JP2013157179A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2013157179A
JP2013157179A JP2012016454A JP2012016454A JP2013157179A JP 2013157179 A JP2013157179 A JP 2013157179A JP 2012016454 A JP2012016454 A JP 2012016454A JP 2012016454 A JP2012016454 A JP 2012016454A JP 2013157179 A JP2013157179 A JP 2013157179A
Authority
JP
Japan
Prior art keywords
fuel cell
current collector
fuel
main surface
chamfering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012016454A
Other languages
Japanese (ja)
Other versions
JP5846936B2 (en
Inventor
Hiroaki Yagi
宏明 八木
Nobuyuki Hotta
信行 堀田
Hideki Ishikawa
秀樹 石川
Hideki Uematsu
秀樹 上松
Hiroya Ishikawa
浩也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012016454A priority Critical patent/JP5846936B2/en
Publication of JP2013157179A publication Critical patent/JP2013157179A/en
Application granted granted Critical
Publication of JP5846936B2 publication Critical patent/JP5846936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell in which local stress concentration between a fuel cell body and a collector is reduced.SOLUTION: The fuel cell includes: a flat plate-like fuel cell body formed by laminating an air electrode layer, an electrolyte layer, and a fuel electrode layer, wherein a surface of one of the air electrode layer and the fuel electrode layer is a first main surface; and a flat plate-like collector which is in contact with the first main surface of the fuel cell body and is laminated in the laminating direction. That region of the collector which corresponds to the first main surface has a rectangular boundary having chamfered corners.

Description

本発明は,燃料電池に関する。   The present invention relates to a fuel cell.

発電装置として,燃料電池の開発が進められている。例えば,電解質に固体酸化物を用いた固体酸化物形燃料電池(以下,「SOFC」又は単に「燃料電池」とも記す場合がある)が知られている。SOFCは,例えば,板状の固体電解質体の各面に燃料極と空気極とを備えた燃料電池セル本体を多数積層したスタック(燃料電池スタック)を有する。燃料極および空気極それぞれに,燃料ガスおよび酸化剤ガス(例えば,空気中の酸素)を供給し,固体電解質体を介して化学反応させることで,電力を発生させる(例えば,特許文献1参照)。
このとき,燃料電池セル本体で発生した電力は,燃料電池セル本体に接触する導電性の集電体を用いて出力される。
Development of fuel cells is underway as a power generator. For example, a solid oxide fuel cell using a solid oxide as an electrolyte (hereinafter also referred to as “SOFC” or simply “fuel cell”) is known. The SOFC has, for example, a stack (fuel cell stack) in which a large number of fuel cell main bodies each provided with a fuel electrode and an air electrode are stacked on each surface of a plate-shaped solid electrolyte body. Electric power is generated by supplying a fuel gas and an oxidant gas (for example, oxygen in the air) to the fuel electrode and the air electrode, respectively, and causing a chemical reaction through the solid electrolyte body (see, for example, Patent Document 1). .
At this time, the electric power generated in the fuel cell body is output using a conductive current collector that contacts the fuel cell body.

特開2009−99308号公報JP 2009-99308 A

しかしながら,燃料電池スタックの組み立て時や運転中に,燃料電池セル本体(燃料極または空気極)と集電体間に局所的(例えば,角部が形成された箇所)に応力が集中し,燃料電池セル本体が割れる可能性がある。
本発明は,燃料電池セル本体と集電体間での局所的な応力集中を低減した燃料電池を提供することを目的とする。
However, during assembly and operation of the fuel cell stack, stress is concentrated locally between the fuel cell body (fuel electrode or air electrode) and the current collector (for example, where corners are formed). The battery cell body may break.
An object of this invention is to provide the fuel cell which reduced the local stress concentration between a fuel cell main body and a collector.

本発明に係る燃料電池は,空気極層と,電解質層と,燃料極層と,を積層してなり,前記空気極層および前記燃料極層の一方の層の表面を第1の主面とする平板状の燃料電池セル本体と,前記燃料電池セル本体の前記第1の主面に接触し,前記積層方向に積層される平板状の集電体と,を具備する燃料電池であって,前記集電体の前記第1の主面に対応する領域が,角部が面取りされた矩形形状の境界を有する。   The fuel cell according to the present invention is formed by laminating an air electrode layer, an electrolyte layer, and a fuel electrode layer, and the surface of one of the air electrode layer and the fuel electrode layer is defined as a first main surface. A fuel cell body comprising: a flat plate fuel cell body; and a flat plate current collector that is in contact with the first main surface of the fuel cell body and stacked in the stacking direction; A region corresponding to the first main surface of the current collector has a rectangular boundary with chamfered corners.

集電体の第1の主面に対応する領域とは,集電体が第1の主面と接触しているエリア,及び,集電体が複数である場合に集電体どうし間のエリアを含んで構成され,一つの連続する領域をいう。また,この領域は,角部が面取りされた矩形形状の境界を有する。例えば,集電体の角部が面取りされている。この結果,集電体と燃料電池セル本体とが接触する領域の角部での応力の集中が緩和され,燃料電池セル本体の割れを低減できる。   The area corresponding to the first main surface of the current collector is an area where the current collector is in contact with the first main surface, and an area between current collectors when there are a plurality of current collectors. A single continuous area. In addition, this region has a rectangular boundary with chamfered corners. For example, the corners of the current collector are chamfered. As a result, the concentration of stress at the corners of the region where the current collector and the fuel cell main body come into contact is alleviated, and cracking of the fuel cell main body can be reduced.

