JP2013152112A - Time difference orientation detection device - Google Patents

Time difference orientation detection device Download PDF

Info

Publication number
JP2013152112A
JP2013152112A JP2012012207A JP2012012207A JP2013152112A JP 2013152112 A JP2013152112 A JP 2013152112A JP 2012012207 A JP2012012207 A JP 2012012207A JP 2012012207 A JP2012012207 A JP 2012012207A JP 2013152112 A JP2013152112 A JP 2013152112A
Authority
JP
Japan
Prior art keywords
pair
time difference
filter
time
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012012207A
Other languages
Japanese (ja)
Inventor
Yuto Ogino
勇人 荻野
Kazuyuki Matsunaga
和之 松永
Katsuhiro Hayama
勝博 端山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012012207A priority Critical patent/JP2013152112A/en
Publication of JP2013152112A publication Critical patent/JP2013152112A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a time difference orientation detection device for calculating the arrival orientation of a radio wave from difference in receiving time using a plurality of antenna elements, of which accuracy in orientation detection depends on the measurement accuracy of time difference and is conventionally poor in the case of an incoming radio wave with a narrow frequency band because the measurement accuracy is in reverse proportion to the frequency band of the incoming radio wave.SOLUTION: In a model, it is assumed that an incoming radio waveform is narrow-banded from an ideal pulse waveform to a blunted trapezoid form. Using Wiener filter theory, the incoming radio waveform is virtually wide-banded to estimate the original transmitting signal. For this purpose, in addition to conventional orientation detection system, a dimension detection system is provided to calculate a S/N ratio of the incoming radio wave and a band limit filter from a detected rise time and a fall time. The orientation detection system obtains the S/N ratio and the band limit filter, performs Wiener filter calculation, and measures the difference in the incoming time of a receiving signal so as to calculate the arrival orientation. The accuracy in orientation detection is thus improved.

Description

この発明は、到来する電波を複数のアンテナが受信した時刻の時間差を検出し、電波源の方位を探知する時間差方位探知装置に関するものである。   The present invention relates to a time difference azimuth detecting device that detects a time difference between times at which a plurality of antennas receive incoming radio waves and detects the direction of a radio wave source.

図3には、時間差方位探知装置の原理図を示す。時間差方位探知方式とは、2個以上のアンテナ素子を介して受信した電波信号を相関処理し、互いの電波信号の到来時間差を測定する方式である。検出した時間差をΔtとすると、電波到来方位θには次の関係が成り立つ。   FIG. 3 shows a principle diagram of the time difference azimuth detecting device. The time difference azimuth detection method is a method in which radio wave signals received via two or more antenna elements are subjected to correlation processing, and the arrival time difference between the radio wave signals is measured. Assuming that the detected time difference is Δt, the following relationship holds for the radio wave arrival direction θ.

Figure 2013152112
Figure 2013152112

特許文献1には、従来の時間差方位探知装置において、クロススペクトルを計算し、コヒーレンスの高い周波数帯における位相の傾きから到来時間差を求めることにより、到来電波の振幅差などの影響を受けることなく精度良く電波の到来方位を求めることができる方位探知装置が記載されている。   Patent Document 1 discloses a conventional time difference azimuth detection apparatus that calculates a cross spectrum and obtains an arrival time difference from a phase gradient in a frequency band with high coherence, thereby avoiding the influence of an amplitude difference of an incoming radio wave. There is described an azimuth detection device that can determine the arrival direction of radio waves well.

