JP2013154360A - Method for setting welding condition, and melding method - Google Patents

Method for setting welding condition, and melding method Download PDF

Info

Publication number
JP2013154360A
JP2013154360A JP2012015305A JP2012015305A JP2013154360A JP 2013154360 A JP2013154360 A JP 2013154360A JP 2012015305 A JP2012015305 A JP 2012015305A JP 2012015305 A JP2012015305 A JP 2012015305A JP 2013154360 A JP2013154360 A JP 2013154360A
Authority
JP
Japan
Prior art keywords
welding
current value
energization time
current
limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012015305A
Other languages
Japanese (ja)
Other versions
JP5876305B2 (en
Inventor
Shogo Matsuda
省吾 松田
Akiya Kawasaki
暢也 川▲崎▼
Shinji Aoki
伸二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012015305A priority Critical patent/JP5876305B2/en
Publication of JP2013154360A publication Critical patent/JP2013154360A/en
Application granted granted Critical
Publication of JP5876305B2 publication Critical patent/JP5876305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for setting welding conditions that can achieve stable spot welding having sufficient bonding strength in a shorter energization time by setting more suitable welding conditions, and to provide a welding method.SOLUTION: A method for setting welding conditions includes: a step S2 for deriving a first current value (Ie1) that enables welding to satisfy a nugget diameter more than a defined value and bonding strength more than a defined value during a temporary energization time T1, and is lower than a sputter generation limit; a step S4 for deriving a second current value that is a current value from which only a first current management width (1kA or over) is reduced from the first current value Ie1 during the temporary energization time T1; a step S6 for setting a corona limit curve; a step S7 for setting a nugget formation limit curve; and a step 8 for setting, as the most welding suitable conditions, the minimum energization time and the then current values IeA1, and IeA2 for ensuring a second current control width (1kA) between the corona limit curve as an upper limit and the nugget formation limit curve as a lower limit.

Description

本発明は、溶接条件設定方法及び溶接方法に関する。詳しくは、複数の被溶接板材を重ね、所定の加圧力の下で溶接電流を流し、複数の被溶接板材を接合する際の溶接条件設定方法及び溶接方法に関する。   The present invention relates to a welding condition setting method and a welding method. More specifically, the present invention relates to a welding condition setting method and a welding method in which a plurality of welded plate materials are stacked, a welding current is passed under a predetermined pressure, and the plurality of welded plate materials are joined.

従来、複数の被溶接板材を重ね、一定の加圧力の下で溶接電流を流し、複数の被溶接板材を接合する抵抗溶接の溶接条件を設定する溶接条件設定装置が知られている(例えば、特許文献1参照)。
特許文献1に開示された装置では、所定の溶接強度以上での溶接時におけるスパッタの発生を防止する条件から定まる関係に従い、各被溶接板材の板厚と材質に基づいて、溶接電流、通電時間及び加圧力といった溶接条件を設定する。
詳しくは、この装置では、各被溶接板材の板厚に依存する板厚依存電流値及び各被溶接板材の材質に依存する材質依存電流値をそれぞれ算出し、算出された板厚依存電流値と材質依存電流値とに基づいて所定の溶接強度以上での溶接時におけるスパッタの発生防止の条件を具備する設定溶接電流を算出する。また同様に、板厚依存通電時間と材質依存通電時間とに基づいて設定通電時間を算出し、板厚依存加圧力と材質依存加圧力とに基づいて設定加圧力を算出する。
2. Description of the Related Art Conventionally, there is known a welding condition setting device that overlaps a plurality of plate materials to be welded, flows a welding current under a constant pressure, and sets resistance welding conditions for joining the plurality of plate materials to be welded (for example, Patent Document 1).
In the apparatus disclosed in Patent Document 1, the welding current and energization time are determined based on the plate thickness and material of each plate to be welded according to the relationship determined from the conditions for preventing the occurrence of spatter during welding at a predetermined welding strength or higher. And welding conditions such as pressure are set.
Specifically, in this apparatus, a plate thickness dependent current value depending on the plate thickness of each welded plate material and a material dependent current value depending on the material of each welded plate material are respectively calculated, and the calculated plate thickness dependent current value and Based on the material-dependent current value, a set welding current having a condition for preventing the occurrence of spatter during welding at a predetermined welding strength or higher is calculated. Similarly, the set energization time is calculated based on the plate thickness dependent energization time and the material dependent energization time, and the set applied pressure is calculated based on the plate thickness dependent pressurizing force and the material dependent pressurizing force.

特開2003−145280号公報JP 2003-145280 A

ここで、特許文献1に開示された装置などのように溶接条件を設定する場合であって、特にスポット溶接において溶接を安定させるためには、通電時間及び電流値を適切に設定する必要がある。
スポット溶接では、様々な環境下での実施が想定されるため、被溶接板材の総板厚から導出された通電時間に基づき、規定値以上のナゲット径及び規定値以上の接合強度を満たす溶接品質の保証が可能な、例えば1kA以上などの電流管理幅が確保できる範囲内における最大電流値を導出して溶接条件を満たす通電時間及び電流値を設定していた。
しかしながら、従来のスポット溶接の溶接条件として導出される通電時間及び電流値は、一定の導出方法により固定されていたため、より短い通電時間が導出できない問題や、加工作業が冗長となり、過剰設備投資、消費エネルギーロス及び量産加工条件との乖離などの問題が発生していた。
Here, when welding conditions are set as in the apparatus disclosed in Patent Document 1, in order to stabilize welding particularly in spot welding, it is necessary to appropriately set the energization time and the current value. .
Because spot welding is expected to be performed in various environments, welding quality that satisfies a nugget diameter greater than the specified value and a joint strength greater than the specified value based on the energization time derived from the total thickness of the plate to be welded. For example, a maximum current value within a range in which a current management width such as 1 kA or more can be secured is derived, and an energization time and a current value satisfying the welding conditions are set.
However, since the energization time and current value derived as welding conditions for conventional spot welding were fixed by a fixed derivation method, problems such as shorter energization time cannot be derived, and the processing work becomes redundant, excessive capital investment, Problems such as loss of energy consumption and divergence from mass production processing conditions occurred.

本発明は上記問題を解決するもので、その目的は、より適切な溶接条件を設定し、より短い通電時間で十分な接合強度を有する安定したスポット溶接を実現する溶接条件設定方法及び溶接方法を提供することにある。   SUMMARY OF THE INVENTION The present invention solves the above problems, and its object is to provide a welding condition setting method and a welding method for setting a more appropriate welding condition and realizing stable spot welding having a sufficient joining strength in a shorter energization time. It is to provide.

