JP2013144284A - Porous composite material and production method thereof, and hydrogen sulfide removing material - Google Patents

Porous composite material and production method thereof, and hydrogen sulfide removing material Download PDF

Info

Publication number
JP2013144284A
JP2013144284A JP2012006553A JP2012006553A JP2013144284A JP 2013144284 A JP2013144284 A JP 2013144284A JP 2012006553 A JP2012006553 A JP 2012006553A JP 2012006553 A JP2012006553 A JP 2012006553A JP 2013144284 A JP2013144284 A JP 2013144284A
Authority
JP
Japan
Prior art keywords
porous
composite material
hydrogen sulfide
silver
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012006553A
Other languages
Japanese (ja)
Other versions
JP5829924B2 (en
Inventor
Yasuko Nishiguchi
靖子 西口
Tadao Masumori
忠雄 増森
Yusuke Nishitani
祐介 西谷
Masanobu Kobayashi
真申 小林
Susumu Kitagawa
進 北川
Satoshi Horike
悟史 堀毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Toyobo Co Ltd
Original Assignee
Kyoto University
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Toyobo Co Ltd filed Critical Kyoto University
Priority to JP2012006553A priority Critical patent/JP5829924B2/en
Publication of JP2013144284A publication Critical patent/JP2013144284A/en
Application granted granted Critical
Publication of JP5829924B2 publication Critical patent/JP5829924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous material and a porosity composite material excellent in a hydrogen sulfide removing capability in a gas phase.SOLUTION: The porous composite material with a porous material in which a metal in a coordinative unsaturation state exists and carrying a silver catalyst exerts an extremely excellent hydrogen sulfide removal performance.

Description

本発明は、多孔性材料に銀系触媒が担持された多孔性複合材料、及びこの多孔性複合材料から構成される硫化水素ガス除去材に関するものである。   The present invention relates to a porous composite material in which a silver-based catalyst is supported on a porous material, and a hydrogen sulfide gas removing material composed of the porous composite material.

バイオガスや天然ガス(例えば、メタン、エタン等)等は、石油代替エネルギーとして近年広く利用されている。しかし、これらのガスには微量の不純物が含まれており、この不純物が様々な不具合を引き起こすことから問題となっている。不純物には、例えば硫黄化合物(硫化水素)がある。硫黄化合物は、発電機等の利用機器の腐食の原因や、触媒の劣化原因となるため、硫黄化合物を選択的に、且つ効率良く分離除去できる技術の確立が望まれている。   Biogas, natural gas (for example, methane, ethane, etc.) and the like have been widely used in recent years as alternative energy for petroleum. However, these gases contain a trace amount of impurities, and this impurity causes various problems. Examples of impurities include sulfur compounds (hydrogen sulfide). Since sulfur compounds cause corrosion of utilization equipment such as generators and cause deterioration of catalysts, establishment of a technique capable of selectively and efficiently separating and removing sulfur compounds is desired.

硫黄化合物の除去には、多くの硫黄化合物を吸着できるよう、表面積の大きな多孔性材料からなる脱硫剤が使用される。多孔性材料には、ゼオライト等の金属酸化物や、近年注目される金属イオンと有機配位子から形成される多孔性金属錯体(Porous Coordination Polymers、或いは、Metal Organic Frameworksとも称される)等がある。   In order to remove sulfur compounds, a desulfurization agent made of a porous material having a large surface area is used so that a large amount of sulfur compounds can be adsorbed. Examples of porous materials include metal oxides such as zeolite, porous metal complexes formed from metal ions and organic ligands that have recently been attracting attention (also referred to as Porous Coordination Polymers or Metal Organic Frameworks), and the like. is there.