また、特許文献2では携帯電話などの移動体通信分野において、ウィーナーフィルタを、信号対干渉比(SIR::Signal to Interference Ratio)の推定器に適用しており、平均信号電力および平均干渉電力の推定値を、ウィーナー線形予測フィルタを用いてフィルタリングすることを提案している。このSIR推定値をベースにして、移動体端末の送信電力を必要最小限に抑える適応送信電力制御を行ない、干渉電力量を低く抑えつつシステムの容量を増やしている。   In Patent Document 2, the Wiener filter is applied to a signal-to-interference ratio (SIR) estimator in the mobile communication field such as a mobile phone, and the average signal power and the average interference power are It has been proposed to filter the estimate using a Wiener linear prediction filter. Based on this SIR estimated value, adaptive transmission power control is performed to minimize the transmission power of the mobile terminal, and the capacity of the system is increased while keeping the amount of interference power low.

特開平9−257902号公報(第1−15頁、第1図)JP-A-9-257902 (page 1-15, FIG. 1) 特表2008−507230号公報(第1−14頁、第1図)Japanese translation of PCT publication No. 2008-507230 (page 1-14, FIG. 1)

時間差方位探知方式の探知精度はその測定精度に依存し、時間差測定精度σ△はクラメル=ラオの下限式より、次式となる。 The detection accuracy of the time difference azimuth detection method depends on the measurement accuracy, and the time difference measurement accuracy σΔt is expressed by the following equation from the lower limit equation of Kramel-Lao.

Figure 2013152112
Figure 2013152112

(2)式より、時間差測定精度σΔは送信源からの信号の周波数帯域BTXに反比例することがわかる。このため、特許文献1など従来の時間差方位 探知装置の精度は、狭帯域な送信信号に対しては方位探知精度が良くないという問題があった。また、この問題に対してウィーナフィルタを適用した先行文献も見当たらない。 (2) from the time difference measurement accuracy Sigma] [Delta] t is understood to be inversely proportional to the frequency band B TX signals from the transmission sources. For this reason, the accuracy of the conventional time difference azimuth detection device such as Patent Document 1 has a problem that the azimuth detection accuracy is not good for a narrow band transmission signal. In addition, there is no prior literature in which the Wiener filter is applied to this problem.

この発明は、このような問題を解決するためのものであり、狭帯域な受信信号にウィーナーフィルタを適用し、元の電波送信信号を仮想的に広帯域化することにより、時間差方位探知装置の方位探知精度の向上を目的とする。   The present invention is intended to solve such a problem. By applying a Wiener filter to a narrow-band received signal and virtually broadening the original radio wave transmission signal, the direction of the time difference azimuth detecting device is The purpose is to improve detection accuracy.

所定距離離間して設置され到来電波を受信する一対のアンテナ素子と、一対のアンテナ素子から得た受信信号をそれぞれ増幅及び周波数変換する一対の受信機と、一対の受信機から得たアナログ信号をそれぞれデジタル信号に変換する一対のA/D変換器と、デジタル信号をそれぞれ記憶する一対の記憶部と、一対の記憶部又はグランドとの接続を切り替えてS/N比を算出するS/N算出手段、一対の記憶部と接続しデジタル信号であるパルス波形の立ち上り時間を検出して、パルス波形のなまりをモデル化した帯域制限フィルタを算出するフィルタ算出手段、を有する諸元検出系と、
前記デジタル信号をフーリエ変換し、前記S/N比と前記帯域制限フィルタとを受けてフィルタ演算を行ない、受信信号の到来時間差を測定し到来方位を算出する方位探知系と、を備えた。
A pair of antenna elements installed at a predetermined distance to receive incoming radio waves, a pair of receivers that respectively amplify and frequency-convert received signals obtained from the pair of antenna elements, and analog signals obtained from the pair of receivers. S / N calculation that calculates the S / N ratio by switching the connection between a pair of A / D converters that convert digital signals, a pair of storage units that store digital signals, and a pair of storage units or ground, respectively. Means for detecting a rise time of a pulse waveform that is a digital signal connected to a pair of storage units and calculating a band limiting filter that models the rounding of the pulse waveform;
An azimuth detection system that performs Fourier transform on the digital signal, receives the S / N ratio and the band limiting filter, performs a filter operation, measures an arrival time difference of received signals, and calculates an arrival direction.