(1)複数の被溶接板材(例えば、後述の被溶接板材W1,W2)を重ね、所定の加圧力の下で溶接電流を流し、前記複数の被溶接板材を接合する際の溶接条件設定方法であって、所定の通電時間(例えば、後述の仮通電時間T1)において所定値以上のナゲット径及び所定値以上の接合強度を満たす溶接が可能であり且つスパッタ発生限界よりも低い第1の電流値(例えば、後述の第1電流値Ie1)を導出するステップ(例えば、後述のステップS2)と、前記所定の通電時間において所定値以上のナゲット径及び所定値以上の接合強度を満たす溶接が可能な、前記第1の電流値に対し第1の電流管理幅(例えば、後述の第1電流管理幅)の分だけ電流値を低下させた第2の電流値(例えば、後述の第2電流値Ie2)を導出するステップ(例えば、後述のステップS4)と、前記所定の通電時間及び前記第1の電流値に対応した、ナゲットの溶融部の急激な成長をその周囲のシーリング部によって抑えスパッタを発生させない限界条件を示すコロナボンド限界曲線を設定するステップ(例えば、後述のステップS6)と、前記所定の通電時間及び前記第2の電流値に対応した、所定値以上のナゲット径となるナゲットを形成するための限界条件を示すナゲット形成限界曲線を設定するステップ(例えば、後述のステップS7)と、前記コロナボンド限界曲線を上限とし、前記ナゲット形成限界曲線を下限とし、それらの間で前記第1の電流管理幅以下の第2の電流管理幅(例えば、後述の第2電流管理幅)を確保する最小の通電時間(例えば、後述の通電時間TA)及びそのときの電流値(例えば、後述の電流値IeA1,IeA2)を溶接最適条件として設定するステップ(例えば、後述のステップS8)と、を含むことを特徴とする溶接条件設定方法。   (1) A welding condition setting method for joining a plurality of welded plate materials by stacking a plurality of welded plate materials (for example, welded plate materials W1 and W2 described later), flowing a welding current under a predetermined pressure force A first current that is capable of welding satisfying a nugget diameter of a predetermined value or more and a joining strength of a predetermined value or more in a predetermined energization time (for example, a temporary energization time T1 described later) and lower than a spatter generation limit. A step of deriving a value (for example, a first current value Ie1 described later) (for example, step S2 described later) and welding satisfying a nugget diameter of a predetermined value or more and a bonding strength of a predetermined value or more in the predetermined energization time is possible. A second current value (for example, a second current value described later) obtained by reducing the current value by a first current management width (for example, a first current management width described later) with respect to the first current value. Step to derive Ie2) (For example, step S4 described later) and a limit condition corresponding to the predetermined energization time and the first current value, in which rapid growth of the melted portion of the nugget is suppressed by the surrounding sealing portion and no spatter is generated. A step for setting a corona bond limit curve (for example, step S6 described later), and a limit condition for forming a nugget having a nugget diameter of a predetermined value or more corresponding to the predetermined energization time and the second current value A nugget formation limit curve indicating the following (for example, step S7 described later), the coronabond limit curve as an upper limit, the nugget formation limit curve as a lower limit, and the first current management width between them Minimum current energizing time (for example, energizing time TA described later) for securing a second current management width (for example, a second current managing width described later) and its Kino current value (e.g., current value IeA1, IeA2 below) Welding condition setting method characterized by comprising the step of setting a welding optimum conditions (e.g., step S8 described later), the.

(1)の発明によると、溶接品質を満足する領域内となるコロナボンド限界曲線の上限とナゲット形成限界曲線の下限との間で従来用いていた第1の電流管理幅以下の、第2の電流管理幅を確保する最小の通電時間及びそのときの電流値を溶接最適条件として設定できる。これによって、より適切な溶接条件として溶接品質を満足する最小の通電時間を設定でき、より短い通電時間で十分な接合強度を有する安定したスポット溶接を実現できる。このため、実施するスポット溶接で手短に加工作業を行え、過剰設備投資、消費エネルギーロス及び量産加工条件との乖離などの問題が抑制される。
ここで溶接最適条件の電流値は、コロナボンド限界曲線の上限以下であるので、その電流値を通電すると、ナゲットの溶融部の急激な成長をその周囲のシーリング部によって抑えきれスパッタを発生させない。
また溶接最適条件の電流値は、ナゲット形成限界曲線の下限以上であるので、その電流値を通電すると、所定値以上のナゲット径となるナゲットの形成が確保できる。
According to the invention of (1), the second current below the first current management width conventionally used between the upper limit of the corona bond limit curve and the lower limit of the nugget formation limit curve in the region satisfying the welding quality. The minimum energization time for ensuring the current management width and the current value at that time can be set as the optimum welding conditions. As a result, the minimum energization time that satisfies the welding quality can be set as a more appropriate welding condition, and stable spot welding with sufficient joint strength can be realized with a shorter energization time. For this reason, machining work can be easily performed by spot welding to be performed, and problems such as excessive capital investment, energy consumption loss and deviation from mass production machining conditions are suppressed.
Here, since the current value of the optimum welding condition is less than or equal to the upper limit of the corona bond limit curve, when the current value is energized, the rapid growth of the melted portion of the nugget can be suppressed by the surrounding sealing portion and no spatter is generated.
Further, since the current value of the optimum welding condition is equal to or greater than the lower limit of the nugget formation limit curve, when the current value is energized, formation of a nugget having a nugget diameter of a predetermined value or more can be secured.

(2)(1)に記載の溶接条件設定方法で前記溶接最適条件を設定するステップ(例えば、後述のステップS1〜S8)と、設定された前記溶接最適条件に基づき、複数の被溶接板材を重ね、所定の加圧力の下で溶接電流を流し、前記複数の被溶接板材を接合するステップ(例えば、後述のステップS9)と、を含むことを特徴とする溶接方法。   (2) A step (for example, Steps S1 to S8 described later) of setting the optimum welding conditions by the welding condition setting method described in (1) and a plurality of plate materials to be welded based on the set optimum welding conditions. And a step (for example, step S9 described later) of joining the plurality of plate members to be welded by applying a welding current under a predetermined pressure.

(2)の発明によると、溶接品質を満足する領域内となるコロナボンド限界曲線の上限とナゲット形成限界曲線の下限との間で従来用いていた第1の電流管理幅以下の、第2の電流管理幅を確保する最小の通電時間及びそのときの電流値を設定した溶接最適条件に基づき溶接できるので、より適切な溶接条件が設定でき、通電時間が短くなって加工作業が手短に行え、スポット溶接が安定する。   According to the invention of (2), the second current below the first current management width conventionally used between the upper limit of the corona bond limit curve and the lower limit of the nugget formation limit curve in the region satisfying the welding quality. Since welding can be performed based on the optimum welding conditions that set the minimum energization time and current value at that time to ensure current management width, more appropriate welding conditions can be set, energization time is shortened, and machining work can be performed easily. Spot welding is stable.

本発明によれば、より適切な溶接条件を設定でき、より短い通電時間で十分な接合強度を有する安定したスポット溶接を実現できる。   According to the present invention, more appropriate welding conditions can be set, and stable spot welding having sufficient joint strength can be realized in a shorter energization time.

本発明の一実施形態に係る溶接条件設定方法及び溶接方法を実行するための溶接システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the welding system for performing the welding condition setting method and welding method which concern on one Embodiment of this invention. 上記実施形態に係るスポット溶接の実行状態を示す模式図である。It is a schematic diagram which shows the execution state of the spot welding which concerns on the said embodiment. 上記実施形態に係る所定の通電時間に対応する溶接電流と接合強度及びナゲット径との関係のマップを示す図である。It is a figure which shows the map of the relationship between the welding current corresponding to the predetermined energization time concerning the said embodiment, joining strength, and a nugget diameter. 上記実施形態に係る通電時間と電流値との関係において溶接品質を満足する領域を示す図である。It is a figure which shows the area | region which satisfies welding quality in the relationship between the electricity supply time which concerns on the said embodiment, and an electric current value. 上記実施形態に係るナゲット(コロナ)とコロナボンドを示す図である。It is a figure which shows the nugget (corona) and corona bond which concern on the said embodiment. 上記実施形態に係る溶接システムにおける溶接条件設定方法及び溶接方法を示すフローチャートである。It is a flowchart which shows the welding condition setting method and welding method in the welding system which concerns on the said embodiment.

