JP2013160646A - Methods for inspecting and manufacturing semiconductive belt, and inspection apparatus - Google Patents

Methods for inspecting and manufacturing semiconductive belt, and inspection apparatus Download PDF

Info

Publication number
JP2013160646A
JP2013160646A JP2012023156A JP2012023156A JP2013160646A JP 2013160646 A JP2013160646 A JP 2013160646A JP 2012023156 A JP2012023156 A JP 2012023156A JP 2012023156 A JP2012023156 A JP 2012023156A JP 2013160646 A JP2013160646 A JP 2013160646A
Authority
JP
Japan
Prior art keywords
semiconductive belt
belt
constant current
circuit
semiconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012023156A
Other languages
Japanese (ja)
Inventor
Tetsuya Iwai
哲也 岩井
Kazuyoshi Uemori
一好 上森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2012023156A priority Critical patent/JP2013160646A/en
Publication of JP2013160646A publication Critical patent/JP2013160646A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for inspecting a semiconductive belt in a condition close to an actual usage condition.SOLUTION: An inspection method of the present invention includes the steps of: contacting parallel electrodes arranged at a fixed interval with a surface of a semiconductive belt and measuring surface resistance of the semiconductive belt while making constant current flow through the parallel electrodes; and determining the quality of the semiconductive belt on the basis of the measuring result of the surface resistance. A measuring apparatus 100 usable in the step of measuring the surface resistance includes: a constant current source 12 for supplying constant current to the semiconductive belt as an inspection target; a first circuit 22 connected to the constant current source 12; and a second circuit 24 connected to the constant current source 12 so as to form a parallel connection with the first circuit 22. Further, the first circuit has a probe 14 including parallel electrodes 15, and the second circuit 24 has a fixed resistor Rand an ammeter 20 connected in series to the fixed resistor R.

Description

本発明は、半導電性ベルトの検査方法、製造方法および検査装置に関する。   The present invention relates to a semiconductive belt inspection method, manufacturing method, and inspection apparatus.

複写機、プリンタ、ファクシミリ等の画像形成装置の中間転写ベルトとして、半導電性ベルトが使用されている。半導電性ベルトには、通常、ポリイミド等の樹脂にカーボンブラック等の導電フィラーを分散させた材料が用いられる。半導電性ベルトの特性は、樹脂の重合度や導電フィラーの分散性に応じて大きく変化する。顧客に納入する製品の特性にバラつきが出ないように、出荷前検査の一項目として表面抵抗を測定する。半導電性ベルトの表面抵抗は、抵抗率で評価するのが一般的である(特許文献1〜4参照)。抵抗率の測定には、「ハイレスタ(登録商標)」と呼ばれる市販の測定装置が使用されている。しかし、ハイレスタには以下の問題点がある。   A semiconductive belt is used as an intermediate transfer belt in an image forming apparatus such as a copying machine, a printer, or a facsimile machine. A material obtained by dispersing a conductive filler such as carbon black in a resin such as polyimide is usually used for the semiconductive belt. The characteristics of the semiconductive belt vary greatly depending on the degree of polymerization of the resin and the dispersibility of the conductive filler. Surface resistance is measured as an item before inspection to ensure that the characteristics of products delivered to customers do not vary. The surface resistance of a semiconductive belt is generally evaluated by resistivity (see Patent Documents 1 to 4). A commercially available measuring device called “HIRESTA (registered trademark)” is used for measuring the resistivity. However, Hiresta has the following problems.

特開2007−146042号公報JP 2007-146042 A 特開2006−103140号公報JP 2006-103140 A 特開2001−324882号公報JP 2001-324882 A 特開2001−324880号公報JP 2001-324880 A

一つの問題点として、測定時に電流を制御できないことが挙げられる。昨今の画像形成装置では、感光ドラムに担持されたトナー像を中間転写ベルトに一次転写する際に中間転写ベルトと感光ドラムとの間に流れる電流を一定に保つ定電流制御が主流となりつつある。定電流制御は、中間転写ベルトに転写されたトナー像を記録紙に二次転写する工程にも適用されている。定電流制御によれば、トナー量や中間転写ベルトの抵抗値に応じて転写電圧が最適に調整されるので、転写不良や放電の発生を回避して安定した転写を実現しやすい。この定電流制御を再現するべく、中間転写ベルトの検査も定電流で行うことが望ましい。   One problem is that the current cannot be controlled during measurement. In recent image forming apparatuses, constant current control that keeps the current flowing between the intermediate transfer belt and the photosensitive drum constant when the toner image carried on the photosensitive drum is primarily transferred to the intermediate transfer belt is becoming mainstream. The constant current control is also applied to a process of secondary transfer of the toner image transferred to the intermediate transfer belt onto the recording paper. According to the constant current control, the transfer voltage is optimally adjusted according to the toner amount and the resistance value of the intermediate transfer belt, so that it is easy to realize stable transfer by avoiding transfer failure and discharge. In order to reproduce this constant current control, it is desirable to inspect the intermediate transfer belt with a constant current.