(1)前記第1の主面に接触する前記集電体が複数の第1の単体で構成されており,前記第1の主面に対応する領域の境界が,前記複数の第1の単体によって規定されても良い。
即ち,空気極または燃料極側に配置された前記集電体を複数個の単体で構成しても良い。この場合,この領域が,角部が面取りされた矩形形状の境界を有することで,角部での応力の集中が緩和される。
(1) The current collector in contact with the first main surface is composed of a plurality of first single bodies, and boundaries between regions corresponding to the first main surfaces are the plurality of first single bodies. May be defined by
That is, the current collector arranged on the air electrode or fuel electrode side may be constituted by a plurality of single units. In this case, since this region has a rectangular boundary with chamfered corners, stress concentration at the corners is alleviated.

(2)前記燃料電池セル本体の前記空気極層および前記燃料極層の他方の層の表面を第2の主面とし,前記燃料電池セル本体の前記第2の主面に接触し,前記積層方向に積層される平板状の第2の集電体と,をさらに具備し,前記第2の集電体の前記第2の主面に対応する領域が,角部が面取りされた矩形形状の境界を有しても良い。 (2) The surface of the air electrode layer of the fuel cell body and the other layer of the fuel electrode layer is a second main surface, and is in contact with the second main surface of the fuel cell body, A flat plate-like second current collector laminated in a direction, and a region corresponding to the second main surface of the second current collector is a rectangular shape with chamfered corners. It may have a boundary.

第2の集電体の第2の主面に対応する領域とは,第2の集電体が第2の主面と接触しているエリア,及び,第2の集電体が複数である場合に集電体どうし間のエリアを含んで構成され,一つの連続する領域をいう。また,この領域は,角部が面取りされた矩形形状の境界を有する。例えば,第2の集電体の角部が面取りされている。この結果,第2の集電体と燃料電池セル本体とが接触する領域の角部での応力の集中が緩和され,燃料電池セル本体の割れを低減できる。   The region corresponding to the second main surface of the second current collector is an area where the second current collector is in contact with the second main surface and a plurality of second current collectors. In some cases, it includes an area between current collectors and refers to one continuous area. In addition, this region has a rectangular boundary with chamfered corners. For example, the corners of the second current collector are chamfered. As a result, the concentration of stress at the corner of the region where the second current collector and the fuel cell body contact each other is alleviated, and cracking of the fuel cell body can be reduced.

(3)(2)において,前記第2の主面に接触する前記第2の集電体が複数の第2の単体で構成されており,前記第2の主面に対応する領域の境界が,前記複数の第2の単体によって規定されても良い。
この場合でも,同様に,この領域が,角部が面取りされた矩形形状の境界を有することで,角部での応力の集中が緩和される。
(3) In (2), the second current collector in contact with the second main surface is composed of a plurality of second single bodies, and the boundary of the region corresponding to the second main surface is , May be defined by the plurality of second single units.
Even in this case, similarly, this region has a rectangular boundary with chamfered corners, so that stress concentration at the corners is alleviated.

(4)前記面取りを,C面取りとすることができる。第2の集電体の第2の主面に対応する領域の角部をC面取りすることで,角部での応力の集中が緩和される。このとき,面取りの量を,前記矩形形状の短辺側長さの5%以上とすることが好ましい。 (4) The chamfering can be a C chamfering. By chamfering the corner of the region corresponding to the second main surface of the second current collector, stress concentration at the corner is reduced. At this time, the amount of chamfering is preferably 5% or more of the short side length of the rectangular shape.

(5)前記面取りを,R面取りとすることができる。第2の集電体の第2の主面に対応する領域の角部をR面取りすることで,角部での応力の集中が緩和される。このとき,面取りの量を,前記矩形形状の短辺側長さの10%以上とすることが好ましい。 (5) The chamfer can be an R chamfer. By chamfering the corner of the region corresponding to the second main surface of the second current collector, the stress concentration at the corner is reduced. At this time, the amount of chamfering is preferably 10% or more of the short side length of the rectangular shape.

本発明によれば,燃料電池セル本体と集電体間での局所的な応力集中を低減した燃料電池を提供できる。即ち,燃料電池セル本体の空気極または燃料極と集電体と接触する部分の角部に応力集中しやすい問題が改善され,セル割れが軽減される。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell which reduced local stress concentration between a fuel cell main body and a collector can be provided. That is, the problem that stress is likely to be concentrated at the corner of the fuel cell main body that is in contact with the air electrode or the fuel electrode and the current collector is improved, and cell cracking is reduced.

第1の実施形態に係る固体酸化物形燃料電池10を表す斜視図である。1 is a perspective view illustrating a solid oxide fuel cell 10 according to a first embodiment. 固体酸化物形燃料電池10の模式断面図である。1 is a schematic cross-sectional view of a solid oxide fuel cell 10. FIG. 燃料電池セル40の断面図である。3 is a cross-sectional view of a fuel cell 40. FIG. インターコネクタ41に配置される集電体45を表す平面図である。4 is a plan view illustrating a current collector 45 disposed in the interconnector 41. FIG. インターコネクタ43に配置される集電体46を表す平面図である。4 is a plan view illustrating a current collector 46 disposed in the interconnector 43. FIG. C面取りの領域A1を表した図である。It is a figure showing area | region A1 of C chamfering. R面取りの領域A1を表した図である。It is a figure showing area | region A1 of R chamfering. 他の面取りの領域A1を表した図である。It is the figure showing area | region A1 of other chamfering. C面取りでの面取り量Mと応力Fとの関係の一例を表すグラフである。It is a graph showing an example of the relationship between the chamfering amount M and the stress F in C chamfering. R面取りでの面取り量Mと応力Fとの関係の一例を表すグラフである。It is a graph showing an example of the relationship between chamfering amount M and stress F in R chamfering. 集電体45Gを構成する集電体45の個数を変化させた場合での,集電体45Gの外形と領域A1の関係を表す図である。It is a figure showing the relationship between the external shape of the collector 45G and area | region A1, when changing the number of the collectors 45 which comprise the collector 45G. 集電体45Gを構成する集電体45の個数を変化させた場合での,集電体45Gの外形と領域A1の関係を表す図である。It is a figure showing the relationship between the external shape of the collector 45G and area | region A1, when changing the number of the collectors 45 which comprise the collector 45G.