以下に図面を参照して本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本実施形態に係る溶接条件設定方法及び溶接方法を実行するための溶接システムの概略構成を示すブロック図である。
図1に示す溶接システム1は、溶接条件設定装置2と、スポット溶接装置3と、を備える。
溶接条件設定装置2は、複数の被溶接板材を重ね、所定の加圧力の下で溶接電流を流し、複数の被溶接板材を接合する際の溶接条件設定方法により溶接最適条件を求める装置である。
FIG. 1 is a block diagram showing a schematic configuration of a welding system for executing a welding condition setting method and a welding method according to the present embodiment.
A welding system 1 shown in FIG. 1 includes a welding condition setting device 2 and a spot welding device 3.
The welding condition setting device 2 is a device that determines a welding optimum condition by a welding condition setting method for joining a plurality of welded plate materials by superimposing a plurality of welded plate materials, passing a welding current under a predetermined pressing force. .

図2は、本実施形態に係るスポット溶接の実行状態を示す模式図である。スポット溶接装置3は、溶接条件設定装置2により設定された溶接最適条件に基づき、図2に示すように、複数の被溶接板材W1,W2を重ね、重ねた複数の被溶接板材W1,W2を2つの電極31,32で挟み込み、電極31,32間に所定の加圧力をかけその下で電極31,32間に溶接電流を流し、複数の被溶接板材W1,W2を接合する抵抗溶接(スポット溶接)を行う装置である。ここで、本実施形態では複数の被溶接板材の数を2枚の被溶接板材W1,W2で例示するが、本発明としては複数の被溶接板材の数は3枚以上の被溶接板材からなるものであってもよい。   FIG. 2 is a schematic diagram showing an execution state of spot welding according to the present embodiment. As shown in FIG. 2, the spot welding device 3, based on the optimum welding conditions set by the welding condition setting device 2, superimposes a plurality of welded plate materials W1 and W2, and superimposes a plurality of welded plate materials W1 and W2 that are overlapped. Resistance welding (spot) that sandwiches a plurality of plate members W1 and W2 by sandwiching between two electrodes 31 and 32, applying a predetermined pressure between the electrodes 31 and 32, and passing a welding current between the electrodes 31 and 32, Welding). Here, in this embodiment, the number of the plurality of welded plate members is exemplified by the two welded plate members W1 and W2. However, in the present invention, the number of the plurality of welded plate members is composed of three or more welded plate members. It may be a thing.

図1に示す溶接条件設定装置2は、コンピュータ及びその周辺装置によって実現される。溶接条件設定装置2における各機能は、コンピュータ及びその周辺装置が備えるハードウェア並びにハードウェアを制御するソフトウェアによって構成される。   The welding condition setting device 2 shown in FIG. 1 is realized by a computer and its peripheral devices. Each function in the welding condition setting device 2 is configured by hardware included in a computer and its peripheral devices, and software that controls the hardware.

上記ハードウェアには、CPUなどにより構成される制御部の他、記憶部、通信部、表示部及び入力部が含まれる。記憶部としては、例えば、メモリやハードディスクドライブなどが挙げられる。通信部としては、例えば、各種有線及び無線インターフェース装置が挙げられる。表示部としては、例えば、液晶ディスプレイやプラズマディスプレイなどの各種ディスプレイが挙げられる。入力部としては、例えば、キーボードやマウスなどが挙げられる。   The above hardware includes a storage unit, a communication unit, a display unit, and an input unit in addition to a control unit configured by a CPU or the like. Examples of the storage unit include a memory and a hard disk drive. Examples of the communication unit include various wired and wireless interface devices. Examples of the display unit include various displays such as a liquid crystal display and a plasma display. Examples of the input unit include a keyboard and a mouse.

上記ソフトウェアには、上記ハードウェアを制御するプログラムやデータが含まれる。プログラムやデータは、記憶部により記憶され、制御部により適宜実行、参照される。また、プログラムやデータは、通信回線を介して配布したり、CD−ROMなどのコンピュータ可読媒体に記録して配布したりすることもできる。   The software includes a program and data for controlling the hardware. Programs and data are stored in the storage unit, and are appropriately executed and referenced by the control unit. Further, the program and data can be distributed via a communication line, or can be recorded and distributed on a computer-readable medium such as a CD-ROM.

図1に溶接条件設定装置2の機能構成を示す。すなわち、溶接条件設定装置2の制御部は、受付部21と、第1電流値導出部22と、熱量維持曲線設定部23と、第2電流値導出部24と、管理幅下限条件熱量維持曲線設定部25と、コロナボンド限界曲線設定部26と、ナゲット形成限界曲線設定部27と、溶接最適条件設定部28と、を備える。
溶接条件設定装置2とスポット溶接装置3は、通信回線4を介して双方向に通信可能に接続されている。
FIG. 1 shows a functional configuration of the welding condition setting device 2. That is, the control unit of the welding condition setting device 2 includes the receiving unit 21, the first current value deriving unit 22, the heat amount maintenance curve setting unit 23, the second current value deriving unit 24, and the management width lower limit condition heat amount maintenance curve. A setting unit 25, a corona bond limit curve setting unit 26, a nugget formation limit curve setting unit 27, and a welding optimum condition setting unit 28 are provided.
The welding condition setting device 2 and the spot welding device 3 are connected via a communication line 4 so that they can communicate in both directions.

受付部21は、スポット溶接装置3によりスポット溶接を行う複数の被溶接板材W1,W2に関する、各被溶接板材W1,W2の板厚、各被溶接板材W1,W2の材質、複数の被溶接板材W1,W2の合わせ枚数などの情報の入力をオペレータから受け付ける。   The receiving unit 21 relates to a plurality of welded plate materials W1 and W2 to be spot welded by the spot welding apparatus 3, the plate thicknesses of the welded plate materials W1 and W2, the material of the welded plate materials W1 and W2, and the plurality of welded plate materials. Input of information such as the number of combined W1 and W2 is accepted from the operator.

第1電流値導出部22は、次に示すように導出される仮通電時間T1において規定値以上のナゲット径及び規定値以上の接合強度を満たす溶接が可能であり且つスパッタ発生限界よりも低い第1電流値Ie1を導出する。   The first current value deriving unit 22 can perform welding satisfying a nugget diameter of a specified value or more and a bonding strength of a specified value or more at a temporary energization time T1 derived as follows, and is lower than the spatter generation limit. One current value Ie1 is derived.

第1電流値導出部22は、まず、受付部21が受け付けた入力情報に基づく複数の被溶接板材W1,W2の総板厚TH(総板厚TH=被溶接板材W1の板厚TH1+被溶接板材W2の板厚TH2)から仮通電時間T1を、例えば、仮通電時間T1=第1所定値C1×総板厚TH+第2所定値C2のような一義的な相関をもつ式により導出する。   The first current value deriving unit 22 first has a total plate thickness TH of a plurality of plate materials W1 and W2 to be welded based on the input information received by the reception unit 21 (total plate thickness TH = plate thickness TH1 of the plate material W1 to be welded + welded plate). The provisional energization time T1 is derived from the sheet thickness TH2) of the sheet material W2 by an equation having a unique correlation such as provisional energization time T1 = first predetermined value C1 × total sheet thickness TH + second predetermined value C2.