しかし、ハイレスタで設定できるのは印加電圧のみであり、電流を設定できない。例えば、実際の画像形成装置において中間転写ベルトに30μAの定電流を流す場合には、30μAの電流を流したときの抵抗特性(抵抗値、抵抗の安定性、測定位置によるバラつき等)を検査すべきであるが、ハイレスタではそうした検査を行えない。なぜなら、図6に示すように、半導電性ベルトの抵抗は、当該ベルトを流れている電流に応じて変化し、オームの法則が成立しないからである。さらに、ハイレスタを用いて抵抗率を測定したときの電流値は数10nAのオーダーに留まる。一般に、このような微小電流の測定を正確かつ再現性よく行うことは技術的に困難である。その結果、測定結果がバラつくことになる。   However, only the applied voltage can be set by Hiresta, and the current cannot be set. For example, when a constant current of 30 μA is applied to the intermediate transfer belt in an actual image forming apparatus, the resistance characteristics (resistance value, stability of resistance, variation due to measurement position, etc.) when a current of 30 μA is applied are inspected. It should be, but Hiresta cannot do that. This is because, as shown in FIG. 6, the resistance of the semiconductive belt changes according to the current flowing through the belt, and Ohm's law does not hold. Furthermore, the current value when the resistivity is measured using a Hiresta remains on the order of several tens of nA. In general, it is technically difficult to measure such a minute current accurately and with good reproducibility. As a result, the measurement results vary.

他の一つの問題点として、ハイレスタによる抵抗率の測定が、実際の画像形成装置での電圧印加状態とは大きく異なった状態で行われていることが挙げられる。ハイレスタによる抵抗率の測定は、中間転写ベルトにリング状のプローブを接触させ、局所的に定電圧を印加して行われる(JIS K6911に準拠した方法)。これに対し、実際の画像形成装置の一次転写工程では、感光ドラム上のトナー像が中間転写ベルトに転写されるように、感光ドラムと転写ロールとの間に中間転写ベルト(半導電性ベルト)を挟んだ状態で中間転写ベルトにバイアス電圧を印加する。   Another problem is that the resistivity measurement by Hiresta is performed in a state significantly different from the voltage application state in the actual image forming apparatus. The resistivity measurement by Hiresta is performed by bringing a ring-shaped probe into contact with the intermediate transfer belt and locally applying a constant voltage (method according to JIS K6911). On the other hand, in the primary transfer process of an actual image forming apparatus, an intermediate transfer belt (semiconductive belt) is provided between the photosensitive drum and the transfer roll so that the toner image on the photosensitive drum is transferred to the intermediate transfer belt. A bias voltage is applied to the intermediate transfer belt in the state of sandwiching.

このような問題点があるので、ハイレスタの測定結果に基づく良否判定が、実際の画像形成装置にとっての良否に必ずしも一致していない可能性がある。本発明は、実際の使用状態になるべく近い状態で半導電性ベルトの抵抗特性を検査する方法を提供することを目的とする。   Since there is such a problem, there is a possibility that the quality determination based on the measurement result of Hiresta does not necessarily match the quality for the actual image forming apparatus. An object of the present invention is to provide a method for inspecting the resistance characteristics of a semiconductive belt in a state as close as possible to an actual use state.

すなわち、本発明は、
一定間隔で並べた平行電極を半導電性ベルトの表面に接触させ、前記平行電極間に定電流を流して前記半導電性ベルトの表面抵抗を測定する工程と、
前記表面抵抗の測定結果に基づいて前記半導電性ベルトの良否を判定する工程と、
を含む、半導電性ベルトの検査方法を提供する。
That is, the present invention
Contacting the parallel electrodes arranged at regular intervals with the surface of the semiconductive belt, and passing a constant current between the parallel electrodes to measure the surface resistance of the semiconductive belt;
Determining the quality of the semiconductive belt based on the measurement result of the surface resistance;
A method for inspecting a semiconductive belt is provided.

他の側面において、本発明は、
樹脂材料と導電フィラーとを用いて半導電性ベルトを成形する工程と、
上記本発明の方法によって前記半導電性ベルトを検査する工程と、
前記検査工程における検査結果に基づいて前記半導電性ベルトを良品と不良品とに選別する工程と、
を含む、半導電性ベルトの製造方法を提供する。
In another aspect, the present invention provides:
Forming a semiconductive belt using a resin material and a conductive filler;
Inspecting the semiconductive belt by the method of the invention,
A step of sorting the semiconductive belt into a non-defective product and a defective product based on an inspection result in the inspection step;
A method of manufacturing a semiconductive belt is provided.

さらに他の側面において、本発明は、
定電流源と、
前記定電流源に接続されているとともに、前記半導電性ベルトの表面に接触するべき平行電極を含むプローブを有する第1回路と、
前記第1回路に対して並列接続となるように前記定電流源に接続されているとともに、固定抵抗と、前記固定抵抗に直列接続された電流計とを有する第2回路と、
を備えた、半導電性ベルトの検査装置を提供する。
In yet another aspect, the present invention provides:
A constant current source;
A first circuit having a probe connected to the constant current source and including parallel electrodes to contact the surface of the semiconductive belt;
A second circuit connected to the constant current source so as to be connected in parallel to the first circuit, and having a fixed resistor and an ammeter connected in series to the fixed resistor;
An inspection apparatus for a semiconductive belt, comprising:

本発明によれば、平行電極を半導電性ベルトの表面に接触させ、平行電極間に定電流を流して半導電性ベルトの表面抵抗を測定する。そのため、ハイレスタを用いた従来の測定に比べて、実際の使用状態に近い状態で表面抵抗を測定できる。つまり、より現実的な検査結果を得ることができる。   According to the present invention, the parallel electrode is brought into contact with the surface of the semiconductive belt, and a constant current is passed between the parallel electrodes to measure the surface resistance of the semiconductive belt. Therefore, the surface resistance can be measured in a state close to the actual use state as compared with the conventional measurement using Hiresta. That is, a more realistic inspection result can be obtained.

