JP2013163999A - Fuel pressure waveform acquiring device - Google Patents

Fuel pressure waveform acquiring device Download PDF

Info

Publication number
JP2013163999A
JP2013163999A JP2012026993A JP2012026993A JP2013163999A JP 2013163999 A JP2013163999 A JP 2013163999A JP 2012026993 A JP2012026993 A JP 2012026993A JP 2012026993 A JP2012026993 A JP 2012026993A JP 2013163999 A JP2013163999 A JP 2013163999A
Authority
JP
Japan
Prior art keywords
injection
waveform
pressure
fuel
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012026993A
Other languages
Japanese (ja)
Other versions
JP5635022B2 (en
Inventor
Yoshiharu Nonoyama
由晴 野々山
Naoyuki Yamada
直幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2012026993A priority Critical patent/JP5635022B2/en
Priority to CN201310028338.3A priority patent/CN103244296B/en
Priority to DE102013101226.4A priority patent/DE102013101226B4/en
Publication of JP2013163999A publication Critical patent/JP2013163999A/en
Application granted granted Critical
Publication of JP5635022B2 publication Critical patent/JP5635022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0618Actual fuel injection timing or delay, e.g. determined from fuel pressure drop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel pressure waveform acquiring device intended to highly accurately extract a pressure waveform resulting from a target injection obtained from any injection after two-stage injection out of a multi-stage injection from a detection waveform in the multi-stage injection.SOLUTION: A fuel pressure waveform acquiring device includes: a detection waveform acquiring means for acquiring a pressure waveform detected by a fuel pressure sensor while executing a multi-stage injection as a detection waveform W in a multi-stage injection; a model waveform storage means where a model waveform CALm, which is a model of a pressure waveform while the multi-stage injection is being executed, is stored; a waveform extraction means S35 where any injection after second injection out of the multi-stage injection is defined as a target injection (ninjection), a waveform CALm showing a stage injection (n-1injection) before the target injection out of the model waveform CALm is subtracted from the detection waveform W in the multi-stage injection, and a pressure waveform resulting from the target injection is extracted; and a correction means S35 where the model waveform CALm used for the extraction is corrected to a waveform which is attenuated an attenuation coefficient according to an injection interval from the injection before the state until the target injection.

Description

本発明は、内燃機関の燃料噴射弁から燃料を噴射させることに伴い生じる燃料圧力の変化を、圧力波形として取得する燃圧波形取得装置に関する。   The present invention relates to a fuel pressure waveform acquisition device that acquires, as a pressure waveform, a change in fuel pressure caused by injecting fuel from a fuel injection valve of an internal combustion engine.

内燃機関の出力トルク及びエミッション状態を精度良く制御するには、燃料噴射弁の噴孔から噴射される燃料の噴射量及び噴射開始時期等、その噴射状態を精度良く制御することが重要である。そこで特許文献1,2等には、噴孔に至るまでの燃料供給経路内で噴射に伴い生じる燃料圧力の変化を燃圧センサで検出することで、実際の噴射状態を検出する技術が開示されている。   In order to accurately control the output torque and the emission state of the internal combustion engine, it is important to accurately control the injection state such as the injection amount of fuel injected from the injection hole of the fuel injection valve and the injection start timing. Therefore, Patent Documents 1 and 2 disclose a technique for detecting an actual injection state by detecting a change in fuel pressure caused by injection in the fuel supply path up to the nozzle hole with a fuel pressure sensor. Yes.

例えば、噴射に伴い燃圧が下降を開始した時期を検出することで実際の噴射開始時期を検出したり、噴射に伴い生じた燃圧の下降量を検出することで実際の噴射量を検出したりしている。このように実際の噴射状態を検出できれば、その検出値に基づき噴射状態を精度良く制御することができる。   For example, the actual injection start time can be detected by detecting the time when the fuel pressure starts to decrease along with the injection, or the actual injection amount can be detected by detecting the amount of decrease in the fuel pressure caused by the injection. ing. If the actual injection state can be detected in this way, the injection state can be accurately controlled based on the detected value.

特開2010−3004号公報JP 2010-3004 A 特開2009−57924号公報JP 2009-57924 A

ところで、1燃焼サイクルあたりに燃料噴射を複数回行う多段噴射を実施する場合には次の点に留意する必要がある。すなわち、図5(b)は、多段噴射を実施している時に燃圧センサにより検出された検出波形W(多段噴射時検出波形)を表すものであるが、この検出波形Wのうちn回目噴射に対応する部分の波形(図5(b)中の一点鎖線枠内参照)には、n回目より前のm回目噴射(図5の例ではm=n−1)に起因して生じる波形成分の余波(図5(d)中の一点鎖線枠内に示すうねり波形)が重畳している。   By the way, it is necessary to pay attention to the following points when performing multistage injection in which fuel injection is performed a plurality of times per one combustion cycle. That is, FIG. 5B shows a detection waveform W (detection waveform at the time of multi-stage injection) detected by the fuel pressure sensor when multi-stage injection is being performed. In the waveform of the corresponding portion (see within the one-dot chain line frame in FIG. 5B), the waveform component generated due to the m-th injection before the n-th injection (m = n−1 in the example of FIG. 5). The after-wave (swell waveform shown in the dashed-dotted line frame in FIG. 5D) is superimposed.

そこで上記特許文献1では、m回目噴射を単段で実施している時の圧力波形を数式で表したモデル波形CALn−1(図5(d)参照)を予め記憶させておき、図5(e)に示す検出波形Wからモデル波形CALn−1を差し引くことで、n回目噴射に起因した圧力波形Wn(図5(f)参照)を抽出し、その抽出した圧力波形Wnに基づき実際の噴射状態を検出している。   Therefore, in Patent Document 1, a model waveform CALn-1 (see FIG. 5D) that expresses a pressure waveform when the m-th injection is performed in a single stage is stored in advance, and FIG. By subtracting the model waveform CALn−1 from the detected waveform W shown in e), a pressure waveform Wn (see FIG. 5F) resulting from the n-th injection is extracted, and an actual injection is performed based on the extracted pressure waveform Wn. A state is detected.

しかしながら、本発明者らが各種試験を実施したところ、上述の如く検出波形Wから単純にモデル波形CALn−1を差し引くだけでは、n回目噴射(対象噴射)に起因した圧力波形Wnを精度良く抽出できていないことが分かった。   However, when the present inventors conducted various tests, the pressure waveform Wn resulting from the nth injection (target injection) can be accurately extracted by simply subtracting the model waveform CALn-1 from the detected waveform W as described above. I knew it was n’t done.

本発明は、上記課題を解決するためになされたものであり、その目的は、多段噴射のうち2段目以降のいずれかの噴射を対象噴射とし、その対象噴射に起因した圧力波形を多段噴射時検出波形から高精度で抽出することを図った燃圧波形取得装置を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object thereof is to set any one of the second and subsequent stages of the multistage injection as the target injection, and the pressure waveform resulting from the target injection is the multistage injection. An object of the present invention is to provide a fuel pressure waveform acquisition device that is intended to extract from a time detection waveform with high accuracy.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、内燃機関で燃焼させる燃料を噴孔から噴射する燃料噴射弁と、前記噴孔から燃料を噴射させることに伴い前記噴孔に至るまでの燃料供給経路内で生じる燃料圧力の変化を検出する燃圧センサと、を備えた燃料噴射システムに適用される燃圧波形取得装置であることを前提とする。   According to the first aspect of the present invention, a fuel injection valve that injects fuel to be burned in an internal combustion engine from an injection hole, and fuel that is generated in a fuel supply path from the injection hole to the injection hole as fuel is injected from the injection hole It is assumed that the fuel pressure waveform acquisition device is applied to a fuel injection system that includes a fuel pressure sensor that detects a change in pressure.

そして、前記内燃機関の1燃焼サイクル中に燃料を複数回噴射する多段噴射を実施している時に前記燃圧センサにより検出される圧力波形を、多段噴射時検出波形として取得する検出波形取得手段と、多段噴射のうち2段目以降のいずれかの噴射を対象噴射とした場合に、前記対象噴射を実施することなく前記対象噴射よりも前段の噴射を実施している時の、圧力波形の規範となるモデル波形が記憶されたモデル波形記憶手段と、前記モデル波形を前記多段噴射時検出波形から差し引いて、前記対象噴射に起因した圧力波形を抽出する波形抽出手段と、前記抽出に用いる前記モデル波形を、前記前段の噴射から前記対象噴射までの噴射間隔に応じた減衰度合いで減衰させた波形に補正する補正手段と、を備えることを特徴とする。   And a detection waveform acquisition means for acquiring a pressure waveform detected by the fuel pressure sensor when performing multi-stage injection in which fuel is injected a plurality of times during one combustion cycle of the internal combustion engine, as a detection waveform during multi-stage injection; When any one of the second and subsequent stages of the multistage injection is set as the target injection, the pressure waveform norm when the injection before the target injection is performed without performing the target injection A model waveform storage means in which a model waveform is stored, a waveform extraction means for subtracting the model waveform from the detection waveform at the time of multistage injection to extract a pressure waveform resulting from the target injection, and the model waveform used for the extraction Correction means for correcting the waveform to a waveform attenuated with an attenuation degree corresponding to an injection interval from the preceding injection to the target injection.

本発明者らは、図5に例示するように多段噴射時検出波形Wからモデル波形CALn−1を差し引いて抽出された圧力波形Wnの精度について、以下に説明する試験1,2を実施して検証した。   As shown in FIG. 5, the present inventors conducted tests 1 and 2 described below for the accuracy of the pressure waveform Wn extracted by subtracting the model waveform CALn−1 from the multistage injection detection waveform W. Verified.

試験1では先ず、多段噴射した時の検出波形Wを取得する(図11(b)参照)。次に、前記多段噴射のうちn回目の噴射のみを単段噴射し、その時の検出波形W0nを取得する(図11(c)参照)。そして、多段噴射時検出波形Wからn回目単段噴射時検出波形W0nを差し引く演算を実施して、図11(d)に示す波形W0n−1を取得する。   In Test 1, first, a detection waveform W when multistage injection is performed is obtained (see FIG. 11B). Next, only the n-th injection among the multi-stage injections is single-stage injected, and the detected waveform W0n at that time is acquired (see FIG. 11C). Then, an operation of subtracting the detection waveform W0n at the n-th single-stage injection from the detection waveform W at the time of multistage injection is performed to obtain a waveform W0n-1 shown in FIG.

このようにして得られた波形W0n−1は、n−1回目の噴射のみを単段噴射した時の検出波形を表していると当初では想定していた。しかしながら前記波形W0n−1は、n−1回目単段噴射を表したモデル波形CALn−1(図11(e)参照)と、次の点で異なる波形になっていることが明らかとなった。すなわち、「検出波形W0n−1のうちn回目噴射を開始した以降の部分に相当する波形の脈動振幅A1は、モデル波形CALn−1の脈動振幅A2よりも小さくなっている」。   It was initially assumed that the waveform W0n-1 obtained in this way represents a detection waveform when only the n-1th injection is performed in a single stage. However, it has been clarified that the waveform W0n-1 is different from the model waveform CALn-1 (see FIG. 11E) representing the (n-1) th single-stage injection in the following points. That is, “the pulsation amplitude A1 of the waveform corresponding to the portion after the start of the n-th injection in the detection waveform W0n−1 is smaller than the pulsation amplitude A2 of the model waveform CALn−1”.

