JP2013161703A - Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery - Google Patents

Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Download PDF

Info

Publication number
JP2013161703A
JP2013161703A JP2012024077A JP2012024077A JP2013161703A JP 2013161703 A JP2013161703 A JP 2013161703A JP 2012024077 A JP2012024077 A JP 2012024077A JP 2012024077 A JP2012024077 A JP 2012024077A JP 2013161703 A JP2013161703 A JP 2013161703A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
ion battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012024077A
Other languages
Japanese (ja)
Other versions
JP5876739B2 (en
Inventor
Norihisa UESAWA
明央 上澤
Kentaro Okamoto
健太郎 岡本
Masateru Murata
正輝 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49173786&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013161703(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012024077A priority Critical patent/JP5876739B2/en
Publication of JP2013161703A publication Critical patent/JP2013161703A/en
Application granted granted Critical
Publication of JP5876739B2 publication Critical patent/JP5876739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium ion battery that has battery characteristics with excellent cycle characteristics.SOLUTION: The positive electrode active material for a lithium ion battery is represented by the formula: LiNiMO, where M represents one or more kinds of elements selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr, 0.9≤x≤1.2, 0<y≤0.7, and α≥0, and the average crystal grain size in a cross section of a particle of the positive electrode active material obtained by a scanning ion microscope (SIM) observation is 1.2-5.0 μm.

Description

本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池に関する。   The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.

リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.

電池のサイクル特性は、それが良好であれば、リチウムイオン電池の充放電によって減少する電池容量が少なく、電池寿命が長くなる点で有益である。近年、このサイクル特性は、電池の充放電に伴う正極材粒子の割れ(クラック)の発生と密接な関係を有することが知られている(非特許文献1)。   If the cycle characteristics of the battery are good, it is beneficial in that the battery capacity that is reduced by charging and discharging of the lithium ion battery is small and the battery life is extended. In recent years, it has been known that this cycle characteristic has a close relationship with the occurrence of cracks in the positive electrode material particles accompanying charging / discharging of the battery (Non-Patent Document 1).

Y. Itou et. al., Journal of Power Sources 146, 39-44 (2005)Y. Itou et. Al., Journal of Power Sources 146, 39-44 (2005)

そこで、本発明は、電池の充放電に伴う正極材粒子の割れ(クラック)の発生が抑制された、サイクル特性が良好な電池特性を有する新規なリチウムイオン電池用正極活物質を提供することを課題とする。   Accordingly, the present invention provides a novel positive electrode active material for a lithium ion battery having good battery characteristics in which the generation of cracks in the positive electrode material particles due to charging / discharging of the battery is suppressed. Let it be an issue.

本発明者らは、鋭意検討した結果、リチウムイオン電池用正極活物質を所定の組成で構成し、且つ、平均結晶粒径を所定範囲に制御することで、電池の充放電に伴う正極材粒子の割れ(クラック)の発生を減少することができ、それによってサイクル特性が良好となることを見出した。   As a result of intensive studies, the present inventors have configured a positive electrode active material for a lithium ion battery with a predetermined composition and controlled the average crystal grain size within a predetermined range, whereby positive electrode material particles accompanying charging / discharging of the battery It has been found that the occurrence of cracks can be reduced, thereby improving the cycle characteristics.

上記知見を基礎にして完成した本発明は一側面において、
組成式:LixNi1-yy2+α
(前記式において、MはSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、α≧0である。)
で表され、
粒子断面をSIM(走査イオン顕微鏡)像で観察したときの平均結晶粒径が1.2〜5.0μmであるリチウムイオン電池用正極活物質である。
In one aspect of the present invention completed based on the above knowledge,
Composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, and α ≧ 0.)
Represented by
It is a positive electrode active material for a lithium ion battery having an average crystal grain size of 1.2 to 5.0 μm when a particle cross section is observed with a SIM (scanning ion microscope) image.

本発明に係るリチウムイオン電池用正極活物質は一実施形態において、前記粒子断面をSIM像で観察したときの平均結晶粒径が1.2〜3.0μmである。   In one embodiment, the positive electrode active material for a lithium ion battery according to the present invention has an average crystal grain size of 1.2 to 3.0 μm when the particle cross section is observed with a SIM image.