本発明の一実施形態に係る検査方法で使用できる測定装置の回路図The circuit diagram of the measuring device which can be used with the inspection method concerning one embodiment of the present invention 図1に示す測定装置で使用可能なブローブの平面図Plan view of the probe usable in the measuring apparatus shown in FIG. 図2Aに示すプローブのIIB-IIB線に沿った断面図Sectional view along the IIB-IIB line of the probe shown in FIG. 2A プローブと半導電性ベルトの位置関係を示す概略図Schematic showing the positional relationship between the probe and the semiconductive belt ハイレスタによる測定位置を示す半導電性ベルトの概略図Schematic of semiconductive belt showing the measurement position by Hiresta 本発明に基づく検査方法による測定結果を示すグラフThe graph which shows the measurement result by the inspection method based on this invention ハイレスタによる測定結果を示すグラフGraph showing measurement results by Hiresta 半導電性ベルトの電流−抵抗特性を示すグラフGraph showing current-resistance characteristics of semiconductive belt

本実施形態の検査方法では、半導電性ベルトの表面抵抗を測定する工程と、その測定結果に基づいて良否を判定する工程とを行う。以下、各工程を詳しく説明する。   In the inspection method of the present embodiment, a step of measuring the surface resistance of the semiconductive belt and a step of determining pass / fail based on the measurement result are performed. Hereinafter, each process will be described in detail.

表面抵抗の測定工程は、図1に示す測定装置を用いて行える。測定装置100は、定電流源12と、定電流源12に接続された第1回路22と、第1回路22に対して並列接続となるように定電流源12に接続された第2回路24とを備えている。第1回路22は、プローブ14と、プローブ14に直列接続された電流計16(第1電流計)とを有する。第2回路24は、固定抵抗R2と、固定抵抗R2に直列接続された電流計20(第2電流計)とを有する。プローブ14は半導電性ベルトの表面に接触するべき平行電極を有する。 The surface resistance measurement step can be performed using the measurement apparatus shown in FIG. The measuring apparatus 100 includes a constant current source 12, a first circuit 22 connected to the constant current source 12, and a second circuit 24 connected to the constant current source 12 so as to be connected in parallel to the first circuit 22. And. The first circuit 22 includes a probe 14 and an ammeter 16 (first ammeter) connected in series to the probe 14. The second circuit 24 includes a fixed resistor R 2 and an ammeter 20 (second ammeter) connected in series to the fixed resistor R 2 . The probe 14 has parallel electrodes to be in contact with the surface of the semiconductive belt.

プローブ14の平行電極を半導電性ベルトの表面に接触させ、定電流源12から各回路に給電する。定電流源12の電流レベルは、画像形成装置の転写工程で実際に用いられる定電流の大きさに等しく、例えば20〜40μAの範囲に設定される。固定抵抗R2が十分大きいとき、電流値I1は定電流源12の電流レベルに概ね等しい。固定抵抗R2は、例えば350〜450MΩの範囲にある。転写工程には、感光ドラム上のトナー像を半導電性ベルトで作られた中間転写ベルトに転写する一次転写工程や、中間転写ベルト上のトナー像を記録紙に転写する二次転写工程が含まれる。 The parallel electrode of the probe 14 is brought into contact with the surface of the semiconductive belt, and power is supplied from the constant current source 12 to each circuit. The current level of the constant current source 12 is equal to the constant current actually used in the transfer process of the image forming apparatus, and is set to a range of 20 to 40 μA, for example. When the fixed resistance R 2 is sufficiently large, the current value I 1 is approximately equal to the current level of the constant current source 12. The fixed resistance R 2 is in the range of 350 to 450 MΩ, for example. The transfer process includes a primary transfer process in which the toner image on the photosensitive drum is transferred to an intermediate transfer belt made of a semiconductive belt, and a secondary transfer process in which the toner image on the intermediate transfer belt is transferred to recording paper. It is.

電流計16および20で、それぞれ、第1回路22の電流値I1および第2回路24の電流値I2を測定できる。電流値I1と電流値I2と固定抵抗R2とを用いて、下式(1)に基づいて半導電性ベルトの表面抵抗R1を算出できる。このような測定装置100によれば、表面抵抗R1を極めて容易に算出できる。
1=(R2×I2)/I1・・・(1)
The ammeter 16 and 20, respectively, can measure the current value I 2 of the current values I 1 and the second circuit 24 of the first circuit 22. The surface resistance R 1 of the semiconductive belt can be calculated based on the following formula (1) using the current value I 1 , the current value I 2, and the fixed resistance R 2 . According to the measuring apparatus 100 can be very easily calculate the surface resistance R 1.
R 1 = (R 2 × I 2 ) / I 1 (1)