このような現象が生じるメカニズムを本発明者らは次のように考察した。燃料供給経路内を伝播していく燃圧波動(圧力波)は噴孔へ向かって伝播した後、その燃圧波動の一部は噴孔部分で反射して燃圧センサへ向かって伝播していく。そして、このように反射してきた燃圧波動の影響を受けて、燃圧センサで検出される燃圧波形にうねり波形(図6(c)(d)中の漸近線k1,k2に沿った波形)が現れる。そして、燃料噴射を停止させるべく噴孔を閉弁させている時には、噴孔部分で燃圧波動が反射する度合いが大きくなるため脈動の振幅は大きくなる。   The present inventors considered the mechanism by which such a phenomenon occurs as follows. After the fuel pressure wave (pressure wave) propagating in the fuel supply path propagates toward the nozzle hole, a part of the fuel pressure wave is reflected by the nozzle hole part and propagates toward the fuel pressure sensor. Then, under the influence of the reflected fuel pressure wave, a wavy waveform (a waveform along asymptotic lines k1 and k2 in FIGS. 6C and 6D) appears in the fuel pressure waveform detected by the fuel pressure sensor. . When the nozzle hole is closed to stop fuel injection, the degree of reflection of the fuel pressure wave at the nozzle hole portion increases, so the amplitude of pulsation increases.

一方、燃料を噴射させるべく噴孔を開弁させている時には、前記燃圧波動の一部は噴孔から抜け出ていくので、前記反射の度合いが小さくなる。そのため、燃料噴射時には噴射停止時に比べて燃圧波形に含まれる脈動(うねり波形)の振幅が小さくなる。そして、燃圧波形のうち噴孔から抜け出ていく部分は、n−1回目噴射からn回目噴射までの噴射間隔によって変化し、この部分の状態によって脈動の振幅が小さくなる度合い(減衰度合い)が影響を受ける。   On the other hand, when the injection hole is opened to inject fuel, a part of the fuel pressure wave escapes from the injection hole, so that the degree of reflection becomes small. Therefore, the amplitude of the pulsation (swell waveform) included in the fuel pressure waveform is smaller during fuel injection than when injection is stopped. The part of the fuel pressure waveform that exits from the nozzle hole changes depending on the injection interval from the (n-1) th injection to the nth injection, and the degree (attenuation degree) of the pulsation amplitude is affected by the state of this part. Receive.

上記発明は、以上の試験1及び考察に基づき想起されたものであり、要するに、図5に例示する場合において、n−1回目噴射に対応するモデル波形CALn−1を多段噴射時検出波形Wから差し引いて、n回目噴射(対象噴射)に起因した圧力波形Wnを抽出するにあたり、前記モデル波形CALn−1を、n−1回目噴射からn回目噴射までの噴射間隔に応じた減衰度合いで減衰させた波形に補正するものである。   The above invention has been conceived based on the above test 1 and consideration. In short, in the case illustrated in FIG. 5, the model waveform CALn−1 corresponding to the n−1th injection is obtained from the detection waveform W at the time of multistage injection. Subtracting and extracting the pressure waveform Wn resulting from the n-th injection (target injection), the model waveform CALn-1 is attenuated with an attenuation degree corresponding to the injection interval from the n-1th injection to the n-th injection. The waveform is corrected.

これによれば、多段噴射時検出波形Wからn回目単段噴射時検出波形W0nを差し引いて得られる実際の検出波形W0n−1に、モデル波形CALn−1を近づけることができるので、n回目噴射(対象噴射)に起因した圧力波形Wnを多段噴射時検出波形Wから高精度で抽出することができる。   According to this, since the model waveform CALn-1 can be brought close to the actual detection waveform W0n-1 obtained by subtracting the detection waveform W0n at the n-th single-stage injection from the detection waveform W at the time of multistage injection, the n-th injection The pressure waveform Wn resulting from (target injection) can be extracted from the detection waveform W during multistage injection with high accuracy.

詳しくは、噴孔から抜け出ていく燃圧波動の圧力の大きさに応じて、脈動の振幅が小さくなる度合いが変化する。すなわち、噴孔から抜け出ていく燃圧波動の圧力が、変動する圧力の中心値から離れた値であるほど、脈動の振幅が小さくなる度合いは大きくなる。   Specifically, the degree to which the amplitude of the pulsation becomes smaller changes depending on the pressure of the fuel pressure wave that escapes from the nozzle hole. That is, as the pressure of the fuel pressure wave that escapes from the nozzle hole is farther from the center value of the fluctuating pressure, the degree to which the amplitude of the pulsation becomes smaller increases.

この点、請求項2に記載の発明では、前記補正手段は、前記対象噴射において前記噴孔が開かれる際の前記モデル波形の前記噴孔での圧力の大きさに基づいて、前記減衰度合いを変化させる。   In this regard, in the invention according to claim 2, the correction means determines the degree of attenuation based on the magnitude of the pressure at the nozzle hole of the model waveform when the nozzle hole is opened in the target injection. Change.

このため、対象噴射において噴孔が開かれることで噴孔から抜け出ていく燃圧波動の圧力の大きさに応じて、モデル波形を減衰させる度合いを適切に変化させることができる。   For this reason, it is possible to appropriately change the degree of attenuation of the model waveform according to the magnitude of the pressure of the fuel pressure wave that exits from the nozzle hole when the nozzle hole is opened in the target injection.

請求項3に記載の発明では、前記補正手段は、前記噴射間隔に応じて前記モデル波形の圧力の変動周期に対応させて前記減衰度合いを大小変化させる。   According to a third aspect of the present invention, the correction means changes the magnitude of the attenuation in accordance with the pressure fluctuation period of the model waveform according to the injection interval.

燃料供給経路内の圧力波は経路が閉じたり狭くなったりしている部分で反射するため、燃圧波形は圧力の上昇と低下とを周期的に繰り返す波形(うねり波形)となる。したがって、前段の噴射から対象噴射までの噴射間隔に応じて、噴孔が開かれる際に噴孔に伝播される燃圧波動の圧力の大きさは周期的に変化する。   Since the pressure wave in the fuel supply path is reflected at the part where the path is closed or narrowed, the fuel pressure waveform is a waveform (swell waveform) that periodically repeats the rise and fall of the pressure. Therefore, the magnitude of the pressure of the fuel pressure wave propagated to the nozzle hole when the nozzle hole is opened changes periodically according to the injection interval from the previous injection to the target injection.

この点、上記構成によれば、噴射間隔に応じてモデル波形の圧力の変動周期に対応させて、モデル波形の減衰度合いが大小変化させられる。このため、噴孔が開かれる際に噴孔に伝播される燃圧波動の圧力の変動周期に合わせて、モデル波形を減衰させる度合いを適切に変化させることができる。   In this regard, according to the above configuration, the degree of attenuation of the model waveform is changed in magnitude according to the pressure fluctuation period of the model waveform according to the injection interval. For this reason, it is possible to appropriately change the degree of attenuation of the model waveform in accordance with the fluctuation cycle of the pressure of the fuel pressure wave propagated to the nozzle hole when the nozzle hole is opened.

また、以下の試験2を実施したことにより、「n回目噴射の噴射期間Tqnが長いほど検出波形W0n−1の脈動振幅A1が小さくなる」ことが明らかとなった。すなわち、開弁時間が長いほど、反射する燃圧波動の量が少なくなるため脈動の振幅は小さくなる。   Further, by performing the following test 2, it became clear that “the longer the injection period Tqn of the n-th injection, the smaller the pulsation amplitude A1 of the detected waveform W0n-1”. That is, the longer the valve opening time, the smaller the amount of fuel pressure wave that is reflected, and the smaller the amplitude of pulsation.

試験2では、試験1により得られる脈動振幅の比率A1/A2が、n回目の噴射期間を異ならせるとどのように変化していくかを試験しており、図12は、その試験結果を示すグラフである。なお、図中の複数の実線は、燃料噴射弁へ供給する燃料の圧力を200MPa、140MPa、80MPa、40MPaと異ならせて試験した結果をそれぞれ表している。   In the test 2, it is tested how the ratio A1 / A2 of the pulsation amplitude obtained in the test 1 changes when the n-th injection period is changed, and FIG. 12 shows the test result. It is a graph. In addition, the several continuous line in a figure represents the result of having tested the pressure of the fuel supplied to a fuel injection valve from 200MPa, 140MPa, 80MPa, and 40MPa, respectively.

図12の試験結果は、供給燃圧にかかわらず、n回目噴射の噴射期間Tqnが長いほど検出波形W0n−1の脈動振幅A1は小さくなっていくことを表している。ちなみに、n回目噴射を実施しなかった場合(噴射期間Tqnの値がゼロ)には振幅比A1/A2は1となっており、このことは、n回目噴射を実施したことによる影響で検出波形W0n−1の脈動振幅A1が小さくなっていることを表している。   The test results in FIG. 12 indicate that the pulsation amplitude A1 of the detection waveform W0n-1 becomes smaller as the injection period Tqn of the n-th injection is longer, regardless of the supply fuel pressure. Incidentally, when the n-th injection is not performed (the value of the injection period Tqn is zero), the amplitude ratio A1 / A2 is 1, and this is a detection waveform due to the effect of performing the n-th injection. It represents that the pulsation amplitude A1 of W0n-1 is small.

この点、請求項7に記載の発明では、前記補正手段は更に、前記抽出に用いる前記モデル波形を、前記対象噴射の噴射期間が長いほど減衰度合いの大きい波形に補正する。   In this regard, in the invention according to claim 7, the correction means further corrects the model waveform used for the extraction into a waveform having a larger degree of attenuation as the injection period of the target injection is longer.

すなわち、上記発明は、以上の試験1,2及び考察に基づき想起されたものであり、図5に例示する場合において、n−1回目噴射に対応するモデル波形CALn−1を多段噴射時検出波形Wから差し引いて、n回目噴射(対象噴射)に起因した圧力波形Wnを抽出するにあたり、前記モデル波形CALn−1を、n回目噴射の噴射期間が長いほど減衰度合いの大きい波形に補正するものである。   That is, the above-described invention has been conceived based on the above tests 1 and 2 and consideration. In the case illustrated in FIG. 5, the model waveform CALn−1 corresponding to the n−1th injection is detected as the multistage injection detection waveform. In extracting the pressure waveform Wn resulting from the n-th injection (target injection) by subtracting from W, the model waveform CALn-1 is corrected to a waveform with a greater degree of attenuation as the injection period of the n-th injection is longer. is there.

これによれば、多段噴射時検出波形Wからn回目単段噴射時検出波形W0nを差し引いて得られる実際の検出波形W0n−1に、モデル波形CALn−1を更に近づけることができるので、n回目噴射(対象噴射)に起因した圧力波形Wnを多段噴射時検出波形Wから高精度で抽出することができる。   According to this, the model waveform CALn-1 can be made closer to the actual detection waveform W0n-1 obtained by subtracting the nth single-stage injection detection waveform W0n from the multistage injection detection waveform W. The pressure waveform Wn resulting from the injection (target injection) can be extracted from the detection waveform W during multistage injection with high accuracy.

燃圧波形取得装置が適用された燃料噴射システムの概略を示す模式図。The schematic diagram which shows the outline of the fuel-injection system to which the fuel pressure waveform acquisition apparatus was applied. 燃料噴射制御処理の基本的な手順を示すフローチャート。The flowchart which shows the basic procedure of a fuel-injection control process. 燃料噴射状態検出の処理手順を示すフローチャート。The flowchart which shows the process sequence of a fuel-injection state detection. 単段噴射実行時における検出圧力の波形と噴射率推移波形との関係を示すタイムチャート。The time chart which shows the relationship between the waveform of the detection pressure at the time of single stage injection execution, and an injection rate transition waveform. 図3のうねり消し処理S23を説明するタイムチャート。FIG. 4 is a time chart for explaining the undulation process S <b> 23 of FIG. 3. FIG. 図3のうねり消し処理S23を説明するタイムチャート。FIG. 4 is a time chart for explaining the undulation process S <b> 23 of FIG. 3. FIG. 噴射間隔と減衰度合いとの関係を示すフローチャート。The flowchart which shows the relationship between an injection space | interval and the attenuation degree. 図3のうねり消し処理S23の詳細手順を示すフローチャート。The flowchart which shows the detailed procedure of the undulation process S23 of FIG. 減衰係数kに対する補正値cと噴射間隔との関係を示すグラフ。The graph which shows the relationship between the correction value c with respect to the attenuation coefficient k, and the injection space | interval. 時間経過と特定部分との関係を示すタイムチャート。The time chart which shows the relationship between passage of time and a specific part. 本発明者が実施した試験1の結果を示すグラフ。The graph which shows the result of the test 1 which this inventor implemented. 本発明者が実施した試験2の結果を示すグラフ。The graph which shows the result of the test 2 which this inventor implemented.