図3は、本実施形態に係る所定の通電時間に対応する溶接電流と接合強度及びナゲット径との関係のマップを示す図である。図3のマップは、横軸に溶接電流値を示し、縦軸左側にその電流値における接合強度を、縦軸右側にその電流値におけるナゲット径を、それぞれ示す。白丸点及び白抜きバツ点はナゲット径と電流値との関係を示すプロットであり、白丸点はスパッタの発生無しの場合であり、白抜きバツ点はスパッタ発生有りの場合である。また黒丸点及び黒抜きバツ点は接合強度と電流値との関係を示すプロットであり、黒丸点はスパッタの発生無しの場合であり、黒抜きバツ点はスパッタ発生有りの場合である。また、図3のマップには、ナゲット径の規定値及び接合強度の規定値がそれぞれ示されている。
なお、図3のマップは、想定される仮通電時間T1の値の範囲内の複数の値のそれぞれに対応して複数個だけ記憶部に記憶されている。これらの複数のマップは、想定される仮通電時間T1の値の範囲内の複数の値のそれぞれの通電時間に対して、その通電時間の間だけ通電させる電流値を低い側から高い側へ順に可変させて(又は電流値を高い側から低い側へ順に可変させて)、それぞれの電流値におけるナゲット径及び接合強度に関する実験結果をプロットしたものである。実験結果を示すプロットでは、スパッタ発生の有無を区別している。
FIG. 3 is a diagram showing a map of the relationship between the welding current corresponding to the predetermined energization time, the bonding strength, and the nugget diameter according to the present embodiment. In the map of FIG. 3, the horizontal axis indicates the welding current value, the vertical axis on the left indicates the bonding strength at the current value, and the vertical axis on the right indicates the nugget diameter at the current value. White circle points and white cross points are plots showing the relationship between the nugget diameter and the current value, white circle points are when no spatter is generated, and white cross points are when spatter is generated. Further, the black circle points and the black cross points are plots showing the relationship between the bonding strength and the current value, the black circle points are when no spatter is generated, and the black cross points are when spatter is generated. Further, the map of FIG. 3 shows a specified value for the nugget diameter and a specified value for the bonding strength.
Note that only a plurality of maps in FIG. 3 are stored in the storage unit corresponding to each of a plurality of values within the range of values of the assumed energization time T1. In these maps, for each energization time of a plurality of values within the range of the assumed provisional energization time T1, the current values to be energized only during the energization time are sequentially from the lower side to the higher side. FIG. 5 is a plot of experimental results regarding the nugget diameter and the bonding strength at each current value by varying (or varying the current value in order from the higher side to the lower side). In the plot showing the experimental results, the presence or absence of spatter generation is distinguished.

第1電流値導出部22は、記憶されている複数のマップの中から導出された仮通電時間T1に対応するマップを取り出し、導出された仮通電時間T1の通電に対して規定値以上のナゲット径及び規定値以上の接合強度を満たす溶接が可能であり且つスパッタ発生限界よりも低い最大の電流値として、仮通電時間T1に対する第1電流値Ie1を導出する。
すなわち、図3に示す通り、規定値以上のナゲット径(白丸点)及び規定値以上の接合強度(黒丸点)であり、スパッタ発生有り(白抜きバツ点及び黒抜きバツ点)に移行する直前の最大電流値を、仮通電時間T1に対する第1電流値Ie1とする。
The first current value deriving unit 22 extracts a map corresponding to the temporary energization time T1 derived from the plurality of stored maps, and a nugget that is equal to or greater than a specified value for the energization of the derived temporary energization time T1. The first current value Ie1 with respect to the temporary energization time T1 is derived as the maximum current value that enables welding satisfying the joint strength of the diameter and the specified value or more and that is lower than the spatter generation limit.
That is, as shown in FIG. 3, the nugget diameter (white circle point) is larger than the specified value and the bonding strength (black circle point) is larger than the specified value, and immediately before the occurrence of spattering (white and black points). Is the first current value Ie1 with respect to the temporary energization time T1.

図4は、本実施形態に係る通電時間と電流値との関係において溶接品質を満足する領域を示す図であり、横軸に通電時間を示し、縦軸に電流値を示す。
第1電流値導出部22は、溶接条件設定装置2の制御部によって仮想平面上に形成された図4の通電時間と電流値との関係図に、導出された仮通電時間T1及びその仮通電時間T1に対応するマップから求められた第1電流値Ie1を描写する。これにより、図4の通電時間と電流値との関係図に、まず第1導出条件点がプロットされる。
FIG. 4 is a diagram illustrating a region that satisfies the welding quality in the relationship between the energization time and the current value according to the present embodiment, where the horizontal axis indicates the energization time and the vertical axis indicates the current value.
The first current value deriving unit 22 is based on the relationship between the energization time and the current value of FIG. 4 formed on the virtual plane by the control unit of the welding condition setting device 2, and the derived temporary energization time T1 and the temporary energization thereof. The first current value Ie1 obtained from the map corresponding to the time T1 is depicted. As a result, the first derivation condition point is first plotted in the relationship diagram between the energization time and the current value in FIG.

熱量維持曲線設定部23は、第1電流値導出部22により導出された仮通電時間T1及び第1電流値Ie1(すなわち、第1導出条件点)において発生する熱量と同一の熱量を発生させる熱量維持曲線を設定する。
具体的には、まず熱量Q=電流値i×電流値i×抵抗値R×通電時間tのスポット溶接入力熱量式に基づき、√(熱量Q/抵抗値R)を一定値Xとおき、電流値i=X×(1/√(通電時間t))の式を導く。この電流値i=X×(1/√(通電時間t))の式による特性曲線が仮通電時間T1及び第1電流値Ie1の交点(すなわち、第1導出条件点)を通るようにして、熱量維持曲線を導出する。
熱量維持曲線設定部23は、図4の通電時間と電流値との関係図に、熱量維持曲線を描写する。
The heat amount maintenance curve setting unit 23 generates the same amount of heat as the amount of heat generated in the temporary energization time T1 derived by the first current value deriving unit 22 and the first current value Ie1 (that is, the first derivation condition point). Set a maintenance curve.
Specifically, first, √ (heat quantity Q / resistance value R) is set to a constant value X on the basis of the spot welding input heat quantity equation of heat quantity Q = current value i × current value i × resistance value R × energization time t. An expression of value i = X × (1 / √ (energization time t)) is derived. The characteristic curve according to the equation of the current value i = X × (1 / √ (energization time t)) passes through the intersection (that is, the first derivation condition point) between the temporary energization time T1 and the first current value Ie1, A heat retention curve is derived.
The heat quantity maintenance curve setting unit 23 depicts the heat quantity maintenance curve in the relationship diagram between the energization time and the current value in FIG.

第2電流値導出部24は、第1電流値導出部22により導出された仮通電時間T1において規定値以上のナゲット径及び規定値以上の接合強度を満たす溶接が可能な、第1電流値Ie1に対し第1電流管理幅分だけ電流値を低下させた第2電流値Ie2を求める。
ここで第1電流管理幅は、予め、図3のマップ(第1電流値導出部22で用いたものと同じマップ)を用いて、導出された仮通電時間T1の通電に対して規定値以上のナゲット径及び規定値以上の接合強度の両方の条件を満たす溶接が可能である最小の電流値を求め、第1電流値Ie1との差分から計算されている。ここで、第1電流管理幅は、1kAを超える値になるように設定されている。
すなわち、図3に示す通り、規定値以上のナゲット径(白丸点)及び規定値以上の接合強度(黒丸点)である最小電流値を、仮通電時間T1に対する第2電流値Ie2としている。
第2電流値導出部24は、図4の通電時間と電流値との関係図に、導出された仮通電時間T1に対応する第2電流値Ie2を描写する。これにより、図4の通電時間と電流値との関係図に、管理幅下限点がプロットされる。
The second current value deriving unit 24 is capable of performing welding satisfying a nugget diameter of a specified value or more and a bonding strength of a specified value or more in the temporary energization time T1 derived by the first current value deriving unit 22. On the other hand, a second current value Ie2 is obtained by reducing the current value by the first current management width.
Here, the first current management width is equal to or more than a predetermined value with respect to the energization of the derived temporary energization time T1 using the map of FIG. 3 (the same map as used in the first current value deriving unit 22) in advance. The minimum current value that enables welding satisfying both the nugget diameter and the joining strength of the specified value or more is obtained, and is calculated from the difference from the first current value Ie1. Here, the first current management width is set to a value exceeding 1 kA.
That is, as shown in FIG. 3, the minimum current value having a nugget diameter (white circle point) equal to or greater than a specified value and a joint strength (black circle point) equal to or greater than the specified value is set as the second current value Ie2 with respect to the temporary energization time T1.
The second current value deriving unit 24 depicts the second current value Ie2 corresponding to the derived temporary energization time T1 in the relationship diagram between the energization time and the current value in FIG. Thereby, the management width lower limit point is plotted in the relationship diagram between the energization time and the current value in FIG.