本発明に関わる時間差方位探知装置は、諸元検出系にて送信パルス波の立ち上がり時間、立ち下がり時間及びS/N比を検出し、検出した情報を元に方位探知系にて、到来電波が理想的なパルス波形から台形になまり狭帯域化して到来したとモデル化してフィルタを形成し、受信信号の周波数帯を広帯域化し元の信号波形を推定する。この結果、時間差測定精度が向上し、ひいては方位探知精度も向上する。また、到来電波のパルス諸元も同時に検出できるため、目標から照射される電波の識別、レーダ妨害波の対象から照射されるレーダ電波の解析にも利用できる効果を奏する。   The time difference azimuth detection apparatus according to the present invention detects the rise time, fall time, and S / N ratio of the transmission pulse wave in the specification detection system, and the incoming radio wave is detected in the azimuth detection system based on the detected information. A filter is formed by modeling that an ideal pulse waveform has come into a trapezoidal shape and narrowed, and the frequency band of the received signal is widened to estimate the original signal waveform. As a result, the time difference measurement accuracy is improved, and the direction detection accuracy is also improved. In addition, since the pulse specifications of the incoming radio wave can be detected at the same time, there are effects that can be used to identify radio waves emitted from the target and to analyze radar radio waves emitted from the radar interference target.

本発明の実施の形態1に係る時間差方位探知装置の構成を表すブロック図である。It is a block diagram showing the structure of the time difference azimuth | direction detection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るウィーナーフィルタ演算の説明図である。It is explanatory drawing of the Wiener filter calculation which concerns on Embodiment 1 of this invention. 従来の時間差方位探知方式の原理を説明する原理図である。It is a principle figure explaining the principle of the conventional time difference azimuth detection system.

実施の形態1.
図1は、この発明の実施の形態1を示すブロック図である。図において、1,2は一対のアンテナ素子、3,4は一対の受信機、5,6は一対のA/D変換部、7,8は一対のメモリであり、1チャンネル41、2チャンネル42は一対のチャンネルでありこれらをそれぞれ有している。9はスイッチング回路、10はフーリエ変換部、11はピーク検出部、12は逆フーリエ変換部、13は諸元検出部、14はS/N算出部、15はフィルタ算出部であり、諸元検出系32はこれらを有している。16,17はフーリエ変換部、18,19はフィルタ演算部、20はクロススペクトル演算部、21は時間差測定部、22は方位算出部であり、方位探知系31はこれらを有している。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing Embodiment 1 of the present invention. In the figure, 1 and 2 are a pair of antenna elements, 3 and 4 are a pair of receivers, 5 and 6 are a pair of A / D converters, and 7 and 8 are a pair of memories. Are a pair of channels, each having these. 9 is a switching circuit, 10 is a Fourier transform unit, 11 is a peak detection unit, 12 is an inverse Fourier transform unit, 13 is a specification detection unit, 14 is an S / N calculation unit, and 15 is a filter calculation unit. The system 32 has these. Reference numerals 16 and 17 denote Fourier transform units, 18 and 19 denote filter calculation units, 20 denotes a cross spectrum calculation unit, 21 denotes a time difference measurement unit, 22 denotes an azimuth calculation unit, and the azimuth detection system 31 includes these components.

次に、動作について説明する。放射されて到来した電波信号は、図1のアンテナ素子1,2を介してアナログ信号として本装置に入力される。入力されたアナログ信号は受信機3,4により中間周波数に変換され増幅される。変換及び増幅されたアナログ信号は、A/D変換器5,6によってデジタル信号に変換される。A/D変換器5,6により変換されたデジタル信号は、メモリ7,8に記憶される。   Next, the operation will be described. The radio signal that has been radiated and arrived is input to the apparatus as an analog signal via the antenna elements 1 and 2 of FIG. The input analog signal is converted to an intermediate frequency by the receivers 3 and 4 and amplified. The converted and amplified analog signals are converted into digital signals by the A / D converters 5 and 6. The digital signals converted by the A / D converters 5 and 6 are stored in the memories 7 and 8.

