JP2013164102A - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP2013164102A
JP2013164102A JP2012026508A JP2012026508A JP2013164102A JP 2013164102 A JP2013164102 A JP 2013164102A JP 2012026508 A JP2012026508 A JP 2012026508A JP 2012026508 A JP2012026508 A JP 2012026508A JP 2013164102 A JP2013164102 A JP 2013164102A
Authority
JP
Japan
Prior art keywords
support beam
outer ring
trunnion
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012026508A
Other languages
Japanese (ja)
Other versions
JP5990921B2 (en
Inventor
Eisaku Suzuki
栄作 鈴木
Daiki Nishii
大樹 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012026508A priority Critical patent/JP5990921B2/en
Publication of JP2013164102A publication Critical patent/JP2013164102A/en
Application granted granted Critical
Publication of JP5990921B2 publication Critical patent/JP5990921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a structure that facilitates all of part manufacturing, part management and assembling wok, facilitates cost reduction, and further stabilizes a speed change operation.SOLUTION: An inside support beam 28 displaceable while oscillating together with a trunnion 7b is arranged at the trunnion 7b at the inside with respect to the radial direction of each disc rather than a power roller 6a. A cap 27 arranged at the tip of support shaft 12a of an outer ring 16b is press-pushed toward a support beam 23a of the trunnion 7b by using a coil spring 32 arranged in the middle of a base 29 of the inside support beam 28. By this arrangement, the power roller 6a becomes difficult to be displaced to the axial direction of the support beam 23a, and a speed change operation is stabilized.

Description

この発明は、例えば車両(自動車)用の自動変速機、建設機械(建機)用の自動変速機、航空機(固定翼機、回転翼機、飛行船等)等で使用されるジェネレータ(発電機)用の自動変速機、ポンプ等の各種産業機械の運転速度を調節する為の自動変速機として利用する、ハーフトロイダル型のトロイダル型無段変速機の改良に関する。   The present invention relates to a generator (generator) used in, for example, an automatic transmission for a vehicle (automobile), an automatic transmission for a construction machine (construction machine), an aircraft (a fixed wing aircraft, a rotary wing aircraft, an airship, etc.), etc. The present invention relates to improvement of a half toroidal toroidal continuously variable transmission that is used as an automatic transmission for adjusting the operating speed of various industrial machines such as automatic transmissions and pumps.

自動車用変速装置としてハーフトロイダル型のトロイダル型無段変速機を使用する事が、特許文献1〜4等の多くの刊行物に記載されると共に一部で実施されていて周知である。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて変速比の調整幅を広くする構造も、特許文献5等、やはり多くの刊行物に記載されて、従来から広く知られている。図13〜14は、これら各特許文献に記載されて従来から広く知られているトロイダル型無段変速機の第1例を示している。この従来構造の第1例の場合、入力回転軸1の両端寄り部分の周囲に1対の入力ディスク2、2を、それぞれがトロイド曲面である内側面同士を互いに対向させた状態で、前記入力回転軸1と同期した回転を可能に支持している。又、この入力回転軸1の中間部周囲に出力筒3を、この入力回転軸1に対する回転を可能に支持している。又、この出力筒3の外周面には、軸方向中央部に出力歯車4を固設すると共に、軸方向両端部に1対の出力ディスク5、5を、スプライン係合により、前記出力筒3と同期した回転を可能に支持している。又、この状態で、それぞれがトロイド曲面である、前記両出力ディスク5、5の内側面を、前記両入力ディスク2、2の内側面に対向させている。   The use of a half-toroidal toroidal continuously variable transmission as a transmission for an automobile is described in many publications such as Patent Documents 1 to 4 and partially implemented, and is well known. Further, a structure in which a toroidal type continuously variable transmission and a planetary gear mechanism are combined to widen the adjustment range of the gear ratio is also described in many publications such as Patent Document 5 and has been widely known. 13 to 14 show a first example of a toroidal-type continuously variable transmission described in these patent documents and widely known in the past. In the case of the first example of this conventional structure, a pair of input disks 2 and 2 are disposed around the portions near both ends of the input rotation shaft 1 in a state where the inner surfaces, each of which is a toroidal curved surface, face each other. The rotation synchronized with the rotating shaft 1 is supported. An output tube 3 is supported around the intermediate portion of the input rotary shaft 1 so as to be rotatable with respect to the input rotary shaft 1. Further, on the outer peripheral surface of the output cylinder 3, an output gear 4 is fixed at the center in the axial direction, and a pair of output disks 5 and 5 are connected to both ends in the axial direction by spline engagement. Supports the rotation synchronized with. In this state, the inner surfaces of the output disks 5 and 5, each of which is a toroidal curved surface, are opposed to the inner surfaces of the input disks 2 and 2.

又、前記両入力ディスク2、2と前記両出力ディスク5、5との間に、それぞれの周面を球状凸面とした複数個のパワーローラ6、6を挟持している。これら各パワーローラ6、6は、それぞれトラニオン7、7に回転自在に支持されており、これら各トラニオン7、7は、それぞれ前記各ディスク2、5の中心軸に対し捩れの位置にある傾転軸8、8を中心とする揺動変位自在に支持されている。即ち、これら各トラニオン7、7は、それぞれの軸方向両端部に互いに同心に設けられた1対の傾転軸8、8と、これら各傾転軸8、8同士の間に存在する支持梁部9、9とを備えており、これら各傾転軸8、8が、支持板10、10に対し、ラジアルニードル軸受11、11を介して枢支されている。   Further, a plurality of power rollers 6, 6 each having a spherical convex surface are sandwiched between the input disks 2, 2 and the output disks 5, 5. The power rollers 6 and 6 are rotatably supported by trunnions 7 and 7, respectively. The trunnions 7 and 7 are tilted with respect to the central axes of the disks 2 and 5, respectively. The shafts 8 and 8 are supported so as to be swingable and displaceable. That is, each of the trunnions 7 and 7 includes a pair of tilting shafts 8 and 8 provided concentrically with each other at both axial ends, and a supporting beam existing between the tilting shafts 8 and 8. These tilting shafts 8 and 8 are pivotally supported with respect to the support plates 10 and 10 via radial needle bearings 11 and 11, respectively.

又、前記各パワーローラ6、6は、前記各トラニオン7、7を構成する支持梁部9、9の内側面に、基半部と先半部とが互いに偏心した支持軸12、12と、複数の転がり軸受とを介して、これら各支持軸12、12の先半部回りの回転、及び、これら各支持軸12、12の基半部を中心とする若干の揺動変位可能に支持されている。この様な各パワーローラ6、6の外側面と、前記各トラニオン7、7を構成する支持梁部9、9の内側面との間には、それぞれが前記複数の転がり軸受の一部である、スラスト玉軸受13、13と、スラストニードル軸受14、14とを、前記各パワーローラ6、6の側から順番に設けている。このうちのスラスト玉軸受13、13は、前記各パワーローラ6、6に加わるスラスト方向の荷重を支承しつつ、これら各パワーローラ6、6の回転を許容するものである。これら各スラスト玉軸受13、13は、前記各パワーローラ6、6の外側面に形成された内輪軌道15と、外輪16の内側面に形成された外輪軌道17との間に複数個の玉18、18を、転動可能に設けて成る。又、前記各スラストニードル軸受14、14は、前記各パワーローラ6、6から前記各スラスト玉軸受13、13を構成する外輪16、16に加わるスラスト荷重を支承しつつ、これら各外輪16、16及び前記各支持軸12、12の先半部が、これら各支持軸12、12の基半部を中心に揺動する事を許容するものである。   Each of the power rollers 6 and 6 includes support shafts 12 and 12 in which the base half portion and the tip half portion are eccentric to each other on the inner surface of the support beam portions 9 and 9 constituting the trunnions 7 and 7, respectively. Via a plurality of rolling bearings, the support shafts 12 and 12 are supported so as to be able to rotate around the front half of each of the support shafts 12 and 12 and to be slightly oscillated and displaced around the base half of each of the support shafts 12 and 12. ing. Between the outer side surfaces of the power rollers 6 and 6 and the inner side surfaces of the support beam portions 9 and 9 constituting the trunnions 7 and 7, each is a part of the plurality of rolling bearings. The thrust ball bearings 13 and 13 and the thrust needle bearings 14 and 14 are provided in order from the power rollers 6 and 6 side. Of these, the thrust ball bearings 13, 13 allow the power rollers 6, 6 to rotate while supporting a load in the thrust direction applied to the power rollers 6, 6. Each of these thrust ball bearings 13, 13 has a plurality of balls 18 between an inner ring raceway 15 formed on the outer side surface of each of the power rollers 6, 6 and an outer ring raceway 17 formed on the inner side surface of the outer ring 16. , 18 are provided to be able to roll. The thrust needle roller bearings 14, 14 support thrust loads applied to the outer rings 16, 16 constituting the thrust ball bearings 13, 13 from the power rollers 6, 6. The front half of each of the support shafts 12 and 12 is allowed to swing around the base half of each of the support shafts 12 and 12.