管理幅下限条件熱量維持曲線設定部25は、第1電流値導出部22により導出された仮通電時間T1及び第2電流値導出部24により導出された第2電流値Ie2(すなわち、管理幅下限点)において発生する熱量と同一の熱量を発生させる管理幅下限条件熱量維持曲線を設定する。
具体的には、まず熱量Q=電流値i×電流値i×抵抗値R×通電時間tのスポット溶接入力熱量式に基づき、√(熱量Q/抵抗値R)を一定値Xとおき、電流値i=X×(1/√(通電時間t))の式を導く。この電流値i=X×(1/√(通電時間t))の式による特性曲線が仮通電時間T1及び第2電流値Ie2の交点(すなわち、管理幅下限点)を通るようにして、管理幅下限条件熱量維持曲線を導出する。
管理幅下限条件熱量維持曲線設定部25は、図4の通電時間と電流値との関係図に、管理幅下限条件熱量維持曲線を描写する。
The management width lower limit condition calorie maintenance curve setting unit 25 includes the temporary energization time T1 derived by the first current value deriving unit 22 and the second current value Ie2 derived by the second current value deriving unit 24 (that is, the management width lower limit). Point), a management width lower limit condition heat amount maintenance curve for generating the same amount of heat as that generated at point) is set.
Specifically, first, √ (heat quantity Q / resistance value R) is set to a constant value X on the basis of the spot welding input heat quantity equation of heat quantity Q = current value i × current value i × resistance value R × energization time t. An expression of value i = X × (1 / √ (energization time t)) is derived. Management is performed so that the characteristic curve by the equation of the current value i = X × (1 / √ (energization time t)) passes through the intersection (that is, the management width lower limit point) of the temporary energization time T1 and the second current value Ie2. The lower limit condition calorific value maintenance curve is derived.
The management width lower limit condition heat amount maintenance curve setting unit 25 describes the management width lower limit condition heat amount maintenance curve in the relationship diagram between the energization time and the current value in FIG. 4.

コロナボンド限界曲線設定部26は、第1電流値導出部22により導出された仮通電時間T1及び第1電流値Ie1の交点(すなわち、第1導出条件点)を通り、ナゲット(コロナ)の溶融部の急激な成長をその周囲のシーリング部によって抑えスパッタを発生させない限界条件を示すコロナボンド限界曲線を設定する。
図5は、本実施形態に係るナゲット(コロナ)とコロナボンドを示す図である。図5のように、ナゲット(コロナ)Nには、溶接電流によってナゲットNの溶融部が急激に成長すると外側を向く圧力Fがかかり、その圧力Fはナゲット(コロナ)Nの溶融部の周囲のコロナボンドBというシーリング部によって抑え込まれる。しかし熱量又は通電時間が更に増加しその圧力FがコロナボンドBで抑えきれなくなると、スパッタが発生する。スパッタが発生しないコロナボンドの限界を定めるコロナボンド限界曲線は、電流値及び通電時間を変化させた実験や検証などのデータに基づいて導出して設定されている。
このコロナボンド限界曲線は、スパッタが発生しない最大電流値である第1電流値Ie1及び仮通電時間T1の交点をプロットした第1導出条件点を通り、熱量維持曲線よりも通電時間による変動が緩やかである。このため、コロナボンド限界曲線は、図4の通電時間と電流値との関係図において、熱量維持曲線に対し、仮通電時間T1を境界に通電時間が仮通電時間T1より短い領域では下側に位置し、通電時間が仮通電時間T1より長い領域では上側に位置する。
コロナボンド限界曲線設定部26は、図4の通電時間と電流値との関係図に、コロナボンド限界曲線を描写する。
The corona bond limit curve setting unit 26 passes through the intersection (that is, the first derivation condition point) of the temporary energization time T1 and the first current value Ie1 derived by the first current value deriving unit 22, and melts the nugget (corona). A corona bond limit curve indicating a limit condition in which the rapid growth of the portion is suppressed by the surrounding sealing portion and spatter does not occur is set.
FIG. 5 is a view showing a nugget (corona) and a corona bond according to this embodiment. As shown in FIG. 5, the nugget (corona) N is subjected to an outward pressure F when the melted portion of the nugget N rapidly grows due to the welding current, and the pressure F is around the melted portion of the nugget (corona) N. It is suppressed by a sealing part called corona bond B. However, when the amount of heat or the energization time is further increased and the pressure F cannot be suppressed by the corona bond B, sputtering occurs. The corona bond limit curve that determines the limit of the corona bond where spatter does not occur is derived and set based on data such as experiments and verifications in which the current value and energization time are changed.
This corona bond limit curve passes through the first derivation condition point in which the intersection point of the first current value Ie1 which is the maximum current value at which sputtering does not occur and the temporary energization time T1 is plotted, and the fluctuation due to the energization time is more gradual than the heat quantity maintenance curve. It is. Therefore, the corona bond limit curve is lower in the region where the energization time is shorter than the temporary energization time T1 with respect to the calorific value maintenance curve with the temporary energization time T1 as a boundary in the relationship diagram between the energization time and the current value in FIG. In the region where the energization time is longer than the temporary energization time T1, it is located on the upper side.
The corona bond limit curve setting unit 26 draws the corona bond limit curve in the relationship diagram between the energization time and the current value in FIG.

ナゲット形成限界曲線設定部27は、第1電流値導出部22により導出された仮通電時間T1及び第2電流値導出部24により導出された第2電流値Ie2の交点(すなわち、管理幅下限点)を通り、規定値以上のナゲット径となるナゲットを形成するための限界条件を示すナゲット形成限界曲線を設定する。
ナゲット形成限界曲線は、コロナボンド限界曲線と同様に、電流値及び通電時間を変化させた実験や検証などのデータに基づいて導出されて設定される。このナゲット形成限界曲線は、規定値以上のナゲット径を満たす最小電流値である第2電流値Ie2及び仮通電時間T1をプロットした管理幅下限点を通り、管理幅下限条件熱量維持曲線よりも通電時間による変動が急である。このため、ナゲット形成限界曲線は、図4の通電時間と電流値との関係図において、管理幅下限条件熱量維持曲線に対し、仮通電時間T1を境界に通電時間が仮通電時間T1より短い領域では上側に位置し、通電時間が仮通電時間T1より長い領域では下側に位置する。
ナゲット形成限界曲線設定部27は、図4の通電時間と電流値との関係図に、ナゲット形成限界曲線を描写する。
これにより、図4の通電時間と電流値との関係図には、熱量維持曲線、管理幅下限条件熱量維持曲線、コロナボンド限界曲線及びナゲット形成限界曲線で囲まれた溶接品質満足領域が形成される。すなわち、溶接品質満足領域とは、その領域内の任意の通電時間及び電流値をスポット溶接装置3に設定すれば、スポット溶接の溶接品質を満足する領域である。
The nugget formation limit curve setting unit 27 is an intersection of the temporary energization time T1 derived by the first current value deriving unit 22 and the second current value Ie2 derived by the second current value deriving unit 24 (that is, the management width lower limit point) ), And a nugget formation limit curve indicating a limit condition for forming a nugget having a nugget diameter equal to or larger than a specified value is set.
Similarly to the corona bond limit curve, the nugget formation limit curve is derived and set based on data such as experiments and verifications in which the current value and the energization time are changed. This nugget formation limit curve passes through the control width lower limit point in which the second current value Ie2 which is the minimum current value satisfying the nugget diameter equal to or larger than the specified value and the temporary energization time T1 are plotted, and is energized more than the control width lower limit condition heat amount maintenance curve. The fluctuation with time is steep. For this reason, the nugget formation limit curve is a region in which the energization time is shorter than the temporary energization time T1 with the temporary energization time T1 as a boundary with respect to the management width lower limit condition heat amount maintenance curve in the relationship diagram of the energization time and current value in FIG. Is located on the upper side and is located on the lower side in the region where the energization time is longer than the temporary energization time T1.
The nugget formation limit curve setting unit 27 depicts the nugget formation limit curve in the relationship diagram between the energization time and the current value in FIG.
As a result, in the relationship diagram between the energization time and the current value in FIG. 4, a welding quality satisfaction region surrounded by the heat amount maintenance curve, the control width lower limit condition heat amount maintenance curve, the corona bond limit curve, and the nugget formation limit curve is formed. The That is, the welding quality satisfaction region is a region that satisfies the welding quality of spot welding if an arbitrary energization time and current value in the region are set in the spot welding device 3.