以下、燃圧波形取得装置を具体化した一実施形態を図面に基づいて説明する。本実施形態の燃圧波形取得装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, an embodiment embodying a fuel pressure waveform acquisition device will be described with reference to the drawings. The fuel pressure waveform acquisition device of the present embodiment is mounted on a vehicle engine (internal combustion engine), in which high pressure fuel is injected into a plurality of cylinders # 1 to # 4 to perform compression auto-ignition combustion. A diesel engine is assumed.

図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、燃料噴射弁10に搭載された燃圧センサ20、車両に搭載された電子制御装置であるECU30、等を示す模式図である。燃料噴射弁10を含むエンジンの燃料噴射システムでは、燃料タンク40内の燃料は、高圧ポンプ41によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、高圧配管43を通じて各気筒の燃料噴射弁10へ分配供給される。   FIG. 1 is a schematic diagram showing a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on the fuel injection valve 10, an ECU 30 that is an electronic control device mounted on a vehicle, and the like. In the engine fuel injection system including the fuel injection valve 10, the fuel in the fuel tank 40 is pumped to the common rail 42 (accumulation container) by the high-pressure pump 41 and accumulated, and is supplied to the fuel injection valve 10 of each cylinder through the high-pressure pipe 43. Distributed supply.

燃料噴射弁10は、以下に説明するボデー11、ニードル12(弁体)及び電磁ソレノイド13(アクチュエータ)等を備えて構成されている。ボデー11の内部には高圧通路11aが形成されており、コモンレール42から燃料噴射弁10へ供給される燃料は、高圧通路11aを通じて噴孔11bから噴射される。また、高圧通路11a内の燃料の一部は、ボデー11内部に形成された背圧室11cへ流通する。背圧室11cのリーク孔11dは制御弁14により開閉され、その制御弁14は電磁ソレノイド13により開閉作動する。ニードル12には、スプリング15の弾性力及び背圧室11cの燃料圧力が閉弁側へ付与されるとともに、高圧通路11aに形成された燃料溜まり部11fの燃料圧力が開弁側へ付与される。   The fuel injection valve 10 includes a body 11, a needle 12 (valve element), an electromagnetic solenoid 13 (actuator), and the like described below. A high pressure passage 11a is formed inside the body 11, and fuel supplied from the common rail 42 to the fuel injection valve 10 is injected from the injection hole 11b through the high pressure passage 11a. A part of the fuel in the high-pressure passage 11a flows to the back pressure chamber 11c formed in the body 11. The leak hole 11 d of the back pressure chamber 11 c is opened and closed by a control valve 14, and the control valve 14 is opened and closed by an electromagnetic solenoid 13. The needle 12 is given the elastic force of the spring 15 and the fuel pressure of the back pressure chamber 11c to the valve closing side, and the fuel pressure of the fuel reservoir 11f formed in the high pressure passage 11a is given to the valve opening side. .

コモンレール42から噴孔11bに至るまでの燃料供給経路(例えば高圧配管43又は高圧通路11a)には、燃料圧力を検出する燃圧センサ20が取り付けられている。図1の例では、高圧配管43とボデー11との接続部分に取り付けられている。或いは、図1中の一点鎖線に示すようにボデー11に取り付けてもよい。また、燃圧センサ20は、複数の燃料噴射弁10(#1)〜(#4)の各々に対して設けられている。   A fuel pressure sensor 20 for detecting fuel pressure is attached to a fuel supply path (for example, the high-pressure pipe 43 or the high-pressure passage 11a) from the common rail 42 to the nozzle hole 11b. In the example of FIG. 1, it is attached to a connection portion between the high-pressure pipe 43 and the body 11. Or you may attach to the body 11 as shown by the dashed-dotted line in FIG. The fuel pressure sensor 20 is provided for each of the plurality of fuel injection valves 10 (# 1) to (# 4).

次に、上記構成による燃料噴射弁10の作動を説明する。電磁ソレノイド13へ通電していない時には、制御弁14はスプリング16の弾性力により閉弁作動する。すると、背圧室11c内の燃料圧力が上昇してニードル12は閉弁作動し、噴孔11bからの燃料噴射が停止されることとなる。一方、電磁ソレノイド13へ通電すると、制御弁14はスプリング16の弾性力に抗して開弁作動する。すると、背圧室11c内の燃料圧力が下降してニードル12は開弁作動し、噴孔11bから燃料が噴射されることとなる。   Next, the operation of the fuel injection valve 10 configured as described above will be described. When the electromagnetic solenoid 13 is not energized, the control valve 14 is closed by the elastic force of the spring 16. Then, the fuel pressure in the back pressure chamber 11c rises, the needle 12 is closed, and fuel injection from the injection hole 11b is stopped. On the other hand, when the electromagnetic solenoid 13 is energized, the control valve 14 is opened against the elastic force of the spring 16. Then, the fuel pressure in the back pressure chamber 11c is lowered, the needle 12 is opened, and fuel is injected from the injection hole 11b.

ちなみに、電磁ソレノイド13へ通電して燃料噴射させている時には、高圧通路11aから背圧室11cへ流入した燃料はリーク孔11dから11eへ排出される(リークする)。つまり、燃料の噴射期間中には、高圧通路11aの燃料は、背圧室11cを通じて低圧通路11eへ常時リークすることとなる。   Incidentally, when the electromagnetic solenoid 13 is energized to inject fuel, the fuel that has flowed into the back pressure chamber 11c from the high pressure passage 11a is discharged (leaked) from the leak holes 11d to 11e. That is, during the fuel injection period, the fuel in the high pressure passage 11a always leaks to the low pressure passage 11e through the back pressure chamber 11c.

ECU30は、電磁ソレノイド13の駆動を制御することで、ニードル12の開閉作動を制御して噴射状態を制御する。例えば、エンジン出力軸の回転速度及びエンジン負荷等に基づき、噴射開始時期、噴射終了時期及び噴射量等の目標噴射態様を算出し、その目標噴射態様となるよう、電磁ソレノイド13の駆動を制御する。   The ECU 30 controls the injection state by controlling the opening / closing operation of the needle 12 by controlling the driving of the electromagnetic solenoid 13. For example, based on the rotational speed of the engine output shaft, the engine load, and the like, target injection modes such as the injection start timing, injection end timing, and injection amount are calculated, and the drive of the electromagnetic solenoid 13 is controlled so as to achieve the target injection mode. .

次に、ECU30が電磁ソレノイド13の駆動を制御することで燃料噴射状態を制御する手順について、図2のフローチャートを参照しつつ説明する。   Next, the procedure in which the ECU 30 controls the fuel injection state by controlling the driving of the electromagnetic solenoid 13 will be described with reference to the flowchart of FIG.

図2の処理においては、まずステップS11で、エンジン運転状態を表す所定のパラメータ、例えばその時のエンジン回転速度、エンジン負荷、燃料噴射弁10へ供給される燃料の圧力等を読み込む。   In the process of FIG. 2, first, in step S <b> 11, predetermined parameters representing the engine operating state, for example, the engine speed at that time, the engine load, the pressure of the fuel supplied to the fuel injection valve 10, and the like are read.

続くステップS12では、上記ステップS11で読み込んだ各種パラメータに基づいて噴射パターンを設定する。例えば、各種パラメータに応じた最適な噴射パターンを噴射制御用マップ等に予め記憶させておき、ステップS11で読み込んだパラメータに基づき、前記マップを参照して最適な目標噴射パターンを設定する。なお、目標噴射パターンは、例えば噴射段数(1燃焼サイクル中の噴射回数)、噴射開始時期、噴射時間(噴射量に相当)等のパラメータにより定められるものである。こうして、上記噴射制御用マップは、それらパラメータと最適噴射パターンとの関係を示すものとなっている。   In subsequent step S12, an injection pattern is set based on the various parameters read in step S11. For example, an optimal injection pattern corresponding to various parameters is stored in advance in an injection control map or the like, and an optimal target injection pattern is set with reference to the map based on the parameters read in step S11. The target injection pattern is determined by parameters such as the number of injection stages (the number of injections in one combustion cycle), the injection start timing, the injection time (corresponding to the injection amount), and the like. Thus, the injection control map shows the relationship between these parameters and the optimal injection pattern.

続くステップS13では、ステップS12で設定された目標噴射パターンに基づき、燃料噴射弁10の電磁ソレノイド13へ噴射指令信号を出力する。これにより、ステップS11で取得した各種パラメータ(エンジン運転状態)に応じた最適な噴射パターンとなるよう、燃料噴射制御される。   In the subsequent step S13, an injection command signal is output to the electromagnetic solenoid 13 of the fuel injection valve 10 based on the target injection pattern set in step S12. As a result, fuel injection control is performed so as to obtain an optimal injection pattern according to the various parameters (engine operating conditions) acquired in step S11.

但し、燃料噴射弁10の経年劣化や燃料噴射弁10の機差ばらつき等が原因で、噴孔11bから噴射される実際の噴射パターンは目標噴射パターンからずれることが懸念される。この懸念に対し、燃圧センサ20の検出値に基づけば、後述する手法により実際の噴射パターン(実噴射状態)を検出できるので、その検出した実噴射パターンを目標噴射パターンに一致させるように噴射指令信号を補正する。また、その補正内容を学習して、次回の噴射指令信号の算出にその学習値を用いる。   However, there is a concern that the actual injection pattern injected from the injection holes 11b may deviate from the target injection pattern due to deterioration over time of the fuel injection valve 10, variation in machine differences among the fuel injection valves 10, or the like. In response to this concern, an actual injection pattern (actual injection state) can be detected by a method to be described later based on the detection value of the fuel pressure sensor 20, so that the injection command is set so that the detected actual injection pattern matches the target injection pattern. Correct the signal. Moreover, the correction content is learned, and the learned value is used for calculation of the next injection command signal.

次に、燃圧センサ20の検出値に基づき実噴射状態を検出(算出)する処理について、図3を用いて説明する。   Next, processing for detecting (calculating) the actual injection state based on the detection value of the fuel pressure sensor 20 will be described with reference to FIG.

図3に示す一連の処理は、所定周期(例えば先述のCPUが行う演算周期)又は所定のクランク角度毎に、ECU30のマイコンにより実行される。まずステップS21(検出波形取得手段)で、燃圧センサ20の出力値(検出圧力)を取り込む。この取り込み処理は複数の燃圧センサ20の各々について実行される。また、取り込んだ検出圧力に対し、高周波ノイズ等を除去するフィルタ処理を施すことが望ましい。   A series of processes shown in FIG. 3 is executed by the microcomputer of the ECU 30 at a predetermined cycle (for example, the calculation cycle performed by the CPU described above) or at a predetermined crank angle. First, in step S21 (detected waveform acquisition means), the output value (detected pressure) of the fuel pressure sensor 20 is captured. This intake process is executed for each of the plurality of fuel pressure sensors 20. In addition, it is desirable to perform a filtering process for removing high-frequency noise and the like on the taken-in detected pressure.

以下、ステップS21の取り込み処理について、図4を用いて詳細に説明する。   Hereinafter, the capturing process in step S21 will be described in detail with reference to FIG.