上述の様なトロイダル型無段変速機の運転時には、駆動軸19により一方(図13の左方)の入力ディスク2を、押圧装置20を介して回転駆動する。この結果、前記入力回転軸1の両端部に支持された1対の入力ディスク2、2が、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ6、6を介して前記両出力ディスク5、5に伝わり、前記出力歯車4から取り出される。前記入力回転軸1とこの出力歯車4との間の変速比を変える場合は、油圧式のアクチュエータ21、21により前記各トラニオン7、7を前記各傾転軸8、8の軸方向に変位させる。この結果、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きが変化する(転がり接触部にサイドスリップが発生する)。そして、この力の向きの変化に伴って前記各トラニオン7、7が、自身の傾転軸8、8を中心に揺動し、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との接触位置が変化する。これら各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向外寄り部分と、前記両出力ディスク5、5の内側面の径方向内寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が増速側になる。これに対して、前記各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向内寄り部分と、前記両出力ディスク5、5の内側面の径方向外寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が減速側になる。   During operation of the toroidal-type continuously variable transmission as described above, one input disk 2 (left side in FIG. 13) is rotationally driven by the drive shaft 19 via the pressing device 20. As a result, the pair of input disks 2 and 2 supported at both ends of the input rotating shaft 1 rotate synchronously while being pressed in a direction approaching each other. The rotation is transmitted to the output disks 5 and 5 through the power rollers 6 and 6 and is taken out from the output gear 4. When changing the gear ratio between the input rotary shaft 1 and the output gear 4, the trunnions 7, 7 are displaced in the axial direction of the tilt shafts 8, 8 by hydraulic actuators 21, 21. . As a result, the direction of the tangential force acting on the rolling contact portion (traction portion) between the peripheral surface of each of the power rollers 6 and 6 and the inner surface of each of the disks 2 and 5 changes (in the rolling contact portion). Side slip occurs). As the direction of the force changes, the trunnions 7 and 7 swing around their tilting shafts 8 and 8, and the peripheral surfaces of the power rollers 6 and 6 and the disks 2 and 8. The contact position with the inner surface of 5 changes. The circumferential surfaces of the power rollers 6 and 6 are in rolling contact with the radially outer portions of the inner surfaces of the input disks 2 and 2 and the radially inner portions of the inner surfaces of the output disks 5 and 5. By doing so, the gear ratio between the input rotary shaft 1 and the output gear 4 is increased. On the other hand, the peripheral surfaces of the power rollers 6 and 6 are arranged radially inwardly on the inner side surfaces of the input disks 2 and 2 and radially outwardly on the inner side surfaces of the output disks 5 and 5. If it is brought into rolling contact with the portion, the gear ratio between the input rotary shaft 1 and the output gear 4 becomes the deceleration side.

上述の様なトロイダル型無段変速機の運転時には、動力の伝達に供される各部材、即ち、前記入力、出力各ディスク2、5と前記各パワーローラ6、6とが、前記押圧装置20が発生する押圧力に基づいて弾性変形する。そして、この弾性変形に伴って、前記入力、出力各ディスク2、5が軸方向に変位する。又、前記押圧装置20が発生する押圧力は、前記トロイダル型無段変速機により伝達するトルクが大きくなる程大きくなり、それに伴って前記各部材2、5、6の弾性変形量も多くなる。従って、前記トルクの変動に拘らず、前記入力、出力各ディスク2、5の内側面と前記各パワーローラ6、6の周面との接触状態を適正に維持する為に、前記各トラニオン7、7に対してこれら各パワーローラ6、6を、前記各ディスク2、5の軸方向に変位させる機構が必要になる。上述した従来構造の第1例の場合には、前記各パワーローラ6、6を支持した前記各支持軸12、12の先半部を、同じく基半部を中心として揺動変位させる事により、前記各パワーローラ6、6を前記軸方向に変位させる様にしている。   When the toroidal type continuously variable transmission as described above is operated, the members used for power transmission, that is, the input and output disks 2 and 5 and the power rollers 6 and 6 are connected to the pressing device 20. It is elastically deformed based on the pressing force generated. In accordance with this elastic deformation, the input and output disks 2 and 5 are displaced in the axial direction. The pressing force generated by the pressing device 20 increases as the torque transmitted by the toroidal continuously variable transmission increases, and the amount of elastic deformation of the members 2, 5, 6 increases accordingly. Accordingly, in order to properly maintain the contact state between the inner surface of each of the input and output disks 2 and 5 and the peripheral surface of each of the power rollers 6 and 6 regardless of the fluctuation of the torque, the trunnions 7 and 7 7, a mechanism for displacing the power rollers 6 and 6 in the axial direction of the disks 2 and 5 is required. In the case of the above-described first example of the conventional structure, the tip half of each of the support shafts 12 and 12 that support the power rollers 6 and 6 is also oscillated and displaced about the base half as well. The power rollers 6 and 6 are displaced in the axial direction.

上述の様な従来構造の第1例の場合、前記各パワーローラ6、6を前記軸方向に変位させる為の構造が複雑で、部品製作、部品管理、組立作業が何れも面倒になり、コストが嵩む事が避けられない。この様な問題を解決する為の技術として前記特許文献3には、図15〜21に示す様な構造が記載されている。本発明は、この図15〜21に示した従来構造の第2例を改良するものであるから、次に、この従来構造の第2例に就いて説明する。この従来構造の第2例の特徴は、トラニオン7aに対してパワーローラ6aを、入力、出力各ディスク2、5(図13参照)の軸方向の変位を可能に支持する部分の構造にあり、トロイダル型無段変速機全体としての基本的構造及び作用は、前述の図13〜14に示した従来構造の第1例と同様である。   In the case of the first example of the conventional structure as described above, the structure for displacing each of the power rollers 6 and 6 in the axial direction is complicated, and parts manufacturing, parts management, and assembly work are all troublesome and costly. It is inevitable that the volume increases. As a technique for solving such a problem, Patent Document 3 describes a structure as shown in FIGS. Since the present invention improves the second example of the conventional structure shown in FIGS. 15 to 21, the second example of the conventional structure will be described next. The feature of the second example of this conventional structure is the structure of the portion that supports the trunnion 7a so that the power roller 6a can be displaced in the axial direction of the input and output disks 2, 5 (see FIG. 13). The basic structure and operation of the toroidal type continuously variable transmission as a whole are the same as those of the first example of the conventional structure shown in FIGS.