多孔性材料に金属酸化物を用いた例として、例えば、Ag、Cu、Co、Ni及びZn等の金属をゼオライトに担持させた硫黄化合物除去用吸着剤や(特許文献1)、Na−Y型ゼオライトに銀を担持させた脱硫剤(特許文献2)、或いは、ゼオライト及び活性炭以外の担体材料と銀含有活性組成物とから構成される細孔構造を有する脱硫触媒等が知られている(特許文献3)。   As an example of using a metal oxide as the porous material, for example, an adsorbent for removing a sulfur compound in which a metal such as Ag, Cu, Co, Ni, and Zn is supported on zeolite (Patent Document 1), Na-Y type A desulfurization agent in which silver is supported on zeolite (Patent Document 2) or a desulfurization catalyst having a pore structure composed of a carrier material other than zeolite and activated carbon and a silver-containing active composition is known (patent) Reference 3).

また、多孔性金属錯体(PCP)を硫化水素吸着材の多孔性材料に使用する例として、例えば、MIL−47(V)、MIL−53(Al,Cr,Fe)、MIL−100(Cr)、MIL−101(Cr)等の多孔性金属錯体から構成される脱硫剤や(非特許文献1)、MOF−199(HKUST−1)の細孔にケギン型のポリ酸を導入して得られる脱硫剤が挙げられる(非特許文献2)。多孔性金属錯体(PCP)は、比表面積が広いため、硫化水素等の不純物吸着除去に好適である。   Examples of using a porous metal complex (PCP) for the porous material of the hydrogen sulfide adsorbent include, for example, MIL-47 (V), MIL-53 (Al, Cr, Fe), MIL-100 (Cr). , Obtained by introducing a Keggin-type polyacid into the desulfurization agent composed of a porous metal complex such as MIL-101 (Cr) or the like (Non-patent Document 1) or the pores of MOF-199 (HKUST-1) A desulfurization agent is mentioned (nonpatent literature 2). A porous metal complex (PCP) has a wide specific surface area, and is therefore suitable for removing impurities such as hydrogen sulfide.

特開2004−168648号公報JP 2004-168648 A 特開2004−228016号公報JP 2004-228016 A 特表2010−535613号公報Special table 2010-535613 gazette

L.Hamonら(他6名)、JACS,2009,131,p8775−8777L. Hamon et al. (6 others), JACS, 2009, 131, p8775-8777. J.Songら(他6名)、JACS,2011,133,p16839−16846J. et al. Song et al. (6 others), JACS, 2011, 133, p16839-16846

ところが、特許文献1、2に記載されるように、多孔性材料としてゼオライトを採用しても、ゼオライトの比表面積を向上させることには限界があるため、硫化水素の吸着容量を増量させることは困難である。また特許文献3の脱硫触媒は、硫黄含有化合物として、テトラヒドロチオフェン(THT)の吸着能しか検討されておらず、硫化水素の吸着性能については不明である。さらに非特許文献1に開示される脱硫剤は、単に多孔性金属錯体(PCP)を硫化水素吸着材として使用するに過ぎず、常圧下での硫化水素の除去率は満足のいくものではない。また、非特許文献1の多孔性金属錯体のうち、MIL−47(V)、MIL−53(Al,Cr,Fe)は、構成金属に水分子が配位しないため、真空加熱処理を行っても、構成金属が配位不飽和状態にならない。また、MIL−100(Cr)、MIL−101(Cr)は細孔径が29〜34Å程度と大きく、小分子の硫化水素の吸着性能が劣る。さらに、MIL−100(Cr)、MIL−101(Cr)は、三核金属クラスターをベースとする多孔性金属錯体であるため、真空加熱を行ったとしても、配位不飽和金属を形成し難く、硫化水素を充分に除去することが難しい。加えて非特許文献2に開示される脱硫剤は、液相中における硫化水素除去性能は検討されているものの、気相中での除去性能が検討されていないため、気相中での硫化水素除去性能は明らかではない。   However, as described in Patent Documents 1 and 2, even if zeolite is used as the porous material, there is a limit in improving the specific surface area of the zeolite, so that it is possible to increase the adsorption capacity of hydrogen sulfide. Have difficulty. In addition, the desulfurization catalyst of Patent Document 3 has been studied only for the adsorption ability of tetrahydrothiophene (THT) as a sulfur-containing compound, and the adsorption performance of hydrogen sulfide is unknown. Furthermore, the desulfurization agent disclosed in Non-Patent Document 1 merely uses a porous metal complex (PCP) as a hydrogen sulfide adsorbent, and the removal rate of hydrogen sulfide under normal pressure is not satisfactory. Of the porous metal complexes of Non-Patent Document 1, MIL-47 (V) and MIL-53 (Al, Cr, Fe) are subjected to vacuum heat treatment because water molecules do not coordinate with the constituent metals. However, the constituent metal does not become a coordination unsaturated state. Moreover, MIL-100 (Cr) and MIL-101 (Cr) have a large pore diameter of about 29 to 34 mm, and are inferior in the adsorption performance of small molecule hydrogen sulfide. Furthermore, since MIL-100 (Cr) and MIL-101 (Cr) are porous metal complexes based on trinuclear metal clusters, it is difficult to form a coordination unsaturated metal even when vacuum heating is performed. It is difficult to sufficiently remove hydrogen sulfide. In addition, the desulfurization agent disclosed in Non-Patent Document 2 has been studied for hydrogen sulfide removal performance in the liquid phase, but has not been studied for removal performance in the gas phase. Removal performance is not clear.

このような状況の下、本発明では気相中での硫化水素除去性能に優れる多孔性複合材料を提供することを課題として掲げた。   Under such circumstances, an object of the present invention is to provide a porous composite material having excellent hydrogen sulfide removal performance in the gas phase.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、配位不飽和状態の金属が存在する多孔性材料は、優れた硫化水素除去能を有していることを見出した。特に、この多孔性材料に銀系触媒を担持させて得られる多孔性複合材料は、より優れた硫化水素除去能を有し、かつ長時間使用しても、この優れた硫化水素除去能が維持されることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found that a porous material containing a metal in a coordinated unsaturated state has an excellent ability to remove hydrogen sulfide. . In particular, a porous composite material obtained by supporting a silver-based catalyst on this porous material has better hydrogen sulfide removal ability, and this excellent hydrogen sulfide removal ability is maintained even when used for a long time. As a result, the present invention has been completed.

すなわち、本発明に係る多孔性複合材料は、多孔性材料に、銀系触媒が担持された多孔性複合材料であって、前記多孔性材料の一部または全部の金属が、配位不飽和状態である点に要旨を有する。前記多孔性材料は、金属及び有機配位子から構成される多孔性金属錯体であることが好ましく、前記有機配位子は1,3,5−ベンゼントリカルボン酸及びその誘導体であることが望ましい。また、前記金属は銅であることが好ましい。加えて、銀系触媒の平均粒子径は10nm以下であることが望ましい。さらに本発明には、前記多孔性複合材料からなる硫化水素ガス除去材も包含される。加えて、水分子と配位結合している多孔性材料を真空加熱して、配位不飽和状態の金属を形成し、次いで銀系触媒を担持させることを特徴とする多孔性複合材料の製造方法も含まれる。前記多孔性複合材料の製造方法には、多孔性複合材料が還元される態様も包含される。   That is, the porous composite material according to the present invention is a porous composite material in which a silver-based catalyst is supported on a porous material, and a part or all of the metal of the porous material is in a coordinated unsaturated state. The point is that. The porous material is preferably a porous metal complex composed of a metal and an organic ligand, and the organic ligand is preferably 1,3,5-benzenetricarboxylic acid and derivatives thereof. The metal is preferably copper. In addition, the average particle size of the silver-based catalyst is desirably 10 nm or less. Furthermore, the present invention includes a hydrogen sulfide gas removing material made of the porous composite material. In addition, a porous material coordinated with water molecules is heated in a vacuum to form a metal in a coordinated unsaturated state, and then a porous catalyst is supported. A method is also included. The method for producing the porous composite material includes an embodiment in which the porous composite material is reduced.