図4(a)は、図3のステップS13にて燃料噴射弁10に出力される噴射指令信号を示しており、この指令信号のパルスオンにより電磁ソレノイド13が作動して噴孔11bが開弁する。つまり、噴射指令信号のパルスオン時期Isにより噴射開始が指令され、パルスオフ時期Ieにより噴射終了が指令される。よって、指令信号のパルスオン期間(噴射指令期間)により噴孔11bの開弁時間Tqを制御することで、噴射量Qを制御している。図4(b)は、上記噴射指令に伴い生じる噴孔11bからの燃料噴射率の変化(推移)を示し、図4(c)は、噴射率の変化に伴い生じる燃圧センサ20の出力値(検出圧力)の変化(圧力波形)を示す。なお、図4は噴孔11bを1回開閉させた場合の各種変化の一例である。   FIG. 4A shows an injection command signal output to the fuel injection valve 10 in step S13 of FIG. 3, and the electromagnetic solenoid 13 is actuated by opening the command signal to open the nozzle hole 11b. . That is, the injection start is commanded by the pulse-on timing Is of the injection command signal, and the injection end is commanded by the pulse-off timing Ie. Therefore, the injection amount Q is controlled by controlling the valve opening time Tq of the nozzle hole 11b by the pulse-on period (injection command period) of the command signal. FIG. 4B shows the change (transition) of the fuel injection rate from the nozzle hole 11b that occurs in accordance with the injection command, and FIG. 4C shows the output value of the fuel pressure sensor 20 that occurs with the change of the injection rate ( The change (pressure waveform) of detected pressure is shown. FIG. 4 is an example of various changes when the nozzle hole 11b is opened and closed once.

そしてECU30は、図3の処理とは別のサブルーチン処理により、燃圧センサ20の出力値を検出しており、そのサブルーチン処理では燃圧センサ20の出力値を、該センサ出力で圧力推移波形の軌跡(図4(c)にて例示される軌跡)が描かれる程度に短い間隔(図3の処理周期よりも短い間隔)にて逐次取得している。具体的には、50μsecよりも短い間隔(より望ましくは20μsec)でセンサ出力を逐次取得し、このように逐次取得した値を上記ステップS21では取り込んでいる。   The ECU 30 detects the output value of the fuel pressure sensor 20 by a subroutine process different from the process of FIG. 3. In the subroutine process, the ECU 30 detects the output value of the fuel pressure sensor 20 using the sensor output as a locus of the pressure transition waveform ( The trajectory illustrated in FIG. 4C is sequentially acquired at intervals as short as possible (interval shorter than the processing cycle in FIG. 3). Specifically, sensor outputs are sequentially acquired at intervals shorter than 50 μsec (more desirably 20 μsec), and the values acquired in this way are taken in step S21.

燃圧センサ20により検出される圧力波形と噴射率の変化とは以下に説明する相関があるため、検出波形から噴射率の推移波形を推定することができる。   Since the pressure waveform detected by the fuel pressure sensor 20 and the change in the injection rate have a correlation described below, the transition waveform of the injection rate can be estimated from the detection waveform.

図4(b)に示す噴射率の変化について説明すると、先ず、符号Isの時点で電磁ソレノイド13への通電を開始した後、噴孔11bから燃料が噴射開始されることに伴い、噴射率は変化点R3にて上昇を開始する。つまり実際の噴射が開始される。その後、変化点R4にて最大噴射率に到達し、噴射率の上昇は停止する。これは、R3の時点でニードル弁20cがリフトアップを開始してR4の時点でリフトアップ量が最大になったことに起因する。   The change in the injection rate shown in FIG. 4 (b) will be described. First, after energization of the electromagnetic solenoid 13 is started at the time of reference Is, fuel injection starts from the injection hole 11b. The rising starts at the change point R3. That is, actual injection is started. Thereafter, the maximum injection rate is reached at the change point R4, and the increase in the injection rate is stopped. This is because the needle valve 20c starts to lift up at the time point R3, and the lift-up amount becomes maximum at the time point R4.

なお、本明細書における「変化点」は次のように定義される。すなわち、噴射率(又は燃圧センサ20の検出圧力)の2階微分値を算出し、その2階微分値の変化を示す波形の極値(変化が最大となる点)、つまり2階微分値波形の変曲点が、噴射率又は検出圧力の波形の変化点である。   The “change point” in this specification is defined as follows. That is, the second-order differential value of the injection rate (or the detected pressure of the fuel pressure sensor 20) is calculated, and the extreme value of the waveform indicating the change of the second-order differential value (the point at which the change is maximum), that is, the second-order differential value waveform Is an inflection point of the waveform of the injection rate or detected pressure.

次に、符号Ieの時点で電磁ソレノイド13への通電を遮断した後、変化点R7にて噴射率は下降を開始する。その後、変化点R8にて噴射率はゼロとなり、実際の噴射が終了する。これは、R7の時点でニードル弁20cがリフトダウンを開始し、R8の時点で完全にリフトダウンして噴孔11bが閉弁されたことに起因する。   Next, after the energization of the electromagnetic solenoid 13 is cut off at the time of the symbol Ie, the injection rate starts to decrease at the change point R7. Thereafter, at the change point R8, the injection rate becomes zero, and the actual injection ends. This is because the needle valve 20c starts to be lifted down at the time point R7, is completely lifted down at the time point R8, and the nozzle hole 11b is closed.

図4(c)に示す燃圧センサ20の検出圧力の変化について説明すると、変化点P1以前の圧力P0は噴射指令開始時点Isでの燃料供給圧力であり、先ず、駆動電流が電磁ソレノイド13に流れた後、噴射率がR3の時点で上昇を開始する前に、検出圧力は変化点P1にて下降する。これは、P1の時点で制御弁14がリーク孔11dを開放し、背圧室11cが減圧処理されることに起因する。その後、背圧室11cが十分に減圧された時点で、変化点P2にてP1からの下降が一旦停止する。これは、リーク孔11dが完全に開放されたことで、リーク量がリーク孔11dの径に依存して一定となることに起因する。   The change in the detected pressure of the fuel pressure sensor 20 shown in FIG. 4C will be described. The pressure P0 before the change point P1 is the fuel supply pressure at the injection command start time Is. First, the drive current flows to the electromagnetic solenoid 13. Then, before the injection rate starts increasing at the time point R3, the detected pressure decreases at the change point P1. This is because the control valve 14 opens the leak hole 11d at the time point P1, and the back pressure chamber 11c is decompressed. Thereafter, when the back pressure chamber 11c is sufficiently depressurized, the descent from P1 is temporarily stopped at the change point P2. This is because the leak amount becomes constant depending on the diameter of the leak hole 11d because the leak hole 11d is completely opened.

次に、R3の時点で噴射率が上昇を開始したことに伴い、検出圧力は変化点P3にて下降を開始する。その後、R4の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P4にて停止する。なお、変化点P3からP4までの降下量は、P1からP2までの降下量に比べて大きい。   Next, as the injection rate starts increasing at the time point R3, the detected pressure starts decreasing at the change point P3. Thereafter, as the injection rate reaches the maximum injection rate at the time point R4, the decrease in the detected pressure stops at the change point P4. Note that the amount of drop from the change points P3 to P4 is larger than the amount of drop from P1 to P2.

次に、検出圧力は変化点P5にて上昇する。これは、P5の時点で制御弁14がリーク孔11dを閉塞し、背圧室11cが増圧処理されることに起因する。その後、背圧室11cが十分に増圧された時点で、変化点P6にてP5からの上昇が一旦停止する。   Next, the detected pressure rises at the change point P5. This is due to the fact that the control valve 14 closes the leak hole 11d at the time point P5, and the back pressure chamber 11c is subjected to a pressure increasing process. Thereafter, when the back pressure chamber 11c is sufficiently increased, the rise from P5 is temporarily stopped at the change point P6.

次に、R7の時点で噴射率が下降を開始したことに伴い、検出圧力は変化点P7にて上昇を開始する。その後、R8の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P8にて停止する。なお、変化点P7から変化点P8までの上昇量はP5からP6までの上昇量に比べて大きい。P8以降の検出圧力は、一定の周期T10で下降と上昇を繰り返しながら減衰する。   Next, as the injection rate starts decreasing at the time point R7, the detected pressure starts increasing at the change point P7. Thereafter, as the injection rate becomes zero at the time point R8 and the actual injection ends, the increase in the detected pressure stops at the change point P8. The amount of increase from the change point P7 to the change point P8 is larger than the amount of increase from P5 to P6. The detected pressure after P8 is attenuated while repeatedly decreasing and increasing at a constant period T10.

以上により、燃圧センサ20による検出圧力の変動のうち変化点P3,P4,P7及びP8を検出することで、噴射率の上昇開始時点R3(実噴射開始時期)、最大噴射率到達時点R4、噴射率下降開始時点R7及び下降終了時点R8(実噴射終了時期)等を推定することができる。また、以下に説明する検出圧力の変動と噴射率の変化との相関関係に基づき、検出圧力の変動から噴射率の変化を推定できる。   As described above, by detecting the change points P3, P4, P7 and P8 among the fluctuations in the detected pressure by the fuel pressure sensor 20, the injection rate rise start time R3 (actual injection start timing), the maximum injection rate arrival time R4, the injection The rate lowering start time R7 and the lowering end time R8 (actual injection end time) can be estimated. Further, based on the correlation between the change in the detected pressure and the change in the injection rate described below, the change in the injection rate can be estimated from the change in the detected pressure.

つまり、検出圧力の変化点P3からP4までの圧力下降率Pαと、噴射率の変化点R3からR4までの噴射率上昇率Rαとは相関がある。変化点P7からP8までの圧力上昇率Pγと変化点R7からR8までの噴射率下降率Rγとは相関がある。変化点P3からP4までの圧力降下量Pβ(最大圧力降下量)と変化点R3からR4までの噴射率上昇量Rβ(最大噴射率)とは相関がある。よって、燃圧センサ20による検出圧力の変動から圧力下降率Pα、圧力上昇率Pγ及び最大圧力降下量Pβを検出することで、噴射率上昇率Rα、噴射率下降率Rγ及び最大噴射率Rβを推定することができる。以上の如く噴射率の各種状態R3,R4,R7,R8,Rα,Rβ,Rγを推定することができ、よって、図4(b)に示す燃料噴射率の変化(推移波形)を推定することができる。   That is, there is a correlation between the pressure decrease rate Pα from the detected pressure change points P3 to P4 and the injection rate increase rate Rα from the injection rate change points R3 to R4. There is a correlation between the pressure increase rate Pγ from the change points P7 to P8 and the injection rate decrease rate Rγ from the change points R7 to R8. There is a correlation between the pressure drop amount Pβ (maximum pressure drop amount) from the change points P3 to P4 and the injection rate increase amount Rβ (maximum injection rate) from the change points R3 to R4. Therefore, the injection rate increase rate Rα, the injection rate decrease rate Rγ, and the maximum injection rate Rβ are estimated by detecting the pressure decrease rate Pα, the pressure increase rate Pγ, and the maximum pressure decrease amount Pβ from the fluctuation of the detected pressure by the fuel pressure sensor 20. can do. As described above, various states R3, R4, R7, R8, Rα, Rβ, and Rγ of the injection rate can be estimated, and therefore the change (transition waveform) of the fuel injection rate shown in FIG. 4B is estimated. Can do.

さらに、実噴射開始から終了までの噴射率の積分値(斜線を付した符号Sに示す部分の面積)は噴射量Qに相当する。そして、検出圧力の変動波形のうち実噴射開始から終了までの噴射率変化に対応する部分(変化点P3〜P8の部分)の圧力の積分値と噴射率の積分値Sとは相関がある。よって、燃圧センサ20による検出圧力の変動から圧力積分値を算出することで、噴射量Qに相当する噴射率積分値Sを推定することができる。以上により、燃圧センサ20は、燃料噴射弁10に供給される燃料の圧力を噴射状態に関連する物理量として検出する噴射状態センサとして機能していると言える。   Further, the integral value of the injection rate from the start to the end of the actual injection (the area of the portion indicated by the hatched symbol S) corresponds to the injection amount Q. Then, the integral value of the pressure and the integral value S of the injection rate in the portion corresponding to the change in the injection rate from the start to the end of the actual injection (the change points P3 to P8) in the fluctuation waveform of the detected pressure have a correlation. Therefore, by calculating the pressure integral value from the fluctuation of the detected pressure by the fuel pressure sensor 20, the injection rate integral value S corresponding to the injection amount Q can be estimated. From the above, it can be said that the fuel pressure sensor 20 functions as an injection state sensor that detects the pressure of the fuel supplied to the fuel injection valve 10 as a physical quantity related to the injection state.