本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、前記Mが、Mn及びCoから選択される1種以上である。   In still another embodiment of the positive electrode active material for a lithium ion battery according to the present invention, the M is at least one selected from Mn and Co.

本発明は、別の側面において、本発明に係るリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。   In another aspect, the present invention is a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery according to the present invention.

本発明は、更に別の側面において、本発明に係るリチウムイオン電池用正極を用いたリチウムイオン電池である。   In still another aspect, the present invention is a lithium ion battery using the positive electrode for a lithium ion battery according to the present invention.

本発明によれば、サイクル特性が良好な電池特性を有するリチウムイオン電池用正極活物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion batteries which has a battery characteristic with favorable cycling characteristics can be provided.

実施例3の電池用正極活物質の断面観察写真(SIM像)である。4 is a cross-sectional observation photograph (SIM image) of a positive electrode active material for a battery of Example 3. 比較例1の電池用正極活物質の断面観察写真(SIM像)である。4 is a cross-sectional observation photograph (SIM image) of a positive electrode active material for a battery of Comparative Example 1.

(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。このような材料を用いて作製される本発明のリチウムイオン電池用正極活物質は、
組成式:LixNi1-yy2+α
(前記式において、MはSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、α≧0である。)
で表される。
また、Mは、好ましくはMn及びCoから選択される1種以上である。
(Configuration of positive electrode active material for lithium ion battery)
As a material of the positive electrode active material for lithium ion batteries of the present invention, compounds useful as a positive electrode active material for general positive electrodes for lithium ion batteries can be widely used. In particular, lithium cobaltate (LiCoO 2 ), It is preferable to use lithium-containing transition metal oxides such as lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ). The positive electrode active material for a lithium ion battery of the present invention produced using such a material is
Composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, and α ≧ 0.)
It is represented by
M is preferably at least one selected from Mn and Co.

本発明のリチウムイオン電池用正極活物質は、一次粒子、一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物で構成されている。リチウムイオン電池用正極活物質は、その一次粒子又は二次粒子を構成している結晶(グレイン)の平均粒径が、粒子断面をSIM(走査イオン顕微鏡)像で観察したとき、1.2〜5.0μmである。一般に、SIM像は多結晶体で構成される物質を観察した際に、結晶方位に応じてコントラストが生じる。このため、SIM像は多結晶構造を有する結晶サイズを識別することに適している。
正極活物質の割れは、SIM像の観察によれば、結晶間に存在する粒界で発生している。仮に、同量の正極活物質が存在した場合、平均結晶粒径が大きくなることにより、平均結晶粒径が小さいものと比較して、粒界の存在割合が相対的に減少する。そのため、正極活物質の割れが減少する。これにより、サイクル特性に悪影響を及ぼすと考えられる割れの影響が減少し、サイクル特性の低下を防ぐことが可能となる。従って、本発明では平均結晶粒径を1.2μm以上に制御している。また、結晶粒径を制御するために、焼成温度を上げるという手法を用いているが、焼成温度を上げるにつれて、正極材のサイクル特性に影響を及ぼすと考えられる「残留アルカリ」という値が増加する。「残留アルカリ」とは正極材粒子表面に存在するリチウムアルカリ分であり、この残留アルカリが増加すると、正極材粒子表面において電解液と残留アルカリが反応し、ガス発生が起こり、サイクル特性が悪影響を及ぼすことが知られている。そのため、本発明では、この「残留アルカリ」の許容限界として、結晶粒径を5.0μm以下に制御している。リチウムイオン電池用正極活物質の平均結晶粒径は、粒子断面をSIM(走査イオン顕微鏡)像で観察したとき、好ましくは1.2〜4.0μm、より好ましくは1.2〜3.0μmである。
The positive electrode active material for a lithium ion battery of the present invention is composed of primary particles, secondary particles formed by aggregation of primary particles, or a mixture of primary particles and secondary particles. The positive electrode active material for a lithium ion battery has an average particle size of crystals (grains) constituting the primary particles or secondary particles of 1.2 to when the particle cross section is observed with a SIM (scanning ion microscope) image. 5.0 μm. In general, in a SIM image, when a substance composed of a polycrystal is observed, a contrast is generated according to the crystal orientation. For this reason, the SIM image is suitable for identifying a crystal size having a polycrystalline structure.
According to the observation of the SIM image, cracks in the positive electrode active material occur at the grain boundaries existing between the crystals. If the same amount of the positive electrode active material is present, the average crystal grain size is increased, so that the abundance ratio of the grain boundaries is relatively reduced as compared with a small average crystal grain size. Therefore, cracking of the positive electrode active material is reduced. Thereby, the influence of the crack considered to have a bad influence on cycle characteristics decreases, and it becomes possible to prevent the deterioration of cycle characteristics. Therefore, in the present invention, the average crystal grain size is controlled to 1.2 μm or more. Further, in order to control the crystal grain size, a technique of increasing the firing temperature is used, but as the firing temperature is increased, the value of “residual alkali” that is considered to affect the cycle characteristics of the positive electrode material increases. . “Residual alkali” is the lithium alkali content present on the surface of the positive electrode material particles. When this residual alkali increases, the electrolyte solution and residual alkali react on the surface of the positive electrode material particles, gas generation occurs, and cycle characteristics are adversely affected. It is known to affect. Therefore, in the present invention, the crystal grain size is controlled to 5.0 μm or less as an allowable limit of this “residual alkali”. The average crystal grain size of the positive electrode active material for a lithium ion battery is preferably 1.2 to 4.0 μm, more preferably 1.2 to 3.0 μm when the particle cross section is observed with a SIM (scanning ion microscope) image. is there.

