、MDE1遺伝子破壊用DNA断片。   A first homologous region consisting of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 3, and a partial region in the region of 1836nt to 2935nt in the base sequence shown in SEQ ID NO: 3. An MDE1 gene disruption DNA fragment comprising a second homologous region comprising a homologous region and comprising a DNA fragment not containing a normal MDE1 gene. 配列番号6に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号6に示す塩基配列中の2337nt〜3436ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なMRI1遺伝子を含まないDNA断片からなる、MRI1遺伝子破壊用DNA断片。   A first homologous region consisting of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 6, and a partial region in the region of 2337nt to 3436nt in the base sequence shown in SEQ ID NO: 6 A DNA fragment for MRI1 gene disruption comprising a second homologous region comprising a homologous region and comprising a DNA fragment not containing a normal MRI1 gene. 配列番号9に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号9に示す塩基配列中の2292nt〜3391ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なSPE2遺伝子を含まないDNA断片からなる、SPE2遺伝子破壊用DNA断片。   A first homologous region composed of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 9, and a partial region in the region of 2292nt to 3391nt in the base sequence shown in SEQ ID NO: 9 A SPE2 gene disruption DNA fragment comprising a second homologous region comprising a homologous region and comprising a DNA fragment not containing a normal SPE2 gene. 配列番号12に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号12に示す塩基配列中の2643nt〜3742ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なARO9遺伝子を含まないDNA断片からなる、ARO9遺伝子破壊用DNA断片。   A first homologous region consisting of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 12, and a partial region in the region of 2463nt to 3742nt in the base sequence shown in SEQ ID NO: 12. A DNA fragment for disrupting the ARO9 gene, comprising a second homologous region composed of a homologous region, and comprising a DNA fragment not containing a normal ARO9 gene. 配列番号15に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号15に示す塩基配列中の2115nt〜3214ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なMEU1遺伝子を含まないDNA断片からなる、MEU1遺伝子破壊用DNA断片。   A first homologous region consisting of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 15; a partial region in the region of 2115nt to 3214nt in the base sequence shown in SEQ ID NO: 15; A DNA fragment for MEU1 gene disruption comprising a second homologous region comprising a homologous region and comprising a DNA fragment not containing a normal MEU1 gene. 配列番号18に示す塩基配列中の1nt〜1100ntの領域内の部分領域と相同な領域からなる第1の相同領域と、配列番号18に示す塩基配列中の1785nt〜2884ntの領域内の部分領域と相同な領域からなる第2の相同領域とを含み、正常なUTR4遺伝子を含まないDNA断片からなる、UTR4遺伝子破壊用DNA断片。   A first homologous region consisting of a region homologous to a partial region in the region of 1nt to 1100nt in the base sequence shown in SEQ ID NO: 18, and a partial region in the region of 1785nt to 2884nt in the base sequence shown in SEQ ID NO: 18. A UTR4 gene disruption DNA fragment comprising a second homologous region comprising a homologous region and comprising a DNA fragment not containing a normal UTR4 gene. パントテン酸非存在下では生育できないパントテン酸要求性を示し、かつ、スペルミン添加により当該パントテン酸要求性が相補される酵母株を選抜することを含む、1,2-ジヒドロキシ-5-メチルスルフィニルペンタン-3-オンの生成能が低い酵母の育種方法。   1,2-dihydroxy-5-methylsulfinylpentane-, which comprises selecting a yeast strain that exhibits pantothenic acid requirement that cannot grow in the absence of pantothenic acid and that is supplemented with spermine Yeast breeding method with low 3-one production ability.
JP2012035773A 2012-02-22 2012-02-22 Method for preparing yeast having reduced 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one formation ability Pending JP2013169191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035773A JP2013169191A (en) 2012-02-22 2012-02-22 Method for preparing yeast having reduced 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one formation ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012035773A JP2013169191A (en) 2012-02-22 2012-02-22 Method for preparing yeast having reduced 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one formation ability

Publications (1)

Publication Number Publication Date
JP2013169191A true JP2013169191A (en) 2013-09-02

Family

ID=49263577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035773A Pending JP2013169191A (en) 2012-02-22 2012-02-22 Method for preparing yeast having reduced 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one formation ability

Country Status (1)

