JP2013153612A - Annealing method for layered core - Google Patents

Annealing method for layered core Download PDF

Info

Publication number
JP2013153612A
JP2013153612A JP2012013390A JP2012013390A JP2013153612A JP 2013153612 A JP2013153612 A JP 2013153612A JP 2012013390 A JP2012013390 A JP 2012013390A JP 2012013390 A JP2012013390 A JP 2012013390A JP 2013153612 A JP2013153612 A JP 2013153612A
Authority
JP
Japan
Prior art keywords
laminated core
solenoid
annealing
heating
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012013390A
Other languages
Japanese (ja)
Inventor
Yasuo Osugi
保郎 大杉
Kenji Umetsu
健司 梅津
Satoshi Arai
聡 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012013390A priority Critical patent/JP2013153612A/en
Publication of JP2013153612A publication Critical patent/JP2013153612A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve high productivity by shortening heating time in annealing a layered core formed by layering magnetic steel sheets.SOLUTION: A layered core 9 is disposed at an inner periphery of a solenoid 1. The layered core 9 is inductively heated to a predetermined temperature by passing an alternating current through the solenoid 1 for energization and is subsequently gradually cooled.

Description

本発明は、積層コアの焼鈍方法に関する。詳しくは、電磁鋼板などが積層されて構成される積層コアの焼鈍方法であって、ひずみを除去して鉄損を減少させるための焼鈍方法に関する。   The present invention relates to a method for annealing a laminated core. More specifically, the present invention relates to a method for annealing a laminated core formed by laminating electromagnetic steel sheets and the like, and relates to an annealing method for removing strain and reducing iron loss.

電動機に適用される一般的な積層コアは、電磁鋼板を所定の形状に打ち抜いて積層させ、溶接やカシメなどによって接合することによって形成される。ところで、電磁鋼板を打ち抜き加工する際に、ひずみが生じることがある。電磁鋼板にひずみが生じると、鉄損が増加して電動機のエネルギー効率が低下する。このため、たとえば特許文献1〜3に記載のように、打ち抜いた電磁鋼板を積層して接合した後に、ひずみを除去するために焼鈍が実施されることがある。   A general laminated core applied to an electric motor is formed by punching and laminating electromagnetic steel sheets into a predetermined shape and joining them by welding or caulking. By the way, when punching a magnetic steel sheet, distortion may occur. When distortion occurs in the electromagnetic steel sheet, the iron loss increases and the energy efficiency of the electric motor decreases. For this reason, for example, as described in Patent Documents 1 to 3, after the punched electromagnetic steel sheets are stacked and joined, annealing may be performed to remove strain.

特開昭54−1803号公報JP 54-18803 A 特開平11−332183号公報JP-A-11-332183 特開昭59−123719号公報JP 59-123719 A

電磁鋼板により形成される積層コアの焼鈍においては、たとえば、加熱炉を用いて750℃以上に加熱し、さらに均熱化のために2時間程度にわたって加熱を継続し、その後徐冷するという方法が用いられる。このように、積層コアの焼鈍においては、積層コアを長時間にわたって加熱する必要がある。このため、積層コアの焼鈍は生産性が低いという問題点があった。そこで、生産性の向上を図るために、加熱時間を短縮したいという要請があった。加熱時間を短縮するため、たとえば特許文献3には、積層コアを誘導加熱する構成が開示されている。しかしながら、特許文献3には、具体的な加熱方法は開示されていない。また、短時間で加熱する方法としては、積層コアに通電してジュール熱によって加熱する方法が考えられる。しかしながら、通電によって加熱する方法では、積層コアの寸法が大きいと、電極を均一に接触させることが困難である。このため、積層コアを短時間で均一に加熱することが困難である。   In annealing a laminated core formed of an electromagnetic steel sheet, for example, there is a method of heating to 750 ° C. or higher using a heating furnace, further heating for about 2 hours for soaking, and then gradually cooling. Used. Thus, in annealing a laminated core, it is necessary to heat the laminated core for a long time. For this reason, annealing of the laminated core has a problem that productivity is low. Therefore, there has been a request to shorten the heating time in order to improve productivity. In order to shorten the heating time, for example, Patent Document 3 discloses a configuration in which a laminated core is inductively heated. However, Patent Document 3 does not disclose a specific heating method. Moreover, as a method of heating in a short time, a method of energizing the laminated core and heating it by Joule heat can be considered. However, in the method of heating by energization, if the dimensions of the laminated core are large, it is difficult to make the electrodes contact uniformly. For this reason, it is difficult to heat the laminated core uniformly in a short time.