前記従来構造の第2例を構成するトラニオン7aは、両端部に互いに同心に設けられた1対の傾転軸8a、8bと、これら両傾転軸8a、8b同士の間に存在し、少なくとも入力、出力各ディスク2、5(図13参照)の径方向(図16、19〜20の上下方向)に関する内側(図16、19〜20の上側)の側面を円筒状凸面22とした、支持梁部23とを備える。前記両傾転軸8a、8bは、それぞれラジアルニードル軸受11a、11aを介して、支持板10、10(図14参照)に、揺動及び軸方向の変位を可能に支持する。   The trunnion 7a constituting the second example of the conventional structure exists between a pair of tilting shafts 8a and 8b concentrically provided at both ends, and between these tilting shafts 8a and 8b, and at least Supporting the cylindrical convex surface 22 on the inner side (upper side of FIGS. 16 and 19-20) of the input and output disks 2 and 5 (see FIG. 13) in the radial direction (the vertical direction of FIGS. 16 and 19 to 20). And a beam portion 23. The two tilting shafts 8a and 8b are supported on the support plates 10 and 10 (see FIG. 14) via radial needle bearings 11a and 11a, respectively, so as to be swingable and axially displaceable.

又、前記円筒状凸面22の中心軸イは、図16、19に示す様に、前記両傾転軸8a、8bの中心軸ロと平行で、これら両傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側(図16、19〜20の下側)に存在する。又、前記支持梁部23とパワーローラ6aの外側面との間に設けるスラスト玉軸受13aを構成する外輪16aの外側面に、部分円筒面状の凹部24を、この外側面を径方向に横切る状態で設けている。そして、この凹部24と、前記支持梁部23の円筒状凸面22とを係合させ、前記トラニオン7aに対して前記外輪16aを、前記各ディスク2、5の軸方向に関する揺動変位を可能に支持している。   Further, as shown in FIGS. 16 and 19, the center axis A of the cylindrical convex surface 22 is parallel to the center axis B of the both tilt axes 8a and 8b, and the center axis B of these tilt axes 8a and 8b. Rather than the outer side of the disks 2 and 5 in the radial direction (lower side of FIGS. 16 and 19 to 20). Further, a concave portion 24 having a partially cylindrical surface is radially crossed on the outer surface of the outer ring 16a constituting the thrust ball bearing 13a provided between the support beam portion 23 and the outer surface of the power roller 6a. It is provided in the state. And this recessed part 24 and the cylindrical convex surface 22 of the said support beam part 23 are engaged, and the said outer ring 16a is rockable displacement about the axial direction of each said disks 2 and 5 with respect to the said trunnion 7a. I support it.

又、前記外輪16aの内側面中央部に支持軸12aを、この外輪16aと一体に固設して、前記パワーローラ6aをこの支持軸12aの周囲に、ラジアルニードル軸受25を介して、回転自在に支持している。更に、前記トラニオン7aの内側面のうち、前記支持梁部23の両端部と1対の傾転軸8a、8bとの連続部に、互いに対向する1対の段差面26、26を設けている。そして、これら両段差面26、26と、前記スラスト玉軸受13aを構成する外輪16aの外周面とを、当接若しくは近接対向させて、前記パワーローラ6aからこの外輪16aに加わるトラクション力を、何れかの段差面26、26で支承可能としている。   Further, a support shaft 12a is fixed to the center of the inner surface of the outer ring 16a integrally with the outer ring 16a, and the power roller 6a is rotatable around the support shaft 12a via a radial needle bearing 25. I support it. Furthermore, a pair of stepped surfaces 26 and 26 facing each other are provided on the inner surface of the trunnion 7a at a continuous portion between both end portions of the support beam portion 23 and the pair of tilting shafts 8a and 8b. . Then, these stepped surfaces 26, 26 and the outer peripheral surface of the outer ring 16a constituting the thrust ball bearing 13a are brought into contact with or in close proximity to each other, and any traction force applied from the power roller 6a to the outer ring 16a is selected. These step surfaces 26 and 26 can be supported.

上述の様に構成する従来構造の第2例のトロイダル型無段変速機によれば、前記パワーローラ6aを前記各ディスク2、5の軸方向に変位させて、構成各部材の弾性変形量の変化に拘らず、このパワーローラ6aの周面と前記各ディスク2、5との接触状態を適正に維持できる構造を、簡単で低コストに構成できる。
即ち、トロイダル型無段変速機の運転時に、入力、出力各ディスク2、5、各パワーローラ6a等の弾性変形に基づき、これら各パワーローラ6aをこれら各ディスク2、5の軸方向に変位させる必要が生じると、これら各パワーローラ6aを回転自在に支持している前記スラスト玉軸受13aの外輪16aが、外側面に設けた部分円筒面状の凹部24と支持梁部23の円筒状凸面22との当接面を滑らせつつ、この円筒状凸面22の中心軸イを中心として揺動変位する。この揺動変位に基づき、前記各パワーローラ6aの周面のうちで、前記各ディスク2、5の軸方向片側面と転がり接触する部分が、これら各ディスク2、5の軸方向に変位し、前記接触状態を適正に維持する。
According to the toroidal type continuously variable transmission of the second example of the conventional structure configured as described above, the power roller 6a is displaced in the axial direction of each of the disks 2 and 5, and the amount of elastic deformation of each constituent member is increased. Regardless of the change, a structure capable of appropriately maintaining the contact state between the peripheral surface of the power roller 6a and the disks 2 and 5 can be configured simply and at low cost.
That is, during operation of the toroidal continuously variable transmission, the power rollers 6a are displaced in the axial direction of the disks 2 and 5 based on elastic deformation of the input and output disks 2 and 5 and the power rollers 6a. When necessary, the outer ring 16a of the thrust ball bearing 13a that rotatably supports each of the power rollers 6a is provided with a concave portion 24 having a partial cylindrical surface provided on the outer surface and a cylindrical convex surface 22 of the support beam portion 23. The sliding surface of the cylindrical convex surface 22 is oscillated and displaced about the central axis a. Based on this oscillating displacement, a portion of the peripheral surface of each power roller 6a that is in rolling contact with one axial side surface of each disk 2, 5 is displaced in the axial direction of each disk 2, 5; The contact state is properly maintained.

前述した通り、前記円筒状凸面22の中心軸イは、変速動作の際に各トラニオン7aの揺動中心となる傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側に存在する。従って、前記円筒状凸面22の中心軸イを中心とする揺動変位の半径は、前記変速動作の際の揺動半径よりも大きく、前記両入力ディスク2、2と前記両出力ディスク5、5との間の変速比の変動に及ぼす影響は少ない(無視できるか、容易に修正できる範囲に留まる)。   As described above, the central axis A of the cylindrical convex surface 22 is larger in diameter than the central axes B of the tilting shafts 8a and 8b, which are the oscillation centers of the trunnions 7a during the shifting operation. Exists with respect to the direction. Therefore, the radius of the rocking displacement about the central axis A of the cylindrical convex surface 22 is larger than the rocking radius at the time of the speed change operation, and both the input disks 2 and 2 and the both output disks 5, 5 Has little effect on the change in the transmission ratio between (and can be neglected or remain within an easily modifiable range).

図15〜21に示した従来構造の第2例の場合、図13〜14に示した同第1例に比べて、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易いが、変速動作を安定させる面からは、改良の余地がある。この理由は、前記各支持梁部23を中心とする前記各外輪16aの揺動変位を円滑に行わせる為、これら各支持梁部23の両端部分に1対ずつ設けた、前記各段差面26、26同士の間隔Dを、前記各外輪16aの外径dよりも少し大きく(D>d)する為である。これら各外輪16a、及び、この外輪16aと同心に支持された前記各パワーローラ6aは、前記間隔Dと前記外径dとの差(D−d)分だけ、前記各支持梁部23の軸方向に変位可能になる。   In the case of the second example of the conventional structure shown in FIGS. 15 to 21, parts production, parts management, and assembly work are all easier than in the first example shown in FIGS. Although easy to achieve, there is room for improvement in terms of stabilizing the shifting operation. The reason for this is that each step surface 26 is provided in a pair at each end of each support beam 23 so that the outer ring 16a can be smoothly moved and displaced about each support beam 23. , 26 to make the distance D between the outer rings 16a slightly larger than the outer diameter d (D> d). The outer rollers 16a and the power rollers 6a supported concentrically with the outer ring 16a have shafts of the support beam portions 23 corresponding to a difference (D−d) between the distance D and the outer diameter d. Displaceable in the direction.