次に、諸元検出系32の動作について説明する。スイッチング回路9は、メモリ7,8と接続する先を選択する。このスイッチング回路9がグランド9aを選択した場合には、諸元検出系32のS/N算出部14はノイズを検出する。スイッチング回路9が一対のメモリ7,8のいずれか一方を選択した場合には、諸元検出系32は、デジタル信号の信号レベル、パルス幅、立ち上り時間及び立ち下り時間等のパルス諸元を算出し帯域制限フィルタを算出する。このとき、S/N算出部14は、スイッチング回路9がグランド9aから検出したノイズと、フーリエ変換部10によりフーリエ変換されたノイズが乗っている信号の信号レベルとの比を計算し、周波数毎のS/N比を算出する。   Next, the operation of the item detection system 32 will be described. The switching circuit 9 selects a destination to be connected to the memories 7 and 8. When the switching circuit 9 selects the ground 9a, the S / N calculator 14 of the specification detection system 32 detects noise. When the switching circuit 9 selects one of the pair of memories 7 and 8, the specification detection system 32 calculates the pulse specifications such as the signal level, pulse width, rise time and fall time of the digital signal. The band limiting filter is calculated. At this time, the S / N calculation unit 14 calculates the ratio between the noise detected by the switching circuit 9 from the ground 9a and the signal level of the signal carrying the noise subjected to the Fourier transform by the Fourier transform unit 10, and for each frequency. The S / N ratio is calculated.

スイッチング回路9が一対のメモリ7,8のいずれか一方を選択した場合には、フーリエ変換部10は、A/D変換器5,6で変換されたデジタル信号を受けてフーリエ変換し、ピーク周波数検出部11はこのフーリエ変換後の信号のピーク周波数ωを検出する。逆フーリエ変換部12は、ピーク周波数を検出した後のデータを逆フーリエ変換する。この逆フーリエ変換されたデジタル信号から諸元検出部13はパルス波形、信号レベル、パルス立ち上り時間及び立ち下リ時間、パルス幅等のパルス諸元を算出する。フィルタ算出部15は検出したパルス立ち上り時間及び立ち下リ時間を用いて、帯域制限フィルタH(ω)を算出する。   When the switching circuit 9 selects one of the pair of memories 7 and 8, the Fourier transform unit 10 receives the digital signal converted by the A / D converters 5 and 6 and performs Fourier transform to obtain a peak frequency. The detection unit 11 detects the peak frequency ω of the signal after the Fourier transform. The inverse Fourier transform unit 12 performs inverse Fourier transform on the data after detecting the peak frequency. The specification detection unit 13 calculates pulse specifications such as a pulse waveform, a signal level, a pulse rise time and a fall time, and a pulse width from the inverse Fourier transformed digital signal. The filter calculation unit 15 calculates the band limiting filter H (ω) using the detected pulse rise time and fall time.