本発明は、以上のような問題点に鑑みてなされたものであり、積層コアの焼鈍において、加熱時間を短縮して生産性の向上を図ることを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to improve productivity by shortening the heating time in annealing a laminated core.

前記課題を解決するため、本発明は、複数の電磁鋼板が積層されて構成される積層コアの焼鈍方法であって、ソレノイドの内周に前記積層コアを配設し、前記ソレノイドに交流電気を通電して前記積層コアを所定の温度に誘導加熱し、その後、前記積層コアを徐冷することを特徴とする。   In order to solve the above-mentioned problem, the present invention is a method for annealing a laminated core constituted by laminating a plurality of electromagnetic steel sheets, wherein the laminated core is disposed on the inner periphery of a solenoid, and AC electricity is supplied to the solenoid. The laminated core is induction-heated to a predetermined temperature by energization, and then the laminated core is gradually cooled.

本発明によれば、積層コアをソレノイドの内周に収容して誘導加熱する構成であるから、積層コアの全体に誘導電流(渦電流)を流して加熱することができる。このため、このような構成によれば、短時間で断面内部まで短時間で加熱することができる。また、積層コアが、ソレノイドの内周に収容されるから、積層コアの全体が誘導加熱される。このため、積層コアの全体を短時間で加熱できる。したがって、焼鈍における加熱時間の短縮を図ることができ、積層コアの生産効率の向上を図ることができる。   According to the present invention, since the laminated core is housed in the inner periphery of the solenoid and induction heated, the induction current (eddy current) can be supplied to the whole laminated core for heating. For this reason, according to such a structure, it can heat to the cross-section inside in a short time. Moreover, since the laminated core is accommodated in the inner periphery of the solenoid, the entire laminated core is induction-heated. For this reason, the whole laminated core can be heated in a short time. Therefore, the heating time in annealing can be shortened, and the production efficiency of the laminated core can be improved.

図1は、本発明の実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a method of annealing a laminated core according to an embodiment of the present invention. 図2は、本発明の実施形態にかかる積層コアの焼鈍方法を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a method for annealing a laminated core according to an embodiment of the present invention. 図3は、実施例における積層コアの温度の数値計算の結果を示すグラフである。FIG. 3 is a graph showing the result of numerical calculation of the temperature of the laminated core in the example.

以下に、本発明の実施形態および実施例について、図面を参照して詳細に説明する。   Hereinafter, embodiments and examples of the present invention will be described in detail with reference to the drawings.