(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Configuration of positive electrode for lithium ion battery and lithium ion battery using the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. The current collector has a structure provided on one side or both sides. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.

(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
まず、金属塩溶液を作製する。当該金属は、Ni、及び、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上である。また、金属塩は硫酸塩、塩化物、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けることと、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる各金属は、所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.
First, a metal salt solution is prepared. The metal is at least one selected from Ni and Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr. It is. The metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable. This is because even if it is mixed as an impurity in the firing raw material, it can be fired as it is, so that the washing step can be omitted, and nitrate functions as an oxidant, and promotes the oxidation of the metal in the firing raw material. Each metal contained in the metal salt is adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.

次に、炭酸リチウムを純水に懸濁させ、その後、上記金属の金属塩溶液を投入して金属炭酸塩スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。なお、金属塩として硫酸塩や塩化物等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。
Next, lithium carbonate is suspended in pure water, and then the metal salt solution of the metal is added to prepare a metal carbonate slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during the heat treatment, such as nitrate or acetate, it can be used as a calcined precursor by washing and drying as it is without washing.
Next, the lithium-containing carbonate separated by filtration is dried to obtain a lithium salt composite (precursor for lithium ion battery positive electrode material) powder.

次に、所定の大きさの容量を有する焼成容器を準備し、この焼成容器にリチウムイオン電池正極材用前駆体の粉末を充填する。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を、焼成炉へ移設し、焼成を行う。焼成は、酸素雰囲気下及び大気雰囲気下で所定時間加熱保持することにより行う。また、101〜202KPaでの加圧下で焼成を行うと、さらに組成中の酸素量が増加するため、好ましい。
本発明のリチウムイオン電池用正極活物質の製造方法において、焼成温度を高くすることで結晶化を促進し、平均結晶粒径を1.2〜5.0μmに制御する。
Next, a firing container having a predetermined capacity is prepared, and this firing container is filled with a precursor powder for a lithium ion battery positive electrode material. Next, the firing container filled with the precursor powder for the lithium ion battery positive electrode material is transferred to a firing furnace and fired. Firing is performed by heating and holding for a predetermined time in an oxygen atmosphere and an air atmosphere. Further, it is preferable to perform baking under pressure of 101 to 202 KPa because the amount of oxygen in the composition further increases.
In the method for producing a positive electrode active material for a lithium ion battery of the present invention, crystallization is promoted by increasing the firing temperature, and the average crystal grain size is controlled to 1.2 to 5.0 μm.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

