JP2013144545A - 航空エンジン - Google Patents

航空エンジン Download PDF

Info

Publication number
JP2013144545A
JP2013144545A JP2013056075A JP2013056075A JP2013144545A JP 2013144545 A JP2013144545 A JP 2013144545A JP 2013056075 A JP2013056075 A JP 2013056075A JP 2013056075 A JP2013056075 A JP 2013056075A JP 2013144545 A JP2013144545 A JP 2013144545A
Authority
JP
Japan
Prior art keywords
propeller
engine
blades
phase
tip speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013056075A
Other languages
English (en)
Inventor
Anthony Brian Parry
パリー,アンソニー・ブライアン
Nicholas Howarth
ハワース,ニコラス
Mark David Taylor
テイラー,マーク・デイヴィッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Publication of JP2013144545A publication Critical patent/JP2013144545A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/48Units of two or more coaxial propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/50Phase synchronisation between multiple propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/24Non-positive-displacement machines or engines, e.g. steam turbines characterised by counter-rotating rotors subjected to same working fluid stream without intermediate stator blades or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/324Application in turbines in gas turbines to drive unshrouded, low solidity propeller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/325Application in turbines in gas turbines to drive unshrouded, high solidity propeller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Wind Motors (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】前後のプロペラを持つ二重反転プロペラエンジンについて、プロペラが発生する騒音全体を減少するような作動方法を提供する。
【解決手段】エンジン10は、少なくとも離陸段階、上昇段階、巡行段階、及び着陸進入段階に作動し、巡行段階において、エンジンは、ほぼ一定のプロペラ先端速度で作動する。プロペラ23、24の少なくとも一方の先端速度を、少なくとも離陸段階、上昇段階、又は着陸進入段階のうちのひとつの段階に、巡行段階の先端速度よりも大きくし、プロペラが発生する騒音全体を減少するようにエンジンを作動する工程を含む。
【選択図】図1

Description

本発明は、特に二重反転プロペラアレイを持つガスタービンエンジンであって、騒音を低減するため、これらのプロペラアレイのブレード数が異なり、プロペラアレイの間が特定の間隔のガスタービンエンジンに関する。本発明は、更に、二重反転プロペラエンジンを騒音を低減するように作動する方法に関する。
航空機を推進するためのオープンロータ型タービンエンジンの一つの欠点は、ダクト内で音響的処理が行われるダクテッド(ダクト付きの)ファン型ガスタービンエンジンと比較して騒音がひどいということである。
米国特許第4,883,240号には、周波数変調搬送波の形態の騒音を発生する航空機用二重反転プロペラ対が開示されている。周波数変調により、設計者は、例えば、音響エネルギの大部分を非可聴周波数範囲に入れるため、騒音のエネルギスペクトルを操作できる。これは、(a)N1枚のブレードを持つ第1プロペラ、及び(b)N2枚のブレードを持つ第2プロペラを含む二重反転プロペラによって達成される。ここで、N1及びN2は、連続したブレードの交差部分が互いに隣接しないように選択される。N1及びN2は、ブレード数が異なることを示し、2だけ異なり、共通の分母を持たない。更に、第1プロペラは、後側の第2プロペラよりもブレード数が多い。一般的には第1プロペラのブレード数が多ければ多い程、数が多いけれども小さい後流渦を切る第2プロペラが発生する騒音が少なくなる。しかしながら重量と空力学的性能必要条件との間で妥協が考えられる。
この二重反転ブレードアレイのこの構成が発生する騒音は、他の構成よりも小さいが、今日の航空機の騒音制限は益々厳しく、及び従って、騒音を更に低減することが必要とされている。
米国特許第4,883,240号
従って、本発明の目的は、所与の出力定格に対して発生する騒音が小さい、航空機用二重反転プロペラ対を持つガスタービンエンジンを提供することである。
本発明によれば、前後のプロペラを持つ二重反転プロペラエンジンの作動方法であって、エンジンは、少なくとも離陸段階、上昇段階、巡行段階、及び着陸進入段階に作動し、巡行中、エンジンは、ほぼ一定のプロペラ先端速度で作動する、エンジン作動方法において、
プロペラのうちの少なくとも一方のプロペラの先端速度を、離陸段階、上昇段階、又は着陸進入段階のうちの少なくともひとつの段階おいて、巡行中の先端速度よりも大きくする工程を含む、ことを特徴とする方法が提供される。
好ましくは、両プロペラの先端速度は、巡行段階の先端速度よりも高い。
有利には、離陸段階、上昇段階、又は着陸進入段階の少なくとも一つの段階でのプロペラの先端速度は、巡行段階の先端速度よりも少なくとも10%高い。
好ましくは、離陸段階又は着陸進入段階のうちの少なくとも一方の段階でのプロペラの先端速度は、巡行段階の先端速度よりも20%±5%高い。
好ましくは、プロペラは可変ピッチブレードを含み、前記方法は、ブレードを、巡行時のピッチから着陸進入時のピッチまで閉鎖方向に移動する工程を含む。
好ましくは、プロペラは可変ピッチブレードを含み、前記方法は、ブレードを、離陸時のピッチから巡行時のピッチまで、開放方向に移動する工程を含む。
本発明の別の特徴では、前後のプロペラを持つ二重反転プロペラエンジンであって、前プロペラは少なくとも9枚のブレードを有し(Nf=9)、直径がDfであり、後プロペラの最大ブレード数Nrは、Nfから少なくとも3を減じた数であり、前後のプロペラは軸線方向隙間xによって離間されている、二重反転プロペラエンジンにおいて、
比x/Dfは0.15乃至0.4である、二重反転プロペラエンジンが提供される。
好ましくは、前プロペラは12枚のブレードを有し、後プロペラは9枚のブレードを有する。
別の態様では、前プロペラは12枚のブレードを有し、後プロペラは7枚のブレードを有する。
別の態様では、前プロペラは12枚のブレードを有し、後プロペラは5枚のブレードを有する。
有利には、前プロペラの直径は後プロペラよりも大きい。好ましくは、後プロペラの直径は、前プロペラよりも0.05Df乃至0.2Df小さい。
本発明を添付図面を参照して例として更に詳細に説明する。
図1は、本発明によるプロペラの二重反転対を持つガスタービンエンジンの概略断面図である。 図2は、ロータ単独騒音を示すプロペラのブレードのアレイの概略図である。 図3は、迅速的に減衰する空力学的ポテンシャル流れ場を示すプロペラのブレードのアレイの概略図である。 図4は、代表的なプロペラブレードの揚力−抗力曲線を示すグラフである。 図5は、可変ピッチブレードの概略端面図である。
図1を参照すると、ツインスプール付き二重反転プロペラガスタービンエンジンの全体に参照番号10が付してある。このエンジン10は、主回転軸線9を有する。エンジン10は、コアエンジン11を備えており、このコアエンジン11は、軸線位置流れ方向で、空気取入口12、中圧コンプレッサ14(IPC)、高圧コンプレッサ15(HPC)、燃焼器16、高圧タービン17(HPT)、低圧タービン18(IPT)、自由出力タービン19(LPT)、及びコア排気ノズル20を有する。ナセル21が、コアエンジン11をほぼ取り囲んでおり、空気取入口12及びノズル20と、びコア排気ダクト22を形成している。エンジン10は、更に、自由出力タービン19に取り付けられており且つ自由出力タービン19によって駆動される二つの二重反転プロペラ23、24を備えている。自由出力タービン19は、二重反転ブレードアレイ(所定間隔で整列された一群のブレード)25と、二重反転ブレードアレイ(所定間隔で整列された一群のブレード)26を備えている。
ガスタービンエンジン10は従来の方法で作動し、空気取入口12に進入した空気が、中圧コンプレッサ14(IPC)によって圧縮され、高圧コンプレッサ15(HPC)に差し向けられ、ここで更に圧縮される。高圧コンプレッサ15を出る圧縮された空気は、燃焼器16に差し向けられ、ここで燃料と混合され、混合気の燃焼が行われる。結果的に発生した高温の燃焼生成物は、膨張し、これによって、ノズル20を通して排出される前に、高圧タービン17、低圧タービン18、自由出力タービン19を駆動し、推力を提供する。高圧タービン17、低圧タービン18、自由出力タービン19は、夫々、高圧コンプレッサ15及び中圧コンプレッサ14と、プロペラ23、24を、適当な相互連結シャフトによって駆動する。プロペラ23、24は、通常は、推力の大部分を提供する。
プロペラアレイ23、24は、夫々の前ピッチ変化軸線23pと後ピッチ変化軸線24pとの間の軸線方向間隔xだけ離間されている。通常は、プロペラアレイ23、24の直径はほぼ同じであるが、本発明の範囲内にある限り、直径が異なっていてもよい。
好ましい実施例では、前プロペラ23は12枚のブレードを持つように設計されており、後プロペラ24は9枚のブレードを持つように設計されている。前後のピッチ変化軸線23pと24pとの間の軸線方向間隔xは、前プロペラの直径Dfの1/4である(即ち、x=Df/4)。
主騒音源は、各ブレードアレイ23、24が発生するロータ単独音30(図2参照)であり、追加の騒音源は、各プロペラアレイ23、24の周囲の空力学的流れ場間の相互作用によって発生する音32である。流れ場32は、「ポテンシャル」成分及び粘性成分の両方を含む。本発明は、離陸時、上昇時、及び/又は着陸進入時にブレードの先端23T、24Tの速度を変化させ、ブレードアレイ23、24の抗力を最適(最小)にし、かくして各ブレードからの後流34の強さを減少し、これによって、後流34が下流側ブレード24及び周囲との相互作用によって発生する騒音を、減少させる。
追加の騒音源(音32)は、前後のプロペラアレイ23、24の両方のブレードの数を適当に選択することによって、軸線方向隙間x(図1参照)を適当に選択することによって、及びブレード先端速度を適当に選択することによって、制御される。ポテンシャル場32(プロペラアレイ23、24のいずれかからの)の強さは、数1に示すように変化する。
Figure 2013144545
ここで、Bはブレード数であり、Δxは、好ましい実施例における二つの列間の軸線方向距離の変化であり、Dfは前プロペラ23の直径である。この関係は、ブレード数及び間隔の変化による好ましい実施例からの適当な変化を決定するのに使用できる。更に、ロータ単独騒音の(最も)重要な基本振動は、ブレード数及び先端に関して数2に示すように変化する。
Figure 2013144545
ここで、Mは、ブレード先端の回転マッハ数である。上掲の数1及び数2における表現を使用することによって、ブレード数、ブレード先端速度、及びブレード間軸線方向隙間xを変化させて、ポテンシャル場相互作用及び個々のロータブレードの両方からの騒音を、前後のブレードアレイ23、24間の後流相互作用によって発生する騒音のレベルよりも遥かに低いレベルまで減少できる。
ブレード数が増大すると、各プロペラ(前プロペラ及び後プロペラの両方)からの「ロータ単独」騒音(即ち、各列が、他方の列から離して作動させた場合でも発生する騒音)が大幅に減少する。ブレード数が適当である(比較的多い)と、各プロペラの周囲の空力学的ポテンシャル流れ場の強さが減少し、このことが、前後のアレイ23、24間の本発明による適当な(増大した)軸線方向隙間xとあいまって、いずれかのブレードアレイと他方のブレードアレイの「ポテンシャル場」との間の空力学的相互作用によって発生する騒音を、残りの(大きな)騒音源に対して大幅に減少する。これは、後アレイ24と、前アレイ23から発生した粘性/渦様後流34との間の相互作用によって発生する。
通常の設計実務では、プロペラは、特定の先端速度について設計されており、飛行エンベロープに亘って実質的に同じ先端速度を維持するということは理解されるべきである。ブレードのピッチを変更することによって、航空機の飛行速度が変化する飛行サイクル(flight cycle)の異なる区分に亘り、荷重(推力)を、必要とされるように変化する。
本出願人は、各アレイ23、24のブレード数を選択することによって、後流/後アレイ24相互作用の騒音レベル及び遠位場騒音指向性(far-field noise directivity)を
或る程度制御できるということを発見した。前後のアレイ23、24のブレード数が等しい又はほぼ等しい二重反転プロペラは、強い指向性を発生し、大きな騒音を前方及び後方の両方に直接発生する。各アレイのブレード数が2枚又はそれ以上異なるプロペラは、ピーク騒音レベルが低下し、前方から後方への指向性パターンが滑らかになる。前プロペラ23の12枚のブレード及び後プロペラ24の9枚のブレードの組み合わせは、高い前後のブレード数を維持し、3枚のブレード数の差により所要の滑らかな指向性を発生できる。前アレイ23のブレード数が多ければ多い程、粘性後流34が比較的小さくなり、下流方向で比較的迅速に減衰する。
所要のブレード数及び軸線方向隙間xを選択した後に唯一残る大きな騒音源は、後流34が下流アレイ24と相互作用することによる。この騒音源は、離陸時、上昇段階、及び着陸進入状態時のブレード先端速度が(空力学的に)最適である場合に、大幅に減少できる。通常の実務では、各プロペラは、巡行状態(高空を高速で前進する)での先端速度が適当であるように設計されており、この場合、揚抗比(lift-drag ratio)C/C
最大になるようにブレード断面を設計する。ここで、Cは断面揚力係数であり、Cは断面抗力係数である(図4参照)。通常の設計実務におけるようにブレード先端速度を離陸時(又は着陸進入時)に維持した場合、プロペラブレード断面揚力係数が(巡行状態での係数に対して)増大し、その結果、プロペラブレード断面抗力係数が大幅(比例以上)に増大する。抗力の増大は性能に対してそれ程大きい作用を及ぼさない(全飛行サイクルの小さな部分に亘ってしか発生しないため)けれども、この増大は騒音については大きい作用を及ぼす。これは、プロペラブレード列と任意の下流ブレード列又は静的構造との間の空力学的相互作用の「後流」部分の強さに影響を及ぼすためである。静的構造は、例えばエンジンの任意の静的部分、又は後部ブレード列の下流のエアフレーム(airframe)である。これには、パイロンや翼等のエーロホイル区分が含まれるが、これらに限定されない。
かくして、離陸時、上昇時、及び/又は着陸進入時の、前プロペラ23及び/又は後プロペラ24のプロペラ先端速度を、巡行時の先端速度に対して増大することによって、直感に反するけれども、騒音(又は、少なくとも全騒音の後流相互作用成分)が減少することになる。これは、後流強度が減少するためであり、また、後流34と下流ブレードアレイ24又は下流の静的構造との間の相互作用によって結果的に発生する騒音に及ぼされる後流強度の減少の影響が、比較的高い先端速度が騒音に及ぼす効果を相殺する以上であるためである。
上文中に説明した理論的根拠は、特に、前アレイ23のブレード数が11枚乃至15枚であり且つ後アレイ24のブレード数が5枚乃至10枚のプロペラに適用されるが、これに限定されない。好ましくは、ブレード数の差は、少なくとも3枚であるが、差がこれよりも大きくても利点が提供される。軸線方向隙間x/D=0.15乃至x/D=0.4の範囲の二重反転プロペラにも適用される。前アレイのブレード数及び後アレイのブレード数と、軸線方向隙間の適切な選択を、上掲の数1及び数2から、データに対して決定できる。
前プロペラアレイ23及び後プロペラアレイ24についての二つの他の特定のブレード数は、第1に12枚及び5枚であり、第2に12枚及び7枚の夫々である。これらの二つのブレード数組み合わせは、前記12枚及び9枚形体の利点の多くを提供し(ロータ単独騒音成分、ポテンシャル場相互作用によって発生した騒音、及び先端速度の上昇による後流相互作用騒音を減少するのに十分に大きいブレード数)、前プロペラブレードアレイ23と後プロペラブレードアレイ24との間の同時の及び/又は隣接した相互作用がないようにする。
かくして、本発明は、二重反転プロペラエンジンの作動方法に関するものであって、巡行段階にエンジンがほぼ一定のプロペラ先端速度で作動し、離陸段階、上昇段階、又は着陸進入段階に、プロペラアレイ23、24の一方又は両方の先端速度を、巡行段階の速度よりも高い所定の速度まで上昇する、二重反転プロペラエンジンの作動方法に関する。本出願人は、離陸時、上昇時、又は着陸進入時の先端速度が、巡行時の先端速度よりも大きい場合に、騒音減少の利点が明らかであり、離陸時、上昇時、又は着陸進入時の先端速度が、巡行時の先端速度よりも少なくとも10%大きい場合に、騒音減少の利点が特に顕著になり、先端速度が巡行時よりも20%±5%であるときに最適の騒音減少が得られるものと考える。
プロペラアレイ23、24のいずれか又は両方のブレードの先端速度を上昇する際、発生する推力の量を調節するのが望ましく、エンジン及びその作動に可変ピッチブレードが含まれるということは当業者には明らかであるべきである。図5を参照すると、ブレード23、24はベアリングハブ36に取り付けられている。このベアリングハブが回転することによりピッチ角θを変えることができる。これらのブレードは、推力T及び揚力Lを発生する。離陸時、上昇時、又は着陸進入時の先端速度を、巡行時の設計先端速度よりも大きくする場合には、ブレードを閉鎖方向に回転し、先端速度の増大を行わない設計で必要とされるよりも「ピッチを小さくする」。ブレードの揚力係数が或る程度減少すること(揚力自体を変化させる必要はない)に伴ったブレード速度の上昇によってブレードの抗力が大幅に減少する。
しかしながら、先端速度の上昇及びブレードピッチの適当な変化の組み合わせを使用し、プロペラがその揚力及び推力の要件を確実に満たすようにする。
コミュニティ騒音(community noise)の減少に対する変形例として、本発明によるエ
ンジンを、所与の受容可能な騒音レベルでの作動よりも高い性能レベルで作動させてもよい。追加の利点は、関連した航空機が更に高い高度に更に迅速に達することができ、従って、地上で知覚される騒音レベルを減少するということである。
本発明を、ほぼ同じ直径を持つ前プロペラアレイ23及び後プロペラアレイ24に関して説明し且つ図示したが、これらのプロペラアレイ23、24のいずれかの直径が他方のプロペラアレイよりも大きくてもよい。詳細には、後プロペラアレイ24は、前プロペラアレイ23よりも直径が小さいように設計されている。これは、図1において、破線24T’及びプロペラ直径DR’でわかる。特定の強い渦又は後流が、前プロペラブレードの半径方向外先端23で発生し、ここから離脱するということは理解されよう。先端が発生したこの渦を下流にある後プロペラアレイ24が切り裂くことによって、強い騒音源が発生する。かくして、後プロペラアレイ24を、先端が発生した渦又は後流を部分的に又は完全に切らないように設計することにより、騒音を大幅に減少する。
後方プロペラアレイ24の直径の減少量は、渦又は後流の強さ及び大きさと、プロペラアレイ23、24間の距離とで決まるということは理解されるべきである。更に、上流側のプロペラアレイ23のブレードの特にその先端の形体と、各ブレードのピッチとにより、渦又は後流の強さ及び大きさが決まる。更に、エンジンの作動条件及び航空機の飛行モードは、全て、先端での渦又は後流の発生の要因である。一つの例示の実施例として、前後のプロペラアレイ23、24は、0.15Df乃至0.4Dfの軸線方向隙間xによって離間されており、後プロペラアレイ24の直径は、0.5Df乃至0.2Dfの範囲で減少してあってもよい。
本発明をガスタービンエンジンを参照して説明したが、本発明は、二重反転プロペラアレイを駆動できるディーゼルエンジン、ガソリンエンジン、燃料電池、又は他のエンジンで実施してもよい。
9 主回転軸線
10 ツインスプールド二重反転プロペラガスタービンエンジン
11 コアエンジン
12 空気取入口
14 中圧コンプレッサ(IPC)
15 高圧コンプレッサ(HPC)
16 燃焼器
17 高圧タービン(HPT)
18 低圧タービン(IPT)
19 自由出力タービン(LPT)
20 コア排気ノズル
21 ナセル
22 コア排気ダクト
23、24 二重反転プロペラアレイ
25、26 二重反転ブレードアレイ
本発明をガスタービンエンジンを参照して説明したが、本発明は、二重反転プロペラアレイを駆動できるディーゼルエンジン、ガソリンエンジン、燃料電池、又は他のエンジンで実施してもよい。
本願発明は、次のように構成しても良い。
[形態1]
前後のプロペラ(23、24)を持つ二重反転プロペラエンジンの作動方法であって、
前記エンジンは、少なくとも離陸段階、上昇段階、巡行段階、及び着陸進入段階に作動し、巡行段階、エンジンはほぼ一定のプロペラ先端速度で作動する、エンジン作動方法において、
前記プロペラのうちの少なくとも一方のプロペラの先端速度を、離陸段階、上昇段階、又は着陸進入段階のうちの少なくとも一つの段階の間、巡行段階の先端速度よりも大きくする工程を含む、ことを特徴とする方法。
[形態2]
形態1に記載の方法において、
両プロペラの前記先端速度は、巡行段階の先端速度よりも大きい、方法。
[形態3]
形態1又は2に記載の方法において、
離陸段階、上昇段階、又は着陸進入段階のうちの少なくとも一つの段階での前記プロペラの先端速度が、巡行段階の先端速度よりも少なくとも10%大きい、方法。
[形態4]
形態1又は2に記載の方法において、
離陸段階又は着陸進入段階のうちの少なくとも一方の段階での前記プロペラの先端速度が、巡行段階の先端速度よりも20%±5%大きい、方法。
[形態5]
形態1乃至4のうちのいずれか一項に記載の方法において、
前記プロペラは、可変ピッチブレードを含み、
前記方法は、前記ブレードを、巡行時のピッチから着陸進入時のピッチまで閉鎖方向に移動する工程を含む、方法。
[形態6]
形態1乃至5のうちのいずれか一項に記載の方法において、
前記プロペラは可変ピッチブレードを含み、
前記方法は、前記ブレードを、離陸時のピッチから巡行時のピッチまで開放方向に移動する工程を含む、方法。
[形態7]
前後のプロペラ(23、24)を持つ二重反転プロペラエンジンであって、
前プロペラ(23)は少なくとも9枚のブレードを有し(Nf=9)、直径がDfであり、
後プロペラ(24)の最大ブレード数Nrは、Nfから少なくとも3を減じた数であり、
前記前後のプロペラ(23、24)は軸線方向隙間xによって離間されている、二重反転プロペラエンジンにおいて、
比x/Dfは0.15乃至0.4である、二重反転プロペラエンジン。
[形態8]
形態7に記載の二重反転プロペラエンジンにおいて、
前記前プロペラ(23)は12枚のブレードを有し、前記後プロペラ(24)は9枚のブレードを有する、二重反転プロペラエンジン。
[形態9]
形態8に記載の二重反転プロペラエンジンにおいて、
前記前プロペラ(23)は12枚のブレードを有し、前記後プロペラ(24)は7枚のブレードを有する、二重反転プロペラエンジン。
[形態10]
形態8に記載の二重反転プロペラエンジンにおいて、
前記前プロペラ(23)は12枚のブレードを有し、前記後プロペラ(24)は5枚の
ブレードを有する、二重反転プロペラエンジン。
[形態11]
形態7乃至10のうちのいずれか一項に記載の二重反転プロペラエンジンにおいて、
前記前プロペラ(23)の直径は、前記後プロペラ(24)の直径よりも大きい、二重反転プロペラエンジン。
[形態12]
形態11に記載の二重反転プロペラエンジンにおいて、
前記後プロペラ(24)の直径は、前記前プロペラ(23)よりも、0.05Df乃至0.2Df小さい、二重反転プロペラエンジン。

Claims (12)

  1. 前後のプロペラ(23、24)を持つ二重反転プロペラエンジンの作動方法であって、
    前記エンジンは、少なくとも離陸段階、上昇段階、巡行段階、及び着陸進入段階に作動し、巡行段階、エンジンはほぼ一定のプロペラ先端速度で作動する、エンジン作動方法において、
    前記プロペラのうちの少なくとも一方のプロペラの先端速度を、離陸段階、上昇段階、又は着陸進入段階のうちの少なくとも一つの段階の間、巡行段階の先端速度よりも大きくする工程を含む、ことを特徴とする方法。
  2. 請求項1に記載の方法において、
    両プロペラの前記先端速度は、巡行段階の先端速度よりも大きい、方法。
  3. 請求項1又は2に記載の方法において、
    離陸段階、上昇段階、又は着陸進入段階のうちの少なくとも一つの段階での前記プロペラの先端速度が、巡行段階の先端速度よりも少なくとも10%大きい、方法。
  4. 請求項1又は2に記載の方法において、
    離陸段階又は着陸進入段階のうちの少なくとも一方の段階での前記プロペラの先端速度が、巡行段階の先端速度よりも20%±5%大きい、方法。
  5. 請求項1乃至4のうちのいずれか一項に記載の方法において、
    前記プロペラは、可変ピッチブレードを含み、
    前記方法は、前記ブレードを、巡行時のピッチから着陸進入時のピッチまで閉鎖方向に移動する工程を含む、方法。
  6. 請求項1乃至5のうちのいずれか一項に記載の方法において、
    前記プロペラは可変ピッチブレードを含み、
    前記方法は、前記ブレードを、離陸時のピッチから巡行時のピッチまで開放方向に移動する工程を含む、方法。
  7. 前後のプロペラ(23、24)を持つ二重反転プロペラエンジンであって、
    前プロペラ(23)は少なくとも9枚のブレードを有し(Nf=9)、直径がDfであり、
    後プロペラ(24)の最大ブレード数Nrは、Nfから少なくとも3を減じた数であり、
    前記前後のプロペラ(23、24)は軸線方向隙間xによって離間されている、二重反転プロペラエンジンにおいて、
    比x/Dfは0.15乃至0.4である、二重反転プロペラエンジン。
  8. 請求項7に記載の二重反転プロペラエンジンにおいて、
    前記前プロペラ(23)は12枚のブレードを有し、前記後プロペラ(24)は9枚のブレードを有する、二重反転プロペラエンジン。
  9. 請求項8に記載の二重反転プロペラエンジンにおいて、
    前記前プロペラ(23)は12枚のブレードを有し、前記後プロペラ(24)は7枚のブレードを有する、二重反転プロペラエンジン。
  10. 請求項8に記載の二重反転プロペラエンジンにおいて、
    前記前プロペラ(23)は12枚のブレードを有し、前記後プロペラ(24)は5枚の
    ブレードを有する、二重反転プロペラエンジン。
  11. 請求項7乃至10のうちのいずれか一項に記載の二重反転プロペラエンジンにおいて、
    前記前プロペラ(23)の直径は、前記後プロペラ(24)の直径よりも大きい、二重反転プロペラエンジン。
  12. 請求項11に記載の二重反転プロペラエンジンにおいて、
    前記後プロペラ(24)の直径は、前記前プロペラ(23)よりも、0.05Df乃至0.2Df小さい、二重反転プロペラエンジン。
JP2013056075A 2007-02-10 2013-03-19 航空エンジン Pending JP2013144545A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0702608.1A GB0702608D0 (en) 2007-02-10 2007-02-10 Aeroengine
GB0702608.1 2007-02-10

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009548734A Division JP5489727B2 (ja) 2007-02-10 2008-02-06 航空エンジン

Publications (1)

Publication Number Publication Date
JP2013144545A true JP2013144545A (ja) 2013-07-25

Family

ID=37899098

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009548734A Expired - Fee Related JP5489727B2 (ja) 2007-02-10 2008-02-06 航空エンジン
JP2013056075A Pending JP2013144545A (ja) 2007-02-10 2013-03-19 航空エンジン

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009548734A Expired - Fee Related JP5489727B2 (ja) 2007-02-10 2008-02-06 航空エンジン

Country Status (9)

Country Link
US (1) US8382430B2 (ja)
EP (1) EP2118444B1 (ja)
JP (2) JP5489727B2 (ja)
CN (2) CN102390523A (ja)
BR (1) BRPI0807050A2 (ja)
CA (1) CA2676850A1 (ja)
GB (1) GB0702608D0 (ja)
RU (1) RU2472942C2 (ja)
WO (1) WO2008096124A2 (ja)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007013A1 (de) * 2009-01-31 2010-08-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Triebwerk, insbesondere CROR-Antrieb, für ein Flugzeug
US8661781B2 (en) * 2009-02-13 2014-03-04 The Boeing Company Counter rotating fan design and variable blade row spacing optimization for low environmental impact
KR100962774B1 (ko) * 2009-11-09 2010-06-10 강현문 풍력발전장치
US9637221B2 (en) 2009-12-21 2017-05-02 The Boeing Company Optimization of downstream open fan propeller position and placement of acoustic sensors
US8821118B2 (en) 2009-12-21 2014-09-02 The Boeing Company Optimization of downstream open fan propeller position
GB201003858D0 (en) * 2010-03-09 2010-04-21 Rolls Royce Plc Propeller arrangement
FR2963067B1 (fr) * 2010-07-23 2012-08-24 Snecma Turbomoteur a double helice non carenee
US8845270B2 (en) 2010-09-10 2014-09-30 Rolls-Royce Corporation Rotor assembly
US8371105B2 (en) 2010-09-30 2013-02-12 General Electric Company Hydraulic system for fan pitch change actuation of counter-rotating propellers
US8336290B2 (en) 2010-09-30 2012-12-25 General Electric Company Pitch change apparatus for counter-rotating propellers
US8701381B2 (en) 2010-11-24 2014-04-22 Rolls-Royce Corporation Remote shaft driven open rotor propulsion system with electrical power generation
FR2976551B1 (fr) * 2011-06-20 2013-06-28 Snecma Pale, en particulier a calage variable, helice comprenant de telles pales, et turbomachine correspondante
FR2979391B1 (fr) * 2011-08-26 2013-08-23 Snecma Turbomachine comportant un element grillage circonferentiel entre deux helices contrarotatives non carenees
FR2980818B1 (fr) * 2011-09-29 2016-01-22 Snecma Pale pour une helice de turbomachine, notamment a soufflante non carenee, helice et turbomachine correspondantes.
US9102397B2 (en) * 2011-12-20 2015-08-11 General Electric Company Airfoils including tip profile for noise reduction and method for fabricating same
US11300003B2 (en) 2012-10-23 2022-04-12 General Electric Company Unducted thrust producing system
WO2014066508A2 (en) 2012-10-23 2014-05-01 General Electric Company Unducted thrust producing system architecture
EP2964530B1 (en) 2013-03-09 2019-10-30 Rolls-Royce Corporation Aircraft power plant
US9835093B2 (en) 2013-09-19 2017-12-05 The Boeing Company Contra-rotating open fan propulsion system
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US20150344127A1 (en) * 2014-05-31 2015-12-03 General Electric Company Aeroelastically tailored propellers for noise reduction and improved efficiency in a turbomachine
US10013900B2 (en) * 2014-09-23 2018-07-03 Amazon Technologies, Inc. Vehicle noise control and communication
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
FR3030446B1 (fr) * 2014-12-17 2018-06-01 Safran Aircraft Engines Turbomachine a helice multi-diametres
US10711631B2 (en) * 2014-12-24 2020-07-14 Raytheon Technologies Corporation Turbine engine with guide vanes forward of its fan blades
CN105179089A (zh) * 2015-09-10 2015-12-23 洛阳大智实业有限公司 一种推进式涡轮螺旋桨发动机
US11391298B2 (en) 2015-10-07 2022-07-19 General Electric Company Engine having variable pitch outlet guide vanes
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US10442541B2 (en) * 2015-10-26 2019-10-15 General Electric Company Method and system for cross engine debris avoidance
US11305874B2 (en) 2016-03-23 2022-04-19 Amazon Technologies, Inc. Aerial vehicle adaptable propeller blades
US10399666B2 (en) 2016-03-23 2019-09-03 Amazon Technologies, Inc. Aerial vehicle propulsion mechanism with coaxially aligned and independently rotatable propellers
US10723440B2 (en) 2016-03-23 2020-07-28 Amazon Technologies, Inc. Aerial vehicle with different propeller blade configurations
US10583914B2 (en) 2016-03-23 2020-03-10 Amazon Technologies, Inc. Telescoping propeller blades for aerial vehicles
US10526070B2 (en) * 2016-03-23 2020-01-07 Amazon Technologies, Inc. Aerial vehicle propulsion mechanism with coaxially aligned propellers
US10737801B2 (en) * 2016-10-31 2020-08-11 Rolls-Royce Corporation Fan module with rotatable vane ring power system
US10618667B2 (en) 2016-10-31 2020-04-14 Rolls-Royce Corporation Fan module with adjustable pitch blades and power system
US10358926B2 (en) * 2017-08-11 2019-07-23 General Electric Company Low-noise airfoil for an open rotor
FR3087849B1 (fr) * 2018-10-26 2020-11-20 Safran Aircraft Engines Turbomachine a double helices non carenees
US20210009263A1 (en) * 2019-07-12 2021-01-14 Dotterel Technologies Limited Rotor system
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system
US11492918B1 (en) 2021-09-03 2022-11-08 General Electric Company Gas turbine engine with third stream
US11834995B2 (en) 2022-03-29 2023-12-05 General Electric Company Air-to-air heat exchanger potential in gas turbine engines
US11834954B2 (en) 2022-04-11 2023-12-05 General Electric Company Gas turbine engine with third stream
US11834992B2 (en) 2022-04-27 2023-12-05 General Electric Company Heat exchanger capacity for one or more heat exchangers associated with an accessory gearbox of a turbofan engine
US11680530B1 (en) 2022-04-27 2023-06-20 General Electric Company Heat exchanger capacity for one or more heat exchangers associated with a power gearbox of a turbofan engine
US12031504B2 (en) 2022-08-02 2024-07-09 General Electric Company Gas turbine engine with third stream

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271800A (ja) * 1985-08-09 1987-04-02 ゼネラル・エレクトリツク・カンパニイ 航空機用プロペラの騒音低減方式

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2126221A (en) * 1936-11-25 1938-08-09 John W Sessums Aircraft propeller unit
US3747343A (en) 1972-02-10 1973-07-24 United Aircraft Corp Low noise prop-fan
US4131387A (en) * 1976-02-27 1978-12-26 General Electric Company Curved blade turbomachinery noise reduction
US4446696A (en) * 1981-06-29 1984-05-08 General Electric Company Compound propulsor
SE445107B (sv) * 1983-06-22 1986-06-02 Volvo Penta Ab Rotoranordning
JPS626897A (ja) 1985-05-28 1987-01-13 ゼネラル・エレクトリツク・カンパニイ プロペラの制御装置
US4883240A (en) * 1985-08-09 1989-11-28 General Electric Company Aircraft propeller noise reduction
US4976102A (en) 1988-05-09 1990-12-11 General Electric Company Unducted, counterrotating gearless front fan engine
US5054998A (en) * 1988-09-30 1991-10-08 The Boeing Company, Inc. Thrust reversing system for counter rotating propellers
US4958289A (en) * 1988-12-14 1990-09-18 General Electric Company Aircraft propeller speed control
RU1792074C (ru) * 1990-02-16 1995-08-20 Ступинское конструкторское бюро машиностроения Регулятор оборотов реверсивного воздушного винта
JP2871209B2 (ja) * 1991-08-06 1999-03-17 トヨタ自動車株式会社 可変ピッチプロペラのピッチ制御装置
RU2015063C1 (ru) * 1992-01-16 1994-06-30 Александр Николаевич Лавренов Самолет
RU2022144C1 (ru) * 1992-03-31 1994-10-30 Ефанов Владимир Николаевич Система автоматического управления параметрами турбовинтового двигателя
US6732502B2 (en) 2002-03-01 2004-05-11 General Electric Company Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor
CN2590867Y (zh) * 2002-09-12 2003-12-10 莫瑞君 双螺旋桨直升飞机
US8661781B2 (en) * 2009-02-13 2014-03-04 The Boeing Company Counter rotating fan design and variable blade row spacing optimization for low environmental impact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271800A (ja) * 1985-08-09 1987-04-02 ゼネラル・エレクトリツク・カンパニイ 航空機用プロペラの騒音低減方式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN5010002949; B. MAGLIOZZI: AIAA 11TH AEROACOUSTICS CONFERENCE N.AIAA-87-2656, 19871019, P1-13 *

Also Published As

Publication number Publication date
US8382430B2 (en) 2013-02-26
CN101657607A (zh) 2010-02-24
EP2118444B1 (en) 2019-04-10
CN102390523A (zh) 2012-03-28
RU2009133692A (ru) 2011-03-20
RU2472942C2 (ru) 2013-01-20
CN101657607B (zh) 2013-02-27
JP5489727B2 (ja) 2014-05-14
BRPI0807050A2 (pt) 2014-04-15
WO2008096124A3 (en) 2008-10-09
CA2676850A1 (en) 2008-08-14
GB0702608D0 (en) 2007-03-21
JP2010517859A (ja) 2010-05-27
WO2008096124A2 (en) 2008-08-14
EP2118444A2 (en) 2009-11-18
US20100047068A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP5489727B2 (ja) 航空エンジン
US10907495B2 (en) Unducted thrust producing system
US9759160B2 (en) Ultra-efficient propulsor with an augmentor fan circumscribing a turbofan
US11300003B2 (en) Unducted thrust producing system
JP5177959B2 (ja) 低ソリディティターボファン
US20210108572A1 (en) Advance ratio for single unducted rotor engine
EP2540989B1 (en) Variable cycle turbine engine
US9102397B2 (en) Airfoils including tip profile for noise reduction and method for fabricating same
EP2492484B1 (en) Propfan engine
US10035582B2 (en) Propeller blade for a turbomachine
US20210108523A1 (en) Unducted single rotor engine
US12018592B1 (en) Outlet guide vane assembly for a turbofan engine
US20240209748A1 (en) Outlet guide vane assembly for a turbofan engine
Schmidt-Eisenlohr et al. Turbo fans with very high bypass ratio but acceptable dimensions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140707