図1に示すように、少なくとも電流計20の測定結果を取得し、式(1)に基づいて表面抵抗R1を算出する演算器25を設けてもよい。演算器25による算出結果をモニタ27(またはプリンタ)に出力できると便利である。なお、電流値I1は基本的には略一定なので、式(1)において、電流値I1に代えて定電流源12の定電流値を使用してもよい。もちろん、電流値I2とともに電流値I1を演算器25に入力して、表面抵抗R1の算出に使用してもよい。 As shown in FIG. 1, a calculator 25 that obtains at least the measurement result of the ammeter 20 and calculates the surface resistance R 1 based on the equation (1) may be provided. It is convenient if the calculation result by the arithmetic unit 25 can be output to the monitor 27 (or printer). Since the current value I 1 is basically substantially constant, the constant current value of the constant current source 12 may be used in the formula (1) instead of the current value I 1 . Of course, by entering with a current value I 2 the current I 1 to the arithmetic unit 25 may be used for the calculation of the surface resistance R 1.

図2Aおよび図2Bに示すように、プローブ14として、所定間隔で並べられた平行電極15を絶縁板17の上に設けたものを使用できる。平行電極15の端部には、それぞれ、リード線13aおよび13bが接続されている。一方の電極15とリード線13aとの接続部は、電極15の長手方向に関して、他方の電極15とリード線13bとの接続部の逆に位置している。平行電極15は、一対の細長い金属箔、典型的には銅箔で作られている。平行電極15は、例えば0.5〜1.5mmの間隔で配置されている。一つの電極15は、例えば、2〜5mmの幅を有し、10〜20μmの厚みを有し、250〜300mmの長さを有する。絶縁板17の具体例は樹脂板であり、樹脂板としては、アクリル板が挙げられる。このようなプローブ14は、半導電性ベルト26にダメージを与える可能性が低いので好ましい。   As shown in FIG. 2A and FIG. 2B, a probe 14 in which parallel electrodes 15 arranged at a predetermined interval are provided on an insulating plate 17 can be used. Lead wires 13a and 13b are connected to the ends of the parallel electrodes 15, respectively. The connection portion between one electrode 15 and the lead wire 13a is positioned opposite to the connection portion between the other electrode 15 and the lead wire 13b in the longitudinal direction of the electrode 15. The parallel electrode 15 is made of a pair of elongated metal foils, typically copper foil. The parallel electrodes 15 are arranged at an interval of 0.5 to 1.5 mm, for example. One electrode 15 has, for example, a width of 2 to 5 mm, a thickness of 10 to 20 μm, and a length of 250 to 300 mm. A specific example of the insulating plate 17 is a resin plate, and an example of the resin plate is an acrylic plate. Such a probe 14 is preferable because it is less likely to damage the semiconductive belt 26.

図3に示すように、測定工程では、平行電極15の長手方向が半導電性ベルト26の幅方向WDに平行となる向きでプローブ14(具体的には平行電極15)を半導電性ベルト26の表面に接触させる。実際の画像形成装置では、転写ローラと感光ドラムとの間に半導電性ベルト26(中間転写ベルト)が挟まれて、半導電性ベルト26の幅方向WDに沿って電圧が印加される。つまり、図3に示す位置関係によれば、実際の使用状態に近い状態で測定を行える。   As shown in FIG. 3, in the measurement process, the probe 14 (specifically, the parallel electrode 15) is placed in the semiconductive belt 26 so that the longitudinal direction of the parallel electrode 15 is parallel to the width direction WD of the semiconductive belt 26. Touch the surface. In an actual image forming apparatus, a semiconductive belt 26 (intermediate transfer belt) is sandwiched between a transfer roller and a photosensitive drum, and a voltage is applied along the width direction WD of the semiconductive belt 26. That is, according to the positional relationship shown in FIG. 3, measurement can be performed in a state close to the actual use state.

電極15の長さLは、半導電性ベルト26の幅Dを超えない範囲で、半導電性ベルト26の幅Dに概ね等しいことが好ましい。例えば、0.5<L/D≦1(好ましくは0.98<L/D<1)の関係を満足するように、半導電性ベルト26の幅Dに対する電極15の長さLを調節することができる。このようにすれば、より広い範囲の抵抗の平均値を求めることができる。このことは、実際の使用状態に近い状態で測定を行うという目的にも叶っている。   The length L of the electrode 15 is preferably substantially equal to the width D of the semiconductive belt 26 within a range not exceeding the width D of the semiconductive belt 26. For example, the length L of the electrode 15 with respect to the width D of the semiconductive belt 26 is adjusted so as to satisfy the relationship of 0.5 <L / D ≦ 1 (preferably 0.98 <L / D <1). be able to. In this way, it is possible to obtain an average value of resistances in a wider range. This also fulfills the purpose of performing measurement in a state close to the actual use state.

具体的な操作としては、まず、抵抗測定用の試料台に半導電性ベルト26を載せる。そして、平行電極15が半導電性ベルト26に接触する向きでプローブ14を半導電性ベルト26の上に載せ、絶縁板17に適度な荷重、例えば5〜10kgfの荷重を加える。その状態を維持しながら、定電流源12をオンにして平行電極15の間に電流を流す。表面抵抗R1は、半導電性ベルト26(半導電性エンドレスベルト26)の周回方向LDの複数箇所、例えば5〜10箇所で測定される。複数箇所の測定結果から標準偏差σを算出し、算出した標準偏差σが所定の閾値以下の場合に良品、閾値を超えた場合に不良品と判定する。良否の判定基準となる「所定の閾値」は、製品に応じて、例えば5〜10の範囲内の任意の値に設定されうる。標準偏差σを算出する処理や良否判定処理を演算器25(図1参照)で自動的に行い、結果をモニタ27に表示できるようにしてもよい。 As a specific operation, first, the semiconductive belt 26 is placed on a sample table for resistance measurement. Then, the probe 14 is placed on the semiconductive belt 26 in such a direction that the parallel electrode 15 contacts the semiconductive belt 26, and an appropriate load, for example, a load of 5 to 10 kgf is applied to the insulating plate 17. While maintaining this state, the constant current source 12 is turned on to pass a current between the parallel electrodes 15. The surface resistance R 1 is measured at a plurality of locations, for example, 5 to 10 locations, in the circumferential direction LD of the semiconductive belt 26 (semiconductive endless belt 26). A standard deviation σ is calculated from the measurement results at a plurality of locations. When the calculated standard deviation σ is equal to or less than a predetermined threshold, it is determined as a non-defective product and when it exceeds the threshold, it is determined as a defective product. The “predetermined threshold value” serving as a pass / fail judgment criterion can be set to an arbitrary value within a range of 5 to 10, for example, depending on the product. Processing for calculating the standard deviation σ and pass / fail judgment processing may be automatically performed by the computing unit 25 (see FIG. 1), and the result may be displayed on the monitor 27.

測定対象としての半導電性ベルト26は、空間的に比較的均一な抵抗特性を持っている。半導電性ベルト26が均一な特性を有しているかどうか、言い換えれば、半導電性ベルト26の抵抗値のバラつきを検査するためには、定電流を用いた局所的な測定が適しているかもしれない。しかし、本実施形態の方法による検査の目的は、空間的に均一な抵抗特定を持っているであろう半導電性ベルト26の平均的な抵抗値が規格内かどうかを調べることにある。このような目的に対しては、本実施形態のような平均的測定を定電流で行うことが適している。   The semiconductive belt 26 as a measurement object has a relatively uniform resistance characteristic in space. In order to inspect whether the semiconductive belt 26 has uniform characteristics, in other words, the variation in resistance value of the semiconductive belt 26, local measurement using a constant current may be suitable. unknown. However, the purpose of the inspection by the method of the present embodiment is to check whether the average resistance value of the semiconductive belt 26 that will have a spatially uniform resistance specification is within the standard. For such a purpose, it is suitable to perform the average measurement as in the present embodiment with a constant current.

次に、検査対象である半導電性ベルトについて簡単に説明する。半導電性ベルトの用途は、主に、複写機等の画像形成装置の中間転写ベルトである。   Next, the semiconductive belt to be inspected will be briefly described. The semiconductive belt is mainly used for an intermediate transfer belt of an image forming apparatus such as a copying machine.

半導電性ベルトは、通常、樹脂材料と導電フィラーとで作られている。樹脂材料として、ポリイミド、ポリアミドイミド、ポリビニリデンフロライド(PVDF)、ポリカーボネート等を使用できる。導電フィラーとして、カーボンブラック等の各種炭素材料、アルミニウム、ニッケル、酸化スズ、チタン酸カリウム等の無機化合物、ポリアニリン、ポリピロール等の導電性高分子等を使用できる。例えば前述の特許文献2に記載されているように、樹脂材料(またはその前駆体)と導電フィラーとを含む溶液を円筒金型の内周面に塗布し、金型を加熱すれば、継ぎ目の無い半導電性ベルトが得られる。半導電性ベルトを得た後、本実施形態の方法で検査を行い、その検査結果に基づいて半導電性ベルトを良品と不良品とに選別する。これにより、均一な抵抗特性の半導電性ベルトを顧客に供給できる。なお、一般には、109〜1013Ω・cmの表面抵抗率を有するものを「半導電性ベルト」と称している。半導電性ベルトを中間転写ベルトに使用する場合、半導電性ベルトは、例えば50〜100μmの厚さを有している。半導電性ベルトには、単層のものもあるし、複数の層を有するものもある。 The semiconductive belt is usually made of a resin material and a conductive filler. As the resin material, polyimide, polyamideimide, polyvinylidene fluoride (PVDF), polycarbonate, or the like can be used. As the conductive filler, various carbon materials such as carbon black, inorganic compounds such as aluminum, nickel, tin oxide and potassium titanate, conductive polymers such as polyaniline and polypyrrole, and the like can be used. For example, as described in Patent Document 2 described above, if a solution containing a resin material (or a precursor thereof) and a conductive filler is applied to the inner peripheral surface of a cylindrical mold and the mold is heated, A semiconductive belt is obtained. After obtaining the semiconductive belt, an inspection is performed by the method of the present embodiment, and the semiconductive belt is classified into a non-defective product and a defective product based on the inspection result. Thereby, a semiconductive belt having uniform resistance characteristics can be supplied to the customer. In general, a belt having a surface resistivity of 10 9 to 10 13 Ω · cm is called a “semiconductive belt”. When using a semiconductive belt as an intermediate transfer belt, the semiconductive belt has a thickness of 50 to 100 μm, for example. Some semiconductive belts have a single layer and others have a plurality of layers.

実施形態で説明した方法により、半導電性ベルトの表面抵抗を測定した。まず、導電フィラーの含有量が互いに異なる7種類のサンプルを準備した。具体的には、カーボンブラックの含有量を段階的に変化させた7種類の半導電性ベルトを得た。樹脂材料には、ポリイミドを使用した。サンプル1のカーボンブラックの含有量が最も多く、サンプル7のそれが最も少ない。半導電性ベルトの幅は328mmであった。   The surface resistance of the semiconductive belt was measured by the method described in the embodiment. First, seven types of samples having different conductive filler contents were prepared. Specifically, seven types of semiconductive belts having different carbon black contents were obtained. Polyimide was used as the resin material. Sample 1 has the highest carbon black content and sample 7 has the lowest content. The width of the semiconductive belt was 328 mm.

次に、図3を参照して説明した手順に従って、各サンプルの表面抵抗を測定した。半導電性ベルトの周方向に沿って、等間隔かつ5箇所で表面抵抗を測定した。測定には、図1を参照して説明した測定装置100を用いた。実際の使用状態になるべく近い状態で検査を行うために、定電流源12として、複写機(富士ゼロックス社製、DocuCentre Color a450)の一次転写電流源(32μA)を用いた。固定抵抗R2は400MΩに設定した。プローブ14として、アクリル板上に、幅2mm、長さ325mmの銅箔電極を1mmの間隔で平行に配置したものを用いた。電流計16および電流計20として、それぞれ、アドバンテスト社製 R8340Aおよびエーディーシー社製 7352Eを用いた。測定時の気温は25℃、湿度60%であった。 Next, the surface resistance of each sample was measured according to the procedure described with reference to FIG. The surface resistance was measured at equal intervals and at five locations along the circumferential direction of the semiconductive belt. For the measurement, the measuring apparatus 100 described with reference to FIG. 1 was used. In order to perform inspection in a state as close as possible to the actual use state, a primary transfer current source (32 μA) of a copying machine (manufactured by Fuji Xerox Co., Ltd., DocuCentre Color a450) was used as the constant current source 12. The fixed resistance R 2 was set to 400 MΩ. As the probe 14, a copper foil electrode having a width of 2 mm and a length of 325 mm arranged in parallel at an interval of 1 mm on an acrylic plate was used. As the ammeter 16 and the ammeter 20, Advantest R8340A and ADC 7352E were used, respectively. The temperature at the time of measurement was 25 ° C. and the humidity was 60%.

サンプル1〜7について、それぞれ、5つの測定データを得た。5つの測定データを用いて、平均値、標準偏差および誤差を各サンプルについて算出した。結果を表1の上欄および図5Aに示す。図5A中のエラーバーは標準偏差を表している。「誤差」は、標準偏差が平均値に占める割合((標準偏差)×100/平均値)を表している。   For each of samples 1 to 7, five measurement data were obtained. The average value, standard deviation, and error were calculated for each sample using five measurement data. The results are shown in the upper column of Table 1 and FIG. 5A. Error bars in FIG. 5A represent standard deviation. “Error” represents the ratio of standard deviation to the average value ((standard deviation) × 100 / average value).

Figure 2013160646
Figure 2013160646

(市販の測定装置による測定)
参照例として、市販の測定装置(三菱化学社製、ハイレスタIP MCP−HT450)を用いて、各サンプルの表面抵抗を測定した。ハイレスタの測定モードは表面抵抗率測定モードに設定した。プローブとして、UR−100プローブを用いた。印加電圧を100Vに設定し、プローブを半導電性ベルトに接触させた時点から10秒後の値を読み取った。測定時の気温は25℃、湿度は60%であった。
(Measurement with a commercially available measuring device)
As a reference example, the surface resistance of each sample was measured using a commercially available measuring device (manufactured by Mitsubishi Chemical Corporation, Hiresta IP MCP-HT450). The measurement mode of Hiresta was set to the surface resistivity measurement mode. The UR-100 probe was used as the probe. The applied voltage was set to 100 V, and the value 10 seconds after the probe was brought into contact with the semiconductive belt was read. The temperature at the time of measurement was 25 ° C., and the humidity was 60%.

ハイレスタによる表面抵抗率の測定は、図4に示すように、1つのサンプル(半導電性ベルト)について90度ごとに9箇所、つまり、36箇所で行った。ハイレスタで得られた表面抵抗率ρsと、補正係数RCF(UR−100プローブの場合は1.00)とを用い、下式(2)に基づいて表面抵抗Rを算出した。算出した表面抵抗Rを用いて、平均値、標準偏差および誤差も算出した。結果を表1の下欄および図5Bに示す。図5B中のエラーバーも標準偏差を表している。
R=ρs/RCF・・・(2)
As shown in FIG. 4, the surface resistivity was measured at 9 locations every 90 degrees, that is, 36 locations for one sample (semiconductive belt) as shown in FIG. 4. Using the surface resistivity ρs obtained with Hiresta and the correction coefficient RCF (1.00 in the case of the UR-100 probe), the surface resistance R was calculated based on the following equation (2). Using the calculated surface resistance R, the average value, standard deviation, and error were also calculated. The results are shown in the lower column of Table 1 and FIG. 5B. The error bar in FIG. 5B also represents the standard deviation.
R = ρs / RCF (2)