本発明の多孔性複合材料は、配位不飽和状態の金属が存在する多孔性材料に、銀系触媒が担持されているため、この複合材料は、極めて優れた硫化水素除去能を有し、かつ長時間使用した場合であっても、この優れた硫化水素除去能が維持される。また銀が担持されない多孔性材料であっても、配位不飽和状態の金属が存在するものは、優れた硫化水素除去能を有している。   Since the porous composite material of the present invention has a silver-based catalyst supported on a porous material in which a metal in a coordinated unsaturated state is present, this composite material has extremely excellent hydrogen sulfide removal ability, And even when it is used for a long time, this excellent hydrogen sulfide removal ability is maintained. Moreover, even if the porous material does not carry silver, the one having a metal in a coordinated unsaturated state has an excellent ability to remove hydrogen sulfide.

図1は、実施例1で観察されたTEM像(倍率:30万倍)を示す写真である。FIG. 1 is a photograph showing a TEM image (magnification: 300,000 times) observed in Example 1. 図2は、実施例、参考例及び比較例で行われた硫化水素流通系吸着試験結果を示すグラフである。FIG. 2 is a graph showing the results of hydrogen sulfide circulation system adsorption tests conducted in Examples, Reference Examples, and Comparative Examples. 図3は、比較例2で観察されたTEM像(倍率:5万倍)を示す写真である。FIG. 3 is a photograph showing a TEM image (magnification: 50,000 times) observed in Comparative Example 2.

<<多孔性複合材料>>
本発明の多孔性複合材料は、配位不飽和状態の金属が存在する多孔性材料に、銀系触媒(銀や銀化合物)が担持されている。ガス中の硫化水素は銀系触媒と反応することにより、多孔性材料に吸着されやすい化合物(例えば、硫黄や二酸化硫黄等)に変換される。さらに、この反応で生成される化合物は、多孔性材料の細孔内部に捕捉されるため、ガス中の硫黄化合物濃度を低く抑えることができる。
<< Porous Composite Material >>
In the porous composite material of the present invention, a silver-based catalyst (silver or silver compound) is supported on a porous material in which a metal in a coordinated unsaturated state exists. Hydrogen sulfide in the gas is converted into a compound (for example, sulfur or sulfur dioxide) that is easily adsorbed by the porous material by reacting with the silver-based catalyst. Furthermore, since the compound produced | generated by this reaction is capture | acquired inside the pore of a porous material, the sulfur compound density | concentration in gas can be restrained low.

<多孔性材料>
本発明では、銀系触媒を担持させる基材として、配位不飽和状態の金属が存在する多孔性材料を使用する。配位不飽和状態の金属が存在する多孔性材料は、硫化水素の吸着性能に優れることが本発明者らの研究により明らかとなった。また、多孔性材料中に配位不飽和状態の金属が存在すると、金属原子の空の軌道を利用して、銀系触媒が配位結合するため、銀系触媒を多孔性材料に容易に担持させることもできる。加えて、多孔性材料は比表面積が広いため、硫化水素の分解反応により生じる硫黄化合物を多量に吸着できる。
<Porous material>
In the present invention, a porous material in which a metal in a coordinated unsaturated state is present is used as a substrate for supporting a silver-based catalyst. It has been clarified by the present inventors that a porous material containing a metal in a coordinated unsaturated state is excellent in hydrogen sulfide adsorption performance. In addition, when a metal in a coordinated unsaturated state is present in the porous material, the silver-based catalyst is coordinated using the empty orbit of the metal atom, so the silver-based catalyst is easily supported on the porous material. It can also be made. In addition, since the porous material has a large specific surface area, it can adsorb a large amount of sulfur compounds generated by the decomposition reaction of hydrogen sulfide.

多孔性材料としては、多孔性金属錯体を使用することが好ましく、この多孔性金属錯体は、金属及び有機配位子から構成されることが望ましい。多孔性金属錯体としては、Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成されるHKUST−1(MOF−199)、Niと2,5−ジヒドロキシテレフタル酸から形成されるNi−MOF−74の使用が好ましく、中でも硫化水素除去性能が高いことから、HKUST−1を使用することがより好ましい。   As the porous material, a porous metal complex is preferably used, and the porous metal complex is preferably composed of a metal and an organic ligand. Examples of porous metal complexes include HKUST-1 (MOF-199) formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC), and Ni-MOF formed from Ni and 2,5-dihydroxyterephthalic acid. Use of -74 is preferable, and among them, HKUST-1 is more preferable because of its high hydrogen sulfide removal performance.

また、多孔性金属錯体としては、前述したNi−MOF−74等の単核金属クラスターの多孔性金属錯体、または、HKUST−1(MOF−199)等の二核金属クラスターの多孔性金属錯体の使用が好適である。このように、単核または二核金属クラスターの多孔性金属錯体の使用が、本発明に好適である理由は定かではないものの、理由の一つとして、三核、または、それ以上の多核金属クラスターから構成される多孔性金属錯体は、真空加熱を行っても構成金属を配位不飽和状態することが困難であることが挙げられる。   In addition, as the porous metal complex, the porous metal complex of the mononuclear metal cluster such as Ni-MOF-74 described above or the porous metal complex of the binuclear metal cluster such as HKUST-1 (MOF-199) is used. Use is preferred. Thus, although the reason why the use of a monometallic or binuclear metal cluster porous metal complex is suitable for the present invention is not clear, one reason is that it is a trinuclear or higher polynuclear metal cluster. In the porous metal complex composed of the above, it is difficult to make the constituent metal coordinatively unsaturated even when vacuum heating is performed.

多孔性金属錯体の金属としては、周期表第2族〜第15族に分類される金属の使用が好ましい。中でも、Mg、Ca、Sr、Baの第2族元素;Sc、Yの第3族元素;Ti、Zr、Hfの第4族元素;V、Nb、Taの第5族元素;Cr、Mo、Wの第6族元素;Mn、Reの第7族元素;Fe、Ru、Osの第8族元素;Co、Rh、Irの第9族元素;Ni、Pd、Ptの第10族元素;Cu、Ag、Auの第11族元素;Zn、Cd、Hgの第12族元素;Al、Ga、In、Tlの第13族元素;Si、Ge、Sn、Pbの第14族元素;As、Sb、Biの第15族元素が好ましく、さらに好ましくは第10族〜第12族の元素であり、中でもNi、Cuの使用が望ましく、本発明にはCuが最適である。これらの元素の金属はイオンの状態で用いることも可能であり、金属イオンの好適な例として、Ni2+、Ni+、Cu2+、Cu+が挙げられる。 As the metal of the porous metal complex, it is preferable to use a metal classified into Group 2 to Group 15 of the periodic table. Among them, Group 2 elements of Mg, Ca, Sr, Ba; Group 3 elements of Sc, Y; Group 4 elements of Ti, Zr, Hf; Group 5 elements of V, Nb, Ta; Cr, Mo, Group 6 element of W; Group 7 element of Mn, Re; Group 8 element of Fe, Ru, Os; Group 9 element of Co, Rh, Ir; Group 10 element of Ni, Pd, Pt; Cu , Ag, Au, Group 11 elements; Zn, Cd, Hg, Group 12 elements; Al, Ga, In, Tl, Group 13 elements; Si, Ge, Sn, Pb, Group 14 elements; As, Sb , Bi is preferably a Group 15 element, more preferably a Group 10 to Group 12 element, of which Ni or Cu is desirable, and Cu is the most suitable for the present invention. The metal of these elements can also be used in an ionic state, and preferred examples of the metal ion include Ni 2+ , Ni + , Cu 2+ and Cu + .

また有機配位子としては、カルボン酸及びその誘導体、二座以上で配位可能なアミン系化合物及びその誘導体の使用が望ましい。カルボン酸及びその誘導体としては、例えば、p−テルフェニル−3,3’,5,5’−テトラカルボン酸〔別名称:5,5’−(1,4−フェニレン)ビスイソフタル酸〕、1,2,4,5−テトラキス(4−カルボキシフェニル)ベンゼン等のテトラカルボン酸及びその誘導体;ビフェニル−3,4’,5−トリカルボン酸、1,3,5−トリス(4’−カルボキシ[1,1’−ビフェニル]−4−イル)ベンゼン、1,3,5−トリス(4−カルボキシフェニル)ベンゼン、1,3,5−ベンゼントリカルボン酸等のトリカルボン酸及びその誘導体;2,5−ジアミノテレフタル酸、2,5−ジヒドロキシテレフタル酸、2,6−ナフタレンジカルボン酸、イソフタル酸、テレフタル酸、フマル酸、マロン酸、アジピン酸等のジカルボン酸及びその誘導体が挙げられる。また二座以上で配位可能なアミン系化合物及びその誘導体としては、イミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類及びその誘導体;4,4’−ビピリジン、1,4−ビス(4−ピリジル)ベンゼン、2,2’−ジメチル−4,4'−ビピリジン、1,4−ビス(4−ピリジル)ブタジイン、1,2−ビス(4−ピリジル)エタン、3,6−ジ(4−ピリジル)−1,2,4,5−テトラジン等のピリジン環を有する化合物及びその誘導体;ピラジン、2,5−ジメチルピラジン等のピラジン環を有する化合物及びその誘導体;その他上記以外の1,4−ジアザビシクロ[2.2.2]オクタン等の環状アミン類及びその誘導体等が好ましく使用できる。有機配位子としては、中でもトリカルボン酸及びその誘導体の使用が好ましく、特に1,3,5−ベンゼントリカルボン酸及びその誘導体が好ましい。   As organic ligands, it is desirable to use carboxylic acids and derivatives thereof, amine compounds capable of coordinating at a bidentate or higher, and derivatives thereof. Examples of the carboxylic acid and derivatives thereof include p-terphenyl-3,3 ′, 5,5′-tetracarboxylic acid [another name: 5,5 ′-(1,4-phenylene) bisisophthalic acid], 1 , 2,4,5-tetrakis (4-carboxyphenyl) benzene and the like; and biphenyl-3,4 ', 5-tricarboxylic acid, 1,3,5-tris (4'-carboxy [1 , 1′-biphenyl] -4-yl) benzene, 1,3,5-tris (4-carboxyphenyl) benzene, 1,3,5-benzenetricarboxylic acid and other tricarboxylic acids and derivatives thereof; 2,5-diamino Dicarbohydrates such as terephthalic acid, 2,5-dihydroxyterephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, terephthalic acid, fumaric acid, malonic acid, adipic acid, etc. Acid and derivatives thereof. Further, amine compounds capable of coordinating at the bidentate or higher and derivatives thereof include imidazoles such as imidazole, 2-methylimidazole and 2-phenylimidazole and derivatives thereof; 4,4′-bipyridine, 1,4-bis ( 4-pyridyl) benzene, 2,2′-dimethyl-4,4′-bipyridine, 1,4-bis (4-pyridyl) butadiyne, 1,2-bis (4-pyridyl) ethane, 3,6-di ( Compounds having a pyridine ring such as 4-pyridyl) -1,2,4,5-tetrazine and derivatives thereof; compounds having a pyrazine ring such as pyrazine and 2,5-dimethylpyrazine and derivatives thereof; Cyclic amines such as 4-diazabicyclo [2.2.2] octane and derivatives thereof can be preferably used. As the organic ligand, tricarboxylic acid and derivatives thereof are preferably used, and 1,3,5-benzenetricarboxylic acid and derivatives thereof are particularly preferable.

多孔性材料に存在する細孔径は、例えば、1〜25Åであることが望ましく、より好ましくは3〜20Åであり、さらに好ましくは5〜15Åである。細孔径が小さいほど、小分子である硫化水素を捕捉できるため望ましい。また、多孔性金属錯体は通常、細孔表面径が狭く、細孔内部径が広いというボトルネック構造を有する。そのため、多孔性材料として多孔性金属錯体を使用する場合は、多孔性金属錯体の細孔表面径、及び細孔内部径が、共に前記範囲内に包含されることが好ましい。   The pore diameter present in the porous material is