以下,本発明が適用された実施形態について図面を用いて説明する。なお,本発明の実施の形態は,下記の実施形態に何ら限定されることはなく,本発明の技術的範囲に属する限り種々の形態を採りうる。   Embodiments to which the present invention is applied will be described below with reference to the drawings. The embodiments of the present invention are not limited to the following embodiments, and various forms can be adopted as long as they belong to the technical scope of the present invention.

図1は,本発明の一実施形態に係る固体酸化物形燃料電池10を表す斜視図である。固体酸化物形燃料電池10は,燃料ガス(例えば,水素)と酸化剤ガス(例えば,空気(詳しくは空気中の酸素))との供給を受けて発電を行う装置である。   FIG. 1 is a perspective view showing a solid oxide fuel cell 10 according to an embodiment of the present invention. The solid oxide fuel cell 10 is a device that generates power by receiving supply of a fuel gas (for example, hydrogen) and an oxidant gas (for example, air (specifically, oxygen in the air)).

固体酸化物形燃料電池(燃料電池スタック)10は,エンドプレート11,12,燃料電池セル40(1)〜40(4)が積層され,ボルト21,22(22a,22b),23(23a,23b)およびナット35で固定される。ここでは,判り易さのために,4つの燃料電池セル40(1)〜40(4)を積層しているが,一般には,20個程度の燃料電池セル40を積層することが多い。   The solid oxide fuel cell (fuel cell stack) 10 includes end plates 11 and 12 and fuel cells 40 (1) to 40 (4) stacked, and bolts 21 and 22 (22a and 22b) and 23 (23a, 23b) and the nut 35. Here, four fuel cells 40 (1) to 40 (4) are stacked for easy understanding, but in general, about 20 fuel cells 40 are often stacked.

エンドプレート11,12,燃料電池セル40(1)〜40(4)は,ボルト21,22(22a,22b),23(23a,23b)に対応する貫通孔31,32(32a,32b),33(33a,33b)を有する。
エンドプレート11,12は,積層される燃料電池セル40(1)〜40(4)を押圧,保持する保持板であり,かつ燃料電池セル40(1)〜40(4)からの電流の出力端子でもある。
The end plates 11 and 12 and the fuel cells 40 (1) to 40 (4) have through holes 31 and 32 (32a and 32b) corresponding to the bolts 21 and 22 (22a and 22b) and 23 (23a and 23b), 33 (33a, 33b).
The end plates 11 and 12 are holding plates that press and hold the stacked fuel battery cells 40 (1) to 40 (4), and output current from the fuel battery cells 40 (1) to 40 (4). It is also a terminal.

図2は,固体酸化物形燃料電池10の模式断面図である。図3は,燃料電池セル40の断面図である。   FIG. 2 is a schematic cross-sectional view of the solid oxide fuel cell 10. FIG. 3 is a cross-sectional view of the fuel battery cell 40.

図3に示すように,燃料電池セル40は,いわゆる燃料極支持膜形タイプの燃料電池セルであり,インターコネクタ41,43,枠部42,セル本体(燃料電池セル本体)44,集電体45,(第2の)集電体46を有する。   As shown in FIG. 3, the fuel cell 40 is a so-called fuel electrode support membrane type fuel cell, and includes interconnectors 41 and 43, a frame portion 42, a cell body (fuel cell body) 44, a current collector. 45, (second) current collector 46.

インターコネクタ41,43は,燃料電池セル40間の導通を確保し,かつガス流路を遮断する,上下一対の導電性(例えば,金属)のプレートである。   The interconnectors 41 and 43 are a pair of upper and lower conductive (for example, metal) plates that ensure conduction between the fuel cells 40 and block the gas flow path.

なお,燃料電池セル40間には,1個のインターコネクタ(41または43)のみが配置される(直列に接続される2つの燃料電池セル40間で1つのインターコネクタを共有しているため)。また,最上層および最下層の燃料電池セル40(1),40(4)それぞれでは,インターコネクタ41,43に替えて,エンドプレート11,12が配置される。   In addition, only one interconnector (41 or 43) is disposed between the fuel cells 40 (because one interconnector is shared between two fuel cells 40 connected in series). . Further, in each of the uppermost and lowermost fuel cells 40 (1) and 40 (4), end plates 11 and 12 are arranged in place of the interconnectors 41 and 43.

枠部42は,開口47を有する。この開口47内は,気密に保持され,かつ酸化剤ガス流路48,燃料ガス流路49に区分される。枠部42は,絶縁フレーム51,55,空気極フレーム52,セパレータ(その外周縁部)53,燃料極フレーム54を有する。   The frame part 42 has an opening 47. The inside of the opening 47 is kept airtight and is divided into an oxidant gas passage 48 and a fuel gas passage 49. The frame portion 42 includes insulating frames 51 and 55, an air electrode frame 52, a separator (its outer peripheral edge portion) 53, and a fuel electrode frame 54.

絶縁フレーム51,55は,インターコネクタ41,43間を電気的に絶縁する,セラミックス製のフレームであり,空気極56側および燃料極58側に配置される。なお,絶縁フレーム51,55の一方を用いないことも可能である。
空気極フレーム52は,酸化剤ガス流路48側に配置される金属製のフレームである。
セパレータ53は,セル本体44を接合し,かつ酸化剤ガス流路48,燃料ガス流路49を遮断する金属製のフレームである。
燃料極フレーム54は,燃料ガス流路49側に配置される金属製のフレームである。
The insulating frames 51 and 55 are ceramic frames that electrically insulate the interconnectors 41 and 43, and are disposed on the air electrode 56 side and the fuel electrode 58 side. Note that one of the insulating frames 51 and 55 may be omitted.
The air electrode frame 52 is a metal frame disposed on the oxidant gas flow path 48 side.
The separator 53 is a metal frame that joins the cell main body 44 and blocks the oxidant gas passage 48 and the fuel gas passage 49.
The fuel electrode frame 54 is a metal frame disposed on the fuel gas flow path 49 side.