次に、フィルタ算出部15及びフィルタ演算部18,19について、図2により説明する。ウィーナーフィルタ理論を適用し、送信時は理想的な広帯域の矩形パルス波形であった元の送信信号(図2a参照)が、台形になまり狭帯域化して到来したとモデル化(図2b,c参照)して、帯域制限フィルタH(ω)を算出して元の送信時波形を推定する。図1のフィルタ算出部15では諸元検出部13で得られる到来電波のパルス波形(図2のc参照)から、立ち上がり時間及び立ち下がり時間を検出する。その検出した立ち上がり時間及び立ち下がり時間を用いて、パルスの立ち上がり波形及び立ち下がり波形を、例えば直線近似する。この時間軸上の直線近似を周波数毎にフーリエ変換して、帯域制限フィルタH(ω)を算出する(図2のb参照)。元の送信時波形を推定する時に用いるウィーナーフィルタの演算式は(3)式の通りである。式中の周波数毎のS/N比であるS/N(ω)は、図1のS/N算出部14が算出したものを用いる。   Next, the filter calculation unit 15 and the filter calculation units 18 and 19 will be described with reference to FIG. Applying Wiener filter theory, modeling that the original transmission signal (see Fig. 2a), which was an ideal wide-band rectangular pulse waveform at the time of transmission, came into a trapezoidal shape and narrowed (see Figs. 2b and 2c) Then, the band limiting filter H (ω) is calculated to estimate the original waveform during transmission. The filter calculation unit 15 in FIG. 1 detects the rise time and the fall time from the pulse waveform of the incoming radio wave obtained by the specification detection unit 13 (see c in FIG. 2). Using the detected rise time and fall time, the pulse rise waveform and fall waveform are approximated, for example, by a straight line. This linear approximation on the time axis is Fourier transformed for each frequency to calculate a band limiting filter H (ω) (see b in FIG. 2). The calculation formula of the Wiener filter used when estimating the original waveform at the time of transmission is as shown in equation (3). As the S / N ratio (ω) for each frequency in the equation, the one calculated by the S / N calculator 14 in FIG. 1 is used.

Figure 2013152112
Figure 2013152112

なお、帯域制限フィルタH(ω)を算出する場合には、パルス波形の立ち上がり時間のみ、或いは立ち上がり時間のみを用いても算出できる。しかし、立ち上がり時間及び立ち下がり時間を検出し、これらの平均値を計算すると、方位探知精度が更に向上する。   When calculating the band limiting filter H (ω), it can be calculated using only the rise time of the pulse waveform or only the rise time. However, if the rise time and the fall time are detected and the average value thereof is calculated, the direction finding accuracy is further improved.

このようにウィーナーフィルタを適用した推定処理により、狭帯域な信号を仮想的に広帯域化し、時間差測定精度を向上させ、時間差方探精度の向上に貢献できる。また、到来電波のパルス諸元も同時に検出できるため、目標から照射される電波の識別、レーダ妨害波の対象から照射されるレーダ電波の解析のデータとして利用できる効果を奏する。   As described above, the estimation process using the Wiener filter virtually widens a narrowband signal, improves the time difference measurement accuracy, and contributes to the improvement of the time difference direction search accuracy. In addition, since the pulse specifications of the incoming radio wave can be detected at the same time, there is an effect that can be used as data for identifying the radio wave emitted from the target and analyzing the radar radio wave emitted from the target of the radar interference wave.

1,2 アンテナ素子
3,4 受信機
5,6 A/D変換器
7,8 メモリ(記憶部)
9 スイッチング回路
9a グランド
10 フーリエ変換部
11 ピーク周波数検出部(フィルタ算出手段)
12 逆フーリエ変換部(フィルタ算出手段)
13 諸元検出部(フィルタ算出手段)
14 S/N算出部(S/N算出手段)
15 フィルタ算出部(フィルタ算出手段)
16,17 フーリエ変換部
18,19 フィルタ演算部
20 クロススペクトル演算部
21 時間差測定部
22 方位算出部
31 方位探知系
32 諸元検出系。
1, 2 Antenna elements 3, 4 Receiver 5, 6 A / D converter 7, 8 Memory (storage unit)
9 switching circuit 9a ground 10 Fourier transform unit 11 peak frequency detection unit (filter calculation means)
12 Inverse Fourier transform unit (filter calculation means)
13 Specification detector (filter calculation means)
14 S / N calculation part (S / N calculation means)
15 Filter calculation unit (filter calculation means)
16, 17 Fourier transform unit 18, 19 Filter calculation unit 20 Cross spectrum calculation unit 21 Time difference measurement unit 22 Direction calculation unit 31 Direction detection system 32 Specification detection system.