Country Link
JP (1) JP2013169191A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238300A (en) * 2013-06-06 2014-12-18 月桂冠株式会社 Dmts generation prediction method, deterioration prediction method for sake, sake and sake production method
JP2016163880A (en) * 2015-02-27 2016-09-08 国立大学法人九州大学 Method for removing sulphur-containing compound in liquid
JP2018011553A (en) * 2016-07-21 2018-01-25 独立行政法人酒類総合研究所 Methods for making yeast with low 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one productivity
CN110714021A (en) * 2019-10-10 2020-01-21 天津科技大学 Construction method for knocking out aromatic amino acid transaminase II Aro9 gene in beer yeast
WO2022239871A1 (en) * 2021-05-14 2022-11-17 国立大学法人 東京大学 Genome-modified microbial strain

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6015046514; PIRKOV, Ivan et al.: '"A complete inventory of all enzymes in the eukaryotic methionine salvage pathway"' FEBS J. Vol. 275, 2008, p. 4111-4120 *
JPN6015046516; BALASUNDARAM, David et al.: '"Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotranspo' Proc. Natl. Acad. Sci. U. S. A. Vol. 91, 1994, p. 172-176 *
JPN6015046517; 磯谷敦子: '"清酒の熟成に関与する香気成分"' 生物工学会誌 第89巻, 20111225, 第720-723頁 *
JPN6015046520; AKAO, Takeshi et al.: '"Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7"' DNA Res. Vol. 18, 2011, p. 423-434 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238300A (en) * 2013-06-06 2014-12-18 月桂冠株式会社 Dmts generation prediction method, deterioration prediction method for sake, sake and sake production method
JP2016163880A (en) * 2015-02-27 2016-09-08 国立大学法人九州大学 Method for removing sulphur-containing compound in liquid
JP7036398B2 (en) 2015-02-27 2022-03-15 国立大学法人九州大学 Method for removing sulfur-containing compounds in liquid
JP2018011553A (en) * 2016-07-21 2018-01-25 独立行政法人酒類総合研究所 Methods for making yeast with low 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one productivity
JP7101362B2 (en) 2016-07-21 2022-07-15 独立行政法人酒類総合研究所 Method for producing yeast with low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentane-3-one
CN110714021A (en) * 2019-10-10 2020-01-21 天津科技大学 Construction method for knocking out aromatic amino acid transaminase II Aro9 gene in beer yeast
WO2022239871A1 (en) * 2021-05-14 2022-11-17 国立大学法人 東京大学 Genome-modified microbial strain

Similar Documents

Publication Publication Date Title
Park et al. Low‐pH production of d‐lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7
US20160289690A1 (en) Mortierella alpina recombinant gene expression system and construction method and use thereof
JP2013169191A (en) Method for preparing yeast having reduced 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one formation ability
KR20140033002A (en) A yeast cell for the production of terpenes and uses thereof
AU2015352567B2 (en) Causative genes conferring acetic acid tolerance in yeast
García-Ríos et al. Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae strains for cocoa pulp fermentations
US20220127552A1 (en) Maltotriose metabolizing mutants of saccharomyces eubayanus
US20100190223A1 (en) Yeast for transformation, transformation method, and method for producing substance
JP6864308B2 (en) Isoamyl Acetate High Productivity, Acetic Acid Productivity Low Productivity and Isoamyl Alcohol High Productivity Method for Producing Brewed Yeast
Makimoto et al. Mutagenesis, breeding, and characterization of sake yeast strains with low production of dimethyl trisulfide precursor
JP2016054735A (en) Modified starmerella microorganism
JP2006101867A (en) Ars gene derived from candida utilis
KR101264294B1 (en) Yeast Variants Having Resistance to Low Temperatures
KR101243903B1 (en) Ethanol―Tolerant Yeast Strains and Genes Thereof
KR101863239B1 (en) Microorganism Capable of Using Acetic Acid as Sole Carbon Source
JP7101362B2 (en) Method for producing yeast with low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentane-3-one
JP2010115112A (en) Method of preparing yeast, the yeast, and method of producing lactic acid
Negoro et al. Breeding of high malate‐producing diploid sake yeast with a homozygous mutation in the VID24 gene
JP2014000076A (en) Serine palmitoyltransferase
JP5201622B2 (en) Method for improving malic acid productivity of yeast
JP2014076046A (en) Method for enhancing ethanol production and fermentative performance of yeast by disruption of its mitophagy function
JP6748884B2 (en) Method for producing yeast strain with improved brewing characteristics
JP6620373B2 (en) Transformant, method for producing the same, and method for producing dicarboxylic acid having 4 carbon atoms
EP3080253A1 (en) Mutant nnk1 allele and its use
JP5230224B2 (en) New freeze-resistant baker&#39;s yeast

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160322