枠部42は,ボルト21,22(22a,22b),23(23a,23b)に対応する貫通孔31,32(32a,32b),33(33a,33b)を有する。   The frame part 42 has through holes 31, 32 (32a, 32b), 33 (33a, 33b) corresponding to the bolts 21, 22 (22a, 22b), 23 (23a, 23b).

セル本体(燃料電池セル本体)44は,空気極(カソード,空気極層ともいう)56,固体電解質体(電解質層)57,燃料極(アノード,燃料極層ともいう)58,を積層して構成される。固体電解質体57の酸化剤ガス流路48側,燃料ガス流路49側,それぞれに,空気極56,燃料極58,が配置される。空気極56としてはペロブスカイト系酸化物,各種貴金属及び貴金属とセラミックとのサーメットが使用できる。固体電解質体57としては,YSZ,Sc,SZ,SDC,GDC,ペロブスカイト系酸化物等の材料が使用できる。また,燃料極58としてはNi及びNiとセラミックとのサーメットが使用できる。   The cell body (fuel cell body) 44 is formed by laminating an air electrode (also referred to as a cathode or an air electrode layer) 56, a solid electrolyte body (electrolyte layer) 57, and a fuel electrode (also referred to as an anode or fuel electrode layer) 58. Composed. An air electrode 56 and a fuel electrode 58 are disposed on the oxidant gas channel 48 side and the fuel gas channel 49 side of the solid electrolyte body 57, respectively. As the air electrode 56, perovskite oxides, various noble metals, and cermets of noble metals and ceramics can be used. As the solid electrolyte body 57, materials such as YSZ, Sc, SZ, SDC, GDC, and perovskite oxide can be used. As the fuel electrode 58, Ni and a cermet of Ni and ceramic can be used.

図2,図3に示すように,インターコネクタ41,43の上部において,貫通孔32aと開口47間が切欠61で空間的に接続され,これらの間での酸化剤ガスの流通を可能としている。インターコネクタ41,43の下部において,貫通孔33aと開口47間が切欠62で空間的に接続され,これらの間での燃料ガスの流通を可能としている。   As shown in FIGS. 2 and 3, in the upper part of the interconnectors 41 and 43, the through hole 32a and the opening 47 are spatially connected by a notch 61 to allow the oxidant gas to flow between them. . In the lower part of the interconnectors 41 and 43, the through hole 33a and the opening 47 are spatially connected by a notch 62, and the fuel gas can flow between them.

空気極56側の集電体45は,セル本体44(空気極56)とインターコネクタ41との間の導通を確保するためのものであり,例えば,SUS(ステンレス)等の緻密な金属材料からなる。
燃料極58側の集電体46は,セル本体44(燃料極58)とインターコネクタ43との間の導通を確保するためのものであり,燃料ガスの通過が可能な様に,例えば,ニッケル等からなる多孔質の金属材料からなる。
The current collector 45 on the air electrode 56 side is for ensuring electrical connection between the cell main body 44 (air electrode 56) and the interconnector 41. For example, the current collector 45 is made of a dense metal material such as SUS (stainless steel). Become.
The current collector 46 on the fuel electrode 58 side is for ensuring electrical connection between the cell main body 44 (fuel electrode 58) and the interconnector 43. For example, nickel can be used so that fuel gas can pass therethrough. It is made of a porous metal material made of or the like.

ここで,空気極56と集電体45との間に,例えば,銀パラジウム合金(パラジウム含有量1〜10mol%)等からなる密着層を形成しても良い。密着層によって,空気極56と集電体45との導通を確保するとともに,空気極56と集電体45とを接合できる。   Here, an adhesion layer made of, for example, a silver palladium alloy (palladium content of 1 to 10 mol%) or the like may be formed between the air electrode 56 and the current collector 45. The adhesion layer ensures the electrical connection between the air electrode 56 and the current collector 45 and allows the air electrode 56 and the current collector 45 to be joined.

この密着層は例えば次のようにして形成できる。具体的には,Ag−Pd粉末(Pd:1mol%)とエチルセルロースと有機溶剤とを含む,Ag−Pd導電性ペーストを集電体45の表面(空気極56側となる表面)に塗布(または印刷)する。この導電性ペーストは,固体酸化物形燃料電池10の運転温度(例えば,700℃)において,エチルセルロースなどが除去されるとともに,Ag−Pd合金が軟化して空気極56や集電体45に密着する状態となる。なお,運転停止時には,この密着層は空気極56と集電体45と強固に接合して一体化する。このようにして,空気極56と集電体45間に密着層を形成し,その間での導通の確実性を向上できる。   This adhesion layer can be formed as follows, for example. Specifically, an Ag-Pd conductive paste containing Ag-Pd powder (Pd: 1 mol%), ethyl cellulose, and an organic solvent is applied to the surface of the current collector 45 (the surface on the air electrode 56 side) (or Print. This conductive paste removes ethyl cellulose and the like at the operating temperature of the solid oxide fuel cell 10 (for example, 700 ° C.) and softens the Ag—Pd alloy to adhere to the air electrode 56 and the current collector 45. It becomes a state to do. When the operation is stopped, the adhesion layer is firmly joined and integrated with the air electrode 56 and the current collector 45. In this way, an adhesion layer is formed between the air electrode 56 and the current collector 45, and the reliability of conduction between them can be improved.

