JP2013163624A - Device and method for producing hydrogen - Google Patents

Device and method for producing hydrogen Download PDF

Info

Publication number
JP2013163624A
JP2013163624A JP2012028411A JP2012028411A JP2013163624A JP 2013163624 A JP2013163624 A JP 2013163624A JP 2012028411 A JP2012028411 A JP 2012028411A JP 2012028411 A JP2012028411 A JP 2012028411A JP 2013163624 A JP2013163624 A JP 2013163624A
Authority
JP
Japan
Prior art keywords
porous body
hydrogen
hollow portion
liquid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012028411A
Other languages
Japanese (ja)
Inventor
Kunito Okuyama
邦人 奥山
Shoji Mori
昌司 森
Mikako Tanaka
美香子 田中
Fumio Tsuji
文雄 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2012028411A priority Critical patent/JP2013163624A/en
Publication of JP2013163624A publication Critical patent/JP2013163624A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the amount of generation of hydrogen by decomposition or steam reformation of a hydrocarbon while accelerating supply of liquid and evaporation of a hydrocarbon-based liquid material such as methanol liquid, decomposition or stream reformation reaction of a hydrocarbon in the porous body using a porous body carrying a catalyst stimulating decomposition or the steam reforming reaction of the hydrocarbon.SOLUTION: A porous body (6) for a hydrogen generating device (1, 1') includes a first porous body (61) which includes a hollow portion (7) internally provided with a heating elements (8, 8', 8") and carries a catalyst (2), a second porous body (62) which includes an evaporation face (65) separated from the outer surface (64) of the first porous body and supplies liquid material (L) to the evaporation face by a capillary force, and a steam flow region (66) formed between the first and the second porous bodies. The first porous body evaporates the liquid material by the heat generation of the heating element, and the second porous body progresses the decomposition reaction of the carbon hydride contained in steam (V) of the liquid material or the steam reforming reaction in the presence of a catalyst to produce a synthetic gas (S) containing a great amount of hydrogen in the hollow portion.

Description

本発明は、水素生成装置及び水素生成方法に関するものであり、より詳細には、多孔質体を用いて液体メタノール等の炭化水素系液体原料から迅速且つ効率的に水素を生成する水素生成装置及び水素生成方法に関するものである。   The present invention relates to a hydrogen generation apparatus and a hydrogen generation method, and more particularly, a hydrogen generation apparatus that quickly and efficiently generates hydrogen from a hydrocarbon-based liquid raw material such as liquid methanol using a porous body, and The present invention relates to a hydrogen generation method.

メタノール蒸気、或いは、メタノール蒸気及び水蒸気の混合気を200〜300℃程度の温度に加熱して白金等の触媒に接触させると、分解反応又は水蒸気改質反応により水素が生成する。この反応は、燃料電池用の燃料水素製造、エネルギーの輸送・貯蔵等のための化学ヒートパイプ、或いは、エクセルギー損失の低減を図る化学再生ガスタービン発電システム等の省エネルギー機器又はエネルギー有効利用システムに応用可能な技術として近年殊に注目されている。   When methanol vapor or a mixture of methanol vapor and steam is heated to a temperature of about 200 to 300 ° C. and brought into contact with a catalyst such as platinum, hydrogen is generated by a decomposition reaction or a steam reforming reaction. This reaction can be applied to energy-saving equipment or effective energy use systems such as fuel hydrogen production for fuel cells, chemical heat pipes for energy transportation and storage, or chemical regeneration gas turbine power generation systems that reduce exergy loss. In recent years, it has attracted particular attention as an applicable technology.

燃料電池用の燃料水素を製造する装置として、メタノール等の炭化水素を改質触媒によって水蒸気改質し、比較的多量の水素を含有する水素リッチガスを生成する水素生成装置が知られている。この種の水素生成装置は、炭化水素及び水を含む液体原料を加熱して液体原料を蒸発させる蒸発部と、メタノール等の液体原料を蒸発部に供給する給液ポンプと、水蒸気改質触媒の粒子又はペレット等を充填した反応域又は反応器からなる改質部とから構成されており、炭化水素の水蒸気改質反応が改質触媒の存在下に改質部において進行する。水素ガス生成装置は又、液体原料の蒸発や、水蒸気改質反応に要する熱を確保すべく、触媒燃焼部等の熱源を有し、熱源の熱は、燃焼ガス等の熱媒体を介して蒸発部及び改質部に夫々供給される。このような構成の水素生成装置は、例えば、特開2000−154001号公報、特表2003−501342号公報に記載されている。   As an apparatus for producing fuel hydrogen for a fuel cell, a hydrogen generating apparatus is known which generates a hydrogen rich gas containing a relatively large amount of hydrogen by steam reforming a hydrocarbon such as methanol with a reforming catalyst. This type of hydrogen generator includes an evaporation unit that heats a liquid material containing hydrocarbons and water to evaporate the liquid material, a feed pump that supplies a liquid material such as methanol to the evaporation unit, and a steam reforming catalyst. The reforming section is composed of a reaction zone or a reactor filled with particles or pellets, and a hydrocarbon steam reforming reaction proceeds in the reforming section in the presence of a reforming catalyst. The hydrogen gas generator also has a heat source such as a catalytic combustion section to ensure the heat required for the evaporation of the liquid raw material and the steam reforming reaction, and the heat of the heat source is evaporated via a heat medium such as a combustion gas. And the reforming section, respectively. Such a hydrogen generator is described in, for example, Japanese Patent Application Laid-Open No. 2000-154001 and Japanese Translation of PCT International Publication No. 2003-501342.

また、携帯電話又は携帯PC等の小型電子機器の電源として使用可能な燃料電池の研究・開発が近年、実施されており、このような燃料電池に連結可能又は装着可能な燃料容器が、例えば、特開2004−281341号公報に記載されている。この種の燃料容器は、燃料電池の気化部に接続される流出口と、炭化水素系液体原料を収容可能な容器本体とを有する。   In recent years, research and development of a fuel cell that can be used as a power source of a small electronic device such as a mobile phone or a portable PC has been carried out. A fuel container that can be connected to or attached to such a fuel cell is, for example, It describes in Unexamined-Japanese-Patent No. 2004-281341. This type of fuel container has an outlet connected to the vaporization part of the fuel cell, and a container body that can contain a hydrocarbon-based liquid material.

更には、連続気泡発泡体の毛管作用によって炭化水素系液体原料を燃料電池の改質器又は燃料極に輸送することが、特開2005−105129号公報に記載されている。   Further, JP 2005-105129 A discloses that a hydrocarbon-based liquid material is transported to a reformer or a fuel electrode of a fuel cell by the capillary action of an open-cell foam.

しかしながら、メタノールから水素を得るには、メタノール蒸気(或いは、メタノール蒸気及び水蒸気の混合気)を生成する工程と、触媒粒子等を充填した反応器(又は改質器)にメタノール蒸気を導入してメタノールの分解反応(又は水蒸気改質反応)を進行させる工程、即ち、蒸発工程と反応工程との二段階の工程が必要である。このため、従来の水素生成装置は、液体メタノール等の液体原料を給送する給液ポンプと、メタノール蒸気(或いは、メタノール蒸気及び水蒸気の混合気)を生成する蒸発器と、触媒の存在下にメタノールを分解し又は水蒸気改質する反応器とを備えており、この結果、装置サイズが大型化し、或いは、装置構造が複雑化していた。   However, in order to obtain hydrogen from methanol, methanol vapor (or a mixture of methanol vapor and water vapor) is generated and methanol vapor is introduced into a reactor (or reformer) filled with catalyst particles. A process for advancing the decomposition reaction (or steam reforming reaction) of methanol, that is, a two-stage process including an evaporation process and a reaction process is required. For this reason, the conventional hydrogen generator is provided in the presence of a feed pump for feeding a liquid raw material such as liquid methanol, an evaporator for producing methanol vapor (or a mixture of methanol vapor and water vapor), and a catalyst. The reactor is equipped with a reactor for decomposing or steam reforming methanol. As a result, the apparatus size is increased or the apparatus structure is complicated.

また、従来の水素生成装置においては、蒸発器及び反応器に供給する熱を個別に制御し、或いは、蒸発器と反応器との間の熱移動を制御しなければならないことから、複雑な加熱制御手段を設ける必要が生じるのみならず、制御性や熱効率等を改善すべき必要が生じていた。   In addition, in the conventional hydrogen generator, the heat supplied to the evaporator and the reactor must be individually controlled, or the heat transfer between the evaporator and the reactor must be controlled. In addition to the necessity of providing a control means, there is a need to improve controllability and thermal efficiency.

更に、従来の水素生成装置は、比較的大きな容量の蒸発部及び分解・改質部を備えることから、起動時の立ち上がり時間が比較的長く、負荷変動に対する追従性も劣り、このため、初期加熱時間を短縮し、負荷変動に対する応答性を改善することが望まれる。   Furthermore, since the conventional hydrogen generator is provided with a relatively large capacity of the evaporation section and the decomposition / reformation section, the startup time at startup is relatively long and the followability to load fluctuations is inferior. It is desirable to shorten the time and improve the response to load fluctuations.

本発明者は、このような課題を解決すべく、メタノール液等の炭化水素系液体原料の蒸発と、炭化水素の分解又は水蒸気改質反応とを単一工程且つ単一機構で実行可能な水素生成装置及び水素生成方法を特願2008−208075号(特開2009−62269号公報)において提案している。   In order to solve such problems, the present inventor has proposed a hydrogen which can perform evaporation of a hydrocarbon-based liquid raw material such as methanol liquid and hydrocarbon decomposition or steam reforming reaction in a single process and a single mechanism. Japanese Patent Application No. 2008-208075 (Japanese Unexamined Patent Application Publication No. 2009-62269) proposes a generation apparatus and a hydrogen generation method.

特開2000−154001号公報JP 2000-154001 A 特表2003−501342号公報Special table 2003-501342 gazette 特開2004−281341号公報JP 2004-281341 A 特開2005−105129号公報JP 2005-105129 A 特開2009−62269号公報JP 2009-62269 A

本発明者が特開2009−62269号公報(特許文献5)において提案した水素生成装置は、炭化水素の分解反応又は水蒸気改質反応を促す触媒を担持した多孔質体に円形断面の中空部を形成し、この中空部内に発熱体を内装した構造のものである。炭化水素を含む液体原料は、多孔質体の毛管力によって中空部内壁面に向かって流動しながら、多孔質体の細孔内で気化し、炭化水素の分解反応又は水蒸気改質反応が触媒の存在下に細孔内おいて生起する。   The hydrogen generator proposed by the present inventor in Japanese Patent Application Laid-Open No. 2009-62269 (Patent Document 5) has a hollow section with a circular cross section in a porous body supporting a catalyst that promotes a hydrocarbon decomposition reaction or a steam reforming reaction. It is formed and has a structure in which a heating element is housed in the hollow portion. Liquid raw materials containing hydrocarbons vaporize in the pores of the porous body while flowing toward the inner wall surface of the hollow portion by the capillary force of the porous body, and the hydrocarbon decomposition reaction or steam reforming reaction is present in the presence of the catalyst. It occurs in the pores below.

この構成の水素生成装置は、メタノール液等の炭化水素系液体原料の蒸発と、炭化水素の分解又は水蒸気改質反応とを単一工程且つ単一機構で実行することができ、しかも、装置構成の小型化又は簡素化、制御性及び熱効率の改善、初期加熱時間の短縮、負荷変動に対する応答性の改善という点では、所期の目的を達成し得た。   The hydrogen generating apparatus having this configuration can perform evaporation of hydrocarbon liquid raw material such as methanol liquid and hydrocarbon decomposition or steam reforming reaction in a single process and a single mechanism. The objectives could be achieved in terms of miniaturization or simplification, improvement in controllability and thermal efficiency, reduction in initial heating time, and improvement in response to load fluctuations.