(実施形態)
図1は、実施形態にかかる焼鈍方法を模式的に示す斜視図である。図2は、実施形態にかかる焼鈍方法を模式的に示す断面図である。
実施形態にかかる焼鈍方法においては、積層コア9の加熱のために、内周に積層コイルを収容可能な筒状のソレノイド1(電流励起型のコイル)が用いられる。ソレノイド1の寸法や巻き数は、焼鈍対象である積層コア9の寸法や形状、積層コア9を構成する電磁鋼板90の特性などに応じて設定される。なお、本実施形態においては、従来一般の構成の積層コア9が焼鈍対象になる。従来一般の積層コア9は、所定の形状に打ち抜かれた複数の電磁鋼板90が軸線方向に積層され、カシメや溶接などによって接合されることによって構成される。積層コア9は、全体として筒状の構成を有し、内周側には複数の歯91が形成される。ここでは、電磁鋼板90の面方向が軸線に直角であるものとする。
図1と図2に示すように、焼鈍対象である積層コア9が、ソレノイド1の内周に配設される。ここで、積層コア9は、電磁鋼板90の面方向がソレノイド1の内周における磁力線の方向に対して直角になる姿勢で配設される。具体的には、積層コア9は、その軸線がソレノイド1の軸線に平行な姿勢または一致する姿勢で配設される。図1と図2においては、ソレノイド1と積層コア9の軸線が一致する構成を示す。複数の積層コア9を同時に加熱する場合には、複数の積層コア9が、軸線方向に重ねて(換言すると、軸線方向に並べて)配設される。なお、図1と図2においては、2個の積層コア9が重ねて配設される構成を示すが、同時に加熱する積層コア9の数は限定されない。
そして、ソレノイド1に交流電気を通電し、積層コア9を所定の温度に到達するまで誘導加熱する。ここで、「所定の温度」は、700℃以上であることが好ましい。なお、「所定の温度」は、従来の焼鈍方法と同じく750℃であってもよい。また、通電する交流電気の周波数は、積層コア9の断面内部全体にわたって誘導電流を発生させることができる周波数に設定される。すなわち、周波数が高くなると、表皮効果によって積層コア9の断面内部に誘導電流が流れなくなり、その結果、断面内部を誘導加熱できなくなる。そこで、積層コア9の断面内部の全体に誘導電流を流せる周波数として、たとえば、200Hzが適用される。なお、積層コア9の断面内部にどの程度の誘導電流が流れるかは、積層コア9の寸法や形状、積層コア9を構成する電磁鋼板90の特性などによって相違するため、具体的な周波数はこれらを考慮して適宜設定される。
積層コア9が所定の温度に到達した後、ソレノイド1への通電を停止して誘導加熱を停止する。その後、積層コア9を徐冷する。徐冷の条件(たとえば、方法や温度履歴)は、従来と同じでよい。たとえば、徐冷には、従来一般の炉冷や空冷と同じ条件が適用できる。このため、徐冷の説明は省略する。
なお、本実施形態においては、積層コア9が所定の温度に到達した後、直ちに誘導加熱を停止して徐冷を開始する。すなわち、加熱炉を用いる従来の焼鈍方法においては、積層コア9が所定の温度に到達した後であっても、均熱化のために所定の時間にわたって(たとえば2時間程度)加熱を継続する。このため、従来の焼鈍方法においては、加熱時間として、「積層コア9が所定の温度に到達するまでの時間」と「均熱化のための時間」が必要であった。これに対して本実施形態では、加熱時間として、「積層コア9が所定の温度に到達するまでの時間」のみが必要であり、「均熱化のための時間」は必要ではない。
(Embodiment)
FIG. 1 is a perspective view schematically showing the annealing method according to the embodiment. FIG. 2 is a cross-sectional view schematically showing the annealing method according to the embodiment.
In the annealing method according to the embodiment, a cylindrical solenoid 1 (current excitation type coil) that can accommodate a laminated coil on the inner periphery is used for heating the laminated core 9. The dimensions and the number of turns of the solenoid 1 are set according to the dimensions and shape of the laminated core 9 to be annealed, the characteristics of the electromagnetic steel sheet 90 constituting the laminated core 9, and the like. In the present embodiment, the laminated core 9 having a conventional general structure is an annealing target. The conventional general laminated core 9 is configured by laminating a plurality of electromagnetic steel plates 90 punched into a predetermined shape in the axial direction and joining them by caulking or welding. The laminated core 9 has a cylindrical configuration as a whole, and a plurality of teeth 91 are formed on the inner peripheral side. Here, it is assumed that the surface direction of the electromagnetic steel sheet 90 is perpendicular to the axis.
As shown in FIGS. 1 and 2, a laminated core 9 to be annealed is disposed on the inner periphery of the solenoid 1. Here, the laminated core 9 is disposed in such a posture that the surface direction of the electromagnetic steel plate 90 is perpendicular to the direction of the magnetic lines of force in the inner periphery of the solenoid 1. Specifically, the laminated core 9 is disposed in a posture in which the axis is parallel to or coincides with the axis of the solenoid 1. 1 and 2 show a configuration in which the axes of the solenoid 1 and the laminated core 9 coincide. In the case where the plurality of laminated cores 9 are heated at the same time, the plurality of laminated cores 9 are arranged so as to overlap in the axial direction (in other words, aligned in the axial direction). 1 and FIG. 2 show a configuration in which two laminated cores 9 are arranged in a stacked manner, but the number of laminated cores 9 to be heated at the same time is not limited.
Then, AC electricity is applied to the solenoid 1 to heat the laminated core 9 by induction until it reaches a predetermined temperature. Here, the “predetermined temperature” is preferably 700 ° C. or higher. The “predetermined temperature” may be 750 ° C. as in the conventional annealing method. Further, the frequency of the alternating current electricity to be energized is set to a frequency at which an induced current can be generated over the entire cross-section inside the laminated core 9. That is, when the frequency is increased, the induced current does not flow inside the cross section of the laminated core 9 due to the skin effect, and as a result, the inside of the cross section cannot be induction heated. Therefore, for example, 200 Hz is applied as the frequency at which the induced current can flow through the entire cross section of the laminated core 9. Note that how much induced current flows in the cross section of the laminated core 9 differs depending on the dimensions and shape of the laminated core 9 and the characteristics of the electromagnetic steel sheet 90 constituting the laminated core 9, and the specific frequencies are these. Is set as appropriate.
After the laminated core 9 reaches a predetermined temperature, the energization to the solenoid 1 is stopped to stop the induction heating. Thereafter, the laminated core 9 is gradually cooled. The conditions for slow cooling (for example, the method and temperature history) may be the same as in the past. For example, the same conditions as conventional furnace cooling and air cooling can be applied to the slow cooling. For this reason, explanation of slow cooling is omitted.
In the present embodiment, after the laminated core 9 reaches a predetermined temperature, induction heating is stopped immediately and slow cooling is started. That is, in the conventional annealing method using a heating furnace, heating is continued for a predetermined time (for example, about 2 hours) for soaking even after the laminated core 9 reaches a predetermined temperature. For this reason, in the conventional annealing method, “time until the laminated core 9 reaches a predetermined temperature” and “time for soaking” are necessary as the heating time. On the other hand, in the present embodiment, only “time until the laminated core 9 reaches a predetermined temperature” is required as the heating time, and “time for soaking” is not necessary.

積層コア9を構成する電磁鋼板90の酸化を防止するため、積層コア9の加熱および徐冷は、非酸化性の雰囲気中で実施されることが好ましい。たとえば、図2に示すように、ソレノイド1をチャンバー3の内部に配設するとともに、当該チャンバー3の内部に非酸化性のガスを充填する構成が適用できる。なお、実施形態において使用できるチャンバー3の構成は、特に限定されるものではなく、公知の各種チャンバーが使用できる。要は、内部を非酸化性の雰囲気に保持できる構成であればよい。また、実施形態においては、ソレノイド1を用いて積層コア9を誘導加熱する構成であるため、チャンバー3はヒーターを備えなくてよい。   In order to prevent oxidation of the electrical steel sheet 90 constituting the laminated core 9, it is preferable that heating and gradual cooling of the laminated core 9 be performed in a non-oxidizing atmosphere. For example, as shown in FIG. 2, a configuration in which the solenoid 1 is disposed inside the chamber 3 and a non-oxidizing gas is filled in the chamber 3 can be applied. In addition, the structure of the chamber 3 which can be used in embodiment is not specifically limited, Well-known various chambers can be used. In short, any configuration that can maintain the inside in a non-oxidizing atmosphere may be used. Further, in the embodiment, since the laminated core 9 is induction-heated using the solenoid 1, the chamber 3 does not have to include a heater.