溶接最適条件設定部28は、仮通電時間T1より短い通電時間において溶接品質を満足する領域の境界となるコロナボンド限界曲線を上限とし、同じく境界となるナゲット形成限界曲線を下限とし、それらの間で第1電流管理幅以下の、第2電流管理幅を確保する最小の通電時間及びそのときの電流値を溶接最適条件として設定する。ここで、第2電流管理幅は、1kAの値に設定されている。
具体的には、図4の通電時間と電流値との関係図において、コロナボンド限界曲線の上限とナゲット形成限界曲線の下限との間の電流値の幅が、ちょうど1kAとなる通電時間と、そのときの最大及び最小の電流値とをそれぞれ求める。そして求められた通電時間及び電流値を、溶接最適条件の通電時間TA及び電流値IeA1,IeA2とする。
溶接最適条件設定部28は、図4の通電時間と電流値との関係図に、溶接最適条件の通電時間TA及び電流値IeA1,IeA2を描写する。
そして、溶接最適条件設定部28は、溶接最適条件設定部28によって導出された溶接最適条件の通電時間TA及び電流値IeA1,IeA2をスポット溶接装置3に送信し、スポット溶接装置3に溶接最適条件の通電時間TA及び電流値IeA1,IeA2が設定される。
The welding optimum condition setting unit 28 sets the upper limit of the corona bond limit curve that is the boundary of the region that satisfies the welding quality in the energization time shorter than the temporary energization time T1, and the lower limit is the nugget formation limit curve that is also the boundary. Thus, the minimum energization time for securing the second current management width below the first current management width and the current value at that time are set as the optimum welding conditions. Here, the second current management width is set to a value of 1 kA.
Specifically, in the relationship diagram between the energization time and the current value in FIG. 4, the energization time in which the width of the current value between the upper limit of the corona bond limit curve and the lower limit of the nugget formation limit curve is exactly 1 kA; The maximum and minimum current values at that time are respectively obtained. The obtained energization time and current value are defined as energization time TA and current values IeA1 and IeA2 under optimum welding conditions.
The welding optimum condition setting unit 28 depicts the welding time TA and current values IeA1 and IeA2 in the welding optimum condition in the relationship diagram between the conduction time and the current value in FIG.
Then, the welding optimum condition setting unit 28 transmits the welding welding condition TA energization time TA and the current values IeA1 and IeA2 derived by the welding optimum condition setting unit 28 to the spot welding apparatus 3, and the welding optimum condition is transmitted to the spot welding apparatus 3. Current time TA and current values IeA1 and IeA2 are set.

スポット溶接装置3は、溶接条件設定装置2により設定された溶接最適条件である、通電時間TA及び電流値IeA1,IeA2に基づき、スポット溶接を行う。すなわち、複数の被溶接板材W1,W2を重ね、重ねた複数の被溶接板材W1,W2を2つの電極31,32で挟み込み、電極31,32間に所定の加圧力をかけその下で電極31,32間に通電時間を通電時間TAとし、電流値を電流値IeA1〜IeA2の範囲からスポット溶接を行う環境条件に応じて適宜選択される電流値の溶接電流を流し、複数の被溶接板材W1,W2を接合する。   The spot welding apparatus 3 performs spot welding based on the energization time TA and the current values IeA1 and IeA2, which are welding optimum conditions set by the welding condition setting apparatus 2. That is, a plurality of welded plate materials W1 and W2 are stacked, the plurality of welded plate materials W1 and W2 are sandwiched between the two electrodes 31 and 32, a predetermined pressure is applied between the electrodes 31 and 32, and the electrode 31 is placed thereunder. , 32, the energizing time is set to energizing time TA, and a current value is appropriately selected according to the environmental conditions for performing spot welding from the range of the current values IeA1 to IeA2, and a plurality of plate materials W1 are welded. , W2 are joined.

図6は、本実施形態に係る溶接システム1における溶接条件設定方法及び溶接方法を示すフローチャートである。   FIG. 6 is a flowchart showing a welding condition setting method and a welding method in the welding system 1 according to the present embodiment.

ステップS1において、受付部21は、入力部を介してスポット溶接装置3によりスポット溶接を行う複数の被溶接板材W1,W2に関する、各被溶接板材W1,W2の板厚、各被溶接板材W1,W2の材質、複数の被溶接板材W1,W2の合わせ枚数などの情報の入力を受け付ける。   In step S1, the receiving unit 21 relates to a plurality of welded plate materials W1, W2 to be spot welded by the spot welding device 3 through the input unit, the plate thicknesses of the welded plate materials W1, W2, and the welded plate materials W1, W1. Input of information such as the material of W2 and the number of sheets to be welded W1 and W2 is accepted.

ステップS2において、第1電流値導出部22は、複数の被溶接板材W1,W2の総板厚THから導出される仮通電時間T1に対応する規定値以上のナゲット径及び規定値以上の接合強度を満たす溶接が可能であり且つスパッタ発生限界よりも低い最大電流値である第1電流値Ie1を導出する。この際、複数の被溶接板材W1,W2の総板厚THから一義的な相関をもつ式により仮通電時間T1を導出する。   In step S2, the first current value deriving unit 22 has a nugget diameter equal to or greater than a specified value corresponding to the temporary energization time T1 derived from the total plate thickness TH of the plurality of plate materials W1 and W2, and a bonding strength equal to or greater than the specified value. A first current value Ie1 that is a maximum current value that allows welding satisfying the above condition and is lower than the spatter generation limit is derived. At this time, the temporary energization time T1 is derived from the total plate thickness TH of the plurality of plate materials W1 and W2 by an equation having a unique correlation.

ステップS3において、熱量維持曲線設定部23は、第1電流値導出部22により導出された仮通電時間T1及び第1電流値Ie1において発生する熱量と同一の熱量を発生させる熱量維持曲線を設定する。   In step S3, the heat amount maintenance curve setting unit 23 sets a heat amount maintenance curve that generates the same amount of heat as the amount of heat generated in the temporary energization time T1 and the first current value Ie1 derived by the first current value deriving unit 22. .