ボルト21は,積層されたエンドプレート11,12,燃料電池セル40(1)〜40(4)を押圧,固定するための部材である。
ボルト22(22a,22b)は燃料ガスを流通させるための部材であり,燃料ガスが流通する空孔(燃料ガス流路)を有する。ボルト23(23a,23b)は酸化剤ガスを流通させるための部材であり,酸化剤ガスが流通する空孔(酸化剤ガス流路)を有する。
The bolt 21 is a member for pressing and fixing the stacked end plates 11 and 12 and the fuel cells 40 (1) to 40 (4).
The bolts 22 (22a, 22b) are members for circulating the fuel gas, and have holes (fuel gas flow paths) through which the fuel gas flows. The bolts 23 (23a, 23b) are members for circulating the oxidant gas, and have holes (oxidant gas flow paths) through which the oxidant gas flows.

燃料ガス,酸化剤ガスは,次のように,燃料電池セル40に流入,流出する。
即ち,ボルト22(22a,22b)内の空孔から燃料ガス流路49内に燃料ガスが流入,流出する。ボルト23(23a,23b)内の空孔から酸化剤ガス流路48内に酸化剤ガスが流入,流出する。
Fuel gas and oxidant gas flow into and out of the fuel cell 40 as follows.
That is, the fuel gas flows into and out of the fuel gas channel 49 from the holes in the bolt 22 (22a, 22b). Oxidant gas flows into and out of the oxidant gas flow path 48 from the holes in the bolts 23 (23a, 23b).

図4,図5は,インターコネクタ41,43それぞれに配置される集電体45,第2の集電体46を表す平面図である。インターコネクタ41,43上に複数の集電体45,複数の第2の集電体46が配置される。
なお,個別の集電体45,第2の集電体46それぞれと,複数の集電体45,第2の集電体46とをより明確に区別するため,次のような呼称も利用可能とする。即ち,個別の集電体45,第2の集電体46を第1の単体45,第2の単体46とも呼ぶ。また,複数の集電体45全体,第2の集電体46全体を集電体45G,第2の集電体46Gと呼ぶものとする。
4 and 5 are plan views showing the current collector 45 and the second current collector 46 disposed in the interconnectors 41 and 43, respectively. A plurality of current collectors 45 and a plurality of second current collectors 46 are disposed on the interconnectors 41 and 43.
In order to more clearly distinguish each of the individual current collectors 45 and the second current collectors 46 from the plurality of current collectors 45 and the second current collectors 46, the following names can also be used. And That is, the individual current collector 45 and the second current collector 46 are also referred to as a first single unit 45 and a second single unit 46. The plurality of current collectors 45 and the entire second current collector 46 are referred to as a current collector 45G and a second current collector 46G.

このとき,複数の集電体45全体(集電体45G),第2の集電体46全体(第2の集電体46G)としての外周(輪郭線)が領域A1,A2を規定する。即ち,領域A1は,第1の単体45が占めるエリアと,第1の単体45どうし間のエリアとを含んで構成され,領域A2は,第2の単体46が占めるエリアと第2の単体46どうし間のエリアとを含んで構成される。   At this time, the outer circumferences (contour lines) of the plurality of current collectors 45 as a whole (current collector 45G) and the second current collector 46 as a whole (second current collector 46G) define the regions A1 and A2. That is, the region A1 includes an area occupied by the first single unit 45 and an area between the first single units 45, and the region A2 includes an area occupied by the second single unit 46 and the second single unit 46. It is comprised including the area between each other.

具体的には,領域A1,A2はそれぞれ,略矩形形状であるが,その4隅の角部に領域A11,A21を有しない。即ち,領域A1,A2は,角部が面取りされた矩形形状の「境界」を有する。集電体45G,第2の集電体46Gが領域A11,A21に入らないように,「境界」の内側に配置されている。   Specifically, each of the areas A1 and A2 has a substantially rectangular shape, but does not have the areas A11 and A21 at the corners of the four corners. That is, the areas A1 and A2 have rectangular “boundaries” with chamfered corners. The current collector 45G and the second current collector 46G are arranged inside the “boundary” so as not to enter the regions A11 and A21.

このように,集電体45G,第2の集電体46Gのセル本体44上の主面に対応する領域A1,A2の角部が面取りされている。この結果,集電体45G,第2の集電体46Gが燃料電池セル本体44(空気極,燃料極)に対応する領域A1,A2の角部での応力の集中が緩和され,燃料電池セル本体44の割れを低減できる。   Thus, the corners of the regions A1 and A2 corresponding to the main surfaces of the current collector 45G and the second current collector 46G on the cell body 44 are chamfered. As a result, the current collector 45G and the second current collector 46G alleviate stress concentration at the corners of the regions A1 and A2 corresponding to the fuel cell body 44 (air electrode, fuel electrode), and the fuel cell. The crack of the main body 44 can be reduced.

本実施形態では,領域A1,A2双方の角部を面取りしているが,領域A1,A2一方のみの角部を面取りしても,応力の集中が緩和され,燃料電池セル本体44の割れを低減できる。   In this embodiment, the corners of both the regions A1 and A2 are chamfered. However, even if the corners of only one of the regions A1 and A2 are chamfered, stress concentration is reduced, and the fuel cell main body 44 is cracked. Can be reduced.

図6〜図8は,判り易さのために,集電体45を除外して,領域A1を表した図である。図6では,領域A1の角部は直線状に面取りされている(C面取り)。図7では,領域A1の角部は円弧形状に面取りされている(R面取り)。図8では,領域A1の角部は2つの直線を組み合わせた形状に面取りされている(その他の面取り)。   6 to 8 are diagrams showing the region A1 excluding the current collector 45 for easy understanding. In FIG. 6, the corners of the region A1 are chamfered linearly (C chamfering). In FIG. 7, the corners of the region A1 are chamfered in an arc shape (R chamfering). In FIG. 8, the corners of the area A1 are chamfered into a shape combining two straight lines (other chamfers).