(実施例1〜12)
まず、所定の投入量の炭酸リチウムを純水3.2リットルに懸濁させた後、金属塩溶液を4.8リットル投入した。ここで、金属塩溶液は、各金属の硝酸塩の水和物を、各金属が表1に記載の組成比になるように調整し、また全金属モル数が14モルになるように調整した。
この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
次に、焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、焼成容器を、表1に記載の焼成雰囲気、焼成温度で焼成した。続いて室温まで冷却した後、解砕してリチウムイオン二次電池正極材の粉末を得た。
(Examples 1-12)
First, after a predetermined amount of lithium carbonate was suspended in 3.2 liters of pure water, 4.8 liters of metal salt solution was charged. Here, the nitrate hydrate of each metal was adjusted so that each metal might become the composition ratio of Table 1, and the total metal mole number might be set to 14 mol.
By this treatment, fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press.
Subsequently, the precipitate was dried to obtain a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material).
Next, a firing container was prepared, and this firing container was filled with a lithium-containing carbonate. Next, the firing container was fired in the firing atmosphere and firing temperature described in Table 1. Subsequently, after cooling to room temperature, it was crushed to obtain a powder of a positive electrode material for a lithium ion secondary battery.

(実施例13)
実施例13として、原料の各金属を表1に示すような組成とし、金属塩を塩化物とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1〜12と同様の処理を行った。
(Example 13)
Example 13 was carried out except that each metal of the raw material had the composition shown in Table 1, the metal salt was chloride, the lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 12 was performed.

(実施例14)
実施例14として、原料の各金属を表1に示すような組成とし、金属塩を硫酸塩とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1〜12と同様の処理を行った。
(Example 14)
Example 14 was carried out except that each material of the raw material had a composition as shown in Table 1, the metal salt was a sulfate, a lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 12 was performed.

(実施例15)
実施例15として、原料の各金属を表1に示すような組成とし、焼成を大気圧下ではなく120KPaの加圧下で行った以外は、実施例1〜12と同様の処理を行った。
(Example 15)
As Example 15, the same processing as in Examples 1 to 12 was performed except that each metal of the raw material had a composition as shown in Table 1 and firing was performed under a pressure of 120 KPa instead of atmospheric pressure.

(比較例1〜10)
比較例1〜10として、原料の各金属を表1に示すような組成とし、焼成条件を表1に示す値として、実施例1〜12と同様の処理を行った。
(Comparative Examples 1-10)
As Comparative Examples 1 to 10, the same processing as in Examples 1 to 12 was performed with each metal of the raw material having a composition as shown in Table 1 and the firing conditions as values shown in Table 1.

(評価)
−正極材組成の評価−
各正極材中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出した。各金属の組成比は、表1に記載の通りであることを確認した。また、酸素含有量はLECO法で測定しαを算出した。
(Evaluation)
-Evaluation of composition of positive electrode material-
The metal content in each positive electrode material was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated. It was confirmed that the composition ratio of each metal was as shown in Table 1. The oxygen content was measured by the LECO method and α was calculated.

−平均結晶粒径の評価−
粒子断面をFIBにより切り出し、そのままエスエスアイ・ナノテクノロジー社製のFIB装置(SMI3050SE)を用いてSIM像を取得した。当該SIM像上の任意の直線上に存在する結晶のみの定方向径を測定することにより、平均結晶粒径を算出した。
-Evaluation of average crystal grain size-
A particle cross section was cut out by FIB, and a SIM image was obtained as it was using an FIB apparatus (SMI3050SE) manufactured by SSI Nanotechnology. The average crystal grain size was calculated by measuring the unidirectional diameter of only the crystals existing on an arbitrary straight line on the SIM image.

−電池特性(サイクル特性)の評価−
各正極材と、導電材と、バインダーを90:5:5の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて、室温で1Cの放電電流で得られた初期放電容量と10〜100サイクル後の放電容量とを比較することによってサイクル特性を測定した。
これらの結果を表1に示す。また、実施例3及び比較例1の断面観察写真(SIM像)を図1、2に示す。






-Evaluation of battery characteristics (cycle characteristics)-
Each positive electrode material, conductive material, and binder are weighed in a ratio of 90: 5: 5, and the positive electrode material and the conductive material are mixed into a slurry obtained by dissolving the binder in an organic solvent (N-methylpyrrolidone). Then, it was coated on an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and obtained with 1M-LiPF 6 dissolved in EC-DMC (1: 1) in an electrolytic solution at a discharge current of 1 C at room temperature. The cycle characteristics were measured by comparing the obtained initial discharge capacity with the discharge capacity after 10 to 100 cycles.
These results are shown in Table 1. Moreover, the cross-sectional observation photograph (SIM image) of Example 3 and Comparative Example 1 is shown in FIGS.