しかしながら、この構成の装置では、水素発生量を十分に増大させることができず、水素発生量を所望の如く増大し難いことが本発明者の実験により判明した。これは、多孔質体の毛管作用により過分に多量の液体原料が多孔質体の中空部内壁面に供給されるため、中空部内壁面の湿潤状態が予想以上に維持され、この結果、炭化水素の分解反応又は水蒸気改質反応のための反応域を多孔質体の細孔内に十分に確保し難いことに起因すると考えられる。   However, it has been found by experiments of the present inventor that the amount of hydrogen generation cannot be increased sufficiently in the apparatus having this configuration, and it is difficult to increase the amount of hydrogen generation as desired. This is because an excessive amount of liquid raw material is supplied to the hollow inner wall surface of the porous body due to the capillary action of the porous body, so that the wet state of the inner wall surface of the hollow part is maintained more than expected, resulting in hydrocarbon decomposition. It is considered that this is because it is difficult to sufficiently secure a reaction zone for the reaction or the steam reforming reaction in the pores of the porous body.

本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、炭化水素の分解反応又は水蒸気改質反応を促す触媒を担持した多孔質体を使用して、メタノール液等の炭化水素系液体原料の吸液、給液及び蒸発と、炭化水素の分解又は水蒸気改質反応とを多孔質体内で進行させるとともに、炭化水素の分解又は水蒸気改質反応による水素の発生量を増大することができる水素生成装置及び水素生成方法を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to use a porous material carrying a catalyst that promotes a hydrocarbon decomposition reaction or a steam reforming reaction, and a methanol solution. The amount of hydrogen generated by the hydrocarbon decomposition or steam reforming reaction as well as the liquid absorption, supply and evaporation of hydrocarbon liquid raw materials, etc., and the hydrocarbon decomposition or steam reforming reaction proceed in the porous body. An object of the present invention is to provide a hydrogen generation apparatus and a hydrogen generation method that can increase the amount of hydrogen.

本発明は、上記目的を達成すべく、発熱体を内装した中空部を備え且つ触媒を担持した多孔質体を用い、炭化水素を含む液体原料を細孔の毛管力によって吸液するとともに、前記発熱体の発熱によって前記液体原料を気化し且つ過熱し、触媒の存在下に進行する炭化水素の分解反応又は水蒸気改質反応によって水素を生成する水素生成装置において、
前記発熱体を内装した前記中空部を備え且つ前記触媒を担持した第1多孔質体と、前記第1多孔質体の外面から離間した蒸発面を備え且つ前記液体原料を細孔の毛管力によって前記蒸発面に給液する第2多孔質体とから前記多孔質体を構成し、
第1及び第2多孔質体の間に蒸気流動域を形成したことを特徴とする水素生成装置を提供する。
In order to achieve the above object, the present invention uses a porous body having a hollow portion with a heating element and supporting a catalyst, and absorbs liquid raw material containing hydrocarbons by capillary force of pores, In the hydrogen generation apparatus that vaporizes and superheats the liquid raw material by heat generation of the heating element and generates hydrogen by the hydrocarbon decomposition reaction or steam reforming reaction that proceeds in the presence of the catalyst,
A first porous body having the hollow portion in which the heating element is internally provided and supporting the catalyst; an evaporation surface spaced from an outer surface of the first porous body; and the liquid raw material by capillary force of the pores The porous body is configured from the second porous body that supplies liquid to the evaporation surface,
Provided is a hydrogen generation apparatus characterized in that a vapor flow region is formed between a first porous body and a second porous body.

本発明は又、発熱体を内装した中空部を備え且つ触媒を担持した多孔質体を用い、炭化水素を含む液体原料を細孔の毛管力によって吸液するとともに、前記発熱体の発熱によって前記液体原料を気化し且つ過熱し、触媒の存在下に進行する炭化水素の分解反応又は水蒸気改質反応によって水素を生成する水素生成方法において、
前記発熱体を内装した前記中空部を備え且つ前記触媒を担持した第1多孔質体と、前記第1多孔質体の外面から離間した蒸発面を備え且つ前記液体原料を細孔の毛管力によって前記蒸発面に給液する第2多孔質体とから前記多孔質体を構成するとともに、第1及び第2多孔質体の間に蒸気流動域を画成し、
前記発熱体の発熱によって前記液体原料を前記蒸発面から蒸発させるとともに、前記蒸気流動域から前記第1多孔質体の細孔に流入した前記液体原料の蒸気を前記中空部内に流入させ、該液体原料中の炭化水素の分解反応又は水蒸気改質反応を前記触媒の存在下に進行させて前記中空部内に水素を生成することを特徴とする水素生成方法を提供する。
The present invention also uses a porous body having a hollow portion in which a heating element is housed and supports a catalyst, absorbs a liquid raw material containing hydrocarbons by capillary force of pores, and generates heat by the heating element. In a hydrogen generation method in which liquid raw material is vaporized and heated to generate hydrogen by a hydrocarbon decomposition reaction or steam reforming reaction that proceeds in the presence of a catalyst,
A first porous body having the hollow portion in which the heating element is internally provided and supporting the catalyst; an evaporation surface spaced from an outer surface of the first porous body; and the liquid raw material by capillary force of the pores Constituting the porous body from the second porous body fed to the evaporation surface, and defining a vapor flow region between the first and second porous bodies,
The liquid raw material is evaporated from the evaporation surface by the heat generation of the heating element, and the vapor of the liquid raw material that has flowed into the pores of the first porous body from the vapor flow region is caused to flow into the hollow portion. There is provided a hydrogen generation method characterized in that a hydrocarbon decomposition reaction or a steam reforming reaction in a raw material proceeds in the presence of the catalyst to generate hydrogen in the hollow portion.

本発明の水素生成装置及び水素生成方法よれば、多孔質体は、液体燃料を細孔の毛管力によって蒸発面に給液し且つ蒸発面で気化させる第2多孔質体と、触媒を担持し且つ発熱体を内装した第1多孔質体とから構成され、第1及び第2多孔質体の間には、蒸気流動域が形成される。発熱体の発熱は、第1多孔質体及び蒸気流動域を介して第2多孔質体の蒸発面に作用する。第2多孔質体の毛管力によって第2多孔質体の蒸発面に供給された液体原料は、蒸発面の細孔から蒸発し、蒸気流動域に充満する。蒸気流動域及び中空部の圧力差(全圧差)が発生し、蒸気流動域の蒸気は、この圧力差によって、第2多孔質体の細孔内を流動して中空部内に流入する。第1多孔質体の細孔内では、蒸気に含まれる炭化水素の分解反応又は水蒸気改質反応が触媒の存在下に進行する。この結果、比較的多量の水素を含む合成ガスが第1多孔質体の中空部に発生する。   According to the hydrogen generation apparatus and the hydrogen generation method of the present invention, the porous body carries the catalyst with the second porous body that supplies liquid fuel to the evaporation surface by the capillary force of the pores and vaporizes at the evaporation surface. In addition, the first porous body is provided with a heating element, and a steam flow region is formed between the first and second porous bodies. The heat generated by the heating element acts on the evaporation surface of the second porous body via the first porous body and the steam flow region. The liquid raw material supplied to the evaporation surface of the second porous body by the capillary force of the second porous body evaporates from the pores of the evaporation surface and fills the vapor flow region. A pressure difference (total pressure difference) is generated between the steam flow region and the hollow portion, and the steam in the steam flow region flows through the pores of the second porous body and flows into the hollow portion due to the pressure difference. In the pores of the first porous body, the decomposition reaction or the steam reforming reaction of hydrocarbons contained in the steam proceeds in the presence of the catalyst. As a result, synthesis gas containing a relatively large amount of hydrogen is generated in the hollow portion of the first porous body.

このような構成の水素生成装置及び水素生成方法においては、吸液・給液手段且つ気化手段としての多孔質体と、分解反応又は水蒸気反応のための多孔質体とが別体に分離し、第1多孔質体と第2多孔質体との間に蒸気流動域が形成される。このような構成によれば、第2多孔質体の吸液・給液作用及び気化作用を抑制せず、或いは、これらの作用を促進又は高効率化した状態を保持するにもかかわらず、第1多孔質体の乾燥状態を維持し、炭化水素の分解反応又は水蒸気改質反応を第1多孔質体の細孔内で確実に進行させることができる。このため、本発明の水素生成装置及び水素生成方法によれば、多量の水素を含む合成ガスを中空部内に持続的且つ多量に発生させることができる。   In the hydrogen generation apparatus and the hydrogen generation method having such a configuration, the porous body as the liquid absorption / liquid supply means and the vaporization means and the porous body for the decomposition reaction or the water vapor reaction are separated into separate bodies, A steam flow region is formed between the first porous body and the second porous body. According to such a configuration, the second porous body does not suppress the liquid absorption / liquid supply action and the vaporization action, or the second porous body does not suppress the action or promotes the high efficiency, while maintaining the state of the second porous body. The dry state of the porous body can be maintained, and the hydrocarbon decomposition reaction or the steam reforming reaction can surely proceed in the pores of the first porous body. For this reason, according to the hydrogen generating apparatus and the hydrogen generating method of the present invention, the synthesis gas containing a large amount of hydrogen can be generated continuously and in a large amount in the hollow portion.

また、発熱体の熱は、第1多孔質体及び第2伝熱体に段階的に伝熱する。即ち、発熱体の熱は、第1多孔質体において炭化水素の分解反応又は水蒸気改質反応の反応熱として初期的に消費されるとともに、蒸気の過熱のために消費され、残余の熱は、第2多孔質体において液体原料の気化のための顕熱として消費される。従って、本発明によれば、単一の熱源の熱をカスケード状(段階的又は多段的)に有効利用することができるので、装置全体の熱効率を向上することができる。   The heat of the heating element is transferred stepwise to the first porous body and the second heat transfer body. That is, the heat of the heating element is initially consumed as the reaction heat of the hydrocarbon decomposition reaction or steam reforming reaction in the first porous body, and is also consumed due to steam overheating, and the remaining heat is It is consumed as sensible heat for vaporizing the liquid raw material in the second porous body. Therefore, according to the present invention, the heat of a single heat source can be effectively used in cascade (stepwise or multistage), so that the thermal efficiency of the entire apparatus can be improved.

更に、本発明によれば、給液ポンプ等の設置を省略することができるので、装置構成を小型化し且つ簡素化することができる。また、本発明によれば、発熱体の制御のみによって水素の発生を制御し得るので、極めて制御性が良い。加えて、上記構成の水素発生装置では、発熱体の発熱後、極めて迅速に水素が発生し、発熱体の発熱停止後、極めて迅速に水素の発生が停止する。従って、本発明によれば、初期加熱時間を短縮するとともに、負荷変動に対する応答性を改善することができる。   Furthermore, according to the present invention, installation of a liquid supply pump or the like can be omitted, so that the apparatus configuration can be reduced in size and simplified. In addition, according to the present invention, the generation of hydrogen can be controlled only by controlling the heating element, so the controllability is very good. In addition, in the hydrogen generator configured as described above, hydrogen is generated very quickly after the heating element is heated, and generation of hydrogen is stopped very quickly after the heating element is stopped. Therefore, according to the present invention, the initial heating time can be shortened and the responsiveness to load fluctuation can be improved.

本発明の水素生成装置及び水素生成方法によれば、炭化水素の分解反応又は水蒸気改質反応を促す触媒を担持した多孔質体を使用して、メタノール液等の炭化水素系液体原料の吸液、給液及び蒸発と、炭化水素の分解又は水蒸気改質反応とを多孔質体内で進行させるとともに、炭化水素の分解又は水蒸気改質反応による水素の発生量を増大することができる。   According to the hydrogen generating apparatus and the hydrogen generating method of the present invention, a liquid-absorbing liquid hydrocarbon material such as a methanol liquid is used by using a porous body supporting a catalyst that promotes a hydrocarbon decomposition reaction or a steam reforming reaction. In addition, the liquid supply and evaporation and the hydrocarbon decomposition or steam reforming reaction can proceed in the porous body, and the amount of hydrogen generated by the hydrocarbon decomposition or steam reforming reaction can be increased.

また、本発明の上記構成によれば、蒸発及び反応のための工程及び機構の単一化により、装置構成の小型化又は簡素化、加熱制御手段の簡素化又は部分的省略、制御性及び熱効率の改善、初期加熱時間の短縮、負荷変動に対する応答性の改善等を可能にする水素生成装置及び水素生成方法を提供することができる。   In addition, according to the above-described configuration of the present invention, by simplifying the process and mechanism for evaporation and reaction, the apparatus configuration can be downsized or simplified, the heating control means can be simplified or partially omitted, controllability, and thermal efficiency. It is possible to provide a hydrogen generation apparatus and a hydrogen generation method that can improve the process, shorten the initial heating time, improve the response to load fluctuations, and the like.

本発明を適用した水素生成装置の第1及び第2実施例を示す斜視図である。It is a perspective view which shows the 1st and 2nd Example of the hydrogen generator to which this invention is applied. 図1に示す水素生成装置の縦断面図である。It is a longitudinal cross-sectional view of the hydrogen generator shown in FIG. 図1に示す水素生成装置の横断面図である。It is a cross-sectional view of the hydrogen generator shown in FIG. 多孔質体及び発熱体の構造を示す水素生成装置の部分拡大断面図である。It is a partial expanded sectional view of the hydrogen generator which shows the structure of a porous body and a heating element. 第1多孔質体の内周壁面と発熱体との接触部の構成を示す水素生成装置の部分拡大断面図である。It is a partial expanded sectional view of the hydrogen generator which shows the composition of the contact part of the inner peripheral wall surface of the 1st porous body, and a heating element. 図1〜図5に示す水素生成装置を用いた水素生成実験の実験結果を示す線図、斜視図及び正面図である。FIG. 6 is a diagram, a perspective view, and a front view showing an experimental result of a hydrogen generation experiment using the hydrogen generator shown in FIGS. 液体を封入可能な密封構造の可搬式ケーシングを有する水素生成装置の実施例(第3実施例)を示す縦断面図及び横断面図である。It is the longitudinal cross-sectional view and horizontal cross-sectional view which show the Example (3rd Example) of the hydrogen generator which has the portable casing of the sealing structure which can enclose a liquid. 液体を封入可能な密封構造の可搬式ケーシングを有する他の水素生成装置の実施例(第4実施例)を示す縦断面図及び横断面図である。It is the longitudinal cross-sectional view which shows the Example (4th Example) of the other hydrogen generating apparatus which has the portable casing of the sealing structure which can enclose a liquid. 図8に示す水素生成装置の変形例(実施例5)を示す縦断面図及び横断面図である。It is the longitudinal cross-sectional view and horizontal cross-sectional view which show the modification (Example 5) of the hydrogen generator shown in FIG.

本発明の好適な実施形態において、原料炭化水素は、メタノール、ジメチルエーテル、2−プロパノール又はシクロヘキサンであり、触媒は、白金(Pt)、コバルト、亜鉛、銅、鉄、ニッケル、クロム、パラジウム、ロジウム等の金属又はその酸化物である。好ましくは、第1多孔質体は、全体的に円筒形の外形を有し、発熱体を収容する円形断面の中空部を備えており、第2多孔質体は、第1多孔質体を収容可能な円形断面の内孔を有する。更に好ましくは、発熱体は、中空部の内周面に接し又は近接し且つ軸芯を中空部の軸線方向に配向したコイル状電熱体からなる。コイル状電熱体は、加熱時に径方向に熱膨張し、中空部の内周面との接触状態又は近接状態を維持する。所望により、複数の中空部を多孔質体に形成し、各中空部に発熱体を内装しても良い。コイル状電熱体として、通電時に発熱する円形断面のコイル状ニクロム線又はカンタル線を好適に使用し得る。中空部内周面と発熱体との接触部分の熱流束は、例えば、1MW/m2以上に設定される。 In a preferred embodiment of the present invention, the raw material hydrocarbon is methanol, dimethyl ether, 2-propanol, or cyclohexane, and the catalyst is platinum (Pt), cobalt, zinc, copper, iron, nickel, chromium, palladium, rhodium, or the like. Or an oxide thereof. Preferably, the first porous body has a cylindrical outer shape as a whole, and has a hollow section having a circular cross section for accommodating the heating element, and the second porous body accommodates the first porous body. It has an inner hole with a possible circular cross section. More preferably, the heating element is made of a coil-shaped electric heating element which is in contact with or close to the inner peripheral surface of the hollow portion and whose axis is oriented in the axial direction of the hollow portion. The coiled electric heating element thermally expands in the radial direction during heating, and maintains a contact state or proximity state with the inner peripheral surface of the hollow portion. If desired, a plurality of hollow portions may be formed in a porous body, and a heating element may be provided in each hollow portion. As the coiled electric heating body, a coiled nichrome wire or Kanthal wire having a circular cross section that generates heat when energized can be suitably used. The heat flux at the contact portion between the inner circumferential surface of the hollow portion and the heating element is set to 1 MW / m 2 or more, for example.

本発明の更に好適な実施形態によれば、第1多孔質体は、軸線方向に熱収縮・熱膨張可能に第2多孔質体によって支承され、水素を含む合成ガスを中空部から送出する合成ガス送出管が第1多孔質体に連結される。所望により、分解反応又は水蒸気改質反応用の触媒を中空部内に更に配置しても良い。中空部は、発熱体の発熱によって高温雰囲気を維持するので、中空部を流動する合成ガスに含まれる未反応の炭化水素は、触媒の存在下に中空部内で更に分解反応し又は水蒸気改質反応し、更に多量の水素を含む合成ガスが中空部に生成する。中空部の触媒は、例えば、発熱体を構成する電熱コイルのコイル表面に付着又は添着される。   According to a further preferred embodiment of the present invention, the first porous body is supported by the second porous body so as to be capable of thermal contraction and expansion in the axial direction, and the synthesis gas containing hydrogen is delivered from the hollow portion. A gas delivery tube is connected to the first porous body. If desired, a catalyst for decomposition reaction or steam reforming reaction may be further disposed in the hollow portion. Since the hollow portion maintains a high temperature atmosphere due to the heat generated by the heating element, unreacted hydrocarbons contained in the synthesis gas flowing through the hollow portion are further decomposed or steam reformed in the hollow portion in the presence of the catalyst. Further, synthesis gas containing a large amount of hydrogen is generated in the hollow portion. For example, the catalyst in the hollow portion is attached or attached to the coil surface of the electric heating coil constituting the heating element.

本発明の他の好適な実施形態によれば、発熱体を中空部に内装した多孔質体は、液体を封入可能な密封構造の可搬式又は携帯式ケーシング内に収容され、ケーシングは、中空部に連通する送出管の部分を燃料電池の燃料供給部に連結することにより、燃料電池に連結される。所望により、合成ガスは、一酸化炭素(CO)を除去するCO除去手段を介して燃料電池の燃料供給部に供給される。   According to another preferred embodiment of the present invention, the porous body in which the heating element is housed in the hollow portion is accommodated in a portable or portable casing having a sealed structure capable of enclosing a liquid, and the casing includes the hollow portion. The portion of the delivery pipe that communicates with the fuel cell is connected to the fuel supply portion of the fuel cell, thereby being connected to the fuel cell. If desired, the synthesis gas is supplied to the fuel supply section of the fuel cell via a CO removal means for removing carbon monoxide (CO).

液体原料を充填した複数の可搬式又は携帯式ケーシングを予め用意することにより、ケーシング単位で液体原料を適切な時期に供給することができる。これは、燃料電池に対する水素の連続供給を実質的に可能にする。また、このようなケーシングを規格・標準化することにより、携帯電話又は携帯PC等の小型電子機器用燃料電池に水素を供給し得る携帯式の水素供給カセット又は水素供給ユニット等を設計することが可能となる。   By preparing in advance a plurality of portable or portable casings filled with a liquid material, the liquid material can be supplied at an appropriate time in units of casings. This substantially enables a continuous supply of hydrogen to the fuel cell. In addition, by standardizing and standardizing such casings, it is possible to design portable hydrogen supply cassettes or hydrogen supply units that can supply hydrogen to fuel cells for small electronic devices such as mobile phones or portable PCs. It becomes.

本発明の或る実施形態においては、水素生成装置は、発熱体を通電発熱させる電力供給装置を含む。好適には、電力供給装置は、発熱体に通電すべき電力の電圧値又は電流値を制御して発熱体の発熱量を制御する発熱体制御手段を有する。   In one embodiment of the present invention, the hydrogen generator includes a power supply device that energizes and heats the heating element. Preferably, the power supply device includes a heating element control unit that controls a voltage value or a current value of electric power to be supplied to the heating element to control a heat generation amount of the heating element.

図1は、本発明を適用した水素生成装置の第1実施例を示す斜視図であり、図2及び図3は、図1に示す水素生成装置の縦断面図及び横断面図である。   FIG. 1 is a perspective view showing a first embodiment of a hydrogen generator to which the present invention is applied, and FIGS. 2 and 3 are a longitudinal sectional view and a transverse sectional view of the hydrogen generator shown in FIG.

水素生成装置1は、液浴Wを収容する液槽5と、液槽5内の液浴Wに下部を浸漬した複式構成(二部品構成)の多孔質体6と、多孔質体6の中空部7に内装したコイル状発熱体8とから構成される。中空部7の下流端が合成ガス送出口7aとして多孔質体6の端面に位置決めされる。中空部7の上流側部分は、多孔質体6内の閉塞端7bにおいて終端する。合成ガス送出管3の上流端が合成ガス送出口7aに接続される。合成ガス送出管3は、CO除去手段等(図示せず)を介して、比較的多量の水素を含む合成ガスSを燃料電池の燃料供給部等(図示せず)に供給する。水素生成装置1は、大気又は外界雰囲気から完全に遮蔽された装置内に収容され、或いは、空気又は酸素の供給を完全に遮断された装置内領域に配置される。所望により、水素生成装置1は、液槽5、多孔質体6及びその周囲領域を外界雰囲気から遮断する上部カバー50(二点鎖線で示す)を備え、大気開放空間に配置可能な構造を有する。   The hydrogen generator 1 includes a liquid tank 5 that contains a liquid bath W, a porous body 6 having a dual structure (two-part configuration) in which a lower part is immersed in the liquid bath W in the liquid tank 5, and a hollow porous body 6. The coil-like heating element 8 is provided in the part 7. The downstream end of the hollow portion 7 is positioned on the end face of the porous body 6 as the synthesis gas outlet 7a. The upstream portion of the hollow portion 7 terminates at the closed end 7 b in the porous body 6. The upstream end of the synthesis gas delivery pipe 3 is connected to the synthesis gas delivery port 7a. The synthesis gas delivery pipe 3 supplies a synthesis gas S containing a relatively large amount of hydrogen to a fuel supply unit or the like (not shown) of the fuel cell via a CO removing means or the like (not shown). The hydrogen generator 1 is accommodated in a device that is completely shielded from the atmosphere or the ambient atmosphere, or is disposed in a region in the device that is completely shut off from the supply of air or oxygen. If desired, the hydrogen generator 1 includes a liquid tank 5, a porous body 6, and an upper cover 50 (shown by a two-dot chain line) that blocks the surrounding area from the outside atmosphere, and has a structure that can be arranged in an open space. .

全長に亘って均一な直径を有する真円形断面の流体通路が、中空部7によって多孔質体6内に形成される。発熱体8が中空部7内に内装される。発熱体8は、概ね全周に亘って中空部7の内周壁面に接し又は密着した円形断面のコイル状ニクロム線又はカンタル線からなり、通電時に発熱する。発熱体8には、リード線15が接続される。各リード線15の端子16には、電流供給装置20の通電配線17が接続される。電流供給装置20は、給電線18を介して交流電源(AC100V)19に接続される。電流供給装置20は、電圧調整器22、電流計23及び電圧計24を含む電源回路を有し、電圧調整した電力を発熱体8に供給して、発熱体8を発熱させる。   A perfectly circular fluid passage having a uniform diameter over the entire length is formed in the porous body 6 by the hollow portion 7. A heating element 8 is housed inside the hollow portion 7. The heating element 8 is composed of a coiled nichrome wire or Kanthal wire having a circular cross section that is in contact with or in close contact with the inner peripheral wall surface of the hollow portion 7 over the entire circumference, and generates heat when energized. A lead wire 15 is connected to the heating element 8. An energization wiring 17 of the current supply device 20 is connected to the terminal 16 of each lead wire 15. The current supply device 20 is connected to an AC power supply (AC100V) 19 via a feeder line 18. The current supply device 20 includes a power supply circuit including a voltage regulator 22, an ammeter 23, and a voltmeter 24, and supplies the electric power adjusted in voltage to the heating element 8 to cause the heating element 8 to generate heat.

メタノール液供給装置25が、液槽5と関連して水素生成装置1に設けられる。メタノール液供給装置25は、供給管28を介してメタノール液Lを液槽5内に供給し、メタノール液Lの液浴Wが液槽5内に貯留される。所望により、メタノール液供給装置25は、液槽5内のメタノール液Lの液量を検出する液面レベル検出手段(図示せず)を有し、メタノール液Lの液面レベル低下と関連してメタノール液Lを液槽5に適宜補給するように構成される。   A methanol liquid supply device 25 is provided in the hydrogen generator 1 in association with the liquid tank 5. The methanol liquid supply device 25 supplies the methanol liquid L into the liquid tank 5 through the supply pipe 28, and the liquid bath W of the methanol liquid L is stored in the liquid tank 5. If desired, the methanol liquid supply device 25 has a liquid level detecting means (not shown) for detecting the liquid level of the methanol liquid L in the liquid tank 5, and is associated with a decrease in the liquid level of the methanol liquid L. It is comprised so that the methanol liquid L may be suitably supplied to the liquid tank 5. FIG.

図3に示すように、多孔質体6は、触媒を担持した第1多孔質体61と、第1多孔質体61の外側に配置された第2多孔質体62とから構成される。第1多孔質体61は、均一な真円形断面の内周壁面63及び外周壁面64を備えた円筒形輪郭を有する。第2多孔質体62は、全体的に直方体の外形を有し、第2多孔質体62を貫通する内孔を中心部に備えており、内孔は、均一な真円形断面の内周壁面65を形成する。内周壁面63、外周壁面64及び内周壁面65は、第1多孔質体61の中心軸線Cに対して同心状に配置される。第1及び第2多孔質体61、62は離間しており、蒸気流動域66が外周壁面64と内周壁面65との間に形成される。   As shown in FIG. 3, the porous body 6 includes a first porous body 61 that supports a catalyst and a second porous body 62 that is disposed outside the first porous body 61. The first porous body 61 has a cylindrical outline with an inner peripheral wall surface 63 and an outer peripheral wall surface 64 having a uniform true circular cross section. The second porous body 62 has a generally rectangular parallelepiped outer shape, and has an inner hole penetrating the second porous body 62 at the center, and the inner hole has an inner wall surface with a uniform true circular cross section. 65 is formed. The inner peripheral wall surface 63, the outer peripheral wall surface 64, and the inner peripheral wall surface 65 are disposed concentrically with respect to the central axis C of the first porous body 61. The first and second porous bodies 61 and 62 are separated from each other, and a steam flow region 66 is formed between the outer peripheral wall surface 64 and the inner peripheral wall surface 65.

図2に示すように、第2多孔質体61の上流側端部は、閉塞栓67によって気密に閉塞される。耐熱性複合板71、72が、耐熱性無機接着剤73によって第2多孔質体62の各端面に接着される。耐熱性複合板71、72は、多孔質板71a、72a、シリコンラバーシート71b、72b及び多孔質板71c、72cを積層した構成を有する。なお、耐熱性無機接着剤73として、例えば、東亞合成株式会社製品「アロンセラミック」(登録商標)を好適に使用し得る。   As shown in FIG. 2, the upstream end portion of the second porous body 61 is airtightly closed by the closing plug 67. The heat resistant composite plates 71 and 72 are bonded to each end face of the second porous body 62 by the heat resistant inorganic adhesive 73. The heat-resistant composite plates 71 and 72 have a configuration in which porous plates 71a and 72a, silicon rubber sheets 71b and 72b, and porous plates 71c and 72c are laminated. As the heat-resistant inorganic adhesive 73, for example, “Aron Ceramic” (registered trademark) manufactured by Toagosei Co., Ltd. can be suitably used.

合成ガス送出管3の上流側端部が、耐熱性複合板71の円形開口部を貫通し、第1多孔質体61の下流側端部(合成ガス送出口7a)に気密に接続される。第1多孔質体61の下流側端部の外周部は、耐熱性無機接着剤69によって耐熱性複合板71に接合される。第1多孔質体61の上流側端部は、外周壁面64から径方向外方に一体的に膨出したスペーサ68を有する。第1及び第2多孔質体61、62の相互離間距離がスペーサ68によって確保される。第1多孔質体61は、スペーサ68によって軸線方向に熱収縮・熱膨張可能に内周壁面65に支承される。スペーサ68は、上記耐熱性無機接着剤の固化物、或いは、セラミック製又は金属製の成形品からなる。   The upstream end of the synthesis gas delivery pipe 3 passes through the circular opening of the heat resistant composite plate 71 and is airtightly connected to the downstream end of the first porous body 61 (synthesis gas delivery port 7a). The outer peripheral portion of the downstream end portion of the first porous body 61 is joined to the heat resistant composite plate 71 by a heat resistant inorganic adhesive 69. The upstream end portion of the first porous body 61 has a spacer 68 that bulges integrally outward in the radial direction from the outer peripheral wall surface 64. The spacer 68 secures the distance between the first and second porous bodies 61 and 62. The first porous body 61 is supported on the inner peripheral wall surface 65 by a spacer 68 so as to be capable of thermal contraction and thermal expansion in the axial direction. The spacer 68 is made of a solidified product of the heat-resistant inorganic adhesive or a molded product made of ceramic or metal.

一般に、含水多孔質体に高温物体を接近させると、多孔質体の表面において液体が急激に気化する。多孔質体の表面の液が蒸発によって減少すると、多孔質体の毛管力によって自動的に多孔質体表面に液体が供給されるので、多孔質体表面の液枯れは生じ難い。水素生成装置1は、このような原理を応用したものであり、優れた制御性及び応答性を有し、急峻な装置起動性、メタノール液蒸発の俊敏性、水素生成の迅速性等の諸性能を発揮する。   In general, when a high-temperature object is brought close to the hydrous porous body, the liquid rapidly vaporizes on the surface of the porous body. When the liquid on the surface of the porous body is reduced by evaporation, the liquid is automatically supplied to the surface of the porous body by the capillary force of the porous body. The hydrogen generation apparatus 1 is an application of such a principle, has excellent controllability and responsiveness, and has various performances such as abrupt apparatus start-up performance, agility of methanol liquid evaporation, and rapid hydrogen generation. Demonstrate.

図4は、多孔質体6及び発熱体8の構造を示す水素生成装置の部分拡大断面図である。図4において、第2多孔質体62は、部分的に示されている。図5は、第1多孔質体61の内周壁面63と発熱体8との接触部を示す水素生成装置の部分拡大断面図である。   FIG. 4 is a partially enlarged sectional view of the hydrogen generator showing the structure of the porous body 6 and the heating element 8. In FIG. 4, the second porous body 62 is partially shown. FIG. 5 is a partial enlarged cross-sectional view of the hydrogen generator showing a contact portion between the inner peripheral wall surface 63 of the first porous body 61 and the heating element 8.

多数の連通空隙を有し、耐熱性及び電気絶縁性を備えたセラミックス成形体を第1及び第2多孔質体61、62として好ましく使用し得る。第1及び第2多孔質体61、62の多数の連通空隙は、毛管力による吸液作用及び給液作用を発揮する多数の細孔30、32を構成する。図4及び図5には、第1及び第2多孔質体61、62の細孔30、32が模式的に示されている。   A ceramic molded body having a large number of communicating voids and having heat resistance and electrical insulation can be preferably used as the first and second porous bodies 61 and 62. A large number of communication gaps of the first and second porous bodies 61 and 62 constitute a large number of pores 30 and 32 that exhibit a liquid absorption action and a liquid supply action by capillary force. 4 and 5 schematically show the pores 30 and 32 of the first and second porous bodies 61 and 62.

例えば、第1及び第2多孔質体61、62は、市販の耐熱断熱レンガ(形式C1、イソライト工業株式会社製品、主成分:SiO2 55%、Al2O3 41%、有効熱伝導率:0.44 [W/(m・K)])の加工成形品からなり、平均細孔径=7μm、モード径=18μm、空隙率=56%の物性を有する。第2多孔質体62は、幅50mm×高さ50mm×長さ120mmの外形寸法を有する直方体に加工成形される。第1多孔質体61は、直径(D1)=8mmの中空部7を有する肉厚2mmの円筒体に加工成形される。直径(J1)=0.35mmのカンタル線が発熱体8として螺旋状に中空部7に配設される。カンタル線は、図4に示す如く、内周壁面63に密接又は密着するように配置される。カンタル線は、1.1mの全長を有し、カンタル線のピッチ間隔(J2)は、約2.5mmに設定され、カンタル線の巻数は、約40巻に設定される。発熱体8の線径(J1)と、発熱体8のピッチ間隔(J2)との比は、例えば、1/3〜1/10の範囲に設定される。 For example, the first and second porous bodies 61 and 62 are commercially available heat-resistant insulating bricks (type C1, Isolite Industrial Co., Ltd., main components: SiO 2 55%, Al 2 O 3 41%, effective thermal conductivity: 0.44 [W / (m · K)]) and has physical properties of average pore diameter = 7 μm, mode diameter = 18 μm, porosity = 56%. The second porous body 62 is processed and formed into a rectangular parallelepiped having outer dimensions of width 50 mm × height 50 mm × length 120 mm. The first porous body 61 is processed and formed into a cylindrical body having a thickness of 2 mm and a hollow portion 7 having a diameter (D1) = 8 mm. A Kanthal wire having a diameter (J1) = 0.35 mm is spirally disposed in the hollow portion 7 as a heating element 8. As shown in FIG. 4, the Kanthal line is disposed so as to be in close contact with or in close contact with the inner peripheral wall surface 63. The Kanthal line has a total length of 1.1 m, the pitch interval (J2) of the Kanthal line is set to about 2.5 mm, and the number of turns of the Kanthal line is set to about 40 turns. The ratio between the wire diameter (J1) of the heating element 8 and the pitch interval (J2) of the heating element 8 is set, for example, in the range of 1/3 to 1/10.

第2多孔質体62は、直径(D2)=20mmの内孔を有し、内孔は、内周壁面65を形成する。多孔質体6は、図3に示す如く、少なくとも部分的に液浴Wのメタノール液Lに浸漬され、メタノール液Lは、図3に矢印で示す如く、第2多孔質体62の毛管作用によって吸い上げられ、内周壁面65に向かって第2多孔質体62の細孔30(図4)内を流動する。発熱体8の熱H(図5)は、発熱体8と接触した第1多孔質体61に伝熱し、第1多孔質体61の外周壁面64を加熱する。外周壁面64の熱は、蒸気流動域66に生じる対流伝熱及び輻射伝熱の作用により、第1多孔質体62の内周壁面65に伝熱し、内周壁面65の温度を上昇させる。   The second porous body 62 has an inner hole with a diameter (D2) = 20 mm, and the inner hole forms an inner peripheral wall surface 65. As shown in FIG. 3, the porous body 6 is at least partially immersed in the methanol liquid L of the liquid bath W. The methanol liquid L is caused by the capillary action of the second porous body 62 as shown by the arrows in FIG. Sucked up and flows in the pores 30 (FIG. 4) of the second porous body 62 toward the inner peripheral wall surface 65. The heat H (FIG. 5) of the heating element 8 is transferred to the first porous body 61 in contact with the heating element 8 and heats the outer peripheral wall surface 64 of the first porous body 61. The heat of the outer peripheral wall surface 64 is transferred to the inner peripheral wall surface 65 of the first porous body 62 by the action of convective heat transfer and radiant heat transfer generated in the steam flow region 66, and raises the temperature of the inner peripheral wall surface 65.

第2多孔質体62の細孔30は、図4(B)及び図4(C)に模式的に示す如く、内周壁面65において開口する。メタノール液Lは、メタノール液Lの液面4が表面張力により湾曲し、メニスカスMを開口部31の縁に形成する。メニスカスMは、薄い液膜として開口部31の全周に形成される。上記の如く、内周壁面65は、第1多孔質体61の熱輻射及び蒸気流動域66の対流伝熱により発熱体8の熱を受熱する。内周壁面65の熱は、メタノール液Lに伝熱してメニスカスMのメタノール液Lを加熱する。メニスカスMのメタノール液Lは又、第1多孔質体61の輻射熱を受熱して加熱される。メニスカスMは、細孔30の出口の縁部に位置する微小質量の液又は薄い液膜であることから、その熱容量は極めて小さく、従って、メニスカスMの液又は液膜は、内周壁面65の近傍の第2多孔質体62の部分との伝熱接触及び第1多孔質体61の輻射熱によって瞬時且つ急激に気化する。メタノール液Lの気化によって生成したメタノール蒸気Vが、図4(A)及び図4(B)に破線の矢印で示す如く、開口部31から蒸気流動域66に流出する。第2多孔質体62は、図3に示す如く、メタノール液Lの気化に相応して液浴Wのメタノール液Lを吸い上げ、メニスカスMに給液するので、メタノール液Lの気化が持続し、メタノール蒸気Vは、持続的に蒸気流動域66に流出する。   The pores 30 of the second porous body 62 open in the inner peripheral wall surface 65 as schematically shown in FIGS. 4 (B) and 4 (C). In the methanol liquid L, the liquid level 4 of the methanol liquid L is curved by the surface tension, and a meniscus M is formed at the edge of the opening 31. The meniscus M is formed as a thin liquid film all around the opening 31. As described above, the inner peripheral wall surface 65 receives the heat of the heating element 8 by the heat radiation of the first porous body 61 and the convective heat transfer of the steam flow region 66. The heat of the inner peripheral wall surface 65 is transferred to the methanol liquid L to heat the methanol liquid L of the meniscus M. The methanol liquid L of the meniscus M is also heated by receiving the radiant heat of the first porous body 61. Since the meniscus M is a minute mass liquid or thin liquid film located at the edge of the outlet of the pore 30, its heat capacity is extremely small. Therefore, the liquid or liquid film of the meniscus M is formed on the inner peripheral wall 65. Vaporization occurs instantaneously and rapidly due to heat transfer contact with the adjacent second porous body 62 and radiant heat of the first porous body 61. The methanol vapor V generated by the vaporization of the methanol liquid L flows out from the opening 31 to the vapor flow region 66 as shown by broken arrows in FIGS. 4 (A) and 4 (B). As shown in FIG. 3, the second porous body 62 sucks up the methanol liquid L in the liquid bath W according to the vaporization of the methanol liquid L and supplies it to the meniscus M, so that the vaporization of the methanol liquid L continues. The methanol vapor V continuously flows out to the vapor flow zone 66.

液面4からのメタノール液Lの蒸発により蒸気流動域66の全圧が上昇し、蒸気流動域66と中空部7との差圧が増大する。蒸気流動域66のメタノール蒸気Vは、第1多孔質体61の細孔32(図5)を流通して中空部7に流入する。   Evaporation of the methanol liquid L from the liquid level 4 increases the total pressure in the steam flow region 66, and the differential pressure between the steam flow region 66 and the hollow portion 7 increases. The methanol vapor V in the vapor flow region 66 flows through the pores 32 (FIG. 5) of the first porous body 61 and flows into the hollow portion 7.

図5には、第1多孔質体61と発熱体8との接触部分の構成が拡大して示されている。図5に模式的に示すように、多孔質体6は、多数の触媒2を有する。触媒2は、メタノール分解反応用の粒子状触媒、或いは、アルミナ等の触媒担体に担持した担持型触媒からなる。白金(Pt)、コバルト、亜鉛、銅、鉄、ニッケル、クロム、パラジウム、ロジウム等の金属又はその酸化物を触媒2として好適に使用し得る。   FIG. 5 shows an enlarged configuration of the contact portion between the first porous body 61 and the heating element 8. As schematically shown in FIG. 5, the porous body 6 has a large number of catalysts 2. The catalyst 2 is a particulate catalyst for methanol decomposition reaction or a supported catalyst supported on a catalyst carrier such as alumina. A metal such as platinum (Pt), cobalt, zinc, copper, iron, nickel, chromium, palladium, rhodium, or an oxide thereof can be suitably used as the catalyst 2.

例えば、200kW/m2以上の大きな平均表面熱流束が得られるように発熱体8を通電発熱させると、発熱体8の表面温度は、500℃以上、例えば、700℃に達する。発熱体8の熱Hは、固体熱伝導により第1多孔質体61に伝熱するとともに、熱輻射により細孔32内の雰囲気を加熱する。このため、細孔32内には、250〜300℃程度の高温雰囲気の反応域9が形成される。 For example, when the heating element 8 is energized and heated so that a large average surface heat flux of 200 kW / m 2 or more is obtained, the surface temperature of the heating element 8 reaches 500 ° C. or more, for example, 700 ° C. The heat H of the heating element 8 is transferred to the first porous body 61 by solid heat conduction and heats the atmosphere in the pores 32 by heat radiation. For this reason, a reaction zone 9 having a high temperature atmosphere of about 250 to 300 ° C. is formed in the pores 32.

触媒2は、開口部33に向かって反応域9内を流動するメタノール蒸気Vに接触する適当な密度に分布しており、メタノール蒸気Vは、メタノール分解反応用触媒の存在下に分解反応し(CH3OH→CO+2H2)、水素及び一酸化炭素を含む合成ガスSが反応域9に生成する。合成ガスSは、開口部31から中空部7に流出し、合成ガス送出管3を介して燃料電池の燃料供給部等(図示せず)に供給される。なお、一酸化炭素(CO)は燃料電池電極の被毒原因になるので、合成ガスSは、望ましくは、CO除去手段を介して燃料電池の燃料供給部に供給される。 The catalyst 2 is distributed at an appropriate density in contact with the methanol vapor V flowing in the reaction zone 9 toward the opening 33, and the methanol vapor V undergoes a decomposition reaction in the presence of a methanol decomposition reaction catalyst ( CH 3 OH → CO + 2H 2 ), synthesis gas S containing hydrogen and carbon monoxide is produced in the reaction zone 9. The synthesis gas S flows out from the opening 31 into the hollow portion 7 and is supplied to the fuel supply portion or the like (not shown) of the fuel cell via the synthesis gas delivery pipe 3. Since carbon monoxide (CO) causes poisoning of the fuel cell electrode, the synthesis gas S is desirably supplied to the fuel supply unit of the fuel cell via the CO removal means.

発熱体8は、第1多孔質体61及び反応域9を加熱するのみならず、中空部7内の雰囲気をも加熱する。所望により、触媒2と同様のメタノール分解反応用触媒が、発熱体8の電熱コイル表面に付着又は添着される。中空部7内の高温雰囲気を流動する合成ガスS中の未反応メタノールは、発熱体8の近傍を流動する際に触媒の存在下に分解し(CH3OH→CO+2H2)、更に多量の水素及び一酸化炭素を含む合成ガスSが、合成ガス送出管3を介して燃料電池の燃料供給部等(図示せず)に供給される。 The heating element 8 not only heats the first porous body 61 and the reaction zone 9 but also heats the atmosphere in the hollow portion 7. If desired, a catalyst for methanol decomposition reaction similar to the catalyst 2 is attached or attached to the surface of the heating coil of the heating element 8. Unreacted methanol in the synthesis gas S flowing in the high-temperature atmosphere in the hollow portion 7 decomposes in the presence of a catalyst when flowing in the vicinity of the heating element 8 (CH 3 OH → CO + 2H 2 ), and a larger amount The synthesis gas S containing hydrogen and carbon monoxide is supplied to a fuel supply unit or the like (not shown) of the fuel cell via the synthesis gas delivery pipe 3.

図6は、上記構成の水素生成装置1を用いた水素生成実験の実験結果を示す線図、斜視図及び正面図である。   FIG. 6 is a diagram, a perspective view, and a front view showing an experimental result of a hydrogen generation experiment using the hydrogen generator 1 having the above configuration.

本発明者は、ヘキサクロロ白金(IV)酸6水和物(塩化白金酸6水和物)(H2PtCL6・6H2O)を蒸留水に溶かし、前述の耐熱断熱レンガ(形式C1、イソライト工業株式会社製品)を円筒形に加工成形した多孔質体(外径(d5)=12mm、肉厚2mm)をこの水溶液に浸漬した後、乾燥させ、しかる後、ヘキサクロロ白金(IV)酸6水和物を水素ガスによって還元させ、これにより、第1多孔質体61を製作した。本発明者は又、図6(B)に示す如く、直径(d4)=20mmの内孔を穿設した幅(d1)=50mm、高さ(d2) =50mm、奥行(d3)=50mmの多孔質ブロック(前述の耐熱断熱レンガ(形式C1、イソライト工業株式会社製品)の加工成形品)を第2多孔質体62として用意し、カンタル線からなるコイル状発熱体8を内装した第1多孔質体61を第2多孔質体62の内孔に挿入した。本発明者は更に、図2に示すように、合成ガス送出管3、閉塞栓67、スペーサ68、耐熱性無機接着剤69、73及び耐熱性複合板71、72を第1及び第2多孔質体61、62及び発熱体8に組み付け、上部カバー50を有する液槽5内のメタノール液の液浴Wに第2多孔質体62を浸漬するとともに、図2に示すように発熱体8を電流供給装置20に接続し、発熱体8に電圧を印加し、発熱体8を発熱させた。液浴Wのメタノール液は、図3に矢印で示す如く、毛細管現象によって第2多孔質体62に吸い上げられ、急峻なメタノール液の蒸発現象が、内周壁面65に発生するとともに、水素を含む合成ガスSが中空部7内に発生した。 The present inventor dissolved hexachloroplatinic (IV) acid hexahydrate (chloroplatinic acid hexahydrate) (H 2 PtCL 6 · 6H 2 O) in distilled water, and the above heat-resistant insulating brick (form C1, Isolite) A porous body (outer diameter (d5) = 12 mm, wall thickness 2 mm) processed and molded into a cylindrical shape is dipped in this aqueous solution, dried, and then hexachloroplatinic (IV) acid 6 water The Japanese product was reduced with hydrogen gas, whereby the first porous body 61 was manufactured. As shown in FIG. 6B, the present inventor also has a width (d1) = 50 mm, a height (d2) = 50 mm, and a depth (d3) = 50 mm in which an inner hole having a diameter (d4) = 20 mm is drilled. A porous block (processed molded product of the above heat-resistant and heat-insulating brick (type C1, manufactured by Isolite Industry Co., Ltd.)) is prepared as the second porous body 62, and the first porous body is provided with a coil-shaped heating element 8 made of Kanthal wire. The material 61 was inserted into the inner hole of the second porous body 62. As shown in FIG. 2, the present inventor further includes the first and second porous layers of the syngas delivery pipe 3, the blocking plug 67, the spacer 68, the heat-resistant inorganic adhesives 69 and 73, and the heat-resistant composite plates 71 and 72. The second porous body 62 is immersed in the methanol liquid bath W in the liquid tank 5 having the upper cover 50 and assembled to the bodies 61 and 62 and the heating body 8, and the heating body 8 is turned on as shown in FIG. It connected to the supply apparatus 20, the voltage was applied to the heat generating body 8, and the heat generating body 8 was made to heat. As indicated by arrows in FIG. 3, the methanol solution in the liquid bath W is sucked up into the second porous body 62 by a capillary phenomenon, and a steep methanol solution evaporation phenomenon occurs on the inner peripheral wall surface 65 and contains hydrogen. Syngas S was generated in the hollow portion 7.

本発明者は、第1多孔質体61の外面温度を測定すべく、熱電対からなる温度検出器91を図2に示す如く第1多孔質体61の外周壁面64に配設するとともに、第2多孔質体62の温度を測定すべく、熱電対からなる温度検出器92、93を図6(C)に示す如く内周壁面65から距離(d6,d7)=2mmを隔てた位置に配設した。また、本発明者は、合成ガス送出管3の下流側端部を凝縮器(図示せず)に接続し、合成ガスSに含まれるメタノール蒸気Vを凝縮させて除去した後、非凝縮気体(主に水素及び一酸化炭素)の発生量(発生速度)を測定した。   In order to measure the outer surface temperature of the first porous body 61, the present inventor arranges a temperature detector 91 made of a thermocouple on the outer peripheral wall surface 64 of the first porous body 61 as shown in FIG. 2 In order to measure the temperature of the porous body 62, temperature detectors 92 and 93 made of thermocouples are arranged at a distance (d6, d7) = 2 mm from the inner peripheral wall surface 65 as shown in FIG. Set up. The inventor connects the downstream end of the synthesis gas delivery pipe 3 to a condenser (not shown), condenses and removes the methanol vapor V contained in the synthesis gas S, and then removes the non-condensed gas ( The generation amount (generation rate) of mainly hydrogen and carbon monoxide) was measured.

図6(A)には、加熱量100Wの条件で行った水素生成実験における温度T1,T2,T3及び非凝縮気体生成速度(発生速度)の時間変化が示されている。図6(A)に示すように、温度T2,T3は、メタノールの気化温度未満の温度に維持される。これは、内周壁面65に対するメタノール液の給液が長時間持続することを意味する。他方、温度T1(第1多孔質体61の外周壁面64の温度)は、加熱開始後約1分経過後に約450℃を超え、非凝縮気体(H260%, CO30%)の発生量は、約1200mL/minに達し、反応が迅速に生じることが認められた。このような水素生成実験の実験結果によれば、水素及び一酸化炭素へのメタノールの転化率は、加熱量の調整や、第1及び第2多孔質体61、62の材料、寸法、構造等の最適化により、90%以上に増加させることが可能であると考えられる。 FIG. 6A shows changes over time in the temperatures T 1 , T 2 , T 3 and the non-condensable gas generation rate (generation rate) in a hydrogen generation experiment performed under the condition of a heating amount of 100 W. As shown in FIG. 6A, the temperatures T 2 and T 3 are maintained at a temperature lower than the vaporization temperature of methanol. This means that the supply of the methanol liquid to the inner peripheral wall surface 65 lasts for a long time. On the other hand, the temperature T 1 (the temperature of the outer peripheral wall surface 64 of the first porous body 61) exceeds about 450 ° C. after about 1 minute from the start of heating, and the amount of non-condensable gas (H 2 60%, CO 30%) generated Was about 1200 mL / min and the reaction was observed to occur rapidly. According to the experimental results of such a hydrogen generation experiment, the conversion rate of methanol into hydrogen and carbon monoxide is determined by adjusting the heating amount, the materials, dimensions, structures, and the like of the first and second porous bodies 61 and 62. It is considered possible to increase it to 90% or more by optimizing the above.

上記実施例の水素生成装置1は、メタノールの分解反応によって反応域9及び中空部7に水素を生成するように構成されているが、水蒸気改質触媒を用いたメタノールの水蒸気改質反応(CH3OH+H2O→CO2+3H2)によって水素を生成するように水素生成装置1を構成しても良い。 The hydrogen generator 1 of the above embodiment is configured to generate hydrogen in the reaction zone 9 and the hollow portion 7 by methanol decomposition reaction, but the methanol steam reforming reaction (CH) using a steam reforming catalyst. The hydrogen generator 1 may be configured to generate hydrogen by 3 OH + H 2 O → CO 2 + 3H 2 ).

図1〜図3を参照して、このような水素生成装置1’の構成を本発明の第2実施例として説明する。水素生成装置1’は、水及びメタノール液の混合液Lを供給管28によって液槽5に供給する混合液供給装置25’を備える。液槽5には、水及びメタノールの混合液Lの液浴Wが貯留される。水素生成装置1’は、混合液供給装置25’に換えて、水及びメタノール液を別々に液槽5に供給する給水装置及びメタノール液供給装置を備えた構成のものであっても良い。   The configuration of such a hydrogen generator 1 'will be described as a second embodiment of the present invention with reference to FIGS. The hydrogen generator 1 ′ includes a mixed liquid supply apparatus 25 ′ that supplies a mixed liquid L of water and methanol liquid to the liquid tank 5 through a supply pipe 28. In the liquid tank 5, a liquid bath W of a mixed liquid L of water and methanol is stored. The hydrogen generation device 1 ′ may be configured to include a water supply device and a methanol solution supply device that supply water and a methanol solution separately to the liquid tank 5 instead of the mixed solution supply device 25 ′.

水素生成装置1’においては、第1多孔質体61が担持する触媒2は、メタノールの水蒸気改質反応用の粒子状又は担持型触媒からなる。水素生成装置1’の他の構成は、図1〜図5に示す水素生成装置1の構成と実質的に同一であるので、以下、図1〜図5を参照して、水素生成装置1’の構造及び作動態様について説明する。   In the hydrogen generator 1 ′, the catalyst 2 supported by the first porous body 61 is composed of a particulate or supported catalyst for methanol steam reforming reaction. Since the other configuration of the hydrogen generator 1 ′ is substantially the same as the configuration of the hydrogen generator 1 shown in FIGS. 1 to 5, hereinafter, the hydrogen generator 1 ′ will be described with reference to FIGS. The structure and the operation mode of will be described.

水素生成装置1と同様、第2多孔質体62によって吸い上げられた混合液Lは、細孔30のメニスカスM(図4)において発熱体8の熱を受熱し、瞬時に気化する。混合液Lは、比較的多量の水を含むので、蒸気流動域66に充満したメタノール蒸気Vは、多量の水蒸気を含有する。多量の水蒸気を含むメタノール蒸気Vは、第1多孔質体61の細孔32を流通して中空部7内に流入する。第1多孔質体61が担持する触媒2は、メタノールの水蒸気改質反応用の粒子状又は担持型触媒であり、第1実施例と同様、銅、亜鉛、クロム等の金属又はその酸化物を触媒2として好適に使用し得る。   Similar to the hydrogen generator 1, the mixed liquid L sucked up by the second porous body 62 receives the heat of the heating element 8 at the meniscus M (FIG. 4) of the pores 30 and is instantly vaporized. Since the liquid mixture L contains a relatively large amount of water, the methanol vapor V filled in the steam flow region 66 contains a large amount of water vapor. Methanol vapor V containing a large amount of water vapor flows through the pores 32 of the first porous body 61 and flows into the hollow portion 7. The catalyst 2 carried by the first porous body 61 is a particulate or supported catalyst for the steam reforming reaction of methanol, and in the same manner as in the first embodiment, a metal such as copper, zinc, chromium or the oxide thereof is used. It can be suitably used as the catalyst 2.

水蒸気を含むメタノール蒸気Vは、触媒2に接触しながら、細孔32内の反応域9の高温雰囲気を流動する。メタノールの水蒸気改質反応(CH3OH+H2O→CO2+3H2) が水蒸気改質触媒の存在下に反応域9において進行し、比較的多量の水素を含む合成ガスSが生成する。合成ガスSは、開口部31から中空部7に流出し、合成ガス送出管3を介して燃料電池の燃料供給部等(図示せず)に供給される。なお、メタノールの水蒸気改質反応においては、1モルのメタノール (CH3OH)に対して3モルの水素(H2)が生成するので、メタノールの分解反応(第1実施例)に比べ、水素発生量を増大し、従って、水素収率を向上することができる。 The methanol vapor V containing water vapor flows in the high temperature atmosphere of the reaction zone 9 in the pores 32 while contacting the catalyst 2. A steam reforming reaction of methanol (CH 3 OH + H 2 O → CO 2 + 3H 2 ) proceeds in the reaction zone 9 in the presence of the steam reforming catalyst to produce a synthesis gas S containing a relatively large amount of hydrogen. . The synthesis gas S flows out from the opening 31 into the hollow portion 7 and is supplied to the fuel supply portion or the like (not shown) of the fuel cell via the synthesis gas delivery pipe 3. In addition, in the steam reforming reaction of methanol, 3 mol of hydrogen (H 2 ) is generated per 1 mol of methanol (CH 3 OH), and therefore, compared with the decomposition reaction of methanol (first embodiment), The generation amount can be increased, and thus the hydrogen yield can be improved.

所望により、触媒2と同様の水蒸気改質触媒が、発熱体8の電熱コイル表面に付着又は添着され、中空部7内を流動する合成ガスSに含まれる未反応メタノールの水蒸気改質反応(CH3OH+H2O→CO2+3H2)が、中空部7において触媒の存在下に進行し、更に多量の水素を含む合成ガスSが中空部7に生成する。 If desired, a steam reforming catalyst similar to the catalyst 2 is attached or attached to the surface of the electric heating coil of the heating element 8 and steam reforming reaction (CH) of unreacted methanol contained in the synthesis gas S flowing in the hollow portion 7. 3 OH + H 2 O → CO 2 + 3H 2 ) proceeds in the presence of the catalyst in the hollow portion 7, and synthesis gas S containing a larger amount of hydrogen is generated in the hollow portion 7.

所望により、炭酸カリウム(K2CO3)が中空部7の出口部分等に充填される。炭酸カリウム(K2CO3)は合成ガスS中の二酸化炭素(CO2)及び水蒸気(H2O)と反応して炭酸水素カリウム(KHCO3)を生成するので、合成ガスS中の二酸化炭素(CO2)が除去される。 If desired, potassium carbonate (K 2 CO 3 ) is filled in the outlet portion of the hollow portion 7 or the like. Since potassium carbonate (K 2 CO 3 ) reacts with carbon dioxide (CO 2 ) and water vapor (H 2 O) in synthesis gas S to produce potassium hydrogen carbonate (KHCO 3 ), carbon dioxide in synthesis gas S (CO 2 ) is removed.

図7には、液体を封入可能な密封構造のケーシング51を有する水素生成装置1、1’の実施例が示されている。ケーシング51内には、コイル状発熱体8を中空部7に内装した第1多孔質体61と、第1多孔質体61の外側に配置された第2多孔質体62とが収容される。メタノール液供給装置25又は混合液供給装置25’がケーシング51に接続され、メタノール液又は水・メタノール混合液Lが、多孔質体6の外側の領域に液浴Wとして封入される。供給装置25、25’とケーシング51との接続を解放し又は切り離し、ケーシング51を移動することができる。   FIG. 7 shows an embodiment of a hydrogen generator 1, 1 ′ having a sealed casing 51 that can enclose a liquid. In the casing 51, a first porous body 61 in which the coiled heating element 8 is housed in the hollow portion 7 and a second porous body 62 disposed outside the first porous body 61 are accommodated. The methanol liquid supply device 25 or the mixed liquid supply device 25 ′ is connected to the casing 51, and the methanol liquid or the water / methanol mixed liquid L is sealed as a liquid bath W in a region outside the porous body 6. The connection between the supply devices 25, 25 ′ and the casing 51 can be released or disconnected and the casing 51 can be moved.

多孔質体6(第1及び第2多孔質体61、62)、中空部7、発熱体8及び液浴Wをケーシング51内に収納することにより、メタノール液又は水・メタノール混合液Lを液浴Wに充填した状態で携帯、搬送又は交換可能な携帯式又は可搬式の水素生成装置1、1’を提供することが可能となる。例えば、多孔質体6、中空部7、発熱体8及び液浴Wをケーシング51内に収納したカセット、ユニット又はパッケージ式の水素生成装置1、1’は、合成ガス送出管3の部分を燃料電池の燃料供給部に連結し且つ発熱体8を電源に接続することにより、多量の水素を含む合成ガスSを燃料電池に供給する。ケーシング51内のメタノール液又は水・メタノール混合液Lが消費された場合、使用済の水素生成装置1、1’は、メタノール液又は水・メタノール混合液Lを充填した他の水素生成装置1、1’にケーシング単位で交換される。   By storing the porous body 6 (first and second porous bodies 61 and 62), the hollow portion 7, the heating element 8 and the liquid bath W in the casing 51, the methanol liquid or the water / methanol mixed liquid L is liquidized. It is possible to provide a portable or portable hydrogen generator 1, 1 ′ that can be carried, transported, or exchanged in a state where the bath W is filled. For example, the cassette, unit, or package type hydrogen generators 1, 1 ′ in which the porous body 6, the hollow portion 7, the heating element 8, and the liquid bath W are housed in the casing 51, the portion of the synthesis gas delivery pipe 3 is fueled. The synthesis gas S containing a large amount of hydrogen is supplied to the fuel cell by connecting to the fuel supply part of the cell and connecting the heating element 8 to the power source. When the methanol liquid or the water / methanol mixed liquid L in the casing 51 is consumed, the used hydrogen generating apparatus 1, 1 ′ is replaced with another hydrogen generating apparatus 1 filled with the methanol liquid or the water / methanol mixed liquid L, 1 'is replaced in a casing unit.

図8には、図7に示す水素生成装置1、1’の変形例が示されている。前述の第1〜第3実施例においては、方形又は矩形断面を有する水素生成装置1、1’が例示されているが、水素生成装置1、1’の断面は、多角形、円形、楕円形等の任意の断面に設計し得る。図8に示す水素生成装置1、1’は、円筒形の第1及び第2多孔質体61、62と、軸状の発熱体8’と、円筒状の液浴Wとを円筒形のケーシング52内に同心状に収納した構成を有する。   FIG. 8 shows a modification of the hydrogen generator 1, 1 'shown in FIG. In the above-described first to third embodiments, the hydrogen generators 1 and 1 ′ having a square or rectangular cross section are illustrated, but the cross sections of the hydrogen generators 1 and 1 ′ are polygonal, circular, and elliptical. Any cross section can be designed. A hydrogen generator 1, 1 ′ shown in FIG. 8 includes cylindrical first and second porous bodies 61, 62, a shaft-like heating element 8 ′, and a cylindrical liquid bath W, which are in a cylindrical casing. It has the structure accommodated concentrically in 52.

また、前述の第1〜第3実施例においては、水素生成装置1、1’は、コイル状電熱体からなる発熱体8を中空部7に内装した構造を有するが、本実施例の水素生成装置1、1’は、円形又は螺旋リブ状の発熱部、或いは、三角フィン状の発熱部を軸部外周面に備えた構造の発熱体8’を有する。リブ状又はフィン状発熱部の先端は、前述のニクロム線又はカンタル線と同様、第1多孔質体61の内周壁面63に接触し又は近接し、内周壁面63を加熱する。   In the first to third embodiments described above, the hydrogen generators 1 and 1 ′ have a structure in which a heating element 8 made of a coil-shaped electric heating body is housed in the hollow portion 7. The devices 1 and 1 ′ have a heating element 8 ′ having a structure in which a heating part having a circular or spiral rib shape or a triangular fin-like heating part is provided on the outer peripheral surface of the shaft part. The tip of the rib-like or fin-like heat generating part is in contact with or close to the inner peripheral wall surface 63 of the first porous body 61 and heats the inner peripheral wall surface 63 as in the case of the aforementioned nichrome wire or cantal wire.

図9は、図8に示す水素生成装置1、1’の他の変形例を示す断面図である。前述の第1〜第4実施例においては、電熱式の発熱体8、8’が中空部7に内装されているが、本実施例においては、両端が閉塞した銅管等の金属管80が発熱体8”として第1多孔質体61の中空部7に挿入される。金属管80の外周面には、三角形断面の発熱部81が円形リブ状、螺旋リブ状又は伝熱フィン状に形成されており、発熱部81の先端は、第1多孔質体61の内周壁面63に接触し又は近接する。   FIG. 9 is a cross-sectional view showing another modification of the hydrogen generators 1 and 1 ′ shown in FIG. 8. In the first to fourth embodiments described above, the electrothermal heating elements 8 and 8 'are housed in the hollow portion 7, but in this embodiment, a metal tube 80 such as a copper tube closed at both ends is provided. The heat generating element 8 ″ is inserted into the hollow portion 7 of the first porous body 61. On the outer peripheral surface of the metal tube 80, a heat generating portion 81 having a triangular cross section is formed in a circular rib shape, a spiral rib shape, or a heat transfer fin shape. The tip of the heat generating portion 81 is in contact with or close to the inner peripheral wall surface 63 of the first porous body 61.

熱ガス供給管85及び排ガス管86が金属管80に接続される。両端部は封止した金属管80の管内領域には、高温燃焼ガス等の熱ガスが熱ガス供給管85から供給される。熱ガスは、金属管80内を流通して排ガス管86から系外に排気される。高温の熱ガスが保有する熱は、リブ状又はフィン状の発熱部81を介して内周壁面63に伝熱する。前述のコイル状電熱体と同等の熱流束が発熱部81及び内周壁面63に発生する。図4及び図5に示すように、メタノール液又は水・メタノール混合液Lは、第2多孔質体62の細孔30内で気化するとともに、第1多孔質体61の細孔32内で分解反応又は水蒸気改質反応する。   A hot gas supply pipe 85 and an exhaust gas pipe 86 are connected to the metal pipe 80. A hot gas such as a high-temperature combustion gas is supplied from a hot gas supply pipe 85 to the inside region of the metal pipe 80 whose both ends are sealed. The hot gas flows through the metal pipe 80 and is exhausted from the exhaust gas pipe 86 to the outside of the system. Heat held by the high-temperature hot gas is transferred to the inner peripheral wall surface 63 via the rib-like or fin-like heat generating portion 81. A heat flux equivalent to that of the above-described coiled electric heater is generated on the heat generating portion 81 and the inner peripheral wall surface 63. As shown in FIGS. 4 and 5, the methanol liquid or the water / methanol mixed liquid L is vaporized in the pores 30 of the second porous body 62 and decomposed in the pores 32 of the first porous body 61. Reaction or steam reforming reaction.

燃料電池の電池電極における未反応水素を燃焼させて得られる燃焼ガスを熱ガスとして金属管80内に供給することが可能である。燃料電池の電池電極における未反応水素や、可燃分を比較的多量に含む可燃ガスを熱ガス供給管85から金属管80内に供給するとともに、酸素等の酸化剤を金属管80内に供給し、水素又は可燃ガスと酸化剤の酸化発熱反応を金属管80内に生じさせるように水素生成装置を設計しても良い。所望により、触媒燃焼等を金属管80内に生じさせるように水素生成装置を設計することも可能である。   It is possible to supply the combustion gas obtained by burning unreacted hydrogen in the battery electrode of the fuel cell into the metal tube 80 as a hot gas. In addition to supplying unreacted hydrogen at the battery electrode of the fuel cell and a combustible gas containing a relatively large amount of combustible material from the hot gas supply pipe 85 into the metal pipe 80, an oxidizing agent such as oxygen is supplied into the metal pipe 80. Alternatively, the hydrogen generator may be designed to cause an oxidative exothermic reaction between hydrogen or combustible gas and an oxidant in the metal tube 80. If desired, the hydrogen generator can be designed to cause catalytic combustion or the like in the metal tube 80.

以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Is possible.

例えば、上記実施例では、原料炭化水素としてメタノールを使用した水素生成装置の分解反応又は水蒸気改質反応に関し説明したが、ジメチルエーテル、2−プロパノール、シクロヘキサン等を原料炭化水素として使用しても良い。   For example, in the above-described embodiment, the decomposition reaction or the steam reforming reaction of the hydrogen generator using methanol as the raw material hydrocarbon has been described, but dimethyl ether, 2-propanol, cyclohexane or the like may be used as the raw material hydrocarbon.

また、上記多孔質体の材質、細孔径、細孔密度、細孔分布、断面形状、寸法、中空部の断面形状、寸法、位置、箇所数、発熱体の種類、寸法、性能等は、適宜設計変更し得るものである。   In addition, the material, pore diameter, pore density, pore distribution, cross-sectional shape, dimensions, hollow cross-sectional shape, dimensions, position, number of places, type of heating element, dimensions, performance, etc. of the porous body are appropriately set. The design can be changed.

更に、前述の各実施例においては、単一の内孔が第2多孔質体62の中心部に形成され、単一の第1多孔質体61が第2多孔質体62の内孔内に配置されているが、複数の内孔を第2多孔質体62に形成し、或いは、複数の第1多孔質体61を第2多孔質体62の内孔内に配置しても良い。   Further, in each of the above-described embodiments, a single inner hole is formed at the center of the second porous body 62, and the single first porous body 61 is placed in the inner hole of the second porous body 62. Although arranged, a plurality of inner holes may be formed in the second porous body 62, or a plurality of first porous bodies 61 may be arranged in the inner holes of the second porous body 62.

本発明は、燃料としての水素を車両用燃料電池、携帯電話用燃料電池、携帯PC用燃料電池等に供給するための水素生成装置及び水素生成方法に好ましく適用し得る。例えば、本発明に従って、燃料電池自動車のオンボード(on-board)リフォーミング式水素生成装置を提供することが可能となる。本発明によれば、負荷変動等に迅速に応答し又は追従する高い応答性、追従性又は制御性を有し、しかも、装置構造を簡素化し且つ小型化した経済的且つ高エネルギー変換効率の水素生成装置を実用化することができるので、その有用性又は実利性は、顕著である。   The present invention can be preferably applied to a hydrogen generation apparatus and a hydrogen generation method for supplying hydrogen as a fuel to a vehicle fuel cell, a mobile phone fuel cell, a mobile PC fuel cell, and the like. For example, according to the present invention, it is possible to provide an on-board reforming hydrogen generator for a fuel cell vehicle. According to the present invention, hydrogen that has high responsiveness, followability or controllability to quickly respond to or follow load fluctuations, etc., and which has a simplified and miniaturized device structure and is economical and has high energy conversion efficiency. Since the generator can be put into practical use, its usefulness or practicality is remarkable.

1、1’ 水素生成装置
2 触媒
3 合成ガス送出管
5 液槽
6 多孔質体
7 中空部
7a 合成ガス送出口
8、8’、8" 発熱体
9 反応域
20 電流供給装置
25 メタノール液供給装置
25’ 混合液供給装置
30、32 細孔
31、33 開口部
61 第1多孔質体
62 第2多孔質体
63 内周壁面
64 外周壁面
65 内周壁面
66 蒸気流動域
W 液浴
L メタノール液、水及びメタノール液の混合液
M メニスカス
S 合成ガス
V 蒸気
DESCRIPTION OF SYMBOLS 1, 1 'Hydrogen generator 2 Catalyst 3 Syngas delivery pipe 5 Liquid tank 6 Porous body 7 Hollow part 7a Syngas delivery port 8, 8', 8 "Heat generating body 9 Reaction zone 20 Current supply apparatus 25 Methanol liquid supply apparatus 25 'Mixed liquid supply device 30, 32 Pore 31, 33 Opening 61 First porous body 62 Second porous body 63 Inner peripheral wall surface 64 Outer peripheral wall surface 65 Inner peripheral wall surface 66 Steam flow region W Liquid bath L Methanol liquid, Mixture of water and methanol liquid M Meniscus S Syngas V Steam

Claims (12)

発熱体を内装した中空部を備え且つ触媒を担持した多孔質体を用い、炭化水素を含む液体原料を細孔の毛管力によって吸液するとともに、前記発熱体の発熱によって前記液体原料を気化し且つ過熱し、触媒の存在下に進行する炭化水素の分解反応又は水蒸気改質反応によって水素を生成する水素生成装置において、
前記発熱体を内装した前記中空部を備え且つ前記触媒を担持した第1多孔質体と、前記第1多孔質体の外面から離間した蒸発面を備え且つ前記液体原料を細孔の毛管力によって前記蒸発面に給液する第2多孔質体とから前記多孔質体を構成し、
第1及び第2多孔質体の間に蒸気流動域を形成したことを特徴とする水素生成装置。
Using a porous body having a hollow portion with a heating element and carrying a catalyst, the liquid material containing hydrocarbons is absorbed by the capillary force of the pores, and the liquid material is vaporized by the heat generated by the heating element. And a hydrogen generator that generates hydrogen by a hydrocarbon cracking reaction or steam reforming reaction that proceeds with heating in the presence of a catalyst,
A first porous body having the hollow portion in which the heating element is internally provided and supporting the catalyst; an evaporation surface spaced from an outer surface of the first porous body; and the liquid raw material by capillary force of the pores The porous body is configured from the second porous body that supplies liquid to the evaporation surface,
A hydrogen generating apparatus, wherein a vapor flow region is formed between the first and second porous bodies.
前記発熱体は、前記中空部の内壁面に接し又は近接することを特徴とする請求項1に記載の水素生成装置。   The hydrogen generating apparatus according to claim 1, wherein the heating element is in contact with or close to an inner wall surface of the hollow portion. 前記第1多孔質体は、その軸線方向に熱収縮・熱膨張可能に前記第2多孔質体によって支承され、水素を含む合成ガスを前記中空部から送出する合成ガス送出管が前記第1多孔質体に連結されることを特徴とする請求項1又は2に記載の水素生成装置。   The first porous body is supported by the second porous body so as to be capable of thermal contraction and expansion in the axial direction thereof, and a synthesis gas delivery pipe for delivering synthesis gas containing hydrogen from the hollow portion is provided in the first porous body. The hydrogen generator according to claim 1, wherein the hydrogen generator is connected to a material. 分解反応又は水蒸気改質反応用の触媒が前記中空部内に更に配置され、前記細孔から前記中空部に流出した未反応の炭化水素は、触媒の存在下に中空部内で分解反応し又は水蒸気改質反応することを特徴とする請求項1乃至3のいずれか1項に記載の水素生成装置。   A catalyst for cracking reaction or steam reforming reaction is further disposed in the hollow portion, and unreacted hydrocarbons flowing out from the pores into the hollow portion undergo a decomposition reaction or steam reforming in the hollow portion in the presence of the catalyst. The hydrogen generator according to any one of claims 1 to 3, wherein the hydrogen generator performs a quality reaction. 前記液体原料を封入可能な密封構造の可搬式又は携帯式ケーシング内に前記多孔質体及び発熱体を収容したことを特徴とする請求項1乃至4のいずれか1項に記載の水素生成装置。   5. The hydrogen generator according to claim 1, wherein the porous body and the heating element are housed in a portable or portable casing having a sealed structure capable of enclosing the liquid material. 前記第1多孔質体は、全体的に円筒形の外形を有し、前記第2多孔質体は、前記第1多孔質体が収容される円形断面の内孔を有することを特徴とする請求項1乃至5のいずれか1項に記載の水素生成装置。   The first porous body has an overall cylindrical outer shape, and the second porous body has an inner hole having a circular cross section in which the first porous body is accommodated. Item 6. The hydrogen generator according to any one of Items 1 to 5. 発熱体を内装した中空部を備え且つ触媒を担持した多孔質体を用い、炭化水素を含む液体原料を細孔の毛管力によって吸液するとともに、前記発熱体の発熱によって前記液体原料を気化し且つ過熱し、触媒の存在下に進行する炭化水素の分解反応又は水蒸気改質反応によって水素を生成する水素生成方法において、
前記発熱体を内装した前記中空部を備え且つ前記触媒を担持した第1多孔質体と、前記第1多孔質体の外面から離間した蒸発面を備え且つ前記液体原料を細孔の毛管力によって前記蒸発面に給液する第2多孔質体とから前記多孔質体を構成するとともに、第1及び第2多孔質体の間に蒸気流動域を画成し、
前記発熱体の発熱によって前記液体原料を前記蒸発面から蒸発させるとともに、前記蒸気流動域から前記第1多孔質体の細孔に流入した前記液体原料の蒸気を前記中空部内に流入させ、該液体原料中の炭化水素の分解反応又は水蒸気改質反応を前記触媒の存在下に進行させて前記中空部内に水素を生成することを特徴とする水素生成方法。
Using a porous body having a hollow portion with a heating element and carrying a catalyst, the liquid material containing hydrocarbons is absorbed by the capillary force of the pores, and the liquid material is vaporized by the heat generated by the heating element. And in a hydrogen production method in which hydrogen is produced by a hydrocarbon cracking reaction or steam reforming reaction that proceeds with heating in the presence of a catalyst,
A first porous body having the hollow portion in which the heating element is internally provided and supporting the catalyst; an evaporation surface spaced from an outer surface of the first porous body; and the liquid raw material by capillary force of the pores Constituting the porous body from the second porous body fed to the evaporation surface, and defining a vapor flow region between the first and second porous bodies,
The liquid raw material is evaporated from the evaporation surface by the heat generation of the heating element, and the vapor of the liquid raw material that has flowed into the pores of the first porous body from the vapor flow region is caused to flow into the hollow portion. A method for producing hydrogen, characterized in that a cracking reaction or a steam reforming reaction of a hydrocarbon in a raw material proceeds in the presence of the catalyst to produce hydrogen in the hollow portion.
前記発熱体を収容する円形断面の前記中空部を前記第1多孔質体に形成し、前記第1多孔質体を収容する円形断面の内孔を前記第2多孔質体に形成することを特徴とする請求項7に記載の水素生成方法。   The hollow section having a circular cross section that accommodates the heating element is formed in the first porous body, and the inner hole having a circular cross section that accommodates the first porous body is formed in the second porous body. The hydrogen generation method according to claim 7. 前記発熱体の熱は、前記第1多孔質体において前記蒸気の過熱のために消費されるとともに、炭化水素の分解反応又は水蒸気改質反応の反応熱として消費され、前記第2多孔質体において前記液体原料の気化のための顕熱として消費されることを特徴とする請求項7又は8に記載の水素生成方法。   The heat of the heating element is consumed due to the overheating of the steam in the first porous body, and is also consumed as the reaction heat of a hydrocarbon decomposition reaction or a steam reforming reaction, in the second porous body The method for producing hydrogen according to claim 7 or 8, wherein the hydrogen raw material is consumed as sensible heat for vaporizing the liquid raw material. 前記第1多孔質体をその軸線方向に熱収縮・熱膨張可能に前記第2多孔質体によって支承するとともに、水素を含む合成ガスを前記中空部から送出する合成ガス送出管を前記第1多孔質体に連結することを特徴とする請求項7乃至9のいずれか1項に記載の水素生成方法。   The first porous body is supported by the second porous body so that the first porous body can be thermally contracted and expanded in the axial direction, and a synthesis gas delivery pipe for delivering synthesis gas containing hydrogen from the hollow portion is provided in the first porous body. The method for producing hydrogen according to any one of claims 7 to 9, wherein the method is connected to a mass. 分解反応又は水蒸気改質反応用の触媒を前記中空部内に更に配置し、前記第1多孔質体の細孔から前記中空部に流出した未反応炭化水素を前記中空部において触媒の存在下に分解反応又は水蒸気改質反応させることを特徴とする請求項7乃至10のいずれか1項に記載の水素生成方法。   A catalyst for a cracking reaction or a steam reforming reaction is further disposed in the hollow portion, and unreacted hydrocarbons flowing into the hollow portion from the pores of the first porous body are decomposed in the presence of the catalyst in the hollow portion. The hydrogen generation method according to claim 7, wherein a reaction or a steam reforming reaction is performed. 前記蒸気流動域の蒸気は、該蒸気流動域及び前記中空部の圧力差によって前記蒸気流動域から前記中空部内に流動することを特徴とする請求項7乃至11のいずれか1項に記載の水素生成方法。   12. The hydrogen according to claim 7, wherein steam in the steam flow region flows from the steam flow region into the hollow portion due to a pressure difference between the steam flow region and the hollow portion. Generation method.
JP2012028411A 2012-02-13 2012-02-13 Device and method for producing hydrogen Pending JP2013163624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012028411A JP2013163624A (en) 2012-02-13 2012-02-13 Device and method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028411A JP2013163624A (en) 2012-02-13 2012-02-13 Device and method for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2013163624A true JP2013163624A (en) 2013-08-22

Family

ID=49175243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028411A Pending JP2013163624A (en) 2012-02-13 2012-02-13 Device and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP2013163624A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209344A (en) * 2014-04-24 2015-11-24 Jfeエンジニアリング株式会社 Hydrogen-carbon material production method and production apparatus
WO2019230368A1 (en) 2018-05-29 2019-12-05 株式会社サイダ・Fds Device and catalyst for use with same
CN113457583A (en) * 2021-07-16 2021-10-01 浙江理谷新能源有限公司 Methanol reforming hydrogen production reactor and hydrogen production method
WO2023013182A1 (en) * 2021-08-04 2023-02-09 株式会社伊原工業 Hydrocarbon-degrading structural catalyst designing and positioning method, hydrocarbon degradation reaction apparatus manufacturing method, hydrocarbon degradation reaction apparatus, and reactor furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209344A (en) * 2014-04-24 2015-11-24 Jfeエンジニアリング株式会社 Hydrogen-carbon material production method and production apparatus
WO2019230368A1 (en) 2018-05-29 2019-12-05 株式会社サイダ・Fds Device and catalyst for use with same
CN113457583A (en) * 2021-07-16 2021-10-01 浙江理谷新能源有限公司 Methanol reforming hydrogen production reactor and hydrogen production method
CN113457583B (en) * 2021-07-16 2023-09-15 浙江理谷新能源有限公司 Methanol reforming hydrogen production reactor and hydrogen production method thereof
WO2023013182A1 (en) * 2021-08-04 2023-02-09 株式会社伊原工業 Hydrocarbon-degrading structural catalyst designing and positioning method, hydrocarbon degradation reaction apparatus manufacturing method, hydrocarbon degradation reaction apparatus, and reactor furnace
JP7242025B1 (en) 2021-08-04 2023-03-24 株式会社伊原工業 Method for designing and arranging structure catalyst for hydrocarbon cracking, method for manufacturing hydrocarbon cracking reactor, hydrocarbon cracking reactor and reactor
JP2023055807A (en) * 2021-08-04 2023-04-18 株式会社伊原工業 Method for designing and arranging structural catalyst for hydrocarbon cracking, method for manufacturing hydrocarbon cracking reactor, hydrocarbon cracking reactor, and reactor

Similar Documents

Publication Publication Date Title
US10647572B2 (en) Liquid fuel reformer including a vaporizer and method of reforming liquid reformable fuel
US7632322B2 (en) Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
JP4461439B2 (en) Fuel cell system reformer
JP4906242B2 (en) How to shut down the fuel cell
JP6204605B2 (en) Reformer and reforming method for both liquid and gaseous fuels
JP2004141794A (en) Small-sized chemical reaction apparatus
AU2014346711A1 (en) Liquid fuel reformer including a vaporizer and method of reforming liquid reformable fuel
JP6477889B2 (en) Solid oxide fuel cell system
JP2009096705A (en) Reforming apparatus for fuel cell
JP2005317405A (en) Operation method of fuel cell structure
JP2013163624A (en) Device and method for producing hydrogen
JP3711577B2 (en) Fuel reformer
JP2015127273A (en) Hydrogen generating apparatus and hydrogen generating method
JP2009062269A (en) Apparatus and method for producing hydrogen
KR101817569B1 (en) A heat-exchange reactor producing hydrogen from carbon compound
JP2008194689A (en) Small-sized chemical reaction device
JP2000327304A (en) Hydrogen generation apparatus
KR100846715B1 (en) Apparatus for reforming fuel
JP2009082810A (en) Insulating device and fuel cell system, and cooling method for insulated container
JP2019099419A (en) Hydrogen generation system and fuel cell system
JP2008222473A (en) Fuel reforming apparatus and fuel cell system
JP5140361B2 (en) Fuel cell reformer
JP2010533120A (en) Reforming reactor and method for converting hydrocarbon fuel to high hydrogen concentration gas
JP5423141B2 (en) Hydrogen generator
JP2009084077A (en) Reforming apparatus for fuel cell