実施形態によれば、積層コア9をソレノイド1の内周に収容して誘導加熱する構成であるから、積層コア9の全体に誘導電流(渦電流)を流して加熱することができる。このため、このような構成によれば、短時間で積層コア9の断面内部まで加熱することができ、「積層コア9が所定の温度に到達するまでの時間」を短縮できる。すなわち、加熱炉を用いる従来の方法においては、積層コア9に外部から熱を与えて加熱するため、積層コア9の断面内部にまで熱が伝導して所定の温度に到達するまでに相当の時間を要する。さらに、表面と断面内部とで温度差が生じることがあるため、均熱化が必要である。これに対して実施形態によれば、誘導加熱によって、積層コア9自体が断面内部も含めて発熱するため、短時間で所定の温度に到達させることができる。そして、積層コア9がソレノイド1の内周に収容されるから、積層コア9の全体が誘導加熱される。このため、積層コア9の全体を短時間で加熱できる。
したがって、実施形態によれば、焼鈍における加熱時間の短縮を図ることができるから、積層コア9の生産効率の向上を図ることができる。
According to the embodiment, since the laminated core 9 is accommodated in the inner periphery of the solenoid 1 and induction heated, the induction current (eddy current) can be supplied to the whole laminated core 9 to heat it. For this reason, according to such a configuration, the inside of the cross section of the laminated core 9 can be heated in a short time, and the “time until the laminated core 9 reaches a predetermined temperature” can be shortened. That is, in the conventional method using a heating furnace, since heat is applied to the laminated core 9 from the outside, the heat is conducted to the inside of the cross section of the laminated core 9 to reach a predetermined temperature. Cost. Furthermore, since a temperature difference may occur between the surface and the inside of the cross section, soaking is necessary. On the other hand, according to the embodiment, since the laminated core 9 itself generates heat including the inside of the cross section by induction heating, it can reach a predetermined temperature in a short time. And since the lamination | stacking core 9 is accommodated in the inner periphery of the solenoid 1, the whole lamination | stacking core 9 is induction-heated. For this reason, the whole laminated core 9 can be heated in a short time.
Therefore, according to the embodiment, the heating time in annealing can be shortened, so that the production efficiency of the laminated core 9 can be improved.

そして、実施形態によれば、加熱時間の短縮を図りつつ鉄損を減少させることができる。すなわち、打ち抜き加工された電磁鋼板90は、外周側はほぼ単純な円形であるのに対して、内周側は歯91が形成されるために凹凸を有する。このため、内周側は外周側に比較して切口が長く、ひずみが大きい。したがって、鉄損を減少させるためには、内周側が確実に所定の温度に到達するように加熱する必要がある。加熱炉を用いる従来の方法では、積層コア9の表面から熱を与えて内部に熱伝導させるため、肉厚の部分(=軸線方向に直角な方向で切断した場合の断面の寸法が大きい部分)の断面内部が所定の温度に到達するためには、長い時間を要する。これに対して、実施形態は、誘導加熱によって、積層コア9の全体が断面内部も含めて発熱する構成であるため、肉厚の部分の断面内部についても、短時間で所定の温度に到達するように加熱できる。したがって、積層コア9の内周側において焼鈍の効果が低下しないようにできるから、焼鈍による鉄損の減少の効果を維持できる。このように、実施形態によれば、加熱時間を短縮しつつ、鉄損の減少を図ることができる。   According to the embodiment, the iron loss can be reduced while shortening the heating time. That is, the punched magnetic steel sheet 90 has a substantially simple circular shape on the outer peripheral side, but has irregularities on the inner peripheral side because the teeth 91 are formed. For this reason, the inner peripheral side has a longer cut and larger distortion than the outer peripheral side. Therefore, in order to reduce the iron loss, it is necessary to heat the inner peripheral side so as to surely reach a predetermined temperature. In the conventional method using a heating furnace, heat is applied from the surface of the laminated core 9 to conduct heat to the inside, so a thick portion (= a portion having a large cross-sectional dimension when cut in a direction perpendicular to the axial direction) It takes a long time for the inside of the cross section to reach a predetermined temperature. On the other hand, in the embodiment, since the entire laminated core 9 generates heat including the inside of the cross section by induction heating, the inside of the cross section of the thick portion reaches a predetermined temperature in a short time. Can be heated. Therefore, since the effect of annealing can be prevented from decreasing on the inner peripheral side of the laminated core 9, the effect of reducing the iron loss due to annealing can be maintained. Thus, according to the embodiment, it is possible to reduce the iron loss while shortening the heating time.

複数の積層コア9を焼鈍する場合には、ソレノイド1の内周に複数の積層コア9を重ねて配設して誘導加熱する。このような構成によれば、複数の積層コア9を同時に加熱できるため、積層コア9の生産性の向上を図ることができる。なお、図1と図2においては、2個の積層コア9が重ねて配設される構成を示すが、重ねて配設される積層コア9の数は限定されない。また、ソレノイド1の軸線方向の寸法は、重ねて配設される複数の積層コア9のすべてを収容できる寸法(=積層コア9がはみ出さない寸法)に設定される。   When annealing a plurality of laminated cores 9, a plurality of laminated cores 9 are arranged on the inner periphery of the solenoid 1 and induction heating is performed. According to such a configuration, since the plurality of laminated cores 9 can be heated at the same time, the productivity of the laminated core 9 can be improved. 1 and 2 show a configuration in which two laminated cores 9 are arranged in a stacked manner, the number of laminated cores 9 arranged in a stacked manner is not limited. Further, the dimension of the solenoid 1 in the axial direction is set to a dimension that can accommodate all of the plurality of stacked cores 9 that are arranged in an overlapping manner (= a dimension that does not allow the stacked core 9 to protrude).

また、積層コア9は、電磁鋼板90の面方向がソレノイド1の磁力線の方向に対して直角な方向を向く姿勢で収容される構成であれば、そうでない構成に比較して、加熱時間の短縮や加熱温度の高温化を図ることができる。すなわち、積層コア9を構成する複数の電磁鋼板90は互いに絶縁されているため、複数の電磁鋼板90に跨るような誘導電流は流れず、各電磁鋼板90に別個の誘導電流が流れる。誘導電流は、ソレノイド1が発する磁力線に直角な方向に流れるから、誘導電流の大きさは、電磁鋼板90を磁力線に直角な方向に沿って切断した場合の断面積の影響を受ける。そして、電磁鋼板90は積層コア9の軸線方向に薄く、軸線に直角な方向に延伸する平板であるから、電磁鋼板90を磁力線に直角な方向で切断した場合の断面積は、積層コア9の軸線が磁力線と平行な場合において最大となる。したがって、積層コア9の軸線とソレノイド1の軸線(=磁力線)とが平行(一致している場合を含む)であれば、電磁鋼板90に流れる誘導電流を大きくでき、誘導加熱による発熱量を大きくできる。したがって、このような構成によれば、加熱時間の短縮化や、加熱温度の高温化を図ることができる。   Further, if the laminated core 9 is configured to be accommodated in a posture in which the surface direction of the electromagnetic steel sheet 90 is oriented in a direction perpendicular to the direction of the magnetic force lines of the solenoid 1, the heating time is shortened compared to the other configuration. And the heating temperature can be increased. That is, since the plurality of electromagnetic steel plates 90 constituting the laminated core 9 are insulated from each other, an induced current that straddles the plurality of electromagnetic steel plates 90 does not flow, and a separate induced current flows through each electromagnetic steel plate 90. Since the induced current flows in a direction perpendicular to the magnetic lines generated by the solenoid 1, the magnitude of the induced current is affected by the cross-sectional area when the electromagnetic steel sheet 90 is cut along the direction perpendicular to the magnetic lines. Since the electromagnetic steel sheet 90 is a flat plate that is thin in the axial direction of the laminated core 9 and extends in a direction perpendicular to the axis, the cross-sectional area when the electromagnetic steel sheet 90 is cut in the direction perpendicular to the magnetic field lines is Maximum when the axis is parallel to the magnetic field lines. Therefore, if the axis of the laminated core 9 and the axis of the solenoid 1 (= lines of magnetic force) are parallel (including the case where they coincide), the induced current flowing through the electromagnetic steel sheet 90 can be increased, and the amount of heat generated by induction heating can be increased. it can. Therefore, according to such a configuration, the heating time can be shortened and the heating temperature can be increased.

(実施例)
次に、本発明の実施例について説明する。本発明者は、ソレノイド1の内周に積層コア9を配設して誘導加熱する方法について、積層コア9の温度の数値計算を行った。
数値計算の条件は、次のとおりである。ソレノイド1は、外径175mm、内径155mm、軸線方向長さ80mmの筒状の構成とした。積層コア9は、外径210mm、内径135mm、軸線方向長さ52mmの筒状の構成とした。なお、積層コア9を構成する電磁鋼板90は、例えばJIS C 2552に規定されている50A470を用いることができる。ソレノイド1に流す交流電気の電流密度は12.5A/mm2とし、周波数は200Hzとした。
(Example)
Next, examples of the present invention will be described. The present inventor performed numerical calculation of the temperature of the laminated core 9 with respect to the method of arranging the laminated core 9 on the inner periphery of the solenoid 1 and performing induction heating.
The conditions for numerical calculation are as follows. The solenoid 1 has a cylindrical configuration with an outer diameter of 175 mm, an inner diameter of 155 mm, and an axial length of 80 mm. The laminated core 9 has a cylindrical configuration with an outer diameter of 210 mm, an inner diameter of 135 mm, and an axial length of 52 mm. In addition, 50A470 prescribed | regulated to JISC2552 can be used for the electromagnetic steel plate 90 which comprises the lamination | stacking core 9, for example. The current density of AC electricity flowing through the solenoid 1 was 12.5 A / mm 2 and the frequency was 200 Hz.

そして、前記条件で積層コア9を加熱した場合における積層コア9の最高温度と最低温度と平均温度とを計算した。図3は、前記条件での数値計算の結果を示すグラフである。図3に示すように、誘導加熱の開始から7分を経過すると、最高温度が1050℃に到達し、最低温度が730℃に到達し、平均温度が920℃に到達した。このように、誘導加熱の開始から7分で、積層コア9の最低温度が「所定の温度」である700℃を越えた。したがって、本実施例によれば、積層コア9の全体を、所定の温度以上に加熱できることが確認された。
加熱炉を用いる従来の焼鈍方法においては、数時間の加熱時間が必要であったことに比較すると、本発明の実施例によれば、加熱時間の大幅な短縮が可能であることが確認された。このように、本発明の実施例によれば、加熱に間の短縮によって、積層コア9の生産性の向上を図ることが可能であることが確認された。
Then, the maximum temperature, the minimum temperature, and the average temperature of the laminated core 9 when the laminated core 9 was heated under the above conditions were calculated. FIG. 3 is a graph showing the result of numerical calculation under the above conditions. As shown in FIG. 3, when 7 minutes passed from the start of induction heating, the maximum temperature reached 1050 ° C., the minimum temperature reached 730 ° C., and the average temperature reached 920 ° C. Thus, in 7 minutes from the start of induction heating, the minimum temperature of the laminated core 9 exceeded 700 ° C., which is the “predetermined temperature”. Therefore, according to the present Example, it was confirmed that the whole laminated core 9 can be heated more than predetermined temperature.
In the conventional annealing method using a heating furnace, it was confirmed that the heating time can be significantly shortened according to the example of the present invention, compared with the fact that the heating time of several hours was required. . Thus, according to the Example of this invention, it was confirmed that the productivity of the laminated core 9 can be improved by shortening the heating.

以上、本発明の各実施形態を、図面を参照して詳細に説明したが、前記各実施形態および実施例は、本発明の実施にあたっての具体例を示したに過ぎない。本発明の技術的範囲は、前記実施形態および実施例に限定されるものではない。本発明は、その趣旨を逸脱しない範囲において、種々の変更が可能であり、それらも本発明の技術的範囲に含まれる。   As mentioned above, although each embodiment of this invention was described in detail with reference to drawings, each said embodiment and Example showed only the specific example in implementation of this invention. The technical scope of the present invention is not limited to the above-described embodiments and examples. The present invention can be variously modified without departing from the spirit thereof, and these are also included in the technical scope of the present invention.

本発明は、電磁鋼板が積層されて構成される積層コアのひずみを除去するための焼鈍に適用できる。このほか、電磁鋼板が積層されて構成される積層コアに限定されず、他の種々の積層コアの焼鈍にも適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to annealing for removing strain of a laminated core configured by laminating electromagnetic steel sheets. In addition, the present invention is not limited to a laminated core formed by laminating electromagnetic steel sheets, and can be applied to annealing of various other laminated cores.

1:ソレノイド、3:チャンバー、9:積層コア、90:打ち抜かれた電磁鋼板、91:積層コアの内周側に形成される歯 1: solenoid, 3: chamber, 9: laminated core, 90: punched electrical steel sheet, 91: teeth formed on the inner peripheral side of the laminated core

Claims (2)

複数の電磁鋼板が積層されて構成される積層コアの焼鈍方法であって、
ソレノイドの内周に前記積層コアを配設し、前記ソレノイドに交流電気を通電して前記積層コアを所定の温度に誘導加熱し、その後、前記積層コアを徐冷することを特徴とする積層コアの焼鈍方法。
A method of annealing a laminated core constituted by laminating a plurality of electromagnetic steel sheets,
A laminated core characterized in that the laminated core is disposed on an inner periphery of a solenoid, AC electricity is supplied to the solenoid to inductively heat the laminated core to a predetermined temperature, and then the laminated core is gradually cooled. Annealing method.
前記ソレノイドの内周に、複数の前記積層コアを配設し、複数の前記積層コアを同時に加熱することを特徴とする請求項1に記載の積層コアの焼鈍方法。   2. The method of annealing a laminated core according to claim 1, wherein a plurality of the laminated cores are disposed on an inner periphery of the solenoid, and the plurality of the laminated cores are simultaneously heated.
JP2012013390A 2012-01-25 2012-01-25 Annealing method for layered core Pending JP2013153612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013390A JP2013153612A (en) 2012-01-25 2012-01-25 Annealing method for layered core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013390A JP2013153612A (en) 2012-01-25 2012-01-25 Annealing method for layered core

Publications (1)

Publication Number Publication Date
JP2013153612A true JP2013153612A (en) 2013-08-08

Family

ID=49049505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013390A Pending JP2013153612A (en) 2012-01-25 2012-01-25 Annealing method for layered core

Country Status (1)

Country Link
JP (1) JP2013153612A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110243A (en) * 2015-12-14 2017-06-22 新日鐵住金株式会社 Motor core annealing device
JP2019115113A (en) * 2017-12-21 2019-07-11 日本製鉄株式会社 Core annealing method, core annealing system, and stator core
JP2019115107A (en) * 2017-12-21 2019-07-11 日本製鉄株式会社 Core annealing method, core annealing system, and stator core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342637A (en) * 2002-05-29 2003-12-03 Toyo Tetsushin Kogyo Kk Process and device for magnetic field annealing of motor core

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342637A (en) * 2002-05-29 2003-12-03 Toyo Tetsushin Kogyo Kk Process and device for magnetic field annealing of motor core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110243A (en) * 2015-12-14 2017-06-22 新日鐵住金株式会社 Motor core annealing device
JP2019115113A (en) * 2017-12-21 2019-07-11 日本製鉄株式会社 Core annealing method, core annealing system, and stator core
JP2019115107A (en) * 2017-12-21 2019-07-11 日本製鉄株式会社 Core annealing method, core annealing system, and stator core
JP7003634B2 (en) 2017-12-21 2022-01-20 日本製鉄株式会社 Core annealing method and core annealing system
JP7106856B2 (en) 2017-12-21 2022-07-27 日本製鉄株式会社 Core annealing method and core annealing system

Similar Documents

Publication Publication Date Title
JP6645163B2 (en) Motor core annealing equipment
JP6021270B2 (en) Annealing method for metal parts
JP6102731B2 (en) Method for annealing laminated core
TWI443198B (en) Annealing method of amorphous core
JP2013153612A (en) Annealing method for layered core
US10910927B2 (en) Localized induction heat treatment of electric motor components
JP2019170086A (en) Annealing device of motor core and annealing method of motor core
JP6226770B2 (en) Induction heating apparatus and induction heating method
JP5621626B2 (en) Manufacturing method of spiral core for rotating electrical machine and manufacturing apparatus of spiral core for rotating electrical machine
CN112769304A (en) High-torque separation process for rotor core of stepping motor
US20160233750A1 (en) Rotor core heating device and rotor core shrink-fitting method
JP2007180135A (en) Transformer
WO2018088437A1 (en) Heating device and heating method
JP2003342637A (en) Process and device for magnetic field annealing of motor core
JP6024919B2 (en) Motor with low iron loss deterioration due to shrink fitting
JP2015084312A5 (en)
JP6528712B2 (en) Iron core for induction heating coil, induction heating coil, and heating apparatus
JP6973196B2 (en) Motor core annealing device and motor core annealing method
JP3689331B2 (en) Heating method for cylindrical metal coil
JP2007282340A (en) Method for annealing stator core for motor
JP5971839B2 (en) Induction heating device
JP7184729B2 (en) Induction heating device and induction heating method for rotary electric machine stator core
WO2011007434A1 (en) Induction heating coil for carburizing and carburizing system
JP2021068595A (en) Induction heating device and induction heating method for rotating electric machine stator core
Tsuchida REDUCTION OF IRON LOSS ON LAMINATED STATOR CORES BY SECONDARY CURRENT HEATING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324