ステップS4において、第2電流値導出部24は、第1電流値導出部22により導出された仮通電時間T1に対応する規定値以上のナゲット径及び規定値以上の接合強度を満たす溶接が可能な、第1電流値Ie1に対し第1電流管理幅(1kA超)分の電流値を低下させた第2電流値Ie2を導出する。   In step S <b> 4, the second current value deriving unit 24 can perform welding that satisfies a nugget diameter equal to or greater than a specified value corresponding to the temporary energization time T <b> 1 derived by the first current value deriving unit 22 and a joining strength equal to or greater than the specified value. The second current value Ie2 is derived by reducing the current value corresponding to the first current management width (over 1 kA) with respect to the first current value Ie1.

ステップS5において、管理幅下限条件熱量維持曲線設定部25は、第1電流値導出部22により導出された仮通電時間T1及び第2電流値導出部24により導出された第2電流値Ie2において発生する熱量と同一の熱量を発生させる管理幅下限条件熱量維持曲線を設定する。   In step S5, the management width lower limit condition heat quantity maintenance curve setting unit 25 is generated at the temporary energization time T1 derived by the first current value deriving unit 22 and the second current value Ie2 derived by the second current value deriving unit 24. Set the control range lower limit condition calorie maintenance curve that generates the same calorie as the calorie to be performed.

ステップS6において、コロナボンド限界曲線設定部26は、第1電流値導出部22により導出された仮通電時間T1及び第1電流値Ie1の交点(すなわち、第1導出条件点)を通り、ナゲット(コロナ)の溶融部の急激な成長をその周囲のシーリング部によって抑えスパッタを発生させない限界条件を示すコロナボンド限界曲線を設定する。   In step S6, the corona bond limit curve setting unit 26 passes through the intersection (that is, the first derivation condition point) of the temporary energization time T1 derived by the first current value deriving unit 22 and the first current value Ie1, and the nugget ( A corona bond limit curve indicating a limit condition in which the rapid growth of the melted portion of the corona) is suppressed by the surrounding sealing portion and spatter does not occur is set.

ステップS7において、ナゲット形成限界曲線設定部27は、第1電流値導出部22により導出された仮通電時間T1及び第2電流値導出部24により導出された第2電流値Ie2の交点(すなわち、管理幅下限点)を通り、規定値以上のナゲット径となるナゲットを形成するための限界条件を示すナゲット形成限界曲線を設定する。   In step S7, the nugget formation limit curve setting unit 27 intersects the temporary energization time T1 derived by the first current value deriving unit 22 and the second current value Ie2 derived by the second current value deriving unit 24 (that is, A nugget formation limit curve indicating a limit condition for forming a nugget having a nugget diameter equal to or larger than a specified value is set.

ステップS8において、溶接最適条件設定部28は、コロナボンド限界曲線を上限とし、ナゲット形成限界曲線を下限とし、それらの間で第1電流管理幅以下の、第2電流管理幅(1kA)を確保する最小の通電時間TA及びそのときの電流値IeA1,IeA2を溶接最適条件として設定する。   In step S8, the welding optimum condition setting unit 28 uses the corona bond limit curve as the upper limit and the nugget formation limit curve as the lower limit, and secures a second current management width (1 kA) that is equal to or less than the first current management width therebetween. The minimum energization time TA to be performed and the current values IeA1 and IeA2 at that time are set as optimum welding conditions.

ステップS9において、スポット溶接装置3は、溶接条件設定装置2により設定された溶接最適条件である、通電時間TA及び電流値IeA1,IeA2に基づき、図2に示すようにスポット溶接を行う。   In step S9, the spot welding apparatus 3 performs spot welding as shown in FIG. 2 based on the energization time TA and the current values IeA1 and IeA2, which are the optimum welding conditions set by the welding condition setting apparatus 2.

以上の本実施形態に係る溶接システムによれば、以下の効果を奏する。
(1)溶接品質を満足する領域内となるコロナボンド限界曲線の上限とナゲット形成限界曲線の下限との間で従来用いていた第1電流管理幅(1kA超)以下の、第2電流管理幅(1kA)を取れる最小の通電時間TA及びそのときの電流値IeA1,IeA2を溶接最適条件として設定できる。これによって、より適切な溶接条件として溶接品質を満足する最小の通電時間を設定でき、より短い通電時間で十分な接合強度を有する安定したスポット溶接を実現できる。このため、実施するスポット溶接で手短に加工作業を行え、過剰設備投資、消費エネルギーロス及び量産加工条件との乖離などの問題が抑制される。
ここで溶接最適条件の電流値IeA1〜IeA2は、コロナボンド限界曲線の上限以下であるので、その電流値を通電すると、ナゲットの溶融部の急激な成長をその周囲のシーリング部によって抑えきれスパッタを発生させない。
また溶接最適条件の電流値IeA1〜IeA2は、ナゲット形成限界曲線の下限以上であるので、その電流値を通電すると、所定値以上のナゲット径となるナゲットの形成が確保できる。
The welding system according to the present embodiment described above has the following effects.
(1) The second current management width below the first current management width (over 1 kA) conventionally used between the upper limit of the corona bond limit curve and the lower limit of the nugget formation limit curve within the region satisfying the welding quality. The minimum energization time TA that can take (1 kA) and the current values IeA1, IeA2 at that time can be set as optimum welding conditions. As a result, the minimum energization time that satisfies the welding quality can be set as a more appropriate welding condition, and stable spot welding with sufficient joint strength can be realized with a shorter energization time. For this reason, machining work can be easily performed by spot welding to be performed, and problems such as excessive capital investment, energy consumption loss and deviation from mass production machining conditions are suppressed.
Here, since the current values IeA1 to IeA2 under the optimum welding conditions are below the upper limit of the corona bond limit curve, when the current value is energized, the rapid growth of the melted portion of the nugget can be suppressed by the surrounding sealing portion, and sputtering can be performed. Do not generate.
Moreover, since the current values IeA1 to IeA2 under the optimum welding conditions are equal to or greater than the lower limit of the nugget formation limit curve, formation of a nugget having a nugget diameter equal to or greater than a predetermined value can be ensured when the current value is energized.

(2)溶接品質を満足する領域内となるコロナボンド限界曲線の上限とナゲット形成限界曲線の下限との間で従来用いていた第1電流管理幅(1kA超)以下の、第2電流管理幅(1kA)を確保する最小の通電時間TA及びそのときの電流値IeA1,IeA2を設定した溶接最適条件に基づき溶接できるので、より適切な溶接条件が設定でき、通電時間が短くなって加工作業が手短に行え、スポット溶接が安定する。   (2) The second current management width below the first current management width (greater than 1 kA) conventionally used between the upper limit of the corona bond limit curve and the lower limit of the nugget formation limit curve within the region satisfying the welding quality. Since welding can be performed based on the minimum welding time TA for securing (1 kA) and the optimum welding conditions in which the current values IeA1 and IeA2 are set at that time, more appropriate welding conditions can be set, the conduction time is shortened, and the machining work can be performed. It can be done easily and spot welding is stable.

なお、本発明は上記実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良などは本発明に包含される。   In addition, this invention is not limited to the said embodiment, The deformation | transformation in the range which can achieve the objective of this invention, improvement, etc. are included by this invention.

上記実施形態では、溶接条件設定装置とスポット溶接装置が通信回線を介して接続されていた。しかしこれに限られない。溶接条件設定装置とスポット溶接装置が一体化したものであってもよい。また、溶接条件設定装置が複数のスポット溶接装置を管轄するものでもよい。   In the above embodiment, the welding condition setting device and the spot welding device are connected via a communication line. However, it is not limited to this. The welding condition setting device and the spot welding device may be integrated. Further, the welding condition setting device may have jurisdiction over a plurality of spot welding devices.