(評価結果)
実施例1〜15は、いずれも良好なサイクル特性が得られた。
比較例1〜10は、焼成温度が低い、又は、「焼成温度」×「当該温度での保持時間」が小さいという原因から、平均結晶粒径が1.2μm未満と小さく、サイクル特性が不良であった。
(Evaluation results)
In all of Examples 1 to 15, good cycle characteristics were obtained.
In Comparative Examples 1 to 10, because the firing temperature is low or the “baking temperature” × “holding time at the temperature” is small, the average crystal grain size is as small as less than 1.2 μm, and the cycle characteristics are poor. there were.

Claims (5)

組成式:LixNi1-yy2+α
(前記式において、MはSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、α≧0である。)
で表され、
粒子断面をSIM(走査イオン顕微鏡)像で観察したときの平均結晶粒径が1.2〜5.0μmであるリチウムイオン電池用正極活物質。
Composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is one or more selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B and Zr. Yes, 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, and α ≧ 0.)
Represented by
A positive electrode active material for a lithium ion battery having an average crystal grain size of 1.2 to 5.0 μm when a particle cross section is observed with a SIM (scanning ion microscope) image.
前記粒子断面をSIM像で観察したときの平均結晶粒径が1.2〜3.0μmである請求項1に記載のリチウムイオン電池用正極活物質。   2. The positive electrode active material for a lithium ion battery according to claim 1, wherein an average crystal grain size when the cross section of the particle is observed with a SIM image is 1.2 to 3.0 μm. 前記Mが、Mn及びCoから選択される1種以上である請求項1又は2に記載のリチウムイオン電池用正極活物質。   The positive electrode active material for a lithium ion battery according to claim 1, wherein the M is one or more selected from Mn and Co. 請求項1〜3のいずれかに記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。   The positive electrode for lithium ion batteries using the positive electrode active material for lithium ion batteries in any one of Claims 1-3. 請求項4に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。   The lithium ion battery using the positive electrode for lithium ion batteries of Claim 4.
JP2012024077A 2012-02-07 2012-02-07 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Active JP5876739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024077A JP5876739B2 (en) 2012-02-07 2012-02-07 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012024077A JP5876739B2 (en) 2012-02-07 2012-02-07 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2013161703A true JP2013161703A (en) 2013-08-19
JP5876739B2 JP5876739B2 (en) 2016-03-02

Family

ID=49173786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024077A Active JP5876739B2 (en) 2012-02-07 2012-02-07 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Country Status (1)

Country Link
JP (1) JP5876739B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185354A (en) * 2014-03-24 2015-10-22 Jx日鉱日石金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2022149933A1 (en) * 2021-01-08 2022-07-14 주식회사 엘지화학 Positive electrode active material, and positive electrode and lithium secondary battery comprising same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780177A4 (en) 2018-04-03 2021-05-19 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
JP7466211B2 (en) 2019-04-10 2024-04-12 パナソニックIpマネジメント株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108653A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithion-ion batteries, lithium-ion battery
WO2011108720A1 (en) * 2010-03-05 2011-09-09 Jx日鉱日石金属株式会社 Positive-electrode active material for lithium ion battery, positive electrode for lithium battery, and lithium ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108653A1 (en) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium-ion batteries, positive electrode for lithion-ion batteries, lithium-ion battery
WO2011108720A1 (en) * 2010-03-05 2011-09-09 Jx日鉱日石金属株式会社 Positive-electrode active material for lithium ion battery, positive electrode for lithium battery, and lithium ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185354A (en) * 2014-03-24 2015-10-22 Jx日鉱日石金属株式会社 Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2022149933A1 (en) * 2021-01-08 2022-07-14 주식회사 엘지화학 Positive electrode active material, and positive electrode and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JP5876739B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5467144B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5819199B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5819200B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5923036B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6016329B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP5963745B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI549343B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
WO2012098724A1 (en) Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
WO2011108389A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
WO2011108596A1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2013084536A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP6399737B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6026403B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5876739B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6026404B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2012133436A1 (en) Positive electrode active substance for lithium ion cell, positive electrode for lithium ion cell, and lithium ion cell
JP6273115B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2013084535A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP2018006346A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6377379B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JPWO2012073548A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6069397B2 (en) Method for producing positive electrode active material for lithium ion battery
TWI469934B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160122

R150 Certificate of patent or registration of utility model

Ref document number: 5876739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250