一方、トロイダル型無段変速機を搭載した車両の運転時、前記各パワーローラ6aには前記各ディスク2、5から、加速時と減速時(エンジンブレーキの作動時)とで逆方向の力(トロイダル型無段変速機の技術分野で周知の「2Ft」)が加わる。そして、この力2Ftにより、前記各パワーローラ6aが、前記各外輪16aと共に、前記各支持梁部23の軸方向に変位する。この変位の方向は、前述した各アクチュエータ21、21による各トラニオン7、7(図14参照)の変位方向と同じであり、変位量が0.1mm程度であっても、変速動作が開始される可能性を生じる。そして、この様な原因で変速動作が開始された場合には、運転動作とは直接関連しない変速動作となり、何れ修正されるにしても、運転者に違和感を与える。特に、トロイダル型無段変速機が伝達するトルクが低い状態で、上述の様な、運転者が意図しない変速が行われると、運転者に与える違和感が大きくなり易い。   On the other hand, during operation of a vehicle equipped with a toroidal-type continuously variable transmission, each power roller 6a receives a force in the opposite direction from the respective disks 2 and 5 during acceleration and deceleration (when the engine brake is activated) ( "2Ft", which is well known in the technical field of toroidal-type continuously variable transmissions, is added. Then, the force 2Ft causes the power rollers 6a to be displaced in the axial direction of the support beam portions 23 together with the outer rings 16a. The direction of this displacement is the same as the direction of displacement of each trunnion 7 and 7 (see FIG. 14) by each actuator 21 and 21 described above, and the shifting operation is started even if the amount of displacement is about 0.1 mm. Create a possibility. When the shifting operation is started for such a reason, the shifting operation is not directly related to the driving operation, and the driver feels uncomfortable regardless of any correction. In particular, when a shift that is not intended by the driver as described above is performed in a state where the torque transmitted by the toroidal-type continuously variable transmission is low, a sense of discomfort given to the driver tends to increase.

上述の様にして生じる、運転動作とは直接関連しない変速動作の発生を抑える為には、前記間隔Dと前記外径dとの差(D−d)を僅少に(例えば数十μm程度に)抑える事が考えられる。但し、ハーフトロイダル型のトロイダル型無段変速機の運転時には、トラクション部から前記各パワーローラ6a、前記各外輪16aを介して前記各支持梁部23に加わるスラスト荷重により、前記各トラニオン7aが、図21に誇張して示す様に、前記各外輪16aを設置した側が凹となる方向に弾性変形する。そして、この弾性変形の結果、前記各トラニオン7a毎に1対ずつ設けた段差面26、26同士の間隔が縮まる。この様な状態でも、これら両段差面26、26同士の間隔Dが前記各外輪16aの外径d以下にならない様にする為には、通常状態(前記各トラニオン7aが弾性変形していない状態)での、前記間隔Dと前記外径dとの差を或る程度確保する必要がある。この結果、特に違和感が大きくなり易い、低トルクでの運転時に、上述の様な、運転動作とは直接関連しない、無用な変速動作が発生し易くなる。   In order to suppress the occurrence of the speed change operation that is not directly related to the driving operation as described above, the difference (D−d) between the distance D and the outer diameter d is made small (for example, about several tens of μm). ) Can be suppressed. However, during the operation of the half-toroidal toroidal continuously variable transmission, each trunnion 7a is caused by a thrust load applied to each support beam portion 23 from the traction portion via each power roller 6a and each outer ring 16a. As exaggeratedly shown in FIG. 21, the side where each outer ring 16a is installed is elastically deformed in a concave direction. As a result of this elastic deformation, the gap between the stepped surfaces 26, 26 provided for each trunnion 7a is reduced. Even in such a state, in order to prevent the distance D between the two step surfaces 26 and 26 from becoming smaller than the outer diameter d of each outer ring 16a, the normal state (the state where each trunnion 7a is not elastically deformed). It is necessary to ensure a certain difference between the distance D and the outer diameter d. As a result, when the operation is performed with a low torque, which is likely to cause a sense of incongruity, an unnecessary shift operation that is not directly related to the operation is likely to occur as described above.

一方、前記特許文献3には、支持梁部側に設けた円筒状凸面の一部に係止したアンカ駒と、外輪側の凹部の内面に形成したアンカ溝とを係合させる事により、前記力2Ftを支承する構造が記載されている。又、円筒状凸面と凹部との互いに整合する部分に形成された、それぞれが断面円弧形である転動溝同士の間に複数個の玉を掛け渡して、前記力2Ftを支承する構造も記載されている。但し、前者の構造の場合には、前記アンカ駒を前記支持梁部に、前記力2Ftを支承できる程度の強度及び剛性を確保して支持固定する事が難しく、低コスト化と十分な信頼性確保とを図りにくい。又、後者の場合には、前記力2Ftが大きくなり、前記各玉の転動面と前記各転動溝との転がり接触部の面圧が上昇すると、これら各転動溝の内面に圧痕が形成され、各トラニオンに対して各内輪が揺動変位する際に振動が発生する可能性がある。   On the other hand, in Patent Document 3, the anchor piece locked to a part of the cylindrical convex surface provided on the support beam part side and the anchor groove formed on the inner surface of the concave part on the outer ring side are engaged with each other. A structure for supporting a force 2Ft is described. There is also a structure for supporting the force 2Ft by forming a plurality of balls between the rolling grooves each having an arcuate cross section formed in a portion where the cylindrical convex surface and the concave portion are aligned with each other. Have been described. However, in the case of the former structure, it is difficult to support and fix the anchor piece to the support beam portion with sufficient strength and rigidity to support the force 2Ft, and it is possible to reduce the cost and to provide sufficient reliability. It is difficult to secure. In the latter case, when the force 2Ft increases and the surface pressure of the rolling contact portion between the rolling surface of each ball and each rolling groove increases, an indentation is formed on the inner surface of each rolling groove. As a result, vibration may occur when each inner ring swings and displaces with respect to each trunnion.

特開2003−214516号公報JP 2003-214516 A 特開2007−315595号公報JP 2007-315595 A 特開2008−25821号公報JP 2008-25821 A 特開2008−275088号公報JP 2008-275088 A 特開2004−169719号公報JP 2004-169719 A

本発明は、上述の様な事情に鑑み、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention was invented to realize a structure that facilitates parts production, parts management, and assembly work, facilitates cost reduction, and stabilizes the speed change operation. is there.

本発明のトロイダル型無段変速機は、少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数のスラスト転がり軸受とを備える。
特に、本発明のトロイダル型無段変速機に於いては、前記各トラニオンに、これら各トラニオンと共に揺動変位し、前記各パワーローラよりも前記各ディスクの径方向に関して内側に存在する内側支持梁を設ける。そして、これら各内側支持梁と前記各外輪との間に設けた弾性部材により、これら各外輪を前記各トラニオンの支持梁部に向けて弾性的に押圧する。
The toroidal-type continuously variable transmission of the present invention includes at least a pair of disks, a plurality of trunnions, the same number of power rollers as each trunnion, and the same number of thrust rolling bearings.
In particular, in the toroidal type continuously variable transmission according to the present invention, the inner support beams that are oscillated and displaced with the respective trunnions together with the respective trunnions and are present on the inner side in the radial direction of the respective disks than the respective power rollers. Is provided. Then, each outer ring is elastically pressed toward the support beam portion of each trunnion by an elastic member provided between each inner support beam and each outer ring.