図6,図7に示すように,面取りの形状がC面取り,R面取りの何れでも,応力の集中が緩和される。この点,領域A2でも,面取りの形状がC面取り,R面取りの何れでも,応力の集中が緩和される。
さらに,図8に示されるように,面取りが直線,円弧等の中間的な形状,例えば,複数の直線を接続した形状(図8では2つの直線を接続した形状),直線と円弧とを接続した形状でも,応力の集中が緩和される。
As shown in FIGS. 6 and 7, the stress concentration is alleviated regardless of whether the chamfered shape is a C chamfer or an R chamfer. In this regard, even in the area A2, the concentration of stress is alleviated regardless of whether the chamfering shape is C chamfering or R chamfering.
Furthermore, as shown in FIG. 8, the chamfer has an intermediate shape such as a straight line or an arc, for example, a shape in which a plurality of straight lines are connected (a shape in which two straight lines are connected in FIG. 8), or a straight line and an arc are connected Even with the shape, the stress concentration is reduced.

ここで,面取り量M(%)を次の式(1)で定義できる。
M=(ΔL/L)*100 ……式(1)
L: 領域A1での辺の長さ
ΔL: 面取りされた領域A11の幅
Here, the chamfering amount M (%) can be defined by the following equation (1).
M = (ΔL / L) * 100 (1)
L: Side length in region A1 ΔL: Width of chamfered region A11

図6〜図8に示されるように,この定義は,C面取り,R面取りの何れでも適用可能である。ここでは,領域A1を略正方形(隣り合う辺の長さが等しい)としている。領域A1が略長方形(互いに異なる長さの長辺,短辺を有する)の場合,長さLとして,短辺の長さを用いるものとする。   As shown in FIGS. 6 to 8, this definition can be applied to either C chamfering or R chamfering. Here, the region A1 is substantially square (the lengths of adjacent sides are equal). When the region A1 is substantially rectangular (having long sides and short sides having different lengths), the length of the short side is used as the length L.

図9,図10は,C面取り,R面取りそれぞれでの面取り量M(%)と応力F(%)との関係の一例を表すグラフである。応力F(%)は,次の式(2)で定義される。
F=(F1/F0)*100 ……式(2)
F1:面取りしたときの領域A1内での応力の最大値
F0:面取りしないときの領域A1内での応力の最大値
9 and 10 are graphs showing an example of the relationship between the chamfering amount M (%) and the stress F (%) in each of the C chamfering and the R chamfering. The stress F (%) is defined by the following formula (2).
F = (F1 / F0) * 100 (2)
F1: Maximum value of stress in region A1 when chamfered F0: Maximum value of stress in region A1 when not chamfered

ここでは,次の条件でシミュレーションした結果を表している。
・領域A1,A2双方での面取り量Mは同一
・領域A1,A2は,それぞれ一つの集電体45,46で構成される(後述の図11(a)に対応,領域A1,A2の形状と,1の集電体45,46の外周の形状が一致する)
・セパレータ53(の外周縁部)を固定した状態で,図1でのZ負方向に圧力を印加し集電体45,46を押し込む
Here, the simulation results under the following conditions are shown.
The chamfering amount M is the same in both the areas A1 and A2. The areas A1 and A2 are each composed of one current collector 45 and 46 (corresponding to FIG. 11A described later, the shapes of the areas A1 and A2). And the shape of the outer periphery of the current collectors 45 and 46 of one coincide with each other)
・ Pressure is applied to the current collectors 45 and 46 by applying pressure in the negative Z direction in FIG.

図9に示すように,C面取りの場合,応力Fは,面取り量Mの増加(0〜5%)に連れて応力緩和の度合いが増加し,面取り量Mが5%以上になると安定した緩和効果が見られる。よって,面取りの量Mを5%以上とすることが好ましい。
一方,面取りの量Mの上限は,電気特性(集電面積)の関係で,特に規定しないが,例えば,20%以下とすることができる。
As shown in FIG. 9, in the case of C chamfering, the stress F increases as the chamfering amount M increases (0 to 5%), and the degree of stress relaxation increases. The effect is seen. Therefore, it is preferable that the chamfering amount M is 5% or more.
On the other hand, the upper limit of the amount C of chamfering is not particularly specified because of the electrical characteristics (current collection area), but can be, for example, 20% or less.

図10に示すように,R面取りの場合,応力Fは,面取り量Mの増加(0〜10%)に連れて応力緩和の度合いが増加し,面取り量Mが10%以上になると安定した緩和効果がみられる。よって,面取りの量Mを10%以上とすることが好ましい。
一方,面取りの量Mの上限は,電気特性(集電面積)の関係で,特に規定しないが,例えば,25%以下とすることができる。
As shown in FIG. 10, in the case of R chamfering, the stress F increases with increasing chamfering amount M (0 to 10%), and the degree of stress relaxation increases. The effect is seen. Therefore, the chamfering amount M is preferably 10% or more.
On the other hand, the upper limit of the amount C of chamfering is not particularly specified because of the electrical characteristics (current collection area), but can be, for example, 25% or less.

図11,図12は,集電体45,第2の集電体46の個数を変化させた場合での,集電体45G,第2の集電体46Gの外形と領域A1,A2の関係を表す図である。
図11(a)では,集電体45G,第2の集電体46Gを構成する集電体(第1の単体)45,(第2の単体)46の個数は1(1つの単体)であり,集電体45,第2の集電体46の外形と領域A1,A2は一致している。
図11(b),(c)それぞれでは,2つ,3つの集電体(第1の単体)45,(第2の単体)46を図の縦方向に並べて,集電体45G,第2の集電体46Gを構成している。
11 and 12 show the relationship between the outer shapes of the current collector 45G and the second current collector 46G and the areas A1 and A2 when the numbers of the current collector 45 and the second current collector 46 are changed. FIG.
In FIG. 11A, the number of current collectors 45G and current collectors (first single unit) 45 and (second single unit) 46 constituting the second current collector 46G is 1 (one single unit). Yes, the outer shapes of the current collector 45 and the second current collector 46 coincide with the areas A1 and A2.
In each of FIGS. 11B and 11C, two or three current collectors (first single body) 45 and (second single body) 46 are arranged in the vertical direction of the drawing, and current collector 45G, second Current collector 46G.