サンプル1〜7は、番号が大きいほどカーボンブラックの含有量が少ない。そのため、サンプル番号が大きければ大きいほど高抵抗になるはずである。しかし、ハイレスタによる測定では各測定値のバラつきが大きく、表面抵抗の平均値がカーボンブラックの含有量に比例しなかった。これに対し、本発明の方法によれば、表面抵抗の平均値がカーボンブラックの含有量に比例していた。本発明の検査方法によれば、実際の複写機(画像形成装置)での使用状態に近い状態で検査を行えるので、良否判定の結果も実際の複写機での良否に合致していると考えられる。   In Samples 1 to 7, the larger the number, the lower the carbon black content. Therefore, the larger the sample number, the higher the resistance. However, in the measurement with Hiresta, the variation of each measurement value was large, and the average value of the surface resistance was not proportional to the content of carbon black. On the other hand, according to the method of the present invention, the average value of the surface resistance was proportional to the carbon black content. According to the inspection method of the present invention, the inspection can be performed in a state close to the usage state in an actual copying machine (image forming apparatus), so that the quality determination result also matches the quality in the actual copying machine. It is done.

(半導電性ベルトの電流−抵抗特性)
サンプル1〜7とは別の半導電性ベルトを準備し、その半導電性ベルトの表面抵抗をいくつかの電流値で測定した。図1を参照して説明した測定装置100を用い、実施形態で説明した方法で測定を行った。結果を図6に示す。図6に示すように、電流値と表面抵抗が線形関係を示さなかった。
(Current-resistance characteristics of semiconductive belt)
A semiconductive belt different from samples 1 to 7 was prepared, and the surface resistance of the semiconductive belt was measured at several current values. Measurement was performed by the method described in the embodiment using the measuring apparatus 100 described with reference to FIG. The results are shown in FIG. As shown in FIG. 6, the current value and the surface resistance did not show a linear relationship.

12 定電流源
14 プローブ
15 電極
16,20 電流計
17 絶縁板
22 第1回路
24 第2回路
26 半導電性ベルト
100 測定装置
2 固定抵抗
12 Constant current source 14 Probe 15 Electrodes 16 and 20 Ammeter 17 Insulating plate 22 First circuit 24 Second circuit 26 Semiconductive belt 100 Measuring device R 2 Fixed resistance

Claims (8)

所定間隔で並べた平行電極を半導電性ベルトの表面に接触させ、前記平行電極間に定電流を流して前記半導電性ベルトの表面抵抗を測定する工程と、
前記表面抵抗の測定結果に基づいて前記半導電性ベルトの良否を判定する工程と、
を含む、半導電性ベルトの検査方法。
Contacting the parallel electrodes arranged at predetermined intervals with the surface of the semiconductive belt, and passing a constant current between the parallel electrodes to measure the surface resistance of the semiconductive belt;
Determining the quality of the semiconductive belt based on the measurement result of the surface resistance;
A method for inspecting a semiconductive belt, comprising:
前記測定工程において、前記平行電極の長手方向が前記半導電性ベルトの幅方向に平行となる向きで前記平行電極を前記半導電性ベルトの表面に接触させる、請求項1に記載の半導電性ベルトの検査方法。   The semiconductive property according to claim 1, wherein in the measuring step, the parallel electrode is brought into contact with the surface of the semiconductive belt such that the longitudinal direction of the parallel electrode is parallel to the width direction of the semiconductive belt. Belt inspection method. 前記測定工程において、前記定電流を供給するための定電流源に対して互いに並列になるように、前記平行電極を有する第1回路と、固定抵抗を有する第2回路とを設けるとともに、前記第1回路の電流値と前記第2回路の電流値と前記固定抵抗とを用いて前記半導電性ベルトの表面抵抗を算出する、請求項1または2に記載の半導電性ベルトの検査方法。   In the measurement step, a first circuit having the parallel electrodes and a second circuit having a fixed resistance are provided so as to be parallel to each other with respect to a constant current source for supplying the constant current, and the first circuit The method for inspecting a semiconductive belt according to claim 1, wherein a surface resistance of the semiconductive belt is calculated using a current value of one circuit, a current value of the second circuit, and the fixed resistance. 前記測定工程において、前記半導電性ベルトの周回方向の複数箇所で前記表面抵抗を測定し、
前記判定工程において、複数箇所の測定結果から標準偏差を算出し、前記算出した標準偏差が所定の閾値以下の場合に良品、前記閾値を超えた場合に不良品と判定する、請求項1〜3のいずれか1項に記載の半導電性ベルトの検査方法。
In the measurement step, the surface resistance is measured at a plurality of locations in the circumferential direction of the semiconductive belt,
The determination step calculates a standard deviation from measurement results at a plurality of locations, and determines that the product is a non-defective product when the calculated standard deviation is equal to or less than a predetermined threshold value, and a defective product when the threshold value is exceeded. The method for inspecting a semiconductive belt according to any one of the above.
前記半導電性ベルトが、複写機等の画像形成装置の中間転写ベルトである、請求項1〜4のいずれか1項に記載の半導電性ベルトの検査方法。   The method for inspecting a semiconductive belt according to claim 1, wherein the semiconductive belt is an intermediate transfer belt of an image forming apparatus such as a copying machine. 前記定電流が、前記画像形成装置の一次転写電流である、請求項5に記載の半導電性ベルトの検査方法。   The method for inspecting a semiconductive belt according to claim 5, wherein the constant current is a primary transfer current of the image forming apparatus. 樹脂材料と導電フィラーとを用いて半導電性ベルトを成形する工程と、
請求項1〜6のいずれか1項に記載の方法によって前記半導電性ベルトを検査する工程と、
前記検査工程における検査結果に基づいて前記半導電性ベルトを良品と不良品とに選別する工程と、
を含む、半導電性ベルトの製造方法。
Forming a semiconductive belt using a resin material and a conductive filler;
Inspecting the semiconductive belt by the method of any one of claims 1-6;
A step of sorting the semiconductive belt into a non-defective product and a defective product based on an inspection result in the inspection step;
A method for producing a semiconductive belt, comprising:
定電流源と、
前記定電流源に接続されているとともに、前記半導電性ベルトの表面に接触するべき平行電極を含むプローブを有する第1回路と、
前記第1回路に対して並列接続となるように前記定電流源に接続されているとともに、固定抵抗と、前記固定抵抗に直列接続された電流計とを有する第2回路と、
を備えた、半導電性ベルトの検査装置。



A constant current source;
A first circuit having a probe connected to the constant current source and including parallel electrodes to contact the surface of the semiconductive belt;
A second circuit connected to the constant current source so as to be connected in parallel to the first circuit, and having a fixed resistor and an ammeter connected in series to the fixed resistor;
A semi-conductive belt inspection apparatus.



JP2012023156A 2012-02-06 2012-02-06 Methods for inspecting and manufacturing semiconductive belt, and inspection apparatus Pending JP2013160646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023156A JP2013160646A (en) 2012-02-06 2012-02-06 Methods for inspecting and manufacturing semiconductive belt, and inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023156A JP2013160646A (en) 2012-02-06 2012-02-06 Methods for inspecting and manufacturing semiconductive belt, and inspection apparatus

Publications (1)

Publication Number Publication Date
JP2013160646A true JP2013160646A (en) 2013-08-19

Family

ID=49173000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023156A Pending JP2013160646A (en) 2012-02-06 2012-02-06 Methods for inspecting and manufacturing semiconductive belt, and inspection apparatus

Country Status (1)

Country Link
JP (1) JP2013160646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749437A (en) * 2013-12-25 2015-07-01 上海华虹宏力半导体制造有限公司 On-layout inter-IO ESD resistance checking method
CN104793047A (en) * 2015-04-29 2015-07-22 国网辽宁省电力有限公司大连供电公司 Voltage telemetering and acquiring plate for single-phase double-sampling transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749437A (en) * 2013-12-25 2015-07-01 上海华虹宏力半导体制造有限公司 On-layout inter-IO ESD resistance checking method
CN104793047A (en) * 2015-04-29 2015-07-22 国网辽宁省电力有限公司大连供电公司 Voltage telemetering and acquiring plate for single-phase double-sampling transformer

Similar Documents

Publication Publication Date Title
US20070024287A1 (en) Apparatus and method for measuring liquid conductivity and electrode series capacitance
US9165701B2 (en) Resistance heating element and heating member and fusing device employing the same
WO2011090060A1 (en) Electrical characteristic measuring device and method
US9588072B2 (en) Measurement apparatus and method of measurement
US10718680B2 (en) Sensor sheet
JP6157179B2 (en) Image forming apparatus
JP2013160646A (en) Methods for inspecting and manufacturing semiconductive belt, and inspection apparatus
JP2016118552A (en) Sensor sheet
JP2013083697A (en) Semiconductive belt resistivity inspection method and resistivity inspection device
US8854068B2 (en) Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
JP3668559B2 (en) Roller electrode for surface resistance measurement and surface resistance measuring device
JP5088248B2 (en) Intermediate transfer belt defect inspection method and defect inspection apparatus
US10656568B1 (en) Intermediate transfer member and image forming apparatus
US6995575B2 (en) Apparatus and methods for measuring resistance of conductive layers
JP5604839B2 (en) Substrate inspection method and substrate inspection apparatus
US20180259869A1 (en) Image forming apparatus
JP2008139337A (en) Discharge irregularity observation method, discharge irregularity observation device, method of measuring resistance, measuring device and image forming apparatus
JPH08292648A (en) Transfer and carrying belt and transfer device
JP6696523B2 (en) Resistance measuring method, resistance measuring device, and board inspection device
JP2010014672A (en) Apparatus and method of measuring electrical resistance
JP2010002211A (en) Method for measuring electric characteristic of dielectric sheet material
JP6944640B2 (en) Secondary battery inspection method
KR20110043067A (en) Thin film thickness measurement apparatus use four-point probe method
US9110409B2 (en) Intermediate transferrer, transfer device, and image forming apparatus
US6498919B2 (en) High fatigue resistant metal sheet and fixing belt and fixing apparatus using the same and evaluation apparatus of metal material fatigue resistance and method thereof