Claims (3)

所定距離離間して設置され到来電波を受信する一対のアンテナ素子と、
前記一対のアンテナ素子から得た受信信号をそれぞれ増幅及び周波数変換する一対の受信機と、
前記一対の受信機から得たアナログ信号をそれぞれデジタル信号に変換する一対のA/D変換器と、
前記デジタル信号をそれぞれ記憶する一対の記憶部と、
前記一対の記憶部又はグランドとの接続を切り替えてS/N比を算出するS/N算出手段、前記一対の記憶部と接続し前記デジタル信号であるパルス波形の立ち上り時間を検出して、前記パルス波形のなまりをモデル化した帯域制限フィルタを算出するフィルタ算出手段、を有する諸元検出系と、
前記デジタル信号をフーリエ変換し、前記S/N比と前記帯域制限フィルタとを受けてフィルタ演算を行ない、前記受信信号の到来時間差を測定し到来方位を算出する方位探知系と、
を備えたことを特徴とする時間差方位探知装置。
A pair of antenna elements installed at a predetermined distance to receive incoming radio waves;
A pair of receivers that respectively amplify and frequency-convert received signals obtained from the pair of antenna elements;
A pair of A / D converters for converting analog signals obtained from the pair of receivers into digital signals, respectively;
A pair of storage units for respectively storing the digital signals;
S / N calculating means for calculating the S / N ratio by switching the connection with the pair of storage units or the ground, detecting the rise time of the pulse waveform as the digital signal connected to the pair of storage units, A specification detecting system having a filter calculating means for calculating a band limiting filter that models the rounding of the pulse waveform;
An azimuth detection system that performs Fourier transform on the digital signal, receives the S / N ratio and the band limiting filter, performs a filter operation, measures an arrival time difference of the received signal, and calculates an arrival direction;
A time difference azimuth detecting apparatus comprising:
前記フィルタ算出手段は、
前記パルス波形の前記立ち上り時間及び立ち下り時間を検出し平均値を計算して、前記帯域制限フィルタを算出する
ことを特徴とする請求項1に記載の時間差方位探知装置。
The filter calculating means includes
The time difference azimuth detecting device according to claim 1, wherein the band limiting filter is calculated by detecting the rise time and the fall time of the pulse waveform and calculating an average value.
前記方位探知系は、
記憶した前記デジタル信号をフーリエ変換する一対のフーリエ変換部と、
前記S/N比と前記帯域制限フィルタとを受けてフィルタ演算する一対のフィルタ演算部と、
前記一対のフィルタ演算部の出力信号を受けて相互相関を計算するクロススペクトル演算部と、
前記クロススペクトル演算部の出力信号を逆フーリエ変換し相互相関度を計算して前記到来時間差を測定する時間差測定部と、
前記到来時間差から到来方位を算出する到来方位算出部と、
を有することを特徴とする請求項1又は請求項2に記載の時間差方位探知装置。
The direction detection system is
A pair of Fourier transform units for Fourier transforming the stored digital signal;
A pair of filter operation units for performing a filter operation in response to the S / N ratio and the band limiting filter;
A cross spectrum calculation unit that receives the output signals of the pair of filter calculation units and calculates a cross-correlation;
A time difference measuring unit that measures the arrival time difference by performing an inverse Fourier transform on the output signal of the cross spectrum calculation unit and calculating a cross correlation; and
An arrival direction calculation unit that calculates an arrival direction from the arrival time difference;
The time difference azimuth detecting device according to claim 1 or 2, characterized by comprising:
JP2012012207A 2012-01-24 2012-01-24 Time difference orientation detection device Pending JP2013152112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012012207A JP2013152112A (en) 2012-01-24 2012-01-24 Time difference orientation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012012207A JP2013152112A (en) 2012-01-24 2012-01-24 Time difference orientation detection device

Publications (1)

Publication Number Publication Date
JP2013152112A true JP2013152112A (en) 2013-08-08

Family

ID=49048576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012012207A Pending JP2013152112A (en) 2012-01-24 2012-01-24 Time difference orientation detection device

Country Status (1)

Country Link
JP (1) JP2013152112A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512400A (en) * 2014-02-14 2017-05-18 フィリップス ライティング ホールディング ビー ヴィ Encoded light
WO2021049827A1 (en) * 2019-09-10 2021-03-18 삼성전자 주식회사 Electronic device for determining location of external electronic device and method for same
CN112731283A (en) * 2020-12-24 2021-04-30 中国人民解放军91550部队 High subsonic speed flying target acoustic direction finding method based on multistage wiener filter
JP2021071411A (en) * 2019-10-31 2021-05-06 コベルコ建機株式会社 Load swing angle estimating device for cranes
WO2024014297A1 (en) * 2022-07-15 2024-01-18 ソニーセミコンダクタソリューションズ株式会社 Reception device, reception method, and transmission and reception system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512400A (en) * 2014-02-14 2017-05-18 フィリップス ライティング ホールディング ビー ヴィ Encoded light
US10298326B2 (en) 2014-02-14 2019-05-21 Signify Holding B.V. Coded light
WO2021049827A1 (en) * 2019-09-10 2021-03-18 삼성전자 주식회사 Electronic device for determining location of external electronic device and method for same
US11982733B2 (en) 2019-09-10 2024-05-14 Samsung Electronics Co., Ltd Electronic device for determining position of external electronic device and method thereof
JP2021071411A (en) * 2019-10-31 2021-05-06 コベルコ建機株式会社 Load swing angle estimating device for cranes
CN112731283A (en) * 2020-12-24 2021-04-30 中国人民解放军91550部队 High subsonic speed flying target acoustic direction finding method based on multistage wiener filter
CN112731283B (en) * 2020-12-24 2023-07-11 中国人民解放军91550部队 High subsonic flight target acoustic direction finding method based on multistage wiener filter
WO2024014297A1 (en) * 2022-07-15 2024-01-18 ソニーセミコンダクタソリューションズ株式会社 Reception device, reception method, and transmission and reception system

Similar Documents

Publication Publication Date Title
US9128182B2 (en) Radar device
KR20100133830A (en) Direction of arrival estimation apparatus and method therof
US9706358B2 (en) Distance determination of a mobile device
JP2018504583A (en) Interference mitigation for positioning reference signals
JP6032462B2 (en) Source estimation method and source estimation apparatus using the same
JP2013152112A (en) Time difference orientation detection device
JP2007064941A (en) Electric wave arrival direction estimating device, electric wave arrival direction estimating program, and recording medium
JP6292566B2 (en) Estimation method and estimation apparatus using the same
CN107171981B (en) Channel correction method and device
JP4771875B2 (en) Radio frequency signal source location device
US10241188B2 (en) Method and apparatus for obtaining time of arrival TOA when mobile terminal is located
WO2020126050A1 (en) Coordination of wireless communication unit and radar unit in a wireless communication network
CN103368590A (en) Anti-interference method, device and system in multi-mode terminal
JP6331072B2 (en) White space detection device, white space detection method, and program
US10317508B2 (en) Apparatus and methods for radio frequency ranging
KR101245522B1 (en) Method and system for wireless positioning
CN113938358B (en) Time delay determination method and terminal
KR20170128899A (en) Apparatus And Method for Calculating Receiving Time Of Wireless Communication Signal
JP6532976B2 (en) Signal transmitting / receiving apparatus and method for detecting synchronization point in signal
US9654233B2 (en) VSWR estimation using spectral analysis to suppress external interference
JP2012149951A (en) Radar device
CN111913162A (en) Radio frequency interference detection method and device and radio frequency interference suppression method and device
KR100981256B1 (en) System and method for measuring antenna radiation performance
RU188128U1 (en) DEVICE FOR EVALUATING A NOISED HARMONIOUS SIGNAL FREQUENCY
JP6702398B1 (en) Signal detection device, signal detection method, and signal detection program