図12(a)〜(c)それぞれでは,次のように複数の集電体45,第2の集電体46を並べて,集電体45G,46Gを構成している。
(a)縦横に2つずつ(合計4つ)
(b)縦に3つ,横に2つ(合計6つ)
(c)縦横に3つ(合計9つ)
In each of FIGS. 12A to 12C, the current collectors 45G and 46G are configured by arranging a plurality of current collectors 45 and a second current collector 46 as follows.
(A) Two each vertically and horizontally (total of 4)
(B) 3 vertically and 2 horizontally (6 in total)
(C) 3 vertically and 9 (total 9)

以上のように,領域A1,A2それぞれに任意の個数の集電体45,第2の集電体46を対応させることが可能である。即ち,集電体45G,第2の集電体46Gを構成する第1の単体45,第2の単体46の数が幾つでもよい。また,集電体45G,第2の集電体46Gが何れであっても,領域A1,A2が,角部が面取りされた矩形形状の境界を有することで,角部での応力の集中が緩和される。   As described above, an arbitrary number of current collectors 45 and second current collectors 46 can correspond to the areas A1 and A2, respectively. That is, the number of the first single body 45 and the second single body 46 constituting the current collector 45G and the second current collector 46G may be any number. In addition, regardless of whether the current collector 45G or the second current collector 46G, the regions A1 and A2 have rectangular boundaries with chamfered corners, so that stress concentration at the corners is reduced. Alleviated.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
上記実施形態では,4つの角部での面取り形状および面取り量Mを同一としているが,一部または全部の面取り形状または面取り量Mを異ならせても良い。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.
In the above embodiment, the chamfering shape and the chamfering amount M at the four corners are the same, but a part or all of the chamfering shape or the chamfering amount M may be different.

10 固体酸化物形燃料電池
11,12 エンドプレート
21〜23 ボルト
31〜33 貫通孔
35 ナット
40 燃料電池セル
41,43 インターコネクタ
42 枠部
44 セル本体
44 燃料電池セル本体
45 集電体,第1の単体
46 (第2の)集電体,第2の単体
47 開口
48 酸化剤ガス流路
49 燃料ガス流路
51,55 絶縁フレーム
52 空気極フレーム
53 セパレータ
54 燃料極フレーム
56 空気極
57 固体電解質体
58 燃料極
61,62 切欠
DESCRIPTION OF SYMBOLS 10 Solid oxide fuel cell 11, 12 End plate 21-23 Bolt 31-33 Through hole 35 Nut 40 Fuel cell 41, 43 Interconnector 42 Frame 44 Cell main body 44 Fuel cell main body 45 Current collector, 1st Single body 46 (second) current collector, second single body 47 opening 48 oxidant gas flow path 49 fuel gas flow path 51, 55 insulating frame 52 air electrode frame 53 separator 54 fuel electrode frame 56 air electrode 57 solid electrolyte Body 58 Fuel electrode 61, 62 Notch

Claims (8)

空気極層と,電解質層と,燃料極層と,を積層してなり,前記空気極層および前記燃料極層の一方の層の表面を第1の主面とする平板状の燃料電池セル本体と,
前記燃料電池セル本体の前記第1の主面に接触し,前記積層方向に積層される平板状の集電体と,
を具備する燃料電池であって,
前記集電体の前記第1の主面に対応する領域が,角部が面取りされた矩形形状の境界を有する
ことを特徴とする燃料電池。
A flat plate fuel cell main body, which is formed by laminating an air electrode layer, an electrolyte layer, and a fuel electrode layer, and has a surface of one of the air electrode layer and the fuel electrode layer as a first main surface. When,
A flat plate current collector that contacts the first main surface of the fuel cell body and is stacked in the stacking direction;
A fuel cell comprising:
The region corresponding to the first main surface of the current collector has a rectangular boundary with chamfered corners.
前記第1の主面に接触する前記集電体が複数の第1の単体で構成されており,
前記第1の主面に対応する領域の境界が,前記複数の第1の単体によって規定される
ことを特徴とする請求項1記載の燃料電池。
The current collector in contact with the first main surface is composed of a plurality of first single bodies;
2. The fuel cell according to claim 1, wherein a boundary of a region corresponding to the first main surface is defined by the plurality of first single bodies.
前記燃料電池セル本体の前記空気極層および前記燃料極層の他方の層の表面を第2の主面とし,
前記燃料電池セル本体の前記第2の主面に接触し,前記積層方向に積層される平板状の第2の集電体と,をさらに具備し,
前記第2の集電体の前記第2の主面に対応する領域が,角部が面取りされた矩形形状の境界を有する
ことを特徴とする請求項1または2に記載の燃料電池。
The surface of the air electrode layer of the fuel cell body and the other layer of the fuel electrode layer is a second main surface,
A flat plate-like second current collector that is in contact with the second main surface of the fuel cell body and is stacked in the stacking direction;
3. The fuel cell according to claim 1, wherein a region corresponding to the second main surface of the second current collector has a rectangular boundary with chamfered corners.
前記第2の主面に接触する前記第2の集電体が複数の第2の単体で構成されており,
前記第2の主面に対応する領域の境界が,前記複数の第2の単体によって規定される
ことを特徴とする請求項3に記載の燃料電池。
The second current collector in contact with the second main surface is composed of a plurality of second single bodies;
4. The fuel cell according to claim 3, wherein a boundary of a region corresponding to the second main surface is defined by the plurality of second single bodies.
前記面取りが,C面取りである
ことを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池。
The fuel cell according to any one of claims 1 to 4, wherein the chamfering is C chamfering.
前記面取りの量が,前記矩形形状の短辺側長さの5%以上である
ことを特徴とする請求項5に記載の燃料電池。
The fuel cell according to claim 5, wherein the amount of the chamfer is 5% or more of the length of the short side of the rectangular shape.
前記面取りが,R面取りである
ことを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池。
The fuel cell according to any one of claims 1 to 4, wherein the chamfering is R chamfering.
前記面取りの量が,前記矩形形状の短辺側長さの10%以上である
ことを特徴とする請求項7記載の燃料電池。
The fuel cell according to claim 7, wherein an amount of the chamfer is 10% or more of a length of a short side of the rectangular shape.
JP2012016454A 2012-01-30 2012-01-30 Fuel cell Active JP5846936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016454A JP5846936B2 (en) 2012-01-30 2012-01-30 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016454A JP5846936B2 (en) 2012-01-30 2012-01-30 Fuel cell