上述の様な本発明のトロイダル型無段変速機を実施する場合に、例えば請求項2〜4に記載した発明の様に、前記各弾性部材を、前記各内側支持梁の中間部に設けたコイルばねとする。
このうちの請求項2に記載した発明の場合には、前記各外輪の支持軸の先端部に、この支持軸の先端面に当接する面を凹面とした、略円盤状のキャップを設ける。そして、これら各キャップを前記各コイルばねにより、前記各支持梁部に向けて弾性的に押圧する。
或いは、請求項3に記載した発明の様に、前記各外輪の支持軸の先端部に、前記各支持梁部の軸方向に対して直角方向の凹溝を(捩れの位置関係で)形成し、これら各凹溝に係合ピンを係止する。そして、これら各係合ピンを、前記各コイルばねにより前記各支持梁部に向けて弾性的に押圧する。
或いは、請求項4に記載した発明の様に、前記各外輪の支持軸の先端部に凹部を形成し、これら各凹部に玉を保持する。そして、これら各玉を、前記各コイルばねにより前記各支持梁部に向けて弾性的に押圧する。
When implementing the toroidal type continuously variable transmission of the present invention as described above, for example, as in the invention described in claims 2 to 4, each of the elastic members is provided in an intermediate portion of each of the inner support beams. A coil spring is used.
In the case of the invention described in claim 2, a substantially disk-shaped cap having a concave surface that abuts on the front end surface of the support shaft is provided at the front end portion of the support shaft of each outer ring. The caps are elastically pressed toward the support beam portions by the coil springs.
Alternatively, as in the invention described in claim 3, a concave groove (in a torsional positional relationship) perpendicular to the axial direction of each of the support beam portions is formed at the tip of the support shaft of each of the outer rings. The engaging pins are locked in the concave grooves. These engagement pins are elastically pressed toward the support beam portions by the coil springs.
Or like the invention described in Claim 4, a recessed part is formed in the front-end | tip part of the support shaft of each said outer ring | wheel, and a ball | bowl is hold | maintained at these each recessed part. These balls are elastically pressed toward the support beam portions by the coil springs.

上述の様に構成する本発明のトロイダル型無段変速機によれば、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現できる。
このうちのコスト低廉化は、前述の図9〜15に示した従来構造の第2例と同様の理由により、図り易い。
又、変速動作の安定化は、弾性部材により外輪をトラニオンの支持梁部に向けて弾性的に押圧する事により図れる。即ち、この弾性部材による押圧力の分、前記各外輪の凹部と前記各支持梁部の円筒状凸面との間に働く軸方向の摩擦力を大きくして、これら各外輪がこれら各支持梁部の軸方向に変位し難くできる。この為、前述した力2Ftによって、前記各外輪が前記各トラニオンに対し、前記各支持梁部の軸方向に変位するのを抑えられる。
According to the toroidal-type continuously variable transmission of the present invention configured as described above, it is easy to manufacture parts, manage parts, and assemble work, easily reduce costs, and stabilize the speed change operation. realizable.
Of these, cost reduction is easy to achieve for the same reason as in the second example of the conventional structure shown in FIGS.
In addition, the speed change operation can be stabilized by elastically pressing the outer ring toward the support beam portion of the trunnion by the elastic member. That is, an axial frictional force acting between the concave portion of each outer ring and the cylindrical convex surface of each support beam portion is increased by the amount of pressing force by the elastic member, so that each outer ring It is difficult to displace in the axial direction. For this reason, it is possible to suppress the outer rings from being displaced in the axial direction of the support beam portions with respect to the trunnions by the force 2Ft described above.

本発明の実施の形態の第1例を、ディスクの周方向から見た状態で示す正面図。The front view which shows the 1st example of embodiment of this invention in the state seen from the circumferential direction of the disc. 同じく図2の上方から見た図。The figure seen from the upper part of FIG. 2 similarly. 図2のA−A断面図。AA sectional drawing of FIG. 図3のB部拡大図。The B section enlarged view of FIG. 図1のC−C断面図。CC sectional drawing of FIG. キャップを取り出して示す斜視図。The perspective view which takes out and shows a cap. 本発明の実施の形態の第2例を示す、図15と同様の斜視図。The perspective view similar to FIG. 15 which shows the 2nd example of embodiment of this invention. 同じく、図3と同様の図。Similarly, the same figure as FIG. 図8のD−D断面図。DD sectional drawing of FIG. 図8のE部拡大図(A)と、凹溝の形状の別例を示す、(A)と同様の図(B)。The E section enlarged view (A) of FIG. 8 and the figure (B) similar to (A) which shows another example of the shape of a ditch | groove. 本発明の実施の形態の第3例を示す、図3と同様の図。The figure similar to FIG. 3 which shows the 3rd example of embodiment of this invention. 図11のF−F断面図(A)と、凹部の形状の別例を示す、部分拡大図(B)。FF sectional drawing (A) of FIG. 11 and the elements on larger scale (B) which show another example of the shape of a recessed part. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 図13のG−G断面図。GG sectional drawing of FIG. 従来構造の第2例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、各ディスクの径方向外側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which shows the 2nd example of the conventional structure from the radial direction outer side of each disk. 同じく、ディスクの周方向から見た状態で示す正面図。Similarly, the front view shown in the state seen from the circumferential direction of the disk. 図16の上方から見た図。The figure seen from the upper part of FIG. 図16の右方から見た図。The figure seen from the right side of FIG. 図17のH−H断面図。HH sectional drawing of FIG. 図16のI−I断面図。II sectional drawing of FIG. パワーローラから加わるスラスト荷重に基づいてトラニオンが弾性変形した状態を誇張して示す、図19と同方向から見た断面図。FIG. 20 is a cross-sectional view seen from the same direction as FIG. 19, exaggeratingly showing a state where the trunnion is elastically deformed based on a thrust load applied from a power roller.

[実施の形態の第1例]
図1〜6は、請求項1〜2に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、変速動作を安定させるべく、トラニオン7bの支持梁部23aに対し、スラスト玉軸受13aを構成する外輪16bを、この支持梁部23aに対する揺動変位を可能に支持しつつ、この支持梁部23aの軸方向への変位を抑える為の構造にある。その他の部分の構造及び作用は、前述の図15〜21に示した従来構造の第2例と同様であるから、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
FIGS. 1-6 has shown the 1st example of embodiment of this invention corresponding to Claims 1-2. The feature of this example is that the outer ring 16b constituting the thrust ball bearing 13a is supported by the support beam portion 23a of the trunnion 7b so as to be able to swing and displace with respect to the support beam portion 23a in order to stabilize the speed change operation. However, the support beam portion 23a has a structure for suppressing displacement in the axial direction. Since the structure and operation of the other parts are the same as those of the second example of the conventional structure shown in FIGS. 15 to 21 described above, the illustration and description of the equivalent parts are omitted or simplified. The explanation will be focused on.

