JP2013145193A - 磁界測定装置とその3軸磁界センサを位置決めする方法 - Google Patents

磁界測定装置とその3軸磁界センサを位置決めする方法 Download PDF

Info

Publication number
JP2013145193A
JP2013145193A JP2012006012A JP2012006012A JP2013145193A JP 2013145193 A JP2013145193 A JP 2013145193A JP 2012006012 A JP2012006012 A JP 2012006012A JP 2012006012 A JP2012006012 A JP 2012006012A JP 2013145193 A JP2013145193 A JP 2013145193A
Authority
JP
Japan
Prior art keywords
magnetic field
point
field sensor
reference point
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012006012A
Other languages
English (en)
Inventor
Yutaka Yoshino
裕 吉野
Takayuki Yoshino
隆之 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMS Co Ltd
Original Assignee
IMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMS Co Ltd filed Critical IMS Co Ltd
Priority to JP2012006012A priority Critical patent/JP2013145193A/ja
Publication of JP2013145193A publication Critical patent/JP2013145193A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

【課題】3軸磁界センサを傾斜させた状態で、測定空間中に位置決めする。
【解決手段】測定空間中の第一の直線48上に第一基準点44を挟んで等距離にある第一点52と第二点54を設定する。次に、第二の直線50上に第二基準点46を挟んで等距離にある第三点56と第四点58を設定する。第一点52に磁石を配置して測定した3次元測定磁界ベクトルの絶対値と、第二点54に磁石を配置して測定した3次元測定磁界ベクトルの絶対値とが等しくなる第一の直線48上の位置に3軸磁界センサを移動する。第二の直線50上でも同様の操作をする。そして、第一基準点44と第二基準点46を通る直線上に3軸磁界センサを位置決めする。
【選択図】図7

Description

本発明は、高精度に3軸方向の磁界を測定する磁界測定装置とその3軸磁界センサを位置決めする方法に関する。
例えば、永久磁石が設計どおりのバタンに着磁されているかどうかを確認するために、磁気センサが使用される。この磁気センサをプローブ先端に取り付けて、測定対象物近傍の磁界を精密に測定するための装置が開発されている(特許文献1参照)(特許文献2参照)。
特開2008−286723号公報 特開2009−168724号公報
既知の従来の技術には、次のような解決すべき課題があった。
例えば、3軸方式の磁気センサは一辺が50ミクロン程度の素子で、数ミリメートル幅の棒状の基板先端付近に搭載されている。この棒状の基板に磁気検出出力取り出し用の電極を取り付け、保護用の樹脂を被覆したものが磁気測定用プローブである。磁界測定機構中でこのプローブの先端を移動させて、測定対象物の近傍磁界を3次元的に測定する。
この磁気センサの取り付け精度には限界があり、磁気センサ全体がプローブに対して傾いて固定されることがある。また、測定対象物の形状が複雑な場合に、プローブを傾斜させて測定をしたいときがある。上記の特許文献1により、プローブを軸にして磁石片を回転させて、鏡像のような磁界を形成しても、磁気センサ全体が傾斜していると、対称性が崩れるため、そのままでは位置決めができない。
上記の課題を解決するために、本発明は次のような磁界測定装置の3軸磁界センサを位置決めする方法を提供することを目的とする。
以下の構成はそれぞれ上記の課題を解決するための手段である。
〈構成1〉
対象物の発生する磁界を測定するための測定空間を設け、この測定空間中で互いに直交する3軸方向の磁界を測定できる3軸磁界センサを、前記測定空間中に支持して任意の方向に移動させる移動機構を設け、前記測定空間中に前記測定空間の原点に対して特定の関係にある第一基準点を設定し、前記第一基準点を通る第一の直線上に、前記第一基準点を挟んで等距離にある第一点と第二点を設定し、前記第一点と第二点に同一の特性の磁石を配置したとき、前記第一基準点を挟んで点対称または面対称の磁界を形成するように前記磁石を配置する支持体を設けるとともに、前記測定空間中に前記測定空間の原点に対して特定の関係にある前記第一基準点とは異なる第二基準点を設定し、前記第一の直線と交差し前記第二基準点を通る第二の直線上に、前記第二基準点を挟んで等距離にある第三点と第四点を設定し、前記第三点と第四点に同一の特性の磁石を配置したとき、前記第二基準点を挟んで点対称または面対称の磁界を形成するように前記磁石を配置する支持体を設け、前記第一点に磁石を配置して、前記3軸磁界センサにより測定した3次元測定磁界ベクトルの絶対値と、前記第二点に磁石を配置して、前記3軸磁界センサにより測定した3次元測定磁界ベクトルの絶対値とが等しくなる位置に前記3軸磁界センサを移動し、前記第三点に磁石を配置して、前記3軸磁界センサにより測定した3次元測定磁界ベクトルの絶対値と、前記第四点に磁石を配置して、前記3軸磁界センサにより測定した3次元測定磁界ベクトルの絶対値とが等しくなる位置に前記3軸磁界センサを移動して、前記第一基準点と前記第二基準点を通る直線上に、前記3軸磁界センサを位置決めすることを特徴とする磁界測定装置の3軸磁界センサを位置決めする方法。
〈構成2〉
構成1に記載の磁界測定装置の3軸磁界センサを位置決めする方法において、前記第一点と前記第二点に磁石を配置して前記測定をして前記3軸磁界センサを移動する工程と、前記第三点と前記第四点に磁石を配置して前記測定をして前記3軸磁界センサを移動する工程とを、交互に少なくとも2回以上繰り返すことを特徴とする磁界測定装置の3軸磁界センサを位置決めする方法。
〈構成3〉
構成1または2に記載の磁界測定装置の3軸磁界センサを位置決めする方法において、前記第一の直線と前記第二の直線とが同一平面上にあり、前記第一の直線と前記第二の直線の交点を、前記第一基準点および第二基準点とし、前記平面に垂直で前記第一基準点および第二基準点を通る線上に3軸磁界センサを位置決めすることを特徴とする磁界測定装置の3軸磁界センサを位置決めする方法。
〈構成4〉
構成1乃至3のいずれかに記載の磁界測定装置の3軸磁界センサを位置決めする方法において、前記支持体は、前記第一の直線を含む平面と前記第二の直線を含む平面に垂直な軸を回転軸にして、前記磁石の前記回転軸に対する向きを固定したまま当該磁石を前記回転軸の周囲で公転させて、前記磁石を前記第一点、前記第ニ点、前記第三点、または前記第四点に配置する回転体からなることを特徴とする磁界測定装置の3軸磁界センサを前記回転軸上に位置決めする方法。
〈構成5〉
構成1乃至3のいずれかに記載の磁界測定装置の3軸磁界センサを位置決めする方法において、3軸磁界センサを構成するxセンサとyセンサとzセンサの測定値を取得して、これらのうち値が大きい2個のセンサの測定値を選択して、3次元測定磁界ベクトルの絶対値を計算する代わりに、2個のセンサの測定値の絶対値を計算して比較することを特徴とする磁界測定装置の3軸磁界センサを位置決めする方法。
〈構成6〉
対象物の発生する磁界を測定するための測定空間を設け、この測定空間中で互いに直交する3軸方向の磁界を測定できる3軸磁界センサを、前記測定空間中に支持して任意の方向に移動させる移動機構を設け、前記測定空間中に前記測定空間の原点に対して特定の関係にある第一基準点を設定し、前記第一基準点を通る第一の直線上に、前記第一基準点を挟んで等距離にある第一点と第二点を設定し、前記第一点と第二点に同一の特性の磁石を配置したとき、前記第一基準点を挟んで点対称または面対称の磁界を形成するように前記磁石を配置する支持体を設けるとともに、前記測定空間中に前記測定空間の原点に対して特定の関係にある前記第一基準点とは異なる第二基準点を設定し、前記第一の直線と交差し前記第二基準点を通る第二の直線上に、前記第二基準点を挟んで等距離にある第三点と第四点を設定し、前記第三点と第四点に同一の特性の磁石を配置したとき、前記第二基準点を挟んで点対称または面対称の磁界を形成するように前記磁石を配置する支持体を設け、前記支持体が、前記第一点と前記第二点と前記第三点と前記第四点に、それぞれ磁石を配置したときに、前記3軸磁界センサにより測定した3次元測定磁界ベクトルのそれぞれの絶対値を求める演算部と、前記第一点に磁石を配置したとき求めた絶対値と前記第二点に磁石を配置したとき求めた絶対値とが等しくなる位置に前記3軸磁界センサを移動するように前記移動機構を制御し、前記第三点に磁石を配置したとき求めた絶対値と前記第四点に磁石を配置したとき求めた絶対値とが等しくなる位置に前記3軸磁界センサを移動するように前記移動機構を制御して、前記第一基準点と前記第二基準点を通る直線上に、前記3軸磁界センサを位置決めする駆動部を備えたことを特徴とする磁界測定装置。
〈構成1の効果〉
3軸磁界センサを自由に傾斜させた状態で、測定空間中の一定の場所に、3軸磁界センサを正確に位置決めできる。
〈構成2の効果〉
3軸磁界センサを少しずつ移動させて正確に位置決めできる。
〈構成3の効果〉
第一の直線と第二の直線とが同一平面上にあれば、この平面に垂直で基準点を通る線上に3軸磁界センサを位置決めできる。
〈構成4の効果〉
支持体が、磁石の前記回転軸に対する向きを固定したまま、回転軸を中心に磁石を公転させると、第一点から第四点まで、磁石を正確に移動させて、点対称(軸対象)の磁界を形成することができる。
〈構成5の効果〉
3軸磁界センサの3次元測定磁界ベクトルの絶対値を比較する代わりに、2個のセンサの測定値の絶対値を計算して比較してもよいので、演算処理が簡素化され、精度も向上する。
本発明の磁界測定装置の主要部ブロック図である。 対象物の磁界測定方法の一例を示す斜視図である。 既知の磁界センサの位置決め方法の説明図である。 本発明の装置の動作原理を示す説明図である。 センサを貫く磁力線とセンサの傾きとの関係を示す説明図である。 3軸磁界センサ18を貫通する磁力線の状態を示す斜視図である。 本実施例による基本的な位置決め方法の説明図である。 磁石の固定状態を説明する説明図である。 本発明の変形例の説明図である。
以下、本発明の実施の形態を実施例毎に詳細に説明する。
図1は本発明の磁界測定装置の主要部ブロック図である。
磁界を測定する対象物12は、マグネットやマグネットを組み込んだり収容したりした構造物や基板等である。図の装置により、対象物12の周辺に形成される磁界Hを精密に測定する。測定空間20は、対象物12を固定する台24の上方に設定する。この台24を回転軸28を軸に回転させて、対象物12の向きを変更しながら、3軸磁界センサ18を対象物12の各部に近づけて、周辺磁界を測定する。
3軸磁界センサ18は、xセンサ30とyセンサ32とzセンサ34を有する。一軸方向(x又はy又はz軸方向)の磁界を測定する素子をそれぞれ直行するxyz軸方向に向けて固定した素子である。これは、測定空間20中で互いに直交する3軸(xyz軸)方向の磁界を測定できる。絶対値演算部36は、測定磁界のベクトル絶対値を演算処理する部分である。
記憶部36は、演算結果を比較するために記憶しておく部分である。比較部40は、測定磁界のベクトル絶対値を比較する部分である。駆動部42は、比較の対象になった測定磁界のベクトル絶対値が近づくように、移動機構14を制御する部分である。移動機構14は、3軸磁界センサ18をプローブ16の先端に固定して、これを測定空間20中に支持して任意の方向に移動させるアクチュエータである。
図の測定空間20中に、互いに直行するXYZ軸を設定する。測定空間20中に設定したXYZ軸と、3軸磁界センサ18固有のxyz軸とは一致していなくて構わない。3軸磁界センサ18は任意の傾きを持って、測定空間20中に支持される。
図2は、対象物の磁界測定方法の一例を示す斜視図である。
図に示すように、対象物12は様々な形状をしている。プローブ16の先端に支持した3軸磁界センサ18を対象物12の内部まで進入させるために、プローブ16を傾斜させる必要が生じる。
3軸磁界センサ18はプローブ16の先端に配置され、樹脂等で覆われている。従って、外部からその正確な位置を認識できない。3軸磁界センサ18を構成するxセンサ、yセンサ及びzセンサの電磁界的に見た正確な位置を、測定空間20中の特定の位置に位置決めしてから測定を開始する。特許文献1は、XY平面内でxy2軸センサの位置決め方法を紹介している。
図3は、既知の磁界センサの位置決め方法の説明図である。
まず、図1に示した台24の上面をXY平面と平行に設定し、台24に固定した磁石22を、回転軸28を軸にして公転させる。特許文献1では、X軸にほぼ並行に向いたxセンサとY軸にほぼ並行に向いたyセンサで、磁石22の形成する磁界を連続測定する。
上記の機構により、図のように、左右の磁石22によって、台24上に点対称(回転軸28から見ると軸対称)の磁界を形成することができる。左側の磁石22による磁界測定値と右側の磁石22による磁界測定値とが等しい場所に磁界センサを移動させると、磁界センサを左右の磁石22の中央に位置決めできる。XY平面内でこの処理を繰り返すと高い精度で回転軸28の直上の基準点に磁界センサを位置決めできる。
図4は本発明の装置の動作原理を示す説明図である。
上記の既知の方法は、XY平面内で磁界を測定する2軸センサの位置決めに最適な方法であった。しかしながら、3軸磁界センサ18を使用し、3次元の測定空間20中で、3軸磁界センサ18に任意の傾斜を持たせて使用する場合の位置決めには必ずしも適切でない。
さらに、図1に示した磁界測定装置では、磁石22(永久磁石)の形成する磁界を測定して、3軸磁界センサ18の位置決めをする。磁石22は、市販されているフェライト等の永久磁石である。図4(a)は左右に配置した磁石22の形成する磁力線(一点鎖線で表示)を台24の側面から見た状態を示す。図4(b)は、左右に配置した磁石22の形成する磁力線を台24の上方から見た状態を示す。
実際には、あまり大型の磁石22を使用することはできない。その磁石22により形成される磁界(一点鎖線に示す)は、実際には図3に示すような台24の面に平行な均一に分布したものではない。磁力線は、磁石22から離れるほど広がって湾曲する。位置決めをする前の3軸磁界センサ18は、例えば、図4に示すような場所にある。
図5はセンサを貫く磁力線とセンサの傾きとの関係を示す説明図である。
この図は、XZ平面上の磁力線とセンサの関係を示している。(a)はA状態と表示し、傾斜したプローブ16の左側に磁石22が配置されているところを示す。3軸磁界センサ18に検出される湾曲した磁力線は、xセンサにはほぼ垂直に進入し、zセンサには小さい傾きで進入する。
一方、(b)はB状態と表示し、傾斜したプローブ16の右側に磁石22が配置されているところを示す。3軸磁界センサ18に検出される湾曲した磁力線は、xセンサには小さい傾きで進入し、zセンサにはほぼ直角に進入する。従って、各センサによる磁界測定値はいずれも、図3の場合のように、左右の磁石22の中央で等しくなることはない。
図6は、3軸磁界センサ18を貫通する磁力線の状態を示す斜視図である。
この図のように、3軸磁界センサ18は、xセンサとyセンサとzセンサとを互いにその磁界検出面を直交させて一体化したものである。この素子の寸法は微少なため、素子を貫通する磁力線は全て平行に表示した。
本発明では、図のように、各素子に対して、磁石の位置に応じてそれぞれの傾きを持って磁力線が入射するような場合でも、3軸磁界センサ18を正確に位置決めする方法を提供する。図5では、XZ平面についてのみ説明したが、XY平面でも同様のことが生じる。
ここで、図5のA状態とB状態のときの3軸磁界センサ18に入射する磁力線に着目する。図1に示した台24の上方で、回転軸28の直上に3軸磁界センサ18が位置しているものとする。このときは、磁石22がどの位置にあっても、3軸磁界センサ18と磁石22の特定の部位との距離は常に一定である。
そして、その特定の部位から発した磁力線が3軸磁界センサ18に入射するとした場合には、磁界の方向は相違しても距離が一定だから、磁力線の方向に見た磁界強度は一定である。磁界強度は磁路長と透磁率のみに依存するからである。この原理に基づいて、3軸磁界センサ18と磁石22との位置関係に関わらず、3軸磁界センサ18を、例えば、図1の場合には回転軸28の直上の任意の場所に位置決めする。
図7は本実施例による基本的な位置決め方法の説明図である。
図1に示した磁界測定装置10を使用して、3軸磁界センサ18の位置決めをする方法を順に説明する。まず、測定空間20の原点に対して特定の関係にある基準点44を設定する。ここにはもう一個の基準点46が存在するが、図の例では両者が重なっているから、図中の符号を44(46)と表示した。基準点44や46は(X=0,Y=0,Z=0)の原点でもよいし、(X=k,Y=k,Z=k)といった特定の点でもよい。図1の場合にはこれらの基準点44(46)は、台24の上方の、回転軸28の直上にある点とする。
測定空間20中に、基準点44を通る第一の直線48と、この第一の直線48と交差し同じく基準点44を通る第二の直線50とを設定する。さらに、第一の直線48上に、基準点44を挟んで等距離にある第一点52と第二点54とを設定する。同様に、第二の直線50上に、基準点46を挟んで等距離にある第三点と第四点を設定する。
図1の例では、直上に基準点を配置した回転軸28を持つ台24上に、一個の永久磁石22を固定して、台24を回転し、永久磁石22を回転軸28を中心に公転させて、永久磁石22を各点上に移動させるように支持体を構成した。この例では、支持体は台24である。このほかに、回転することのない台上に、磁石を第一点52〜第四点58に正確に位置決めする溝やピンを設ける、特許文献2に示したような支持体を採用することができる。
図1に示した支持体は、第一の直線を含む平面と第二の直線を含む平面に垂直な回転軸28を軸にして、磁石22の回転軸28に対する向きを固定したまま当該磁石を回転軸28の周囲で公転させる。これで、磁石22を第一点、第ニ点、第三点、または第四点に自由に配置できる。
図1に示した支持体により、第一点52と第二点54に、台24を回転させて同一の特性の磁石22を配置して、基準点44を挟んで点対称の磁界を形成することができる。さらに、第三点と第四点に、台24を回転させて同一の特性の磁石22を配置したとき、基準点46を挟んで点対称の磁界を形成することができる。なお、基準点44や46を挟んで、基準点に置いた鏡をみるように面対称の磁界を形成しても構わない。
次に、図7を用いて、具体的な位置決め操作を説明する。まず、図7(a)に示すように、第一点52に磁石22を配置して、3軸磁界センサ18により測定した3次元測定磁界ベクトルの絶対値を求める。次に、図7(b)に示すように、第二点54に磁石22を配置して、3軸磁界センサ18により測定した3次元測定磁界ベクトルの絶対値を求める。その両者に差がある場合に、両者が等しくなる位置に3軸磁界センサ18を移動する。これにより、図7(b)に示すように、3軸磁界センサ18は、第一点52と第二点54の中央に移動する。
今度は、図7(c)に示すように、第三点56に磁石22を配置して、3軸磁界センサ18により測定した3次元測定磁界ベクトルの絶対値を求める。次に、第四点58に磁石22を配置して、3軸磁界センサ18により測定した3次元測定磁界ベクトルの絶対値を求める。その両者に差がある場合には、両者が等しくなる位置に3軸磁界センサ18を移動する。これにより、3軸磁界センサ18は、第三点56と第四点56の中央に移動する。
以上の手順で、基準点44(46)を通り、第一の直線48と第二の直線50とを含む平面に垂直な軸上に、3軸磁界センサ18を位置決めすることができる。当初から3軸磁界センサ18が第一の直線48と第二の直線50とを含む平面上にあれば、両者の交点上に3軸磁界センサ18を位置決めすることができる。
なお、第一点52から第四点58の各点に任意の順に磁石22を配置して、3軸磁界センサ18により測定した3次元測定磁界ベクトルの絶対値を求める処理を先に実行し、その後、上記のように3次元測定磁界ベクトルの絶対値を比較して3軸磁界センサ18を移動させてもよい。以上の方法により、3軸磁界センサ18を自由に傾斜させた状態で、測定空間20中の一定の場所に、3軸磁界センサ18を位置決めできる。
図7において、第一点52に配置した磁石22と第二点54に配置した磁石22の形成する磁界が基準点44に対して正確に面対称(鏡像関係)にある場合には、図7(a)(b)の操作で3軸磁界センサ18を第二の直線50を含む面上に移動できる。しかしながら、磁界が基準点44に対して点対称であっても、面対称でない場合がある。
図8は、磁石の固定状態を説明する説明図である。
図8(a)のように、左右に配置された磁石22が、第一基準点44を通り第一の直線48に垂直な面を挟んで、正確に面対称の磁界を形成しているものとする。この場合には、第一の直線48の中点に第一基準点44があって、この第一基準点44を通り第一の直線48に垂直な面上のどこでも、3軸磁界センサ18により測定した3次元測定磁界ベクトルの絶対値が左右同一になる。
ところが、図8(b)のように、磁石22の向きが若干狂っていると、磁界が基準点44に対して点対称であっても、面対称でない。このとき、3軸磁界センサ18により測定した3次元測定磁界ベクトルの絶対値が左右同一になるのは、第一基準点44を通り、若干傾斜した面上になる。
このような場合には、一回で3軸磁界センサ18を第二の直線50を通る面上に移動できないから、第一点52と第二点54に磁石22を配置して3軸磁界センサ18を移動する工程と、第三点56と第四点58に磁石22を配置して3軸磁界センサ18を移動する工程とを、交互に繰り返す。少なくとも2回以上繰り返せば、3軸磁界センサ18を、少しずつ、基準点44を通過する回転軸28(図1)上の一定の位置に近付けて、最終的に目的の位置に移動できる。
図9は、本発明の変形例の説明図である。
図7の実施例では、3軸磁界センサ18を台24の面に平行な面上で、上記の基準点44(46)の上方に移動させた。これで、3軸磁界センサ18を測定空間20中の特定のX座標値とY座標値上に位置決めできる。その後、同じ操作を台24の面に垂直な面上で行えば、3軸磁界センサ18を測定空間20中の特定のZ座標値に位置決めできる。
例えば、図9の(a)に示すように、磁石22を測定空間20中でZ軸方向に移動させて、第五点62に配置する。第一点52に磁石22を配置して、3軸磁界センサ18により測定した3次元測定磁界ベクトルの絶対値を求め、第五点62に磁石22を配置して、3軸磁界センサ18により測定した3次元測定磁界ベクトルの絶対値を求める。その両者に差がある場合には、両者が等しくなる位置に3軸磁界センサ18を移動する。これにより、3軸磁界センサ18のZ座標値が、第一点52と第五点62の中央の高さになるまで移動できる。3軸磁界センサ18がどのように傾いていても構わない。
図9(b)は、実施例1で説明したように、第一の直線48と第二の直線50とが同一平面上にあり、第一の直線48と第二の直線50の交点を、第一基準点44(第二基準点46)とした状態を示す。図の矢印方向に3軸磁界センサ18を移動させて、第一の直線48と第二の直線50とを含む平面に垂直で、第一基準点44(第二基準点46)を通る直線上に、3軸磁界センサ18を位置決めできる。当初から3軸磁界センサ18が第一の直線48と第二の直線50とを含む平面上にあれば、両者の交点上に3軸磁界センサ18を位置決めすることができる。
図9(c)は、第一の直線48と第二の直線50とが別の平面上にある例を示す。
図において、第一の直線48の両端に配置する磁石と、第二の直線50の両端に配置する磁石とは、別のもので構わない。この場合でも、図7で説明したのと同様の操作をすると、3軸磁界センサ18を第一基準点44と第二基準点46を通る直線60上に移動させることができる。
このように、第一の直線48と第二の直線50とは必ずしも直交している必要はないが、その場合には、実施例2の方法により、繰り返し操作により、少しずつ3軸磁界センサ18を移動させて、高精度に3軸磁界センサを位置決めするとよい。また、本発明によれば、例えば、磁石22が台24に埋め込まれていて、台24の面に対して平行な磁力線が存在しないような場合でも、正確に位置決めをすることができる。
以上の実施例では、図9(a)に示すように、3軸磁界センサ18のxyz軸と測定空間20のXYZ軸とがいずれも一致せず、磁石22がどの方向にも均一で平行な磁界を形成しないという状態でも、位置決めができる方法を説明した。第一の直線48の方向も第二の直線50の方向も任意で、互いに交差していればよく、両者が同一平面内に無くてもよい。
そして、3軸磁界センサ18により測定した3次元測定磁界ベクトルの絶対値を比較して位置合わせをした。しかしながら、上記のように磁石22を回転軸28(図9では直線60)を中心に公転させて、第一の直線48上に直線60に対して軸対称の位置に磁石を配置する場合には、直線60と第一の直線48を含む面を挟んで両側に対称の磁界が形成されるから、直線60と第一の直線48を含む面と交差する磁界成分を無視することができる。
即ち、3次元ベクトルでなくて、2次元ベクトルの絶対値を比較しても、同様の結果が得られる。例えば、xセンサとyセンサとzセンサの測定値を取得して、これらを比較し、値が大きい2個のセンサの測定値を選択して、両者の絶対値を計算する。例えば、磁石を第一点に配置して、xセンサの測定値とzセンサの測定値がyセンサの測定値よりも大きいときは、xセンサの測定値とzセンサの測定値から、2次元ベクトルの絶対値を求める。
この場合には、磁石を第二点に配置したときにも、xセンサの測定値とzセンサの測定値から、2次元ベクトルの絶対値を求める。そして、他の実施例と同様に絶対値を比較ながら3軸磁界センサ18を移動する。値が大きい測定値を選択するのは相対的に誤差が少なくなるためである。
このように、2個のセンサの測定値だけを利用して絶対値を計算すると計算が単純化され、誤差も減少するという効果がある。なお、取得した測定値を実際に比較しなくても、値が大きい2個のセンサが予め判明していれば、自動的に該当する測定値を選択するとよい。
10 磁界測定装置
12 対象物
14 移動機構
16 プローブ
18 3軸磁界センサ
20 測定空間
22 磁石
24 台
28 回転軸
30 xセンサ
32 yセンサ
34 zセンサ
36 絶対値演算部
38 記憶部
40 比較部
42 駆動部
44 第一基準点
46 第二基準点
48 第一の直線
50 第二の直線
52 第一点
54 第二点
56 第三点
58 第四点
60 直線
62 第五点

Claims (6)

  1. 対象物の発生する磁界を測定するための測定空間を設け、
    この測定空間中で互いに直交する3軸方向の磁界を測定できる3軸磁界センサを、前記測定空間中に支持して任意の方向に移動させる移動機構を設け、
    前記測定空間中に前記測定空間の原点に対して特定の関係にある第一基準点を設定し、
    前記第一基準点を通る第一の直線上に、前記第一基準点を挟んで等距離にある第一点と第二点を設定し、前記第一点と第二点に同一の特性の磁石を配置したとき、前記第一基準点を挟んで点対称または面対称の磁界を形成するように前記磁石を配置する支持体を設けるとともに、
    前記測定空間中に前記測定空間の原点に対して特定の関係にある前記第一基準点とは異なる第二基準点を設定し、
    前記第一の直線と交差し前記第二基準点を通る第二の直線上に、前記第二基準点を挟んで等距離にある第三点と第四点を設定し、前記第三点と第四点に同一の特性の磁石を配置したとき、前記第二基準点を挟んで点対称または面対称の磁界を形成するように前記磁石を配置する支持体を設け、
    前記第一点に磁石を配置して、前記3軸磁界センサにより測定した3次元測定磁界ベクトルの絶対値と、前記第二点に磁石を配置して、前記3軸磁界センサにより測定した3次元測定磁界ベクトルの絶対値とが等しくなる位置に前記3軸磁界センサを移動し、
    前記第三点に磁石を配置して、前記3軸磁界センサにより測定した3次元測定磁界ベクトルの絶対値と、前記第四点に磁石を配置して、前記3軸磁界センサにより測定した3次元測定磁界ベクトルの絶対値とが等しくなる位置に前記3軸磁界センサを移動して、
    前記第一基準点と前記第二基準点を通る直線上に、前記3軸磁界センサを位置決めすることを特徴とする磁界測定装置の3軸磁界センサを位置決めする方法。
  2. 請求項1に記載の磁界測定装置の3軸磁界センサを位置決めする方法において、
    前記第一点と前記第二点に磁石を配置して前記測定をして前記3軸磁界センサを移動する工程と、前記第三点と前記第四点に磁石を配置して前記測定をして前記3軸磁界センサを移動する工程とを、交互に少なくとも2回以上繰り返すことを特徴とする磁界測定装置の3軸磁界センサを位置決めする方法。
  3. 請求項1または2に記載の磁界測定装置の3軸磁界センサを位置決めする方法において、
    前記第一の直線と前記第二の直線とが同一平面上にあり、前記第一の直線と前記第二の直線の交点を、前記第一基準点および第二基準点とし、前記平面に垂直で前記第一基準点および第二基準点を通る線上に3軸磁界センサを位置決めすることを特徴とする磁界測定装置の3軸磁界センサを位置決めする方法。
  4. 請求項1乃至3のいずれかに記載の磁界測定装置の3軸磁界センサを位置決めする方法において、
    前記支持体は、前記第一の直線を含む平面と前記第二の直線を含む平面に垂直な軸を回転軸にして、前記磁石の前記回転軸に対する向きを固定したまま当該磁石を前記回転軸の周囲で公転させて、前記磁石を前記第一点、前記第ニ点、前記第三点、または前記第四点に配置する回転体からなることを特徴とする磁界測定装置の3軸磁界センサを前記回転軸上に位置決めする方法。
  5. 請求項1乃至3のいずれかに記載の磁界測定装置の3軸磁界センサを位置決めする方法において、
    3軸磁界センサを構成するxセンサとyセンサとzセンサの測定値を取得して、これらのうち値が大きい2個のセンサの測定値を選択して、3次元測定磁界ベクトルの絶対値を計算する代わりに、2個のセンサの測定値の絶対値を計算して比較することを特徴とする磁界測定装置の3軸磁界センサを位置決めする方法。
  6. 対象物の発生する磁界を測定するための測定空間を設け、
    この測定空間中で互いに直交する3軸方向の磁界を測定できる3軸磁界センサを、前記測定空間中に支持して任意の方向に移動させる移動機構を設け、
    前記測定空間中に前記測定空間の原点に対して特定の関係にある第一基準点を設定し、
    前記第一基準点を通る第一の直線上に、前記第一基準点を挟んで等距離にある第一点と第二点を設定し、前記第一点と第二点に同一の特性の磁石を配置したとき、前記第一基準点を挟んで点対称または面対称の磁界を形成するように前記磁石を配置する支持体を設けるとともに、
    前記測定空間中に前記測定空間の原点に対して特定の関係にある前記第一基準点とは異なる第二基準点を設定し、
    前記第一の直線と交差し前記第二基準点を通る第二の直線上に、前記第二基準点を挟んで等距離にある第三点と第四点を設定し、前記第三点と第四点に同一の特性の磁石を配置したとき、前記第二基準点を挟んで点対称または面対称の磁界を形成するように前記磁石を配置する支持体を設け、
    前記支持体が、前記第一点と前記第二点と前記第三点と前記第四点に、それぞれ磁石を配置したときに、前記3軸磁界センサにより測定した3次元測定磁界ベクトルのそれぞれの絶対値を求める演算部と、
    前記第一点に磁石を配置したとき求めた絶対値と前記第二点に磁石を配置したとき求めた絶対値とが等しくなる位置に前記3軸磁界センサを移動するように前記移動機構を制御し、前記第三点に磁石を配置したとき求めた絶対値と前記第四点に磁石を配置したとき求めた絶対値とが等しくなる位置に前記3軸磁界センサを移動するように前記移動機構を制御して、前記第一基準点と前記第二基準点を通る直線上に、前記3軸磁界センサを位置決めする駆動部を備えたことを特徴とする磁界測定装置。
JP2012006012A 2012-01-16 2012-01-16 磁界測定装置とその3軸磁界センサを位置決めする方法 Pending JP2013145193A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012006012A JP2013145193A (ja) 2012-01-16 2012-01-16 磁界測定装置とその3軸磁界センサを位置決めする方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012006012A JP2013145193A (ja) 2012-01-16 2012-01-16 磁界測定装置とその3軸磁界センサを位置決めする方法

Publications (1)

Publication Number Publication Date
JP2013145193A true JP2013145193A (ja) 2013-07-25

Family

ID=49041047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006012A Pending JP2013145193A (ja) 2012-01-16 2012-01-16 磁界測定装置とその3軸磁界センサを位置決めする方法

Country Status (1)

Country Link
JP (1) JP2013145193A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090255A (ja) * 2014-10-30 2016-05-23 株式会社ディー・エム・ティー 磁石解析装置及び磁石解析方法
CN109342780A (zh) * 2018-11-17 2019-02-15 中国科学院理化技术研究所 探头支撑夹持机构及磁体空间的磁场测量装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286723A (ja) * 2007-05-21 2008-11-27 Ims:Kk 磁気測定装置と磁気測定方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286723A (ja) * 2007-05-21 2008-11-27 Ims:Kk 磁気測定装置と磁気測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090255A (ja) * 2014-10-30 2016-05-23 株式会社ディー・エム・ティー 磁石解析装置及び磁石解析方法
CN109342780A (zh) * 2018-11-17 2019-02-15 中国科学院理化技术研究所 探头支撑夹持机构及磁体空间的磁场测量装置

Similar Documents

Publication Publication Date Title
CN109813336B (zh) 惯性测量单元标定方法
JP2008286723A (ja) 磁気測定装置と磁気測定方法
EP3588011B1 (en) Position sensor system and method, robust against disturbance field
CN107407557B (zh) 附接至坐标测量装置的可移动部分上的旋转装置的校准
JP5571007B2 (ja) 球体形状測定装置
JP6234619B2 (ja) 磁界測定方法及び磁界測定装置
JP2013036941A (ja) 磁気センサの検査装置及び検査方法
WO2018235481A1 (ja) 磁気式の方位・位置測定装置
JP2006300880A (ja) 傾斜センサおよびこれを用いた方位計測装置
JP2006030200A (ja) 配向自在な探触子
CN108732519B (zh) 无线充电电磁场三维磁测量方法及装置
JP2009139252A (ja) ポジションセンサ
JP2011059091A (ja) 室内位置検出装置
JP2013145193A (ja) 磁界測定装置とその3軸磁界センサを位置決めする方法
Wang et al. Research on torque analytical model of permanent-magnet spherical motor based on torque map by Lorentz force method
JP5688842B2 (ja) 磁界測定調整装置
JP5425671B2 (ja) 磁界検知装置
JP2011185868A (ja) 方位検知装置
JP4484198B2 (ja) 磁気ベクトル測定装置
JP5498209B2 (ja) 磁界検知装置
JP5603900B2 (ja) 磁界測定装置
TW201121700A (en) Measurement device for multi-axis machine tool.
JP2009168724A (ja) 磁界測定装置と磁界測定値の補正方法
JP6651352B2 (ja) 測定装置
CN216900717U (zh) 一种磁电测量装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151125