Publications (2)

Publication Number Publication Date
JP2013157179A true JP2013157179A (en) 2013-08-15
JP5846936B2 JP5846936B2 (en) 2016-01-20

Family

ID=49052160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016454A Active JP5846936B2 (en) 2012-01-30 2012-01-30 Fuel cell

Country Status (1)

Country Link
JP (1) JP5846936B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108012A1 (en) * 2014-01-15 2015-07-23 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack
JP2019215985A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Metal member for electrochemical cell, and electrochemical cell assembly using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338335A (en) * 1993-05-27 1994-12-06 Fuji Electric Co Ltd Solid high molecular electrolytic fuel cell
US20030235749A1 (en) * 2002-06-24 2003-12-25 Haltiner Karl J. Manifold sizing and configuration for a fuel cell stack
JP2005520306A (en) * 2001-11-21 2005-07-07 コーニング インコーポレイテッド Solid oxide fuel cell stack and packet structure
JP2006004678A (en) * 2004-06-15 2006-01-05 Ngk Spark Plug Co Ltd Solid electrolyte type fuel cell
US20070042253A1 (en) * 2005-07-18 2007-02-22 Elringklinger Ag Fuel cell unit
JP2010080201A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp Method of manufacturing fuel cell
JP2011129309A (en) * 2009-12-16 2011-06-30 Ngk Spark Plug Co Ltd Solid oxide fuel cell
JP2011222152A (en) * 2010-04-05 2011-11-04 Ngk Spark Plug Co Ltd Fuel cell and fuel cell stack or fuel cell unit
JP2011258358A (en) * 2010-06-07 2011-12-22 Ngk Spark Plug Co Ltd Solid oxide fuel cell and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338335A (en) * 1993-05-27 1994-12-06 Fuji Electric Co Ltd Solid high molecular electrolytic fuel cell
JP2005520306A (en) * 2001-11-21 2005-07-07 コーニング インコーポレイテッド Solid oxide fuel cell stack and packet structure
US20030235749A1 (en) * 2002-06-24 2003-12-25 Haltiner Karl J. Manifold sizing and configuration for a fuel cell stack
JP2006004678A (en) * 2004-06-15 2006-01-05 Ngk Spark Plug Co Ltd Solid electrolyte type fuel cell
US20070042253A1 (en) * 2005-07-18 2007-02-22 Elringklinger Ag Fuel cell unit
JP2010080201A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp Method of manufacturing fuel cell
JP2011129309A (en) * 2009-12-16 2011-06-30 Ngk Spark Plug Co Ltd Solid oxide fuel cell
JP2011222152A (en) * 2010-04-05 2011-11-04 Ngk Spark Plug Co Ltd Fuel cell and fuel cell stack or fuel cell unit
JP2011258358A (en) * 2010-06-07 2011-12-22 Ngk Spark Plug Co Ltd Solid oxide fuel cell and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108012A1 (en) * 2014-01-15 2015-07-23 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack
CN105917507A (en) * 2014-01-15 2016-08-31 日本特殊陶业株式会社 Fuel cell cassette and fuel cell stack
JP6039110B2 (en) * 2014-01-15 2016-12-07 日本特殊陶業株式会社 Fuel cell cassette and fuel cell stack for solid oxide fuel cell
US10707499B2 (en) 2014-01-15 2020-07-07 Morimura Sofc Technology Co., Ltd. Fuel cell cassette and fuel cell stack
JP2019215985A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Metal member for electrochemical cell, and electrochemical cell assembly using the same

Also Published As

Publication number Publication date
JP5846936B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6595581B2 (en) Electrochemical reaction unit and fuel cell stack
JP5881688B2 (en) Fuel cell
JP5876944B2 (en) Fuel cell and fuel cell stack
JP2015183252A (en) Cell stack and electrolytic module, and electrolytic apparatus
WO2018154656A1 (en) Flat plate type electrochemical cell stack
JP5846936B2 (en) Fuel cell
JP2013114784A (en) Fuel cell
JP6893126B2 (en) Electrochemical reaction cell stack
JP6118230B2 (en) Fuel cell stack
JP2014123498A (en) Fuel cell stack and method for manufacturing the same
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP4949737B2 (en) Solid oxide fuel cell stack and solid oxide fuel cell
JP7082954B2 (en) Electrochemical reaction cell stack
JP2022125885A (en) Fuel battery cell and fuel battery stack
US8697307B2 (en) Solid oxide fuel cell stack
JP6917193B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2013257973A (en) Solid oxide fuel cell stack
JP5727567B2 (en) Solid oxide fuel cell, solid oxide fuel cell stack and spacer
JP5727429B2 (en) Fuel cell with separator and fuel cell
JP2018181568A (en) Current collecting member-electrochemical reaction single cell composite, and electrochemical reaction cell stack
JP6777473B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP6734707B2 (en) Current collecting member-electrochemical reaction single cell composite and electrochemical reaction cell stack
JP6885786B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2018014246A (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2020170630A (en) Electrochemical reaction cell stack

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5846936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250