図3の説明に戻り、先述のステップS21に続くステップS22において、検出対象となっている噴射が多段噴射のうち2段目以降の噴射であるか否かを判定する。2段目以降の噴射であると判定された場合には(S22:YES)、続くステップS23において、ステップS21で取得した検出圧力値の波形(圧力波形)に対して以下に説明するうねり消し処理を行う。   Returning to the description of FIG. 3, in step S <b> 22 following step S <b> 21 described above, it is determined whether or not the injection to be detected is the second and subsequent injections of the multi-stage injection. When it is determined that the injection is in the second or subsequent stage (S22: YES), in the subsequent step S23, the undulation process described below with respect to the detected pressure value waveform (pressure waveform) acquired in step S21. I do.

図5において、(a)は、多段(2回)噴射するよう噴射指令信号を出力した時に電磁ソレノイド13に流れる駆動電流を示すタイムチャートであり、(b)は、(a)の指令信号を出力した時に検出された燃圧の波形(検出波形W)を示す。また、(c)は、単段噴射するよう噴射指令信号を出力した時に電磁ソレノイド13に流れる駆動電流を示すタイムチャートであり、(d)は、(c)の指令信号を出力した時に検出された圧力波形を示す。   In FIG. 5, (a) is a time chart showing the drive current that flows through the electromagnetic solenoid 13 when an injection command signal is output so as to inject in multiple stages (twice), and (b) shows the command signal of (a). The waveform (detection waveform W) of the fuel pressure detected at the time of output is shown. (C) is a time chart showing the drive current that flows through the electromagnetic solenoid 13 when an injection command signal is output so that single-stage injection is performed. (D) is detected when the command signal of (c) is output. The pressure waveform is shown.

(b)に示す検出波形Wのうちn回目噴射に対応する部分の波形((b)中の一点鎖線内参照)には、n回目より前の噴射(n−1回目噴射、n−2回目噴射、n−3回目噴射・・・)に起因して生じる余波が重畳している。図5(d)に示すn−1回目噴射の余波を例に説明すると、n−1回目噴射が終了した後にも、n−1回目噴射の余波として、所定周期(図4の場合T10の周期)で下降と上昇を繰り返しながら減衰していくうねり波形((d)中の一点鎖線内参照)が現れる。この余波(うねり波形)が、n回目噴射の検出波形Wのうちn回目噴射に対応する部分の波形((b)中の一点鎖線内参照)に重畳している。そのため、検出波形Wをそのまま用いてn回目噴射にかかる噴射率変化(図4(b)に例示する噴射率の推移波形)を推定しようとすると、その推定誤差は極めて大きくなる。   Of the detected waveform W shown in (b), the waveform corresponding to the n-th injection (refer to the one-dot chain line in (b)) has an injection before the n-th (n-1th injection, n-2th injection). The aftermath caused by the injection and the n-3th injection is superimposed. The aftermath of the (n-1) th injection shown in FIG. 5 (d) will be described as an example. Even after the completion of the (n-1) th injection, as the aftermath of the (n-1) th injection, a predetermined cycle (the cycle of T10 in FIG. 4). ), A undulating waveform (refer to the one-dot chain line in (d)) that attenuates while repeating descending and rising appears. This after-wave (swell waveform) is superimposed on the waveform corresponding to the n-th injection in the detection waveform W of the n-th injection (see within the dashed line in (b)). Therefore, if an attempt is made to estimate the injection rate change (the injection rate transition waveform illustrated in FIG. 4B) for the n-th injection using the detected waveform W as it is, the estimation error becomes extremely large.

そこで、上記ステップS23のうねり消し処理では、検出波形Wから前段噴射の余波(うねり波形)を差し引いてn回目噴射に起因した圧力波形Wn(図5(f)参照)を抽出する処理を実施している。具体的には、予め各種態様の単段噴射を試験して、それら態様毎のうねり波形を取得しておく。前記各種態様の具体例としては、図4のP0(或いはP2)に相当する噴射開始時燃圧(供給燃圧)や、開弁時間Tqに相当する噴射量等の噴射条件を種々異ならせておくことが挙げられる。上記試験により得られたうねり波形、又はその得られたうねり波形を数式で表した波形は「モデル波形」に相当し、各種態様毎のモデル波形をECU30のメモリ(モデル波形記憶手段)に予め記憶させておく。   Therefore, in the undulation process of step S23, a process of subtracting the after-wave (undulation waveform) of the previous stage injection from the detected waveform W and extracting the pressure waveform Wn (see FIG. 5F) resulting from the nth injection is performed. ing. Specifically, various types of single-stage injection are tested in advance, and a swell waveform for each of these modes is acquired. As specific examples of the various aspects, the injection conditions such as the fuel pressure at the start of injection (supply fuel pressure) corresponding to P0 (or P2) in FIG. 4 and the injection amount corresponding to the valve opening time Tq are varied. Is mentioned. The waveform obtained by the above test or the waveform obtained by mathematical expression of the obtained waveform corresponds to a “model waveform”, and the model waveform for each aspect is stored in the memory (model waveform storage means) of the ECU 30 in advance. Let me.

なお、本実施形態では、以下の数式1で例示されるうねり波形を、上記モデル波形として記憶させている。数式1中のpはモデル波形の値(燃圧センサ20による検出圧力の規範値)を示す。数式1のA,k,ω,θは、減衰振動における振幅、減衰係数、周波数、位相をそれぞれ示すパラメータを示す。数式1中のtは経過時間を示す。そして、経過時間tを変数として検出圧力の規範値pが数式1で特定され、上記各パラメータA,k,ω,θが噴射態様(例えば噴射開始時燃圧や噴射量等)に応じて異なる値に設定されている。   In the present embodiment, the swell waveform exemplified by the following Equation 1 is stored as the model waveform. P in Equation 1 represents the value of the model waveform (the normative value of the pressure detected by the fuel pressure sensor 20). A, k, ω, θ in Expression 1 indicate parameters indicating the amplitude, the damping coefficient, the frequency, and the phase in the damped vibration, respectively. T in Formula 1 shows elapsed time. Then, the reference value p of the detected pressure is specified by Equation 1 with the elapsed time t as a variable, and the parameters A, k, ω, θ are different values depending on the injection mode (for example, the fuel pressure and the injection amount at the start of injection). Is set to

p=Aexp(−kt)sin(ωt+θ)・・・〔数式1〕
そして、例えばn−1回目噴射の余波(うねり波形)の規範となるモデル波形を取得したい場合には、n−1回目噴射の噴射開始時燃圧や噴射量等の噴射態様に基づき、メモリに記憶された各種態様毎のモデル波形の中から最も近い噴射態様のモデル波形を選択し、その選択したモデル波形を、n−1回目噴射の余波(うねり波形)の規範となるモデル波形CALn−1として取得する。例えば、図5(e)中の破線はモデル波形CALn−1を表し、図5(e)中の実線は(b)の検出波形Wを表す。そして、検出波形Wからモデル波形CALn−1を差し引く演算を実施して、図5(f)に示す圧力波形Wnを抽出する。このように抽出された圧力波形Wnは、前段噴射のうねり波形成分が除去されているので、n回目噴射に起因した噴射率変化との相関が高い圧力波形となっている筈である。
p = Aexp (−kt) sin (ωt + θ) (Equation 1)
For example, when it is desired to obtain a model waveform that serves as a reference for the aftermath (swell waveform) of the (n-1) th injection, it is stored in the memory based on the injection mode such as the fuel pressure and the injection amount at the start of the (n-1) th injection. The model waveform of the closest injection mode is selected from the model waveforms for each of the various modes, and the selected model waveform is set as a model waveform CALn-1 that serves as a reference for the after-wave (swell waveform) of the n-1th injection. get. For example, the broken line in FIG. 5 (e) represents the model waveform CALn-1, and the solid line in FIG. 5 (e) represents the detected waveform W in (b). And the calculation which subtracts the model waveform CALn-1 from the detection waveform W is implemented, and the pressure waveform Wn shown in FIG.5 (f) is extracted. The pressure waveform Wn extracted in this manner should be a pressure waveform having a high correlation with the change in the injection rate due to the n-th injection since the undulation waveform component of the previous stage injection is removed.

図5(e)(f)の例では、n−1回目噴射のうねり波形を表すモデル波形CALn−1のみを検出波形Wから差し引いているが、n−2回目噴射以前の複数のうねり波形についても同様にモデル波形を取得して、取得した複数のモデル波形を検出波形Wから差し引くようにしてもよい。ちなみに、図6の例では、n−1回目噴射及びn−2回目噴射のうねり波形(モデル波形CALn−1,CALn−2)を検出波形Wから差し引いている。   In the example of FIGS. 5E and 5F, only the model waveform CALn−1 representing the undulation waveform of the (n−1) th injection is subtracted from the detection waveform W, but there are a plurality of undulation waveforms before the (n−2) th injection. Similarly, a model waveform may be acquired, and a plurality of acquired model waveforms may be subtracted from the detected waveform W. Incidentally, in the example of FIG. 6, the undulation waveforms (model waveforms CALn-1, CALn-2) of the (n-1) th injection and the (n-2) th injection are subtracted from the detection waveform W.

ここで、「m回目(n−1回目)の噴射からn回目の噴射までの噴射間隔Tmnに応じて、検出波形W0n−1の脈動振幅A1が小さくなる度合いが変化する」との知見を本願発明者は得ている。   Here, based on the knowledge that “the degree of decrease in the pulsation amplitude A1 of the detection waveform W0n-1 changes according to the injection interval Tmn from the mth (n−1) th injection to the nth injection”. The inventor has gained.

図7に、噴射間隔Tmnと減衰度合いとの関係を示す。同図に示すように、n−1回目噴射の検出波形W0n−1では、n−1回目噴射によって燃圧変動Cn−1が生じている。また、n回目噴射の検出波形W0nでは、n回目噴射によって燃圧変動Cnが生じている。図7(a)(b)(c)の順に、噴射間隔Tmnは長くなっている(Tmn1>Tmn2>Tmn3)。   FIG. 7 shows the relationship between the injection interval Tmn and the degree of attenuation. As shown in the figure, in the detection waveform W0n-1 of the (n-1) th injection, the fuel pressure fluctuation Cn-1 is generated by the (n-1) th injection. Further, in the detection waveform W0n of the nth injection, the fuel pressure fluctuation Cn is generated by the nth injection. In the order of FIGS. 7A, 7B, and 7C, the injection interval Tmn becomes longer (Tmn1> Tmn2> Tmn3).

図7(a)(c)では、検出波形W0n−1の谷の部分に、n回目噴射による燃圧変動Cnが重なっている。このため、燃料噴射弁10の噴孔11bから抜け出ていく圧力波の圧力が極小値となっており、補正前のモデル波形CALn−1と比較して検出波形W0n−1の振幅が減衰する度合いが大きくなる。一方、図7(b)では、検出波形W0n−1の節の部分に、n回目噴射による燃圧変動Cnが重なっている。このため、燃料噴射弁10の噴孔11bから抜け出ていく圧力波の圧力が、変動する圧力の中心値(変曲点の値)となっており、補正前のモデル波形CALn−1と比較して検出波形W0n−1の振幅が減衰する度合いが小さくなる。   7A and 7C, the fuel pressure fluctuation Cn due to the n-th injection overlaps the valley portion of the detected waveform W0n-1. For this reason, the pressure of the pressure wave exiting from the nozzle hole 11b of the fuel injection valve 10 has a minimum value, and the degree to which the amplitude of the detected waveform W0n-1 is attenuated compared to the model waveform CALn-1 before correction. Becomes larger. On the other hand, in FIG.7 (b), the fuel pressure fluctuation | variation Cn by n-th injection has overlapped with the node part of detection waveform W0n-1. For this reason, the pressure of the pressure wave exiting from the nozzle hole 11b of the fuel injection valve 10 is the central value (value of the inflection point) of the fluctuating pressure, and is compared with the model waveform CALn-1 before correction. Thus, the degree of attenuation of the amplitude of the detected waveform W0n-1 is reduced.

上記に鑑みた本実施形態では、上述の如く選択したモデル波形CALn−1,CALn−2を、m回目の噴射からn回目の噴射までの噴射間隔Tmnに応じた減衰度合いで減衰させた波形に補正している。この「減衰度合い」とは、数式1に記載の減衰係数kに相当するものである。   In the present embodiment in view of the above, the model waveforms CALn−1 and CALn−2 selected as described above are attenuated with a degree of attenuation corresponding to the injection interval Tmn from the m-th injection to the n-th injection. It is corrected. The “attenuation degree” corresponds to the attenuation coefficient k described in Equation 1.

図6(c)(d)の例で説明すると、図中の実線に示すモデル波形CALn−1,CALn−2は、減衰度合いを大きくするよう補正した後の波形を示している。そして、図中の破線k1は補正後のモデル波形のピーク値に沿った漸近線を表しており、図中の一点鎖線k2は補正前のモデル波形のピーク値に沿った漸近線を表している。そして、数式1中の減衰係数kを変化させると、漸近線k1,k2の傾きが変化する。すなわち、「減衰度合い」を大きくさせるべく減衰係数kを大きくする補正を行うと、補正前の漸近線k2はk1に示す如くその傾きが大きくなるように補正される。   6C and 6D, model waveforms CALn-1 and CALn-2 shown by solid lines in the figure indicate waveforms after correction to increase the degree of attenuation. A broken line k1 in the figure represents an asymptote along the peak value of the model waveform after correction, and a one-dot chain line k2 in the figure represents an asymptote along the peak value of the model waveform before correction. . When the attenuation coefficient k in Equation 1 is changed, the slopes of asymptotic lines k1 and k2 change. That is, when correction is performed to increase the attenuation coefficient k so as to increase the “attenuation degree”, the asymptotic line k2 before correction is corrected so that the inclination thereof increases as indicated by k1.

図3の説明に戻り、うねり消し処理S23に続くステップS24においては、検出対象となっている噴射が1段目の噴射であると判定されている場合には(S22:NO)、ステップS21で取得した検出圧力値(圧力波形)を微分演算することにより、圧力微分値の波形を取得する。2段目以降の噴射の場合には(S22:YES)、ステップS23にてうねり消し処理が施された後の検出圧力値(圧力波形)を微分演算する。   Returning to the description of FIG. 3, in step S24 following the undulation process S23, when it is determined that the injection to be detected is the first stage injection (S22: NO), in step S21. By differentiating the acquired detected pressure value (pressure waveform), the waveform of the pressure differential value is acquired. In the case of the second and subsequent injections (S22: YES), a differential operation is performed on the detected pressure value (pressure waveform) after the undulation process is performed in step S23.

続くステップS25〜S28では、ステップS24にて取得した圧力微分値を用いて、図4(b)に示す各種噴射状態を算出する。つまり、ステップS25では燃料の噴射開始時期R3を、ステップS26では噴射終了時期R8を、ステップS27では最大噴射率到達時期R4及び噴射率下降開始時期R7を、ステップS28では最大噴射率Rβをそれぞれ算出する。なお、噴射量が少ない場合には、最大噴射率到達時期R4及び噴射率下降開始時期R7は一致することとなる。   In subsequent steps S25 to S28, various injection states shown in FIG. 4B are calculated using the pressure differential value acquired in step S24. That is, the fuel injection start timing R3 is calculated in step S25, the injection end timing R8 is calculated in step S26, the maximum injection rate arrival timing R4 and the injection rate decrease start timing R7 are calculated in step S27, and the maximum injection rate Rβ is calculated in step S28. To do. When the injection amount is small, the maximum injection rate arrival timing R4 and the injection rate decrease start timing R7 coincide.

そして、続くステップS29では、ステップS25〜S28にて算出した噴射状態R3,R8,Rβ,R4,R7に基づき、実噴射開始から終了までの噴射率の積分値(斜線を付した符号Sに示す部分の面積)を算出し、その算出結果を実際の噴射量Qとする。前記面積Sは、噴射量が多い場合には台形に近い形状となり、噴射量が少ない場合には三角形に近い形状となる。なお、上記噴射状態R3,R8,Rβ,R4,R7の他に、噴射率の上昇率Rα及び噴射率の下降率Rγを圧力波形から算出し、これらの上昇率Rα及び下降率Rγを加味して噴射率の積分値S(噴射量Q)を算出するようにしてもよい。   Then, in the following step S29, based on the injection states R3, R8, Rβ, R4, R7 calculated in steps S25 to S28, the integrated value of the injection rate from the start to the end of the actual injection (shown by the hatched symbol S). The area of the portion is calculated, and the calculation result is set as the actual injection amount Q. The area S has a shape close to a trapezoid when the injection amount is large, and a shape close to a triangle when the injection amount is small. In addition to the injection states R3, R8, Rβ, R4, and R7, the injection rate increase rate Rα and the injection rate decrease rate Rγ are calculated from the pressure waveform, and these increase rate Rα and decrease rate Rγ are taken into account. Thus, the integral value S (injection amount Q) of the injection rate may be calculated.

次に、上述したうねり消し処理S23の手順について、図8のフローチャートを用いて説明する。当該処理は、図3のステップS23に相当するサブルーチン処理であり、先ずステップS31にてm回目の噴射開始時燃圧P0mと、噴射量Qmを取得する。なお、噴射量Qmは、図3のステップS29で算出した噴射量を用いてもよいし、噴射指令信号による開弁時間Tqmから推定される噴射量を用いてもよい。   Next, the procedure of the above-described undulation process S23 will be described with reference to the flowchart of FIG. This process is a subroutine process corresponding to step S23 in FIG. 3, and first, in step S31, the mth injection start fuel pressure P0m and the injection amount Qm are acquired. As the injection amount Qm, the injection amount calculated in step S29 of FIG. 3 may be used, or an injection amount estimated from the valve opening time Tqm based on the injection command signal may be used.

続くステップS32では、ステップS31で取得した噴射開始時燃圧P0m及び噴射量Qmに基づき、メモリに記憶されている各種態様毎のモデル波形の中から、最も近い噴射態様のモデル波形CALmを選択する。続くステップS33では、モデル波形CALmについて、n回目の噴射が終了してから、モデル波形の補正を開始するまでの補正待ち時間が経過した部分か否か判定する。具体的には、高圧配管43及び高圧通路11a内を伝播してコモンレール42と高圧配管43との接続部で反射する圧力波が、燃圧センサ20から同接続部まで伝播して燃圧センサ20まで戻るまでの時間を上記補正待ち時間とする。この判定において、補正待ち時間が経過した部分であると判断した場合にはステップ34へ進み、補正待ち時間が経過していない部分であると判断した場合にはステップ36へ進む。   In the subsequent step S32, the model waveform CALm of the closest injection mode is selected from the model waveforms for each mode stored in the memory, based on the fuel pressure P0m at the start of injection acquired in step S31 and the injection amount Qm. In the subsequent step S33, it is determined whether or not the model waveform CALm is a portion where the correction waiting time has elapsed after the n-th injection is completed until the correction of the model waveform is started. Specifically, a pressure wave propagating through the high-pressure pipe 43 and the high-pressure passage 11 a and reflected at the connection portion between the common rail 42 and the high-pressure pipe 43 propagates from the fuel pressure sensor 20 to the connection portion and returns to the fuel pressure sensor 20. The time until is the correction waiting time. In this determination, if it is determined that the correction waiting time has elapsed, the process proceeds to step 34, and if it is determined that the correction waiting time has not elapsed, the process proceeds to step 36.

ここで、m回目の噴射を行った時の圧力波形のうち、n回目の噴射において噴孔11bから抜け出ていく圧力波に対応する部分が、n回目の噴射の影響を強く受けるものの、n回目の噴射の最中は圧力波形に変化が表れにくいことが、本願発明者によって確認されている。これは、噴射の最中には、噴孔11bから噴射される燃料を補うように、噴孔11bに向かって燃料が流動することが原因と考えられる。そして、このn回目の噴射の影響は、高圧配管43及び高圧通路11a内で圧力波が反射した後に表れ易いことが、本願発明者によって確認されている。   Here, in the pressure waveform when the m-th injection is performed, the portion corresponding to the pressure wave that escapes from the nozzle hole 11b in the n-th injection is strongly influenced by the n-th injection, but the n-th injection It has been confirmed by the inventor that the pressure waveform hardly changes during the injection. This is considered to be caused by the fuel flowing toward the nozzle hole 11b so as to supplement the fuel injected from the nozzle hole 11b during the injection. The inventors of the present application have confirmed that the influence of the n-th injection is likely to appear after the pressure wave is reflected in the high-pressure pipe 43 and the high-pressure passage 11a.

ステップS34では、m回目の噴射指令信号及びn回目の噴射指令信号に基づき、m回目の噴射が終了してからn回目の噴射が開始されるまでの噴射間隔Tmnを取得する。続くステップS35(補正手段)では、ステップS34で取得した噴射間隔Tmnに基づき、ステップS32で選択したモデル波形CALmの減衰係数kを補正する。   In step S34, an injection interval Tmn from the end of the mth injection to the start of the nth injection is acquired based on the mth injection command signal and the nth injection command signal. In the subsequent step S35 (correction means), the attenuation coefficient k of the model waveform CALm selected in step S32 is corrected based on the injection interval Tmn acquired in step S34.

より詳細に説明すると、図9は、減衰係数kに対する補正値cと噴射間隔Tmnとの関係(補正データ)を示しており、図9に示す特性マップは、予め実施した試験等に基づき設定されてECU30のメモリに記憶されている。そして、ステップS34で取得した噴射間隔Tmnに基づき、図9の特性マップを参照して補正値cを決定する。そして、数式1中の減衰係数kをk×cとなるよう補正して、モデル波形CALn−1を補正する。図9の特性マップは、噴射間隔Tmnに応じてモデル波形CALn−1の圧力の変動周期に対応させて補正値c(減衰度合い)を大小変化させている、すなわちn回目噴射において噴孔11bが開かれる際のモデル波形CALn−1の噴孔11bでの圧力の大きさに基づいて減衰度合いを変化させていると言える。   More specifically, FIG. 9 shows the relationship (correction data) between the correction value c and the injection interval Tmn for the attenuation coefficient k, and the characteristic map shown in FIG. 9 is set based on tests and the like performed in advance. Stored in the memory of the ECU 30. Then, based on the injection interval Tmn acquired in step S34, the correction value c is determined with reference to the characteristic map of FIG. Then, the model coefficient CALn−1 is corrected by correcting the attenuation coefficient k in Formula 1 to be k × c. In the characteristic map of FIG. 9, the correction value c (degree of attenuation) is changed in magnitude according to the pressure fluctuation period of the model waveform CALn−1 according to the injection interval Tmn. That is, the injection hole 11 b is changed in the n-th injection. It can be said that the degree of attenuation is changed based on the magnitude of the pressure at the nozzle hole 11b of the model waveform CALn-1 when opened.

また、n回目噴射に起因した圧力波形Wnを抽出するにあたり、検出波形Wからn−2回目モデル波形CALn−2を差し引く場合には、n−2回目モデル波形CALn−2を補正するにあたり、n−1回目の噴射からn回目の噴射までの噴射間隔Tmn、及びn−2回目の噴射からn回目の噴射までの噴射間隔Tmnに基づき、図9の特性マップを参照して、n−2回目モデル波形CALn−2の減衰係数kに対する補正値cを決定する。   When the pressure waveform Wn resulting from the n-th injection is extracted, when the n-2th model waveform CALn-2 is subtracted from the detected waveform W, the n-2th model waveform CALn-2 is corrected by n Based on the injection interval Tmn from the -1st injection to the nth injection and the injection interval Tmn from the n-2th injection to the nth injection, referring to the characteristic map of FIG. A correction value c for the attenuation coefficient k of the model waveform CALn-2 is determined.

続くステップS36(波形抽出手段)では、図3のステップS21で取得した検出波形Wから、ステップS35で補正した後のモデル波形CALm(図6の例ではCALn−1,CALn−2)を減算する。この減算により得られた波形は、図5(f)又は図6(e)に例示されるn回目噴射に起因した圧力波形Wnに相当する。   In the subsequent step S36 (waveform extraction means), the model waveform CALm (CALn-1, CALn-2 in the example of FIG. 6) corrected in step S35 is subtracted from the detected waveform W acquired in step S21 of FIG. . The waveform obtained by this subtraction corresponds to the pressure waveform Wn resulting from the n-th injection illustrated in FIG. 5 (f) or FIG. 6 (e).

以上詳述した本実施形態は以下の利点を有する。   The embodiment described above has the following advantages.

・「m回目(n−1回目)の噴射からn回目の噴射までの噴射間隔Tmnに応じて、検出波形W0n−1の脈動振幅A1が小さくなる度合いが変化する」との上記知見に基づき、n回目噴射(対象噴射)に起因した圧力波形Wnを抽出するにあたり、モデル波形CALn−1を、n−1回目噴射からn回目噴射までの噴射間隔に応じた減衰度合いで減衰させた波形に補正する。また、モデル波形CALn−2の減衰係数kを、n−1回目の噴射からn回目の噴射までの噴射間隔Tmn、及びn−2回目の噴射からn回目の噴射までの噴射間隔Tmnに基づき補正する。   Based on the above knowledge that “the degree of decrease in the pulsation amplitude A1 of the detection waveform W0n-1 changes according to the injection interval Tmn from the mth (n−1) th injection to the nth injection”. In extracting the pressure waveform Wn resulting from the nth injection (target injection), the model waveform CALn-1 is corrected to a waveform attenuated at an attenuation degree corresponding to the injection interval from the n-1th injection to the nth injection. To do. Further, the attenuation coefficient k of the model waveform CALn-2 is corrected based on the injection interval Tmn from the (n-1) th injection to the nth injection and the injection interval Tmn from the (n-2) th injection to the nth injection. To do.

よって、多段噴射時検出波形Wからn回目単段噴射時検出波形W0nを差し引いて得られる図11(d)の検出波形W0n−1に、モデル波形CALn−1を近づけることができるので、n回目噴射(対象噴射)に起因した圧力波形Wnを多段噴射時検出波形Wから高精度で抽出することができる。よって、実噴射状態R3,R8,Rβ,R4,R7,Qを高精度で検出でき、エンジンの出力トルク及びエミッション状態を高精度で制御できる。   Therefore, the model waveform CALn-1 can be approximated to the detection waveform W0n-1 in FIG. 11D obtained by subtracting the detection waveform W0n at the n-th single-stage injection from the detection waveform W at the time of multistage injection. The pressure waveform Wn resulting from the injection (target injection) can be extracted from the detection waveform W during multistage injection with high accuracy. Therefore, the actual injection states R3, R8, Rβ, R4, R7, Q can be detected with high accuracy, and the engine output torque and emission state can be controlled with high accuracy.

・n回目噴射において噴孔11bが開かれる際のモデル波形CALn−1の噴孔11bでの圧力の大きさに基づいて、減衰度合いを変化させる。このため、n回目噴射において噴孔11bが開かれることで噴孔11bから抜け出ていく圧力波の圧力の大きさに応じて、モデル波形CALn−1を減衰させる度合いを適切に変化させることができる。   The degree of attenuation is changed based on the magnitude of the pressure at the nozzle hole 11b of the model waveform CALn-1 when the nozzle hole 11b is opened in the n-th injection. For this reason, the degree to which the model waveform CALn-1 is attenuated can be appropriately changed according to the magnitude of the pressure wave that exits from the nozzle hole 11b by opening the nozzle hole 11b in the n-th injection. .

・噴射間隔Tmnに応じてモデル波形CALn−1の圧力の変動周期に対応させて、モデル波形CALn−1の減衰度合いが大小変化させられる。このため、噴孔11bが開かれる際に噴孔11bに伝播される圧力波の圧力の変動周期に合わせて、モデル波形CALn−1を減衰させる度合いを適切に変化させることができる。   The degree of attenuation of the model waveform CALn-1 is changed in magnitude according to the pressure fluctuation period of the model waveform CALn-1 according to the injection interval Tmn. For this reason, it is possible to appropriately change the degree of attenuation of the model waveform CALn-1 in accordance with the pressure fluctuation period of the pressure wave propagated to the nozzle hole 11b when the nozzle hole 11b is opened.

・モデル波形CALn−1のうち、n回目噴射が行われてから、高圧配管43及び高圧通路11a内で反射する圧力波が高圧配管43及び高圧通路11a内を1往復する時間が経過した後の部分のみが補正されるため、モデル波形CALn−1において補正の必要のない部分が不適切に補正されることを抑制することができる。なお、このような補正の制限を省略することもできる。   -After the n-th injection in the model waveform CALn-1, the time after which the pressure wave reflected in the high-pressure pipe 43 and the high-pressure passage 11a reciprocates once in the high-pressure pipe 43 and the high-pressure passage 11a has elapsed. Since only the portion is corrected, it is possible to prevent the portion of the model waveform CALn−1 that does not need to be corrected from being inappropriately corrected. Note that such a limitation on correction can be omitted.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記実施形態では、モデル波形CALn−1の全体を、n−1回目噴射からn回目噴射までの噴射間隔Tmnに応じた減衰度合いで減衰させた波形に補正した。しかしながら、モデル波形CALn−1のうち、n回目噴射において燃料噴射弁10の噴孔11bが開かれる際の噴孔11bでの圧力に対応する特定部分を減衰させるようにしてもよい。図10は、時間経過と特定部分との関係を示すタイムチャートである。同図に示すように、n回目噴射において圧力波の一部が噴孔11bから抜け出ていくことによる影響が、n−1回目噴射を行った時の圧力波形の一部(補正前のモデル波形CALn−1の破線に対応する部分)に対して強く及ぶことがある。すなわち、n−1回目噴射を行った時の検出波形W0n−1のうち、n回目噴射において噴孔11bから抜け出ていく圧力波に対応する部分の振幅が小さくなるように影響を受ける。この点、上記構成によれば、モデル波形CALn−1のうち、n回目噴射において噴孔11bが開かれる際の噴孔11bでの圧力に対応する特定部分Tr1〜5(破線部分)が減衰させられるため、モデル波形CALn−1を実際の検出波形W0n−1に更に近付けることができる。なお、この補正を上記実施形態と併せて行ってもよい。   In the above embodiment, the entire model waveform CALn-1 is corrected to a waveform attenuated with an attenuation degree corresponding to the injection interval Tmn from the (n-1) th injection to the nth injection. However, in the model waveform CALn-1, a specific portion corresponding to the pressure at the injection hole 11b when the injection hole 11b of the fuel injection valve 10 is opened in the n-th injection may be attenuated. FIG. 10 is a time chart showing the relationship between the passage of time and the specific part. As shown in the figure, the influence of part of the pressure wave exiting from the nozzle hole 11b in the n-th injection is a part of the pressure waveform when the n-1th injection is performed (model waveform before correction). There may be a strong case with respect to the portion of CALn-1 corresponding to the broken line. That is, the detected waveform W0n-1 when the n-1th injection is performed is affected such that the amplitude of the portion corresponding to the pressure wave that escapes from the nozzle hole 11b in the nth injection is reduced. In this regard, according to the above configuration, in the model waveform CALn-1, the specific portions Tr1 to Tr5 (broken line portions) corresponding to the pressure at the nozzle hole 11b when the nozzle hole 11b is opened in the n-th injection are attenuated. Therefore, the model waveform CALn-1 can be made closer to the actual detection waveform W0n-1. This correction may be performed in combination with the above embodiment.

・図10に示すように、n回目噴射において噴孔11bが開かれる際の噴孔11bでの圧力に対応する特定部分Tr1〜5は、圧力波が反射を繰り返すに従ってその境界が不明確となり、結果的に特定部分Trの範囲が広がることとなる(Tr1<Tr2<Tr3<Tr4<Tr5)この点、モデル波形CALn−1において、時間の経過に伴って特定部分Trの範囲を拡大させることにより、圧力波が反射を繰り返すことによる影響をモデル波形CALn−1に反映させることができる。   As shown in FIG. 10, the specific portions Tr1 to Tr5 corresponding to the pressure at the nozzle hole 11b when the nozzle hole 11b is opened in the n-th injection become unclear as the pressure wave repeats reflection, As a result, the range of the specific portion Tr is expanded (Tr1 <Tr2 <Tr3 <Tr4 <Tr5). In this respect, in the model waveform CALn−1, by expanding the range of the specific portion Tr as time elapses. The effect of the pressure wave being repeatedly reflected can be reflected in the model waveform CALn-1.

・図11を用いて先述したように、「n回目噴射の噴射期間Tqnが長いほど検出波形W0n−1の脈動振幅A1が小さくなる」との知見を本発明者らは得ている。この知見に鑑みて、上述の如く選択したモデル波形CALn−1,CALn−2を、n回目噴射の噴射期間Tqnが長いほど減衰度合いの大きい波形に補正する処理を併せて実行してもよい。すなわち、噴射期間Tqnに基づき、選択したモデル波形CALmの減衰係数kを補正してもよい。上記構成によれば、多段噴射時検出波形Wからn回目単段噴射時検出波形W0nを差し引いて得られる図11(d)の検出波形W0n−1に、モデル波形CALn−1を近づけることができるので、n回目噴射(対象噴射)に起因した圧力波形Wnを多段噴射時検出波形Wから高精度で抽出することができる。よって、実噴射状態R3,R8,Rβ,R4,R7,Qを高精度で検出でき、エンジンの出力トルク及びエミッション状態を高精度で制御できる。   As described above with reference to FIG. 11, the inventors have obtained the knowledge that “the longer the injection period Tqn of the n-th injection, the smaller the pulsation amplitude A1 of the detected waveform W0n-1”. In view of this knowledge, the process of correcting the model waveforms CALn−1 and CALn−2 selected as described above to a waveform having a greater degree of attenuation as the injection period Tqn of the n-th injection may be performed together. That is, the attenuation coefficient k of the selected model waveform CALm may be corrected based on the injection period Tqn. According to the above configuration, the model waveform CALn-1 can be approximated to the detection waveform W0n-1 in FIG. 11D obtained by subtracting the nth single-stage injection detection waveform W0n from the multistage injection detection waveform W. Therefore, the pressure waveform Wn resulting from the nth injection (target injection) can be extracted from the detection waveform W at the time of multistage injection with high accuracy. Therefore, the actual injection states R3, R8, Rβ, R4, R7, Q can be detected with high accuracy, and the engine output torque and emission state can be controlled with high accuracy.

・上記実施形態によるモデル波形CALは数式1で表されており、経過時間tを変数として検出圧力の規範値pが数式1から算出できるよう、各パラメータA,k,ω,θを噴射態様(例えば噴射開始時燃圧や噴射量等)に応じて異なる値に設定して記憶させている。これに対し、経過時間tに対する検出圧力の規範値pをそのままマップ等に記憶させておき、当該マップを噴射態様毎に記憶させてモデル波形として用いるようにしてもよい。   The model waveform CAL according to the above-described embodiment is expressed by Equation 1, and the parameters A, k, ω, θ are injected in such a manner that the reference value p of the detected pressure can be calculated from Equation 1 with the elapsed time t as a variable. For example, different values are set and stored according to the fuel pressure at the start of injection, the injection amount, and the like. On the other hand, the reference value p of the detected pressure with respect to the elapsed time t may be stored as it is in a map or the like, and the map may be stored for each injection mode and used as a model waveform.

・上記実施形態が適用される燃料噴射弁10は、制御弁14に2方弁を採用することに起因して、ニードル12を開弁作動させている噴射期間中には背圧室11cの燃料を常時リークさせる構成のものである。しかし本発明は、制御弁14に3方弁を採用した燃料噴射弁であって、噴射期間中であっても背圧室11cの燃料をリークさせない構成の燃料噴射弁にも適用できる。   The fuel injection valve 10 to which the above embodiment is applied is a fuel in the back pressure chamber 11c during the injection period in which the needle 12 is opened due to the adoption of a two-way valve as the control valve 14. Is configured to constantly leak. However, the present invention is also applicable to a fuel injection valve that employs a three-way valve as the control valve 14 and that does not leak the fuel in the back pressure chamber 11c even during the injection period.

10…燃料噴射弁、11…ボデー、11c…背圧室、12…ニードル(弁体)、20…燃圧センサ、30…ECU(モデル波形記憶手段)、S21…検出波形取得手段、S35…補正手段、S36…波形抽出手段、CALn−1…n−1回目モデル波形、CALn−2…n−2回目モデル波形。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 11 ... Body, 11c ... Back pressure chamber, 12 ... Needle (valve body), 20 ... Fuel pressure sensor, 30 ... ECU (model waveform storage means), S21 ... Detection waveform acquisition means, S35 ... Correction means , S36 ... waveform extraction means, CALn-1 ... n-1 th model waveform, CALn-2 ... n-2 th model waveform.

Claims (7)

内燃機関で燃焼させる燃料を噴孔(11b)から噴射する燃料噴射弁(10)と、前記噴孔から燃料を噴射させることに伴い前記噴孔に至るまでの燃料供給経路(43、11a)内で生じる燃料圧力の変化を検出する燃圧センサ(20)と、を備えた燃料噴射システムに適用され、
前記内燃機関の1燃焼サイクル中に燃料を複数回噴射する多段噴射を実施している時に前記燃圧センサにより検出される圧力波形を、多段噴射時検出波形として取得する検出波形取得手段と、
多段噴射のうち2段目以降のいずれかの噴射を対象噴射とした場合に、前記対象噴射を実施することなく前記対象噴射よりも前段の噴射を実施している時の、圧力波形の規範となるモデル波形が記憶されたモデル波形記憶手段と、
前記モデル波形を前記多段噴射時検出波形から差し引いて、前記対象噴射に起因した圧力波形を抽出する波形抽出手段と、
前記抽出に用いる前記モデル波形を、前記前段の噴射から前記対象噴射までの噴射間隔に応じた減衰度合いで減衰させた波形に補正する補正手段と、
を備えることを特徴とする燃圧波形取得装置。
A fuel injection valve (10) for injecting fuel to be combusted in an internal combustion engine from the nozzle hole (11b), and a fuel supply path (43, 11a) from the nozzle hole to the nozzle hole as fuel is injected. A fuel pressure sensor (20) for detecting a change in fuel pressure generated in
Detection waveform acquisition means for acquiring a pressure waveform detected by the fuel pressure sensor when performing multi-stage injection in which fuel is injected a plurality of times during one combustion cycle of the internal combustion engine as a detection waveform during multi-stage injection;
When any one of the second and subsequent stages of the multistage injection is set as the target injection, the pressure waveform norm when the injection before the target injection is performed without performing the target injection A model waveform storage means in which a model waveform is stored;
Waveform extraction means for subtracting the model waveform from the detection waveform during multi-stage injection to extract a pressure waveform resulting from the target injection;
Correction means for correcting the model waveform used for the extraction into a waveform attenuated with an attenuation degree according to an injection interval from the preceding injection to the target injection,
A fuel pressure waveform acquisition device comprising:
前記補正手段は、前記対象噴射において前記噴孔が開かれる際の前記モデル波形の前記噴孔での圧力の大きさに基づいて、前記減衰度合いを変化させる請求項1に記載の燃圧波形取得装置。   2. The fuel pressure waveform acquisition device according to claim 1, wherein the correction unit changes the degree of attenuation based on a pressure level at the nozzle hole of the model waveform when the nozzle hole is opened in the target injection. 3. . 前記補正手段は、前記噴射間隔に応じて前記モデル波形の圧力の変動周期に対応させて前記減衰度合いを大小変化させる請求項1又は2に記載の燃圧波形取得装置。   3. The fuel pressure waveform acquisition apparatus according to claim 1, wherein the correction unit changes the magnitude of the attenuation in accordance with a pressure fluctuation cycle of the model waveform according to the injection interval. 前記補正手段は、前記モデル波形のうち、前記対象噴射において前記噴孔が開かれる際の前記噴孔での圧力に対応する特定部分を減衰させる請求項1〜3のいずれか1項に記載の燃圧波形取得装置。   The said correction | amendment means attenuate | damps the specific part corresponding to the pressure in the said nozzle hole when the said nozzle hole is opened in the said target injection among the said model waveforms. Fuel pressure waveform acquisition device. 前記補正手段は、前記モデル波形において、時間の経過に伴って前記特定部分の範囲を拡大させる請求項4に記載の燃圧波形取得装置。   The fuel pressure waveform acquisition apparatus according to claim 4, wherein the correction unit expands the range of the specific portion with time in the model waveform. 前記補正手段は、前記モデル波形のうち、前記対象噴射が行われてから、前記燃料供給経路内で反射する圧力波が前記燃料供給経路内を1往復する時間が経過した後の部分のみを補正する請求項1〜5のいずれか1項に記載の燃圧波形取得装置。   The correction means corrects only a part of the model waveform after a time when a pressure wave reflected in the fuel supply path makes one round trip in the fuel supply path after the target injection is performed. The fuel pressure waveform acquisition device according to any one of claims 1 to 5. 前記補正手段は更に、前記抽出に用いる前記モデル波形を、前記対象噴射の噴射期間が長いほど減衰度合いの大きい波形に補正する請求項1〜6のいずれか1項に記載の燃圧波形取得装置。   The fuel pressure waveform acquisition apparatus according to any one of claims 1 to 6, wherein the correction unit further corrects the model waveform used for the extraction to a waveform having a greater degree of attenuation as the injection period of the target injection is longer.
JP2012026993A 2012-02-10 2012-02-10 Fuel pressure waveform acquisition device Active JP5635022B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012026993A JP5635022B2 (en) 2012-02-10 2012-02-10 Fuel pressure waveform acquisition device
CN201310028338.3A CN103244296B (en) 2012-02-10 2013-01-24 For the fuel pressure waveform acquisition device of fuel injection system
DE102013101226.4A DE102013101226B4 (en) 2012-02-10 2013-02-07 A fuel pressure curve detection device for use in a fuel injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026993A JP5635022B2 (en) 2012-02-10 2012-02-10 Fuel pressure waveform acquisition device

Publications (2)

Publication Number Publication Date
JP2013163999A true JP2013163999A (en) 2013-08-22
JP5635022B2 JP5635022B2 (en) 2014-12-03

Family

ID=48868419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026993A Active JP5635022B2 (en) 2012-02-10 2012-02-10 Fuel pressure waveform acquisition device

Country Status (3)

Country Link
JP (1) JP5635022B2 (en)
CN (1) CN103244296B (en)
DE (1) DE102013101226B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741148A (en) * 2017-06-20 2020-01-31 Mtu 腓特烈港有限责任公司 Method for model-based open-loop and closed-loop control of an internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6555093B2 (en) * 2015-11-11 2019-08-07 株式会社デンソー Fuel injection state estimation device
IT201700114678A1 (en) * 2017-10-11 2019-04-11 Torino Politecnico Injection system, apparatus and method to control the quantity of fuel injected

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269228A (en) * 2002-03-11 2003-09-25 Mitsubishi Motors Corp Split type fuel injection control device
JP2004068616A (en) * 2002-08-01 2004-03-04 Nippon Soken Inc Accumulator fuel injection device
JP2004084657A (en) * 2002-06-24 2004-03-18 Toyota Motor Corp Fuel injection device of internal combustion engine
JP2012002173A (en) * 2010-06-18 2012-01-05 Denso Corp Fuel-pressure waveform obtaining device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006042098B3 (en) 2006-09-07 2008-05-21 Siemens Ag Method for determining a correction of a partial injection quantity of an internal combustion engine
JP4428427B2 (en) * 2007-08-31 2010-03-10 株式会社デンソー Fuel injection characteristic detecting device and fuel injection command correcting device
JP4631937B2 (en) 2008-06-18 2011-02-16 株式会社デンソー Learning device and fuel injection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269228A (en) * 2002-03-11 2003-09-25 Mitsubishi Motors Corp Split type fuel injection control device
JP2004084657A (en) * 2002-06-24 2004-03-18 Toyota Motor Corp Fuel injection device of internal combustion engine
JP2004068616A (en) * 2002-08-01 2004-03-04 Nippon Soken Inc Accumulator fuel injection device
JP2012002173A (en) * 2010-06-18 2012-01-05 Denso Corp Fuel-pressure waveform obtaining device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741148A (en) * 2017-06-20 2020-01-31 Mtu 腓特烈港有限责任公司 Method for model-based open-loop and closed-loop control of an internal combustion engine
CN110741148B (en) * 2017-06-20 2022-11-15 罗尔斯·罗伊斯解决方案有限公司 Method for model-based open-loop and closed-loop control of an internal combustion engine

Also Published As

Publication number Publication date
CN103244296B (en) 2016-01-06
JP5635022B2 (en) 2014-12-03
DE102013101226B4 (en) 2019-10-17
DE102013101226A1 (en) 2013-08-14
CN103244296A (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5165728B2 (en) Fuel pressure waveform acquisition device
JP5587364B2 (en) Fuel pressure waveform acquisition device
JP4835715B2 (en) Fuel injection state detection device
JP4835716B2 (en) Fuel injection state detection device
JP4737314B2 (en) Fuel injection state detection device
JP5141722B2 (en) Fuel pressure waveform acquisition device
JP4737315B2 (en) Fuel injection state detection device
JP4631937B2 (en) Learning device and fuel injection system
JP5152237B2 (en) Abnormality judgment method of fuel injection device
JP4462307B2 (en) Fuel injection device and fuel injection system
JP4453773B2 (en) Fuel injection device, fuel injection system, and fuel injection device abnormality determination method
JP2008144749A (en) Fuel injection system and its adjusting method
JP5003796B2 (en) Fuel injection state detection device
JP5635022B2 (en) Fuel pressure waveform acquisition device
JP5126295B2 (en) Fuel injection state detection device
JP6168016B2 (en) Fuel density detector
JP6087726B2 (en) Fuel injection characteristic detection device
JP5240283B2 (en) Noise diagnosis device for fuel injection system
JP4269913B2 (en) Accumulated fuel injection system
JP4375432B2 (en) Fuel injection characteristic detection device and engine control system
JP5565435B2 (en) Fuel injection control device
JP5168325B2 (en) Fuel injection state detection device
JP5872993B2 (en) Fuel injection characteristic detection device
JP5928380B2 (en) Engine fuel injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5635022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250