本例の構造の場合、部分球面状の凸面である、前記外輪16bの支持軸12aの先端部に、略円盤状のキャップ27を設けている。このキャップ27の軸方向両側面のうち、各ディスク2、5(図13参照)の径方向に関して内径側面の形状は、前記支持軸12aの先端部に設けた部分球状凸面の曲率半径以上で、且つ、前記外輪16bの揺動中心からの距離以上の曲率半径を有する、部分球状凹面としている。そして、後述するコイルばね32により前記キャップ27を前記支持梁部23aに向け押圧した状態でも、この支持梁部23aを中心とする前記外輪16bの揺動変位を可能としている。
又、前記トラニオン7bに、このトラニオン7bと共に揺動変位可能な内側支持梁28を、パワーローラ6aよりも各ディスク2、5(図13参照)の径方向に関して内側に設けている。即ち、前記支持梁部23aの円筒状凸面22と前記外輪16bの凹部24aとを係合させ、この外輪16bに各軸受13a、25を介してパワーローラ6aを支持した状態で、前記支持梁部23aの軸方向に設けられた、前記内側支持梁28の基部29の両端部から径方向外方に向かって設けられた脚部30、30を、前記トラニオン7bの両端部に設けられた傾転軸8a、8bにねじ止め等により支持固定している。そして、前記基部29の軸方向中間部に設けられた保持凹部31に、その一端を固定したコイルばね32を設け、このコイルばね32により前記キャップ27を弾性的に押圧する事で、前記外輪16bを前記支持梁部23aに向け、弾性的に押圧する様にしている。尚、前記キャップ27は前記内側支持梁28に対し、図示しない凹凸係合部、ピン係合部等により、前記各ディスク2、5の径方向(図1、3〜5の上下方向)に変位するが、前記外輪16bの揺動方向には変位しない様にしている。従って、この外輪16bの揺動に拘らず、前記キャップ27が前記内側支持梁28から脱落する事はない。
In the case of the structure of this example, a substantially disk-shaped cap 27 is provided at the tip of the support shaft 12a of the outer ring 16b, which is a partially spherical convex surface. Of the both side surfaces in the axial direction of the cap 27, the shape of the inner diameter side surface with respect to the radial direction of each disk 2, 5 (see FIG. 13) is equal to or greater than the radius of curvature of the partial spherical convex surface provided at the tip of the support shaft 12a. In addition, a partially spherical concave surface having a radius of curvature equal to or greater than the distance from the center of oscillation of the outer ring 16b. Even when the cap 27 is pressed toward the support beam portion 23a by a coil spring 32 described later, the outer ring 16b can be oscillated and displaced about the support beam portion 23a.
Further, the trunnion 7b is provided with an inner support beam 28 that can swing and displace together with the trunnion 7b in the radial direction of each disk 2, 5 (see FIG. 13) from the power roller 6a. That is, the support beam portion 23a is engaged with the cylindrical convex surface 22 of the support beam portion 23a and the recess 24a of the outer ring 16b, and the power roller 6a is supported by the outer ring 16b via the bearings 13a and 25. Tilts provided at both end portions of the trunnion 7b are provided with leg portions 30, 30 provided radially outward from both end portions of the base portion 29 of the inner support beam 28. The shafts 8a and 8b are supported and fixed by screws or the like. A coil spring 32 having one end fixed to a holding recess 31 provided in the axially intermediate portion of the base portion 29 is provided, and the cap 27 is elastically pressed by the coil spring 32, whereby the outer ring 16b. Is elastically pressed toward the support beam portion 23a. The cap 27 is displaced in the radial direction of each of the disks 2 and 5 (vertical direction in FIGS. 1 and 3 to 5) with respect to the inner support beam 28 by an uneven engagement portion, a pin engagement portion, etc. (not shown). However, the outer ring 16b is not displaced in the swinging direction. Accordingly, the cap 27 does not fall off the inner support beam 28 regardless of the swinging of the outer ring 16b.

上述の様に構成する本例のトロイダル無段変速機は、前記コイルばね32により前記外輪16bを、前記キャップ27を介して前記支持梁部23aに向け、弾性的に押圧しているので、前記外輪16bの凹部24aとこの支持梁部23aの円筒状凸面22との間に働く軸方向の摩擦力を大きくできる。この結果、前述した力2Ftによって、前記外輪16bが前記トラニオン7bに対し、前記支持梁部23aの軸方向に変位するのを抑えられる。
尚、前記支持梁部23aの周方向に関する摩擦力は、前記外輪16bの凹部24aとこの支持梁部23aの円筒状凸面22との当接部の周方向の長さ寸法が、同じく軸方向寸法よりも十分に短い為、前記コイルばね32を設けても過度に大きくなる事はなく、前記支持梁部23aを中心とする前記外輪16bの揺動変位は妨げられない。但し、好ましくは、前記当接部の軸方向の摩擦係数を、周方向の摩擦係数よりも大きくする。この為に、例えば、前記当接部を構成する1対の曲面の表面粗さを、軸方向で大きく、周方向で小さくする。
In the toroidal continuously variable transmission of this example configured as described above, the outer ring 16b is elastically pressed by the coil spring 32 toward the support beam portion 23a via the cap 27. The axial frictional force acting between the concave portion 24a of the outer ring 16b and the cylindrical convex surface 22 of the support beam portion 23a can be increased. As a result, the outer ring 16b can be prevented from being displaced in the axial direction of the support beam portion 23a with respect to the trunnion 7b by the force 2Ft described above.
The frictional force in the circumferential direction of the support beam portion 23a is the same as the axial length dimension of the circumferential length of the contact portion between the concave portion 24a of the outer ring 16b and the cylindrical convex surface 22 of the support beam portion 23a. Therefore, even if the coil spring 32 is provided, it does not become excessively large, and the swinging displacement of the outer ring 16b around the support beam portion 23a is not hindered. However, preferably, the friction coefficient in the axial direction of the contact portion is made larger than the friction coefficient in the circumferential direction. For this purpose, for example, the surface roughness of the pair of curved surfaces constituting the contact portion is increased in the axial direction and decreased in the circumferential direction.

又、この支持梁部23aの両端部に設けられた傾転軸8a、8b同士の間に、前記内側支持梁28を設けている為、前記トラニオン7bが前記外輪16bを設置した側が凹となる方向に弾性変形するのを抑えられる。即ち、このトラニオン7bがこの方向に弾性変形し、このトラニオン7bに設けられた1対の段差面26、26同士の間隔が狭まる傾向となった場合、前記内側支持梁28がこれら両段差面26、26同士の間で突っ張り、前記トラニオン7bが弾性変形するのを抑えられる。従って、前述の図19で説明した、1対の段差面26、26同士の間隔Dと外輪16a(16b)の外径dとの差(D−d)を十分に小さくして、仮にこの外輪16bが前記トラニオン7bに対し、前記支持梁部23aの軸方向に変位しても、その変位量を極く僅少に抑え、無用な変速動作の発生を抑えられる。   Further, since the inner support beam 28 is provided between the tilting shafts 8a and 8b provided at both ends of the support beam portion 23a, the side on which the trunnion 7b has the outer ring 16b is concave. It is possible to suppress elastic deformation in the direction. That is, when the trunnion 7b is elastically deformed in this direction and the distance between the pair of stepped surfaces 26, 26 provided on the trunnion 7b tends to be narrowed, the inner support beam 28 is moved to both the stepped surfaces 26. , 26, and the trunnion 7b is restrained from being elastically deformed. Accordingly, the difference (D−d) between the distance D between the pair of stepped surfaces 26 and 26 and the outer diameter d of the outer ring 16a (16b) described with reference to FIG. Even if 16b is displaced with respect to the trunnion 7b in the axial direction of the support beam portion 23a, the amount of displacement can be suppressed to a very small level, and the occurrence of unnecessary shifting operations can be suppressed.