1…溶接システム
2…溶接条件設定装置
21…受付部
22…第1電流値導出部
23…熱量維持曲線設定部
24…第2電流値導出部
25…管理幅下限条件熱量維持曲線設定部
26…コロナボンド限界曲線設定部
27…ナゲット形成限界曲線設定部
28…溶接最適条件設定部
3…スポット溶接装置
31,32…電極
4…通信回線
DESCRIPTION OF SYMBOLS 1 ... Welding system 2 ... Welding condition setting apparatus 21 ... Reception part 22 ... 1st electric current value derivation part 23 ... Calorific value maintenance curve setting part 24 ... 2nd electric current value derivation part 25 ... Control width lower limit condition calorific value maintenance curve setting part 26 ... Corona bond limit curve setting section 27 ... Nugget formation limit curve setting section 28 ... Optimum welding condition setting section 3 ... Spot welding equipment 31, 32 ... Electrode 4 ... Communication line

Claims (2)

複数の被溶接板材を重ね、所定の加圧力の下で溶接電流を流し、前記複数の被溶接板材を接合する際の溶接条件設定方法であって、
所定の通電時間において所定値以上のナゲット径及び所定値以上の接合強度を満たす溶接が可能であり且つスパッタ発生限界よりも低い第1の電流値を導出するステップと、
前記所定の通電時間において所定値以上のナゲット径及び所定値以上の接合強度を満たす溶接が可能な、前記第1の電流値に対し第1の電流管理幅の分だけ電流値を低下させた第2の電流値を導出するステップと、
前記所定の通電時間及び前記第1の電流値に対応した、ナゲットの溶融部の急激な成長をその周囲のシーリング部によって抑えスパッタを発生させない限界条件を示すコロナボンド限界曲線を設定するステップと、
前記所定の通電時間及び前記第2の電流値に対応した、所定値以上のナゲット径となるナゲットを形成するための限界条件を示すナゲット形成限界曲線を設定するステップと、
前記コロナボンド限界曲線を上限とし、前記ナゲット形成限界曲線を下限とし、それらの間で前記第1の電流管理幅以下の第2の電流管理幅を取れる最小の通電時間及びそのときの電流値を溶接最適条件として設定するステップと、を含むことを特徴とする溶接条件設定方法。
It is a welding condition setting method when overlapping a plurality of plate materials to be welded, flowing a welding current under a predetermined pressure, and joining the plurality of plate materials to be welded,
Deriving a first current value that is capable of welding satisfying a nugget diameter of a predetermined value or more and a bonding strength of a predetermined value or more in a predetermined energization time and lower than a spatter generation limit;
The current value is reduced by the amount of the first current management width with respect to the first current value, which enables welding satisfying a nugget diameter of a predetermined value or more and a joining strength of a predetermined value or more in the predetermined energization time. Deriving a current value of 2;
Corresponding to the predetermined energization time and the first current value, setting a corona bond limit curve indicating a limit condition in which the rapid growth of the melted part of the nugget is suppressed by the surrounding sealing part and spatter does not occur;
Setting a nugget formation limit curve indicating a limit condition for forming a nugget having a nugget diameter greater than or equal to a predetermined value corresponding to the predetermined energization time and the second current value;
With the coronabond limit curve as the upper limit, the nugget formation limit curve as the lower limit, and a minimum current supply time and a current value at that time that can take a second current management width equal to or less than the first current management width between them. And a step of setting as welding optimum conditions.
請求項1に記載の溶接条件設定方法で前記溶接最適条件を設定するステップと、
設定された前記溶接最適条件に基づき、複数の被溶接板材を重ね、所定の加圧力の下で溶接電流を流し、前記複数の被溶接板材を接合するステップと、を含むことを特徴とする溶接方法。
Setting the welding optimum condition by the welding condition setting method according to claim 1;
Welding a plurality of plate materials to be welded based on the set optimum welding conditions, passing a welding current under a predetermined pressure, and joining the plurality of plate materials to be welded. Method.
JP2012015305A 2012-01-27 2012-01-27 Welding condition setting method and welding method Expired - Fee Related JP5876305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015305A JP5876305B2 (en) 2012-01-27 2012-01-27 Welding condition setting method and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015305A JP5876305B2 (en) 2012-01-27 2012-01-27 Welding condition setting method and welding method

Publications (2)

Publication Number Publication Date
JP2013154360A true JP2013154360A (en) 2013-08-15
JP5876305B2 JP5876305B2 (en) 2016-03-02

Family

ID=49050086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015305A Expired - Fee Related JP5876305B2 (en) 2012-01-27 2012-01-27 Welding condition setting method and welding method

Country Status (1)

Country Link
JP (1) JP5876305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101979688B1 (en) * 2018-06-15 2019-08-28 한국생산기술연구원 Control method of spot welding and recording medium for storing program thereof
KR102019204B1 (en) * 2018-06-07 2019-09-11 한국생산기술연구원 Method for setting optimization condition in resistance spot welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145280A (en) * 2001-11-09 2003-05-20 Toyota Motor Corp Welding condition setting device, method for setting welding condition and program for setting welding condition
US20100122968A1 (en) * 2008-11-14 2010-05-20 Toyota Motor Engineering & Manufacturing Na Method for implementing spatter-less welding
WO2011013793A1 (en) * 2009-07-31 2011-02-03 高周波熱錬株式会社 Welded structural member and welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145280A (en) * 2001-11-09 2003-05-20 Toyota Motor Corp Welding condition setting device, method for setting welding condition and program for setting welding condition
US20100122968A1 (en) * 2008-11-14 2010-05-20 Toyota Motor Engineering & Manufacturing Na Method for implementing spatter-less welding
WO2011013793A1 (en) * 2009-07-31 2011-02-03 高周波熱錬株式会社 Welded structural member and welding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019204B1 (en) * 2018-06-07 2019-09-11 한국생산기술연구원 Method for setting optimization condition in resistance spot welding
KR101979688B1 (en) * 2018-06-15 2019-08-28 한국생산기술연구원 Control method of spot welding and recording medium for storing program thereof

Also Published As

Publication number Publication date
JP5876305B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
CN102886595B (en) For the system and method for welding work pieces
JP4494496B2 (en) Resistance welding method and welded structure
KR101974298B1 (en) Resistance spot welding method
JP2013151018A (en) Welding method
JP6360056B2 (en) Resistance spot welding method
JP5876305B2 (en) Welding condition setting method and welding method
JP6314192B2 (en) Dissimilar material joined body and dissimilar material joining method
KR102265224B1 (en) Resistance spot welding method and weld member production method
JP6166052B2 (en) Welding equipment
JP2012187617A (en) Joined body of high tensile strength steel sheet and resistance welding method for high tensile strength steel sheet
JP2021079416A (en) Resistance spot welding method
GB2520133A (en) Welding device for welding a connecting section and method for welding the connecting section with the welding device
JP6702135B2 (en) Method of joining dissimilar metal plates
JP2012187616A (en) Resistance welding apparatus and resistance welding method
JP6741358B2 (en) Laser welding method
JP5836248B2 (en) Spot welding method
JP6123904B2 (en) Resistance spot welding method and manufacturing method of welded structure
JP5963508B2 (en) Spot welding method
JP2015131327A (en) Electric current waveform determination method on resistance spot welding and resistance spot welding method
JP2016101591A (en) One-side spot welding method
JP2016059937A (en) Spot weld device
JP2012135775A (en) Spot welding apparatus
JP2021003733A (en) Resistance spot welding method and manufacturing method for welding member
KR101221052B1 (en) Resistance spot welding method
JP2014200797A (en) Resistance spot welding method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160121

R150 Certificate of patent or registration of utility model

Ref document number: 5876305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees