JP2013155124A - Bulk powder of medicine and method of producing the same - Google Patents

Bulk powder of medicine and method of producing the same Download PDF

Info

Publication number
JP2013155124A
JP2013155124A JP2012016176A JP2012016176A JP2013155124A JP 2013155124 A JP2013155124 A JP 2013155124A JP 2012016176 A JP2012016176 A JP 2012016176A JP 2012016176 A JP2012016176 A JP 2012016176A JP 2013155124 A JP2013155124 A JP 2013155124A
Authority
JP
Japan
Prior art keywords
drug
fine particles
particles
bulk
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012016176A
Other languages
Japanese (ja)
Inventor
Toshiyuki Niwa
敏幸 丹羽
Yasuo Nakanishi
康雄 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moriroku Chemicals Co Ltd
Original Assignee
Moriroku Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moriroku Chemicals Co Ltd filed Critical Moriroku Chemicals Co Ltd
Priority to JP2012016176A priority Critical patent/JP2013155124A/en
Publication of JP2013155124A publication Critical patent/JP2013155124A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a bulk powder of a medicine having both high powder properties (fluidity, filling properties) and elution properties, and a method of producing the same.SOLUTION: A bulk powder of a medicine is prepared by dispersing and fixing fine particles of drugs and additives, which are media-milled into the fine particles of submicron size to nano size in a liquefied inert gas, to the surfaces of nuclear particles via dry compounding process. Since the fine particles (child particles) of the individual drugs included in the bulk powder of a medicine constructed in this way are crushed to submicron size to nano size, solubility and an elusion rate are improved, and at the same time, aggregation of medicinal properties (drugs) can be effectively prevented as the child particles are bonded to the nuclear particles.

Description

本発明は、高い粉体物性(流動性、充填性)と溶出性を併せ持つ医薬品の原末及びその製造方法に関するものである。   The present invention relates to a raw material of a pharmaceutical having both high powder physical properties (fluidity and filling property) and dissolution property and a method for producing the same.

医薬品が所期の薬効を発揮するためには、所定量の医薬品に所定量の薬物が含まれている必要があると共に、薬物が医薬品全体に均一に分散している必要がある。所定量の医薬品中に所定量の薬物を均一に分散させるためには、医薬品の原末を構成する粉粒体の流動性や充填性を向上させる必要がある。また、医薬品が所期の薬効を発揮するためには、薬効を生じる薬物の溶解性を向上させ、必要に応じて、その溶出速度を制御しなければならない。このためには、医薬品の原末を構成する粉粒体の溶出性を向上させる必要がある。   In order for a pharmaceutical product to exhibit its desired efficacy, it is necessary that the predetermined amount of the pharmaceutical product contains a predetermined amount of the drug and that the drug is uniformly dispersed throughout the pharmaceutical product. In order to uniformly disperse a predetermined amount of drug in a predetermined amount of pharmaceutical, it is necessary to improve the fluidity and filling property of the powder particles constituting the raw powder of the pharmaceutical. In addition, in order for a pharmaceutical product to exhibit its desired efficacy, it is necessary to improve the solubility of the drug that produces the efficacy, and to control the dissolution rate as necessary. For this purpose, it is necessary to improve the dissolution property of the granular material constituting the raw powder of the pharmaceutical product.

特開2009−114148号公報は、平均粒子径100μm未満の核粒子にコーティング剤及び薬物を被覆してなる平均粒子径100μm以下の微粒子乾式コーティング製剤であって、この薬物が結晶構造からなることを特徴とする微粒子乾式コーティング製剤及びその製造方法を開示する。   JP 2009-114148 A discloses a fine particle dry coating preparation having an average particle size of 100 μm or less, in which core particles having an average particle size of less than 100 μm are coated with a coating agent and a drug, wherein the drug has a crystal structure. Disclosed are a fine particle dry coating formulation and a method for producing the same.

特開2007−144403号公報は、乾式複合化装置により、酸化亜鉛(ZnO)粒子表面にそれよりも小径の酸化チタン(TiO)粒子を被覆してとしてなる、複合型粒子状光触媒及びその製造方法並びにそれを用いたコーティング剤、光触媒活性部材を開示する。 Japanese Patent Application Laid-Open No. 2007-144403 discloses a composite particulate photocatalyst obtained by coating the surface of zinc oxide (ZnO) particles with titanium oxide (TiO 2 ) particles having a smaller diameter than that using a dry compounding apparatus. Disclosed are a method, a coating agent using the same, and a photocatalytically active member.

粉体工学会誌第48号(2011年)第9号に掲載された研究論文「メカノフュージョン処理による粒子表面物性変化の評価」には、乾式粒子コーティング技術の一つであるメカノフュージョン(MF)処理によって低成形性で難溶性のモデル医薬品としてのメフェナム酸(MA)を核粒子とし、この核粒子の表面に無機物のベントナイト(BN)と合成ケイ酸アルミニウム(SAS)をコーティング剤として、複合粒子を生成し、この複合粒子からなる粉粒体の成形性、崩壊性、溶出性についての評価が記載されている。また、製剤機械技術研究会誌第74号 Vol.20 No.3(2011)に掲載された研究論文「OD錠製造のための乾式粒子複合化技術」には、乾式粒子複合化装置によって、OD錠の賦形剤として用いられ、しばしば打錠障害を起こすマンニトール顆粒に、滑沢剤の一種であるステアリン酸マグネシウム粒子を固定化処理して、複合粒子を生成し、この複合粒子からなる粉粒体の流動性、充填性、打錠特性についての評価が記載されている。   The research paper “Evaluation of changes in particle surface properties by mechanofusion treatment” published in No. 48 (2011) No. 9 of the Japan Society for Powder Engineering includes mechanofusion (MF) treatment, one of the dry particle coating technologies. By using mefenamic acid (MA) as a low formability and sparingly soluble model drug as a core particle, the surface of this core particle is coated with inorganic bentonite (BN) and synthetic aluminum silicate (SAS) as a coating agent. The evaluation of the formability, disintegration property, and dissolution property of the granular material produced and composed of the composite particles is described. In addition, Journal of Formulation Machine Technology No. 74 Vol. 20 No. 3 (2011) published in "Dry Particle Combining Technology for OD Tablet Manufacturing" is used as an excipient for OD tablets by a dry particle compounding apparatus, and often causes pilling troubles. The granules are fixed with magnesium stearate particles, which is a type of lubricant, to produce composite particles, and the evaluation of the fluidity, filling properties, and tableting properties of the powders composed of these composite particles is described Has been.

特開2009−114148号公報JP 2009-114148 A 特開2007−144403号公報JP 2007-144403 A

研究論文、藤永 真由美、吉橋 泰生、米持 悦生、寺田 勝英 共著、「メカノフュージョン処理による粒子表面物性変化の評価」、粉体工学会誌第48巻(2011年)第9号Research paper, Mayumi Fujinaga, Yasuo Yoshihashi, Yasuo Yonemochi and Katsuhide Terada, "Evaluation of particle surface property change by mechano-fusion treatment", Journal of Powder Engineering, Vol. 48 (2011), No. 9 研究論文、井上 義之著、「OD錠製造のための乾式粒子複合化技術」、製剤機械技術研究会誌第74号 Vol.20 No.3(2011)Research paper, Yoshiyuki Inoue, “Dry particle compounding technology for OD tablet production”, Journal of the Pharmaceutical Technology Society No. 74 Vol. 20 No. 3 (2011)

本発明の目的は、高い粉体物性(流動性、充填性)と溶出性を併せ持つ医薬品の原末及びその製造方法を提供することにある。   An object of the present invention is to provide a raw material for pharmaceuticals having both high powder physical properties (fluidity and filling properties) and dissolution properties, and a method for producing the same.

本発明の医薬品の原末は、液化不活性ガス中でサブミクロンサイズ乃至ナノサイズに媒体粉砕された薬物の微粒子を、この薬物の微粒子と結合して複合粒子を構成する核粒子の表面に、乾式複合化処理によって分散させて固定したことを特徴とする。核粒子(母粒子)に乾式複合化(乾式表面コーティング、オーダード・ミクスチャー)された薬物の微粒子(子粒子)は、例えば、液体窒素(LN2)等の液化不活性ガスを分散媒体とジルコニア・ビーズやドライアイス・ビーズ等の粉砕用ビーズを使用して、超低温媒体粉砕装置(超低温媒体用ビーズミル等)によってサブミクロンサイズ乃至ナノサイズに媒体粉砕されているから、難溶性薬物を子粒子とすれば、難溶性医薬品の溶出性を向上させることができる。核粒子は、例えば、コーンスターチ等の各種スターチ、乳糖等の糖類、又は、マンニトール、エリスリトール、キシリトール等の糖アルコールによって形成することができる。このように構成された医薬品の原末に含まれる個々の薬物の微粒子(子粒子)は、サブミクロンサイズ乃至ナノサイズに粉砕されているから、溶解性や溶出速度が向上すると共に、子粒子は核粒子に結合しているから、薬効成分(薬物)の凝集を効果的に防止することができる。これにより、本発明によれば、医薬品の原末の溶出性を格段に向上させることができるから、例えば、フェニトインやイブプロフェン等の難溶性薬物を子粒子とすれば、難溶性薬物の溶解性や溶出速度を向上させることができる。   The bulk powder of the pharmaceutical of the present invention is prepared by combining fine particles of a drug pulverized in a submicron size or nano size in a liquefied inert gas with the fine particles of the drug on the surface of the core particle constituting the composite particle. It is characterized by being dispersed and fixed by a dry compounding process. The fine particles (child particles) of the drug dry-composited (dry surface coating, ordered mixture) with the core particles (mother particles) are composed of, for example, a liquefied inert gas such as liquid nitrogen (LN2) and a zirconia Since beads for pulverization such as beads, dry ice beads, etc., are pulverized to submicron or nano size by ultra-low temperature media pulverizers (bead mill for ultra-low temperature media, etc.) For example, it is possible to improve the dissolution property of poorly soluble drugs. The core particles can be formed by, for example, various starches such as corn starch, sugars such as lactose, or sugar alcohols such as mannitol, erythritol, and xylitol. Since the fine particles (child particles) of the individual drugs contained in the bulk powder of the drug thus configured are pulverized to submicron size or nano size, the solubility and elution rate are improved, and the child particles are Since it is bound to the core particles, it is possible to effectively prevent aggregation of the medicinal component (drug). Thereby, according to the present invention, the dissolution of the bulk drug substance can be remarkably improved. For example, if a poorly soluble drug such as phenytoin or ibuprofen is used as a child particle, the solubility of the poorly soluble drug can be increased. The elution rate can be improved.

本発明の医薬品の原末は、また、液化不活性ガス中でサブミクロンサイズ乃至ナノサイズに媒体粉砕された薬物の微粒子と、この液化不活性ガス中で前述の薬物と共粉砕された添加剤の微粒子とを、これらの薬物の微粒子及び添加剤の微粒子と結合して複合粒子を構成する核粒子の表面に、乾式複合化処理によって分散させて固定したことを特徴とする。液化不活性ガス中で薬物と共粉砕される添加剤としては、例えば、ポリエチレングリコール(PEG)原末等の水溶性添加剤を使用することができる。
本発明の医薬品の原末は、また、添加剤を液化不活性ガス中で薬物と共粉砕する代わりに、液化不活性ガス中でサブミクロンサイズ乃至ナノサイズに媒体粉砕された薬物の微粒子と、この薬物の微粒子とは別途に生成された添加剤の微粒子とを、これらの薬物の微粒子及び添加剤の微粒子と結合して複合粒子を構成する核粒子の表面に、乾式複合化処理によって分散させて固定したことを特徴とする。ここで、薬物の微粒子とは別途に生成される添加剤としては、例えば、ポリエチレングリコール(PEG)原末等の水溶性添加剤又はアエロジル等の親水性微粒子を使用することができる。
ポリエチレングリコール(PEG)はワックス質で、母粒子表面に対する子粒子の固定化を推進すると共に、複合粒子表面の水濡れ性(親水性)を向上させる。
これらの添加剤は、個々の複合粒子の表面の潤滑性や親水性を向上させることに加え、核粒子への固定化により医薬品の原末に高い粉体物性(流動性、充填性)を付与することができる。
したがって、本発明によれば、高い粉体物性(流動性、充填性)と溶出性を併せ持つ医薬品の原末を提供することができる。
The active ingredient of the pharmaceutical product of the present invention also comprises fine particles of a drug pulverized in submicron to nano size in a liquefied inert gas, and an additive co-ground with the aforementioned drug in the liquefied inert gas These fine particles are bonded to these drug fine particles and additive fine particles, and are dispersed and fixed on the surface of the core particles constituting the composite particles by a dry compounding process. As an additive co-pulverized with a drug in a liquefied inert gas, for example, a water-soluble additive such as polyethylene glycol (PEG) bulk powder can be used.
The active ingredient of the pharmaceutical of the present invention also includes fine particles of a drug pulverized in a liquefied inert gas to a submicron size to a nanosize medium instead of co-pulverizing the additive with the drug in a liquefied inert gas, The drug fine particles separately from the drug fine particles are combined with the drug fine particles and the additive fine particles, and dispersed on the surface of the core particles constituting the composite particles by a dry compounding process. It is characterized by being fixed. Here, as an additive produced separately from the drug fine particles, for example, water-soluble additives such as polyethylene glycol (PEG) bulk powder or hydrophilic fine particles such as Aerosil can be used.
Polyethylene glycol (PEG) is waxy and promotes immobilization of the child particles on the surface of the mother particles and improves the water wettability (hydrophilicity) of the surface of the composite particles.
These additives not only improve the lubricity and hydrophilicity of the surface of individual composite particles, but also impart high powder properties (fluidity and filling properties) to the active pharmaceutical ingredients by immobilizing them on the core particles. can do.
Therefore, according to the present invention, it is possible to provide an active pharmaceutical ingredient having both high powder physical properties (fluidity and filling properties) and dissolution properties.

本発明の医薬品の原末の製造方法は、液化不活性ガス中でサブミクロンサイズ乃至ナノサイズの微粒子に媒体粉砕された薬物の粉粒体と、この薬物の微粒子と結合して複合粒子を構成する核粒子の原末とを、乾式複合化処理することにより、この核粒子の原末から核粒子を生成すると共に、前述の薬物の微粒子をこの核粒子の表面に分散させて固定することを特徴とする。薬物は、乾式複合化処理される前に、液化不活性ガス中でサブミクロンサイズ乃至ナノサイズの微粒子に媒体粉砕されているから、所望のサイズの薬物の微粒子を複合粒子の表面に確実に分散させ、固定することができる。
本発明によれば、また、前述の医薬品の原末の製造方法において、薬物の微粒子と核粒子の原末を乾式複合化処理するときに、この乾式複合化処理系に添加剤を付加し、核粒子の表面に薬物の微粒子と添加剤の微粒子を分散させて固定することができる。ここで付加される添加剤としては、例えば、ポリエチレングリコール(PEG)原末等の水溶性添加剤を使用することができる。この医薬品の原末の製造方法によれば、液化不活性ガス中で媒体粉砕されることが適当でない材料を添加剤として使用することができる。
The method for producing a pharmaceutical bulk powder according to the present invention comprises a drug granule that is pulverized in submicron to nano size particles in a liquefied inert gas, and combines with the drug particles to form composite particles. The core powder of the core particles is dry-combined to produce core particles from the core powder of the core particles and to disperse and fix the fine particles of the drug on the surface of the core particles. Features. Since the drug is pulverized into submicron or nano-sized fine particles in a liquefied inert gas before being subjected to the dry compounding process, the drug fine particles of the desired size are reliably dispersed on the surface of the complex particles. Can be fixed.
According to the present invention, in the method for producing a pharmaceutical bulk powder as described above, when dry compounding the drug fine particles and the bulk powder of the core particles, an additive is added to the dry compound treatment system, Drug fine particles and additive fine particles can be dispersed and fixed on the surface of the core particles. As the additive added here, for example, a water-soluble additive such as polyethylene glycol (PEG) bulk powder can be used. According to this method for producing a pharmaceutical bulk powder, a material that is not suitable for being pulverized in a liquefied inert gas can be used as an additive.

本発明の医薬品の原末の製造方法は、また、液化不活性ガスからなる分散媒体に薬物と粉砕用ビーズを加えて懸濁液を生成し、この懸濁液を超低温媒体粉砕装置によって攪拌することにより、薬物を粉砕して薬物の微粒子を含む粉粒体を生成する工程と、これらの薬物の微粒子と核粒子の原末を精密微細混合装置によって乾式複合化処理し、核粒子の原末から核粒子を生成すると共に、薬物の微粒子を核粒子の表面に分散させて固定する工程を含むことを特徴とする。更に、この懸濁液に添加剤を混合し、懸濁液を超低温媒体粉砕装置によって攪拌することにより、薬剤と添加剤を共粉砕することもできる。   In the method for producing a raw material for a pharmaceutical product of the present invention, a suspension is formed by adding a drug and grinding beads to a dispersion medium composed of a liquefied inert gas, and the suspension is stirred by a cryogenic medium grinding apparatus. The process of pulverizing the drug to produce a granule containing fine particles of the drug, and dry compounding the fine particles of the drug and the bulk of the core particles with a precision fine mixing device And a step of dispersing and fixing drug fine particles on the surface of the core particle. Further, the drug and the additive can be co-ground by mixing an additive with the suspension and stirring the suspension with an ultra-low temperature medium pulverizer.

本発明では、被粉砕原料(薬物)および添加剤を、液体窒素などの液化不活性ガス中でジルコニア・ビーズ等の粉砕材によって個別粉砕あるいは共粉砕し、粉砕材を除去し、液化不活性ガスを蒸発させることができる。これにより、サブミクロン領域乃至ナノ領域への微粉砕を実現することができるとともに、被粉砕物質と添加剤とが均一に混合された混合物を得ることができる。粉砕材としては、好ましくは、ジルコニア、メノウ、石英、チタニア、タングステンカーバイト、窒化ケイ素、アルミナ、ステンレス鋼、ソーダガラス、低ソーダガラス、ソーダレスガラス、高比重ガラス、又は、ドライアイス(二酸化炭素、亜酸化窒素)などのビーズである。ビーズの粒径は、好ましくは、0.03乃至25mmの範囲であり、より好ましくは、0.03乃至2mmの範囲である。上記液化不活性ガスは、液体窒素、液体ヘリウム、液体ネオン、液体アルゴン、液体クリプトン、液体キセノンなどである。添加剤は、乳糖を始めとする医薬品用水溶性添加剤あるいは分散促進剤である。   In the present invention, raw materials (drugs) and additives to be pulverized are individually pulverized or co-pulverized with a pulverizing material such as zirconia beads in a liquefied inert gas such as liquid nitrogen, and the pulverized inert gas is removed. Can be evaporated. Thereby, it is possible to realize fine pulverization into a submicron region to a nano region, and it is possible to obtain a mixture in which the material to be pulverized and the additive are uniformly mixed. The pulverized material is preferably zirconia, agate, quartz, titania, tungsten carbide, silicon nitride, alumina, stainless steel, soda glass, low soda glass, sodaless glass, high specific gravity glass, or dry ice (carbon dioxide , Nitrous oxide). The particle size of the beads is preferably in the range of 0.03 to 25 mm, and more preferably in the range of 0.03 to 2 mm. The liquefied inert gas is liquid nitrogen, liquid helium, liquid neon, liquid argon, liquid krypton, liquid xenon, or the like. The additive is a water-soluble additive for pharmaceuticals such as lactose or a dispersion accelerator.

本発明では、また、液化不活性ガスを分散媒体として被粉砕原料(薬物)と粒状ドライアイスの懸濁液を生成し、この懸濁液を粉砕機で撹拌することにより、懸濁液中で被粉砕原料を微粉化することができる。ここで、被粉砕原料の微粉化とは、被粉砕原料の粉砕と分散のいずれか一方又は双方を意味する。従来の粉砕用のビーズに代えて、粒状ドライアイスを使用することにより、粉砕機の粉砕容器の内壁や回転軸等が従来のビーズの衝突によって摩耗し、それらの材料粉が懸濁液に混入することや、従来のビーズ同士が衝突して、ビーズが摩耗し、ビーズの材料粉が懸濁液に混入することを防止することができる。また、懸濁液中で被粉砕原料を微粉化する間に、粒状ドライアイスの粒径が摩耗等によって徐々に減少すると、粒径の小さいビーズに交換して微粉化を促進していたのと同様の作用を生じ、被粉砕原料はより微細な粉末に微粉化される。   In the present invention, a suspension of the raw material to be crushed (drug) and granular dry ice is produced using a liquefied inert gas as a dispersion medium, and this suspension is stirred in a pulverizer. The material to be ground can be pulverized. Here, the pulverization of the material to be pulverized means either one or both of pulverization and dispersion of the material to be pulverized. By using granular dry ice instead of conventional grinding beads, the inner wall and rotating shaft of the grinding machine of the grinding machine are worn by collision of the conventional beads, and these powders are mixed into the suspension. It is possible to prevent the conventional beads from colliding with each other and wearing the beads, and mixing the material powder of the beads into the suspension. In addition, during the pulverization of the material to be ground in the suspension, when the particle size of the granular dry ice gradually decreased due to wear or the like, the pulverization was promoted by replacing with beads having a smaller particle size. The same action is produced and the material to be ground is pulverized into a finer powder.

本発明によれば、超低温下での物質の低温脆性と粒子細部まで浸透した分散媒の凝集障壁効果により、サブミクロン領域乃至ナノ領域に微粉砕された薬物の微粒子を、乾式複合化処理によって、核粒子の表面に分散させて固定したため、溶出性に優れた薬物を含有し、かつ、粉体物性(流動性、充填性)に優れた粉粒体からなる、医薬品の原末を提供することができる。また、本発明によれば、低融点の物質や水に溶けやすい薬物を微粉砕し、核粒子に複合化することができる。   According to the present invention, due to the low-temperature brittleness of the substance under ultra-low temperature and the aggregation barrier effect of the dispersion medium that has penetrated to the details of the particles, the fine particles of the drug finely pulverized in the submicron region to the nano region are obtained by dry compounding treatment Providing a bulk drug substance containing a drug with excellent dissolution properties and powders (fluidity and filling properties), because it is dispersed and fixed on the surface of the core particles. Can do. In addition, according to the present invention, a low melting point substance or a water-soluble drug can be finely pulverized and combined with the core particle.

本発明のその他の特徴及び作用効果は、以下の実施例の説明から明らかになる。   Other features and operational effects of the present invention will become apparent from the following description of embodiments.

図1は、乾式複合化処理前のコーンスターチ原末粒子の外観を5000倍に拡大した図面代用の電子顕微鏡写真である。FIG. 1 is an electron micrograph in place of a drawing in which the appearance of the raw corn starch particles before dry compounding is magnified 5000 times. 図2は、フェニトインとポリエチレングリコール(PEG)の共粉砕品(Lot100902)と、コーンスターチ原末とを、精密微細混合装置(ホソカワミクロン株式会社製ノビルタNOB―MINI)で、10分間、乾式複合化処理することによって生成された粉末粒子の外観を、4000倍に拡大した図面代用の電子顕微鏡写真である。FIG. 2 shows a dry compounding treatment of a co-ground product of phenytoin and polyethylene glycol (PEG) (Lot100902) and corn starch bulk powder with a precision fine mixing apparatus (Nobilta NOB-MINI manufactured by Hosokawa Micron Corporation) for 10 minutes. It is the electron micrograph for drawing substitutes which expanded the external appearance of the powder particle produced | generated by 4000 times.

(1)液化不活性ガスからなる分散媒体に薬物と添加剤と粉砕用ビーズを加えて懸濁液を生成し、この懸濁液を超低温媒体粉砕装置によって攪拌することにより、前記薬物と前記添加剤を共粉砕し、前記薬物と前記添加剤のナノサイズの微粒子を生成し、前記分散媒体を蒸発させて前記薬物の微粒子と前記添加剤の微粒子を含む粉粒体を生成する工程と、(2)前記薬物の微粒子と、前記添加剤の微粒子と、前記薬物の微粒子と前記添加剤の微粒子とに結合して複合粒子を構成する核粒子の原末とを、精密微細混合装置によって乾式複合化処理し、前記核粒子の原末から前記核粒子を生成すると共に、前記薬物の微粒子と前記添加剤の微粒子を前記核粒子の表面に分散させて固定する工程とに沿って、本発明の実施例を説明する。   (1) A suspension is formed by adding a drug, an additive, and beads for pulverization to a dispersion medium composed of a liquefied inert gas, and the suspension is stirred by an ultra-low temperature medium pulverizer to thereby add the drug and the additive. Co-grinding the agent to produce nano-sized fine particles of the drug and the additive, and evaporating the dispersion medium to produce a granular material containing the drug fine particles and the additive fine particles; 2) Dry compound of the fine particles of the drug, the fine particles of the additive, and the bulk powder of the core particles constituting the composite particles by binding to the fine particles of the drug and the fine particles of the additive with a precision fine mixing device. And generating the core particles from the raw powder of the core particles, and dispersing and fixing the drug fine particles and the additive fine particles on the surface of the core particles. Examples will be described.

本実施例に使用される薬物、添加剤及び核粒子の原末は次のとおりである。
1.薬物
フェニトイン(phenytoin)
製品名称:和光特級
製造元:和光純薬工業株式会社
2.添加剤
ポリエチレングリコール(polyethylene glycol)
製品名称:マグロコール6000(フンマツ)
製造元:三洋化成工業株式会社
3.核粒子
コーンスターチ(cornstarch)
製品名称:局方コーンスターチ
製造元:日本コーンスターチ株式会社
The raw materials of drugs, additives and core particles used in this example are as follows.
1. Drug phenytoin
Product name: Wako Special Grade Manufacturer: Wako Pure Chemical Industries, Ltd. Additives polyethylene glycol
Product name: Tuna Coal 6000 (Hunmatsu)
Manufacturer: Sanyo Chemical Industries, Ltd. Core particle cornstarch
Product name: Pharmacopoeia Corn Starch Manufacturer: Nippon Corn Starch Co., Ltd.

本実施例では、上記薬物と添加剤は次の粉砕条件で共粉砕された。
1.粉砕装置
縦型媒体撹拌ミル:2.0リットルのベッセル容量を有し、直径95mm、厚さ10mmの円盤を4枚備えた標準ディスクを備える。
2.分散媒体
液体窒素(LN2)
3.標準ディスクの周速 4.6m/s
4.粉砕時間 30分
5.粉砕材の種類及び使用量
ジルコニア製ビーズを200cc使用した。
6.被粉砕材料
(1)Lot100901
フェニトイン48gとポリエチレングリコール(PEG)12gの共粉砕
(フェニトインとポリエチレングリコールの重量比率 4:1)
(2)Lot100902
フェニトイン30gとポリエチレングリコール(PEG)30gの共粉砕
(フェニトインとポリエチレングリコールの重量比率 1:1)
(3)Lot100903
フェニトイン64gの単独粉砕
In this example, the drug and additive were co-ground under the following pulverization conditions.
1. Pulverizer Vertical medium agitating mill: equipped with a standard disk having a vessel capacity of 2.0 liters and having four disks with a diameter of 95 mm and a thickness of 10 mm.
2. Dispersion medium Liquid nitrogen (LN2)
3. Peripheral speed of standard disk 4.6m / s
4). Grinding time 30 minutes Type and amount of pulverized material 200 cc of zirconia beads were used.
6). Material to be ground (1) Lot 100901
Co-pulverization of 48g of phenytoin and 12g of polyethylene glycol (PEG) (weight ratio of phenytoin and polyethylene glycol 4: 1)
(2) Lot100902
Co-grinding 30g of phenytoin and 30g of polyethylene glycol (PEG) (weight ratio of phenytoin and polyethylene glycol 1: 1)
(3) Lot100903
Single grinding of 64g phenytoin

前述の粉砕条件で、Lot100901、Lot100902、Lot100903を粉砕処理した後、各Lotの粒度分布を測定した。この測定結果を表1に示す。表1には、コーンスターチ原末とポリエチレングリコール(PEG)原末の粒度測定結果を併記する。これらの粒度測定は、セイシン企業製レーザー回析散乱式粒度分布装置LMS―30によって行った。   Under the above pulverization conditions, Lot 100901, Lot 100902, and Lot 100903 were pulverized, and the particle size distribution of each Lot was measured. The measurement results are shown in Table 1. Table 1 shows the particle size measurement results of the corn starch bulk powder and the polyethylene glycol (PEG) bulk powder. These particle sizes were measured with a laser diffraction / scattering particle size distribution apparatus LMS-30 manufactured by Seishin Corporation.

次に、核粒子を構成するコーンスターチと、前述の条件で微粉砕されたLot100901、Lot100902、Lot100903を使用して、表2の複合化材料(Lot No. R―1乃至R―5)について、乾式複合化処理を行った。この乾式複合化処理を行うに際し、コーンスターチとLot100903に加えて、ポリエチレングリコール原末を添加したLot No. R―6を作成して乾式複合化処理し、その結果を得た。   Next, using the corn starch constituting the core particles and the Lot 100901, Lot 100902, and Lot 100903 finely pulverized under the above-described conditions, the composite materials (Lot Nos. R-1 to R-5) in Table 2 are dry-processed. Composite processing was performed. In carrying out this dry compounding treatment, in addition to corn starch and Lot100903, Lot No. R-6 was prepared and subjected to dry compounding treatment, and the result was obtained.

Lot No. R―1乃至R―6の乾式複合化処理は、次の処理条件で行った。
1.精密微細混合装置
ホソカワミクロン株式会社製ノビルタNOB―MINI
2.複合化回転数(混合速度)
2000rpm乃至6000rpm
3.混合化時間 10分乃至20分
4.被複合化材料の量
(1)コーンスターチ 11.7g
(2)Lot100901 1.63g
(3)Lot100902 2.6g
(4)Lot100903 1.3g又は2.6g
(5)ポリエチレングリコール(PEG)原末 1.3g
Lot No. The dry compounding treatment of R-1 to R-6 was performed under the following treatment conditions.
1. Precision fine mixing device Honokawa Micron Nobilta NOB-MINI
2. Combined rotation speed (mixing speed)
2000 rpm to 6000 rpm
3. Mixing time 10 minutes to 20 minutes Amount of composite material (1) 11.7 g of corn starch
(2) Lot 100901 1.63g
(3) Lot 100902 2.6g
(4) Lot 100903 1.3g or 2.6g
(5) Polyethylene glycol (PEG) bulk powder 1.3g

Lot No. R―1乃至R―6を乾式複合化処理して得た複合化品の粒度分布を表3に示す。表3から、R―2、R―4乃至R―6は、コーンスターチからなる核粒子(母粒子)がフェニトイン及び/又はポリエチレングリコール(PEG)の微粉末(子粒子)によって被覆された結果、コーンスターチ原末とほぼ同様の粒度分布を示すことが分かる。薬物の粉砕微粒子は付着・凝集性が大きく、粉体としてのハンドリング性は良好ではないが、核粒子に被覆され粒子径が大きくなったことにより、粉体二次物性(流動性・充填性)が被覆前と比較して大幅に改善されていることが容易に推測できる。すなわち、Lot No.R―2、R―4乃至R―6では、分散性と溶出性が良好で、かつ、粉体物性が良好な複合化粒子を得ることができた。R―2、R―4乃至R―6の複合化回転数は2000乃至3000rpmであるのに対し、R―1とR―3の複合化回転数は6000rpmであり、極めて高速である。なお、Lot No.R−4において、複合化回転数(rpm)が2000→3000と記載され、混合化時間(min)が5+5と記載されているのは、先ず、複合化回転数2000rpmで5分間回転させ、次いで、複合化回転数を2000rpmから3000rpmに増加させて、更に5分間回転させたことを意味する。   Lot No. Table 3 shows the particle size distribution of the composites obtained by dry composite treatment of R-1 to R-6. From Table 3, R-2, R-4 to R-6 indicate that corn starch is a result of coating corn starch core particles (mother particles) with phenytoin and / or polyethylene glycol (PEG) fine powder (child particles). It can be seen that the particle size distribution is almost the same as the bulk powder. Drug pulverized fine particles have large adhesion / aggregation properties and are not good in handling as a powder. However, secondary particle properties (fluidity and filling properties) are increased due to the increase in particle diameter by coating with core particles. It can be easily estimated that is significantly improved compared to before coating. That is, Lot No. In R-2, R-4 to R-6, composite particles having good dispersibility and dissolution and good powder physical properties could be obtained. The combined rotational speed of R-2 and R-4 to R-6 is 2000 to 3000 rpm, whereas the combined rotational speed of R-1 and R-3 is 6000 rpm, which is extremely high speed. In addition, Lot No. In R-4, the compounding rotation speed (rpm) is described as 2000 → 3000, and the mixing time (min) is described as 5 + 5. First, the compounding rotation speed is 2000 rpm and then rotated for 5 minutes. This means that the composite rotation speed was increased from 2000 rpm to 3000 rpm and the rotation was further continued for 5 minutes.

表4及び表5に、Lot100901、Lot100902、Lot100903、Lot No. R―1乃至R―6、コーンスターチ原末、ポリエチレングリコール(PEG)原末の粒度測定結果を示す。この粒度測定は、セイシン企業製レーザー回析散乱式粒度分布装置LMS―30を使用して行った。表4及び表5中、D10、D50およびD90は、累積粒度分布曲線におけるそれぞれ10%、50%、90%粒子径を意味する。   Tables 4 and 5 show that Lot 100901, Lot 100902, Lot 100903, Lot No. The particle size measurement results of R-1 to R-6, corn starch bulk powder, and polyethylene glycol (PEG) bulk powder are shown. This particle size measurement was performed using a laser diffraction scattering particle size distribution device LMS-30 manufactured by Seishin Corporation. In Tables 4 and 5, D10, D50, and D90 mean 10%, 50%, and 90% particle diameters in the cumulative particle size distribution curve, respectively.

乾式複合化処理によって得られた粉粒体Lot No. R―1乃至R―6についての溶出試験結果を表6及び表7に示す。この溶出試験は、株式会社富山産業製溶出試験機NTR―3000を使用してパドル法によって行った。この溶出試験条件は次のとおりである。
1.パドル回転数 50rpm
2.試料量 10mg
3.温度 36.5℃乃至37.5℃
4.採取量 1mL
5.溶液
(1)第1液 日本薬局方第1液(pH 1.2)
(2)第2液 日本薬局方第2液(pH 6.8)
Granules Lot No. obtained by dry compounding treatment. Tables 6 and 7 show the dissolution test results for R-1 to R-6. This dissolution test was performed by the paddle method using a dissolution tester NTR-3000 manufactured by Toyama Sangyo Co., Ltd. The dissolution test conditions are as follows.
1. Paddle speed 50rpm
2. Sample amount 10mg
3. Temperature 36.5 ℃ ~ 37.5 ℃
4). Sample volume 1mL
5. Solution (1) 1st liquid Japanese Pharmacopoeia 1st liquid (pH 1.2)
(2) Second liquid Japanese Pharmacopoeia second liquid (pH 6.8)

表2に示した複合化条件と表6及び表7の溶出試験結果から、本発明の医薬品の原末の溶出性に影響を及ぼすと思われる次の因子について、若干の考察を付記する。
1.複合化回転数について
R―1(6000rpm)とR―2(2000rpm)を比較すると、本発明の医薬品の原末の溶出性は、低速度の方が良好な結果を得た。この結果は複合化温度に依存すると思われる。
2.複合化温度について
R―1(44.0℃)とR―3(54.8℃)を比較すると、本発明の医薬品の原末の溶出性は、低温度の方が良好な結果を得た。この結果は複合化回転数と複合化時間に依存すると思われる。
3.複合化時間について
R―3(20分)とその他のロット(10分)を比較すると、本発明の医薬品の原末の溶出性は、短時間(10分)の方が良好な結果を得た。ただし、この結果は複合化温度に依存すると考えられる。
4.PEG添加の有無について
R―2(PEG無添加)とR―4(PEG添加)を比較すると、本発明の医薬品の原末の溶出性は、PEGを添加した方が良好な結果を得た。この結果、PEGの添加により複合化粒子の表面の親水性が増加したためと思われる(PEGの水溶性能効果)。
5.PEG粉砕処理の有無について
R―4(粉砕処理品)とR―6(非粉砕処理品)を比較すると、本発明の医薬品の原末の溶出性は、粉砕処理品の方が良好な結果を得た。この結果は、粉砕された微粒子によって表面積が増加したためと思われる。
6.PEG含有比率について
R―4(1:1)とR―5(4:1)を比較すると、本発明の医薬品の原末の溶出性は、フェニトインとPEGが1:1の含有比率の方が良好な結果を得た。この結果は、PEGの水溶性能効果が相対的に増大したためと思われる。
From the complexing conditions shown in Table 2 and the dissolution test results in Tables 6 and 7, some considerations are added to the following factors that are thought to affect the dissolution properties of the bulk powder of the drug of the present invention.
1. Comparing rotational speed When comparing R-1 (6000 rpm) and R-2 (2000 rpm), the dissolution rate of the bulk powder of the pharmaceutical of the present invention was better at a lower speed. This result appears to depend on the compounding temperature.
2. Concomitant temperature Comparing R-1 (44.0 ° C.) and R-3 (54.8 ° C.), the dissolution of the bulk of the pharmaceutical product of the present invention was better at lower temperatures. . This result seems to depend on the compounding rotation speed and compounding time.
3. About the complexation time When R-3 (20 minutes) and other lots (10 minutes) were compared, the dissolution of the bulk of the pharmaceutical product of the present invention gave better results in a shorter time (10 minutes). . However, this result is considered to depend on the compounding temperature.
4). Regarding the presence or absence of PEG addition When comparing R-2 (without PEG addition) and R-4 (with PEG addition), the dissolution of the bulk powder of the pharmaceutical of the present invention was better when PEG was added. As a result, it seems that the hydrophilicity of the surface of the composite particle was increased by the addition of PEG (PEG water-soluble performance effect).
5. About the presence or absence of PEG pulverization treatment Comparing R-4 (pulverized product) and R-6 (non-pulverized product), the dissolution of the bulk powder of the pharmaceutical product of the present invention is better for the pulverized product. Obtained. This result seems to be because the surface area was increased by the pulverized fine particles.
6). Regarding the PEG content ratio When comparing R-4 (1: 1) and R-5 (4: 1), the dissolution of the bulk of the pharmaceutical product of the present invention is better when the content ratio of phenytoin and PEG is 1: 1. Good results were obtained. This result seems to be due to the relative increase in water-soluble performance effect of PEG.

表8は、(1)フェニトイン原末の単独粉砕品(Lot100903に相当する。)、(2)フェニトインとポリエチレングリコール(PEG)の共粉砕品(フェニトインとポリエチレングリコールの重量比率 1:1のもの)(Lot100902に相当する。)、及び、(3)ノビルタ処理品(Lot No. R―4に相当する。)の流動性を評価するため、流動性を評価するための基準である粉体特性値として、安息角と、ゆるみかさ密度を計測した結果を示す。
安息角が大きい程、粉体の流動性は低く、逆に、安息角が小さい程、粉体の流動性は良いと評価される。表8の安息角の測定は注入法で行った。表8に示すように、いずれも3回の平均値として、ノビルタ処理品の安息角は55.62°であるのに対し、フェニトイン原末の単独粉砕品の安息角は59.89°であり、また、フェニトインとポリエチレングリコール(PEG)の共粉砕品の安息角は60.62°であるから、ノビルタによって乾式複合化処理することによって流動性の改善が認められる。
また、粉体特性値としての充填性を評価するため、ゆるめかさ密度を測定した。かさ密度が大きいと粉体の流動性は良好であり、逆に、かさ密度が小さいと粉体の流動性が低いと評価される。表8に示すように、いずれも3回の平均値として、ノビルタ処理品のかさ密度は0.366(g/mL)であるのに対し、フェニトイン原末の単独粉砕品のかさ密度は0.148(g/mL)であり、また、フェニトインとポリエチレングリコール(PEG)の共粉砕品のかさ密度は0.237(g/mL)であるから、ノビルタによって乾式複合化処理することによって流動性の改善が認められる。
Table 8 shows (1) a single pulverized product of phenytoin bulk powder (corresponding to Lot 100903), (2) a co-ground product of phenytoin and polyethylene glycol (PEG) (weight ratio of phenytoin and polyethylene glycol of 1: 1). (Corresponding to Lot 100902) and (3) Powder characteristic value which is a standard for evaluating fluidity in order to evaluate the fluidity of Nobilta-treated products (corresponding to Lot No. R-4) As a result, the angle of repose and the loose bulk density were measured.
The larger the angle of repose, the lower the fluidity of the powder, and conversely, the smaller the angle of repose, the better the fluidity of the powder. The angle of repose in Table 8 was measured by the injection method. As shown in Table 8, the repose angle of the nobilta-treated product was 55.62 ° as an average of all three times, whereas the repose angle of the single pulverized phenytoin powder was 59.89 °. Moreover, since the angle of repose of the co-ground product of phenytoin and polyethylene glycol (PEG) is 60.62 °, improvement in fluidity is recognized by dry compounding with Nobilta.
Moreover, in order to evaluate the filling property as a powder characteristic value, the loose bulk density was measured. If the bulk density is large, the fluidity of the powder is good. Conversely, if the bulk density is small, it is evaluated that the fluidity of the powder is low. As shown in Table 8, the average density of all three times, the bulk density of the nobilta-treated product is 0.366 (g / mL), whereas the bulk density of the single pulverized phenytoin powder is 0. 148 (g / mL), and the bulk density of the co-ground product of phenytoin and polyethylene glycol (PEG) is 0.237 (g / mL). Improvement is observed.

図1及び2に、乾式複合化処理前のコーンスターチ原末粒子の外観と、フェニトインとポリエチレングリコール(PEG)の共粉砕品(Lot100902)と、コーンスターチ原末とを、精密微細混合装置(ホソカワミクロン株式会社製ノビルタNOB―MINI)で、10分間、乾式複合化処理することによって生成された粉末粒子の外観を示す。これらの写真から、乾式複合化処理によって、コーンスターチからなる核粒子の表面にフェニトインとPEGの微粒子からなる小粒子が分散して固定されているのが分かる。なお、これらの写真は、日本電子株式会社製走査型電子顕微鏡JMS―6060によって撮影した。   1 and 2, a fine fine mixing device (Hosokawa Micron Co., Ltd.) is used for the appearance of raw corn starch powder before dry compounding, a co-ground product of phenytoin and polyethylene glycol (PEG) (Lot100902), and corn starch bulk powder. The appearance of the powder particles produced by dry compounding for 10 minutes with Nobilta NOB-MINI) is shown. From these photographs, it can be seen that small particles made of phenytoin and PEG fine particles are dispersed and fixed on the surface of the core particles made of corn starch by the dry compounding treatment. These photographs were taken with a scanning electron microscope JMS-6060 manufactured by JEOL Ltd.

前述の実施例の説明では、コーンスターチによって親粒子を構成し、難溶性薬物のフェニトインとポリエチレングリコール(PEG)を子粒子として選択したが、本発明は、これらの物質に限定されることなく、任意の物質を選択して実施することができる。   In the description of the above examples, the parent particles are composed of corn starch, and the poorly soluble drug phenytoin and polyethylene glycol (PEG) are selected as the child particles. However, the present invention is not limited to these substances, and any The substance can be selected and implemented.

Claims (11)

液化不活性ガス中でサブミクロンサイズ乃至ナノサイズに媒体粉砕された薬物の微粒子を、前記薬物の微粒子と結合して複合粒子を構成する核粒子の表面に、乾式複合化処理によって分散させて固定したことを特徴とする、医薬品の原末。   Drug fine particles pulverized in submicron to nano size medium in liquefied inert gas are dispersed and fixed on the surface of the core particles that are combined with the drug fine particles to form composite particles by dry compounding treatment. The bulk of pharmaceutical products, characterized by 液化不活性ガス中でサブミクロンサイズ乃至ナノサイズに媒体粉砕された薬物の微粒子と、前記液化不活性ガス中で前記薬物と共粉砕された添加剤の微粒子とを、前記薬物の微粒子及び前記添加剤の微粒子と結合して複合粒子を構成する核粒子の表面に、乾式複合化処理によって分散させて固定したことを特徴とする、医薬品の原末。   Drug fine particles pulverized in submicron to nano size in a liquefied inert gas, additive fine particles co-pulverized with the drug in the liquefied inert gas, the drug fine particles and the addition A pharmaceutical bulk powder characterized in that it is dispersed and fixed on the surface of the core particles constituting the composite particles by binding with the fine particles of the agent. 液化不活性ガス中でサブミクロンサイズ乃至ナノサイズに媒体粉砕された薬物の微粒子と、前記薬物の微粒子とは別途に生成された添加剤の微粒子とを、前記薬物の微粒子及び前記添加剤の微粒子と結合して複合粒子を構成する核粒子の表面に、乾式複合化処理によって分散させて固定したことを特徴とする、医薬品の原末。   Drug fine particles pulverized in submicron size to nano size in a liquefied inert gas, and additive fine particles generated separately from the drug fine particles, the drug fine particles and the additive fine particles A pharmaceutical bulk powder characterized in that it is dispersed and fixed on the surface of the core particle that forms a composite particle by binding to the surface by a dry composite treatment. 請求項1乃至3に記載の医薬品の原末において、前記薬物は難容性薬物であることを特徴とする、前記医薬品の原末。   4. The bulk of the pharmaceutical according to claim 1, wherein the drug is a poorly tolerable drug. 請求項1乃至4のうちのいずれか一項に記載の医薬品の原末において、前記核粒子は、コーンスターチ等の各種スターチ、乳糖等の糖類、又は、マンニトール、エリスリトール、キシリトール等の糖アルコールによって形成されていることを特徴とする、前記医薬品の原末。   5. The pharmaceutical powder according to claim 1, wherein the core particles are formed by various starches such as corn starch, saccharides such as lactose, or sugar alcohols such as mannitol, erythritol, and xylitol. The bulk of the pharmaceutical product, characterized in that 請求項2、4又は5に記載の医薬品の原末において、前記添加剤はポリエチレングリコール(PEG)原末等の水溶性添加剤であることを特徴とする、前記医薬品の原末。   6. The bulk of the pharmaceutical according to claim 2, 4 or 5, wherein the additive is a water-soluble additive such as a bulk of polyethylene glycol (PEG). 請求項3、4又は5に記載の医薬品の原末において、前記添加剤は、ポリエチレングリコール(PEG)原末等の水溶性添加剤又はアエロジル等の親水性微粒子であることを特徴とする、前記医薬品の原末。   The pharmaceutical bulk powder according to claim 3, 4 or 5, wherein the additive is a water-soluble additive such as polyethylene glycol (PEG) bulk powder or hydrophilic fine particles such as aerosil. Pharmaceutical bulk powder. 液化不活性ガス中でサブミクロンサイズ乃至ナノサイズの微粒子に媒体粉砕された薬物の粉粒体と、前記薬物の微粒子と結合して複合粒子を構成する核粒子の原末とを、乾式複合化処理することにより、前記核粒子の原末から前記核粒子を生成すると共に、前記薬物の微粒子を前記核粒子の表面に分散させて固定することを特徴とする、医薬品の原末の製造方法。   Dry compounding of drug powders that have been pulverized into sub-micron or nano-sized fine particles in a liquefied inert gas, and the bulk powder of core particles that are combined with the drug fine particles to form composite particles A method for producing a pharmaceutical bulk powder, characterized in that, by treatment, the core particles are produced from the bulk powder of the core particles, and the fine particles of the drug are dispersed and fixed on the surface of the core particles. 請求項8に記載の製造方法において、前記薬物の微粒子と前記核粒子の原末の乾式複合化処理系に添加剤を付加し、前記核粒子の表面に前記薬物の微粒子と前記添加剤の微粒子を分散させて固定することを特徴とする、前記製造方法。   9. The manufacturing method according to claim 8, wherein an additive is added to the dry compounding system of the drug fine particles and the core particle bulk powder, and the drug fine particles and the additive fine particles are formed on the surface of the core particles. The method is characterized in that the above is dispersed and fixed. 請求項8に記載の製造方法において、前記製造方法は、
前記液化不活性ガスからなる分散媒体に前記薬物と粉砕用ビーズを加えて懸濁液を生成し、前記懸濁液を超低温媒体粉砕装置によって攪拌することにより、前記薬物を粉砕して前記薬物の微粒子を含む粉粒体を生成する工程と、
前記薬物の微粒子と前記核粒子の原末を精密微細混合装置によって乾式複合化処理し、前記核粒子の原末から前記核粒子を生成すると共に、前記薬物の微粒子を前記核粒子の表面に分散させて固定する工程と、
を含むことを特徴とする、前記製造方法。
The manufacturing method according to claim 8, wherein the manufacturing method includes:
The drug and pulverization beads are added to the dispersion medium composed of the liquefied inert gas to form a suspension, and the suspension is stirred by an ultra-low temperature medium pulverizer to pulverize the drug and Producing a granular material containing fine particles;
The fine particles of the drug and the bulk of the core particles are dry-combined with a precision fine mixing device to generate the core particles from the bulk of the core particles, and the fine particles of the drug are dispersed on the surface of the core particles And fixing the process,
The manufacturing method characterized by including.
請求項9に記載の製造方法において、前記懸濁液に添加剤を混合し、前記懸濁液を超低温媒体粉砕装置によって攪拌することにより、前記薬物と前記添加剤を共粉砕することを特徴とする、医薬品紛体の製造方法。   The manufacturing method according to claim 9, wherein the drug and the additive are co-ground by mixing an additive with the suspension and stirring the suspension with an ultra-low temperature medium pulverizer. A method for producing a pharmaceutical powder.
JP2012016176A 2012-01-30 2012-01-30 Bulk powder of medicine and method of producing the same Pending JP2013155124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016176A JP2013155124A (en) 2012-01-30 2012-01-30 Bulk powder of medicine and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016176A JP2013155124A (en) 2012-01-30 2012-01-30 Bulk powder of medicine and method of producing the same

Publications (1)

Publication Number Publication Date
JP2013155124A true JP2013155124A (en) 2013-08-15

Family

ID=49050689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016176A Pending JP2013155124A (en) 2012-01-30 2012-01-30 Bulk powder of medicine and method of producing the same

Country Status (1)

Country Link
JP (1) JP2013155124A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034922A (en) * 2014-08-02 2016-03-17 敏幸 丹羽 Production method for composite particles of pharmaceutical bulk powders and pharmaceutical additives, and composite particles produced by method thereof
JP2017500297A (en) * 2013-11-26 2017-01-05 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Preparation of powdered pharmaceutical composition by cryomilling
WO2019009335A1 (en) * 2017-07-04 2019-01-10 村上 正裕 Method for producing fine particles, and fine particles
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10369109B2 (en) 2002-06-17 2019-08-06 Grünenthal GmbH Abuse-proofed dosage form
US10493033B2 (en) 2009-07-22 2019-12-03 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10675278B2 (en) 2005-02-04 2020-06-09 Grünenthal GmbH Crush resistant delayed-release dosage forms
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143071A (en) * 2002-10-23 2004-05-20 Hosokawa Funtai Gijutsu Kenkyusho:Kk Method for producing medicine-containing composite particle and medicine-containing composite particle
WO2011059074A1 (en) * 2009-11-13 2011-05-19 森六ケミカルズ株式会社 Fine powder manufacturing method and fine powder manufactured using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143071A (en) * 2002-10-23 2004-05-20 Hosokawa Funtai Gijutsu Kenkyusho:Kk Method for producing medicine-containing composite particle and medicine-containing composite particle
WO2011059074A1 (en) * 2009-11-13 2011-05-19 森六ケミカルズ株式会社 Fine powder manufacturing method and fine powder manufactured using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6015025767; 井上義之: '乾式粒子複合化技術' 医薬品製剤化方略と新技術 , 2007, pp.267-274, シーエムシー出版 *
JPN6015025768; 粉砕 No.53, 2010, pp.80-84 *
JPN6015025769; 粉砕 No.54, 2011, pp.68-71 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10369109B2 (en) 2002-06-17 2019-08-06 Grünenthal GmbH Abuse-proofed dosage form
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US10675278B2 (en) 2005-02-04 2020-06-09 Grünenthal GmbH Crush resistant delayed-release dosage forms
US10493033B2 (en) 2009-07-22 2019-12-03 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10695297B2 (en) 2011-07-29 2020-06-30 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10864164B2 (en) 2011-07-29 2020-12-15 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
JP2017500297A (en) * 2013-11-26 2017-01-05 グリュネンタール・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Preparation of powdered pharmaceutical composition by cryomilling
JP2016034922A (en) * 2014-08-02 2016-03-17 敏幸 丹羽 Production method for composite particles of pharmaceutical bulk powders and pharmaceutical additives, and composite particles produced by method thereof
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
WO2019009335A1 (en) * 2017-07-04 2019-01-10 村上 正裕 Method for producing fine particles, and fine particles

Similar Documents

Publication Publication Date Title
JP2013155124A (en) Bulk powder of medicine and method of producing the same
Krull et al. Preparation and characterization of fast dissolving pullulan films containing BCS class II drug nanoparticles for bioavailability enhancement
CN104968332B (en) Medicinal core-shell composite powder and preparation method thereof
TWI558422B (en) Reduction of flake-like aggregation in nanoparticulate active agent compositions
Bhakay et al. Recovery of BCS Class II drugs during aqueous redispersion of core–shell type nanocomposite particles produced via fluidized bed coating
Khinast et al. Nano-extrusion: a one-step process for manufacturing of solid nanoparticle formulations directly from the liquid phase
WO1994008709A1 (en) Production method for fine granulate
TW201912148A (en) Injectable pharmaceutical composition containing meloxicam and preparation method thereof
Lau et al. A review of co-milling techniques for the production of high dose dry powder inhaler formulation
Lam et al. Liqui-pellet: the emerging next-generation oral dosage form which stems from liquisolid concept in combination with pelletization technology
Bhakay et al. Enhanced recovery and dissolution of griseofulvin nanoparticles from surfactant-free nanocomposite microparticles incorporating wet-milled swellable dispersants
JP5515198B2 (en) Mecobalamin-containing powder
El-Gendy et al. Agglomerates of ciprofloxacin nanoparticles yield fine dry powder aerosols
JP2012153631A (en) Method for producing tablet
JPWO2007029660A1 (en) Fine particles of poorly soluble drugs with enteric base adsorbed on the surface
Miyazaki et al. Dry powder coating using planetary centrifugal mixer
WO2012091040A1 (en) Decay-type nuclear particle for pharmaceutical formulation
CN103110595A (en) Cefdinir dispersible tablet and preparation method thereof
Varun et al. Engineered inhalable micro-balloon shaped drug particles for carrier-free dry powder inhalation (DPI) application
Ali et al. Engineering of solidified glyburide nanocrystals for tablet formulation via loading of carriers: downstream processing, characterization, and bioavailability
Azad et al. Preparation of concentrated stable fenofibrate suspensions via liquid antisolvent precipitation
Bakliwal et al. FORMULATION AND EVALUATION OF NATEGLINIDE NANOSPONGES.
JP2006028171A (en) Galenical powder-containing tablet
JP2016084469A (en) Alkyl cellulose for tableting, and solid preparation containing the same
WO2022004871A1 (en) Tablet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151218