[実施の形態の第2例]
図7〜10は、請求項1、3に対応する、本発明の実施の形態の第2例を示している。本例の場合、外輪16cの支持軸12bの先端面に、支持梁部23aの軸方向に対し直角方向に設けた凹溝33に、係合ピン34を係止している。そして、この係合ピン34を、内側支持梁28の保持凹部31に保持したコイルばね32aにより、前記支持梁部23aに向け、弾性的に押圧している。又、前記凹溝33は、底部の長さ方向(この支持梁部23aの軸方向に対し直角方向)に関する形状を、前記支持梁部23aの円筒状凸面22の中心軸を中心とし、前記凹溝33の底部に接する円の半径と同じか、これよりも僅かに小さな半径を有する部分円弧としている。そして、この支持梁部23aを中心とする前記外輪16cの揺動変位を可能としている。
この様な係合ピン34と係合する、前記凹溝33の断面形状(底部の幅方向に関する形状)は、種々の形状を採用する事ができる。例えば図10の(A)に示す様に、前記係合ピン34の外径と同じ、或いは僅かに大きい直径を有する部分円弧状としたり、同じく(B)に示す様な、V字形とする事もできる。尚、前記係合ピン34に関しても、前記内側支持梁28に対し、前記外輪16cの揺動方向への変位を抑えた状態で組み付ける。この為に例えば、前記内側支持梁28の中央部両側面に1対の抑え板を固定し、これら両抑え板により、前記係合ピン34を軸方向両側から挟む。
その他の部分の構成及び作用に関しては、上述した実施の形態の第1例と同様であるから、同等部分に関する図示並びに説明は省略する。
[Second Example of Embodiment]
FIGS. 7-10 has shown the 2nd example of embodiment of this invention corresponding to Claim 1, 3. FIG. In the case of this example, the engaging pin 34 is locked to the concave groove 33 provided at the front end surface of the support shaft 12b of the outer ring 16c in a direction perpendicular to the axial direction of the support beam portion 23a. The engagement pin 34 is elastically pressed toward the support beam portion 23a by the coil spring 32a held in the holding recess 31 of the inner support beam 28. The concave groove 33 has a shape in the length direction of the bottom (perpendicular to the axial direction of the support beam portion 23a) with the central axis of the cylindrical convex surface 22 of the support beam portion 23a as the center. The arc is a partial arc having a radius that is the same as or slightly smaller than the radius of the circle in contact with the bottom of the groove 33. Then, the outer ring 16c can be oscillated and displaced about the support beam portion 23a.
Various shapes can be adopted as the cross-sectional shape (shape in the width direction of the bottom portion) of the concave groove 33 that engages with such an engagement pin 34. For example, as shown in FIG. 10A, a partial arc shape having a diameter that is the same as or slightly larger than the outer diameter of the engagement pin 34, or a V-shape as shown in FIG. You can also. The engagement pin 34 is also assembled to the inner support beam 28 in a state where displacement in the swinging direction of the outer ring 16c is suppressed. For this purpose, for example, a pair of holding plates is fixed to both side surfaces of the central portion of the inner support beam 28, and the engaging pins 34 are sandwiched from both sides in the axial direction by these holding plates.
Since the configuration and operation of the other parts are the same as in the first example of the above-described embodiment, illustration and description regarding the equivalent parts are omitted.

[実施の形態の第3例]
図11〜12は、請求項1、4に対応する、本発明の実施の形態の第3例を示している。本例の場合、外輪16dの支持軸12cの先端部に設けた、内面が半球面状の凹部35に、玉36を保持している。そして、この玉36を、内側支持梁28の保持凹部31に保持したコイルばね32aにより、支持梁部23aに向け、弾性的に押圧している。
この様な玉36と係合する凹部の形状は、上述の様な形状に限らない。例えば図12の(B)に示す様に、摺鉢状(円すい凹面状)とする事もできる。
その他の部分の構成及び作用に関しては、前述した実施の形態の第1例と同様であるから、同等部分に関する図示並びに説明は省略する。
[Third example of embodiment]
FIGS. 11 to 12 show a third example of the embodiment of the invention corresponding to claims 1 and 4. In the case of this example, the ball 36 is held in a concave portion 35 having a semispherical inner surface provided at the tip of the support shaft 12c of the outer ring 16d. The ball 36 is elastically pressed toward the support beam portion 23 a by the coil spring 32 a held in the holding recess 31 of the inner support beam 28.
The shape of the recess that engages with such a ball 36 is not limited to the shape described above. For example, as shown in FIG. 12B, it may be shaped like a bowl (conical concave surface).
Since the configuration and operation of other parts are the same as those in the first example of the above-described embodiment, illustration and description regarding equivalent parts are omitted.

本発明は、トロイダル型無段変速機単独で実施できる他、特許文献5に記載されている様な、遊星歯車機構と組み合わせた無段変速装置として実施する事もできる。この場合に、高速モードと低速モードとの切り換えに伴ってトロイダル型無段変速機のトルクの通過方向が逆転する際の変速比の変動を抑えられる。   The present invention can be implemented by a toroidal continuously variable transmission alone, or can be implemented as a continuously variable transmission in combination with a planetary gear mechanism as described in Patent Document 5. In this case, fluctuations in the gear ratio when the torque passing direction of the toroidal continuously variable transmission is reversed in accordance with the switching between the high speed mode and the low speed mode can be suppressed.

1 入力回転軸
2 入力ディスク
3 出力筒
4 出力歯車
5 出力ディスク
6、6a、6b パワーローラ
7、7a、7b トラニオン
8、8a、8b 傾転軸
9 支持梁部
10 支持板
11、11a ラジアルニードル軸受
12、12a 支持軸
13、13a スラスト玉軸受
14 スラストニードル軸受
15 内輪軌道
16、16a〜16d 外輪
17 外輪軌道
18 玉
19 駆動軸
20 押圧装置
21 アクチュエータ
22 円筒状凸面
23、23a 支持梁部
24、24a 凹部
25 ラジアルニードル軸受
26 段差面
27 キャップ
28 内側支持梁
29 基部
30 脚部
31 保持凹部
32、32a コイルばね
33 凹溝
34 係合ピン
35 凹部
36 玉
DESCRIPTION OF SYMBOLS 1 Input rotating shaft 2 Input disk 3 Output cylinder 4 Output gear 5 Output disk 6, 6a, 6b Power roller 7, 7a, 7b Trunnion 8, 8a, 8b Tilt shaft 9 Support beam part 10 Support plate 11, 11a Radial needle bearing DESCRIPTION OF SYMBOLS 12, 12a Support shaft 13, 13a Thrust ball bearing 14 Thrust needle bearing 15 Inner ring track 16, 16a-16d Outer ring 17 Outer ring track 18 Ball 19 Drive shaft 20 Pressing device 21 Actuator 22 Cylindrical convex surface 23, 23a Support beam portion 24, 24a Recess 25 Radial needle bearing 26 Stepped surface 27 Cap 28 Inner support beam 29 Base 30 Leg 31 Holding recess 32, 32a Coil spring 33 Groove 34 Engagement pin 35 Recess 36 Ball

Claims (4)

少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数のスラスト転がり軸受とを備え、
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を可能に支持されたものであり、
前記各トラニオンは、それぞれの両端部に互いに同心に設けられた1対の傾転軸と、これら両傾転軸同士の間に存在し、少なくとも前記各ディスクの径方向に関する内側の側面を、前記両傾転軸の中心軸と平行でこれら両傾転軸の中心軸よりも前記各ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部とを備えたもので、軸方向に関して前記各ディスクの軸方向側面同士の間位置の周方向に関して複数箇所に、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心とする揺動変位を自在に設けられており、
前記各パワーローラは、前記各トラニオンの内側面に、それぞれスラスト転がり軸受を介して回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ当接させており、
前記各スラスト転がり軸受は、前記各トラニオンの支持梁部と前記各パワーローラの外側面との間に設けられたもので、これら各支持梁部側に設けられた外輪と、これら各外輪の内側面に設けられた外輪軌道と前記各パワーローラの外側面に設けられた内輪軌道との間に転動自在に、それぞれ複数個ずつ設けられた転動体とを備えたものであり、
前記各スラスト転がり軸受の外輪は、これら各外輪の外側面に設けられた凹部と前記各支持梁部の円筒状凸面とを係合させる事により、これら各トラニオンに対し、前記各ディスクの軸方向に関する揺動変位を可能に支持されているトロイダル型無段変速機に於いて、
前記各トラニオンに、これら各トラニオンと共に揺動変位し、前記各パワーローラよりも前記各ディスクの径方向に関して内側に存在する内側支持梁を設け、これら各内側支持梁と前記各外輪との間に設けた弾性部材により、これら各外輪を前記各トラニオンの支持梁部に向けて弾性的に押圧している事を特徴とするトロイダル型無段変速機。
Comprising at least one pair of disks, a plurality of trunnions, the same number of power rollers as each trunnion, and the same number of thrust rolling bearings;
Each of these disks is supported to be capable of relative rotation concentrically with each other in a state in which each side surface in the axial direction is a toroidal curved surface having an arc cross section.
Each trunnion exists between a pair of tilting shafts provided concentrically with each other at both ends, and between the two tilting shafts, and at least the inner side surface in the radial direction of each of the disks, A support beam portion having a cylindrical convex surface, having a central axis that is parallel to the central axis of both tilting axes and that is present outside the central axes of these two tilting axes with respect to the radial direction of each disk. Oscillating displacement about the tilting shaft that is twisted with respect to the central axis of each disk is freely provided at a plurality of locations in the circumferential direction between the axial side surfaces of each disk with respect to the axial direction. And
Each of the power rollers is rotatably supported on the inner side surface of each trunnion via a thrust rolling bearing, and each circumferential surface having a spherical convex surface is brought into contact with one axial side surface of each disk. And
Each thrust rolling bearing is provided between the support beam portion of each trunnion and the outer surface of each power roller, and an outer ring provided on each support beam portion side, and an inner ring of each outer ring. A plurality of rolling elements are provided between the outer ring raceway provided on the side surface and the inner ring raceway provided on the outer side surface of each of the power rollers, respectively.
The outer ring of each of the thrust rolling bearings is engaged with the concave portion provided on the outer surface of each of the outer rings and the cylindrical convex surface of each of the support beam portions, so that the axial direction of each of the discs with respect to each of these trunnions. In a toroidal type continuously variable transmission that is supported so as to be capable of rocking displacement,
Each trunnion is provided with an inner support beam that swings and displaces together with each trunnion and exists inside the radial direction of each disk with respect to each power roller, and between each inner support beam and each outer ring. A toroidal continuously variable transmission characterized in that each outer ring is elastically pressed toward the support beam portion of each trunnion by an elastic member provided.
前記各弾性部材が、前記各内側支持梁の中間部に設けられたコイルばねであり、前記各外輪のうち、その周囲に、前記各パワーローラをラジアルニードル軸受を介して回転自在に支持する支持軸の先端部に、この支持軸の先端面に当接する面を凹面とした、略円盤状のキャップを設け、これら各キャップを前記各コイルばねにより、前記各支持梁部に向け弾性的に押圧している、請求項1に記載のトロイダル型無段変速機。   Each elastic member is a coil spring provided in an intermediate portion of each inner support beam, and supports each power roller rotatably around a radial needle bearing around each outer ring. A substantially disk-shaped cap is provided at the tip of the shaft, with the surface abutting on the tip of the support shaft being concave, and each cap is elastically pressed toward the support beam by the coil springs. The toroidal continuously variable transmission according to claim 1. 前記各弾性部材が、前記各内側支持梁の中間部に設けられたコイルばねであり、前記各外輪のうち、その周囲に、前記各パワーローラをラジアルニードル軸受を介して回転自在に支持する支持軸の先端部に、前記各支持梁部の軸方向に対し直角方向に形成された凹溝に係止された係合ピンを、前記各コイルばねによりこれら各支持梁部に向け弾性的に押圧している、請求項1に記載のトロイダル型無段変速機。   Each elastic member is a coil spring provided in an intermediate portion of each inner support beam, and supports each power roller rotatably around a radial needle bearing around each outer ring. At the tip of the shaft, an engagement pin locked in a groove formed in a direction perpendicular to the axial direction of each of the support beam portions is elastically pressed toward the support beam portions by the coil springs. The toroidal continuously variable transmission according to claim 1. 前記各弾性部材が、前記各内側支持梁の中間部に設けられたコイルばねであり、前記各外輪のうち、その周囲に、前記各パワーローラをラジアルニードル軸受を介して回転自在に支持する支持軸の先端部に設けた凹部に保持された玉を、前記各コイルばねにより前記各トラニオンの支持梁部に向け弾性的に押圧している、請求項1に記載のトロイダル型無段変速機。   Each elastic member is a coil spring provided in an intermediate portion of each inner support beam, and supports each power roller rotatably around a radial needle bearing around each outer ring. The toroidal continuously variable transmission according to claim 1, wherein a ball held in a recess provided at a tip portion of the shaft is elastically pressed toward a support beam portion of each trunnion by each coil spring.
JP2012026508A 2012-02-09 2012-02-09 Toroidal continuously variable transmission Expired - Fee Related JP5990921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026508A JP5990921B2 (en) 2012-02-09 2012-02-09 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026508A JP5990921B2 (en) 2012-02-09 2012-02-09 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2013164102A true JP2013164102A (en) 2013-08-22
JP5990921B2 JP5990921B2 (en) 2016-09-14

Family

ID=49175578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026508A Expired - Fee Related JP5990921B2 (en) 2012-02-09 2012-02-09 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5990921B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008618A (en) * 2014-06-23 2016-01-18 日本精工株式会社 Trunnion of toroidal type non-stage transmission
JPWO2019077888A1 (en) * 2017-10-20 2020-11-05 住友電気工業株式会社 Synthetic single crystal diamonds, tools, and methods for manufacturing synthetic single crystal diamonds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304366A (en) * 2000-04-24 2001-10-31 Nsk Ltd Toroidal-type continuously variable transmission
JP2003214516A (en) * 2002-01-24 2003-07-30 Honda Motor Co Ltd Toroidal speed change mechanism
JP2004169719A (en) * 2002-11-15 2004-06-17 Nsk Ltd Toroidal type continuously variable transmission, and continuously variable transmission device
JP2008025821A (en) * 2006-06-02 2008-02-07 Nsk Ltd Toroidal continuously variable transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304366A (en) * 2000-04-24 2001-10-31 Nsk Ltd Toroidal-type continuously variable transmission
JP2003214516A (en) * 2002-01-24 2003-07-30 Honda Motor Co Ltd Toroidal speed change mechanism
JP2004169719A (en) * 2002-11-15 2004-06-17 Nsk Ltd Toroidal type continuously variable transmission, and continuously variable transmission device
JP2008025821A (en) * 2006-06-02 2008-02-07 Nsk Ltd Toroidal continuously variable transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008618A (en) * 2014-06-23 2016-01-18 日本精工株式会社 Trunnion of toroidal type non-stage transmission
JPWO2019077888A1 (en) * 2017-10-20 2020-11-05 住友電気工業株式会社 Synthetic single crystal diamonds, tools, and methods for manufacturing synthetic single crystal diamonds

Also Published As

Publication number Publication date
JP5990921B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP4905012B2 (en) Toroidal continuously variable transmission
WO2012105663A1 (en) Toroidal continuously variable transmission
JP5569724B2 (en) Toroidal continuously variable transmission
JP5990921B2 (en) Toroidal continuously variable transmission
JP5088303B2 (en) Toroidal continuously variable transmission
JP5007600B2 (en) Toroidal continuously variable transmission
JP5857473B2 (en) Toroidal continuously variable transmission
JP5830999B2 (en) Toroidal continuously variable transmission
JP5862335B2 (en) Toroidal continuously variable transmission
JP4923989B2 (en) Toroidal continuously variable transmission
JP6508380B2 (en) Power roller unit for toroidal type continuously variable transmission
JP5673205B2 (en) Toroidal continuously variable transmission
JP5696586B2 (en) Toroidal continuously variable transmission
JP5803378B2 (en) Toroidal continuously variable transmission
JP5895463B2 (en) Toroidal continuously variable transmission
JP5742297B2 (en) Toroidal continuously variable transmission
JP5834525B2 (en) Toroidal continuously variable transmission
JP6221754B2 (en) Toroidal continuously variable transmission
JP2013044412A (en) Toroidal continuously variable transmission
JP6458443B2 (en) Toroidal continuously variable transmission
JP4815785B2 (en) Toroidal continuously variable transmission
JP2007146873A (en) Toroidal type continuously variable transmission
JP2012117569A (en) Toroidal continuously variable transmission
JP4605460B2 (en) Toroidal continuously variable transmission
JP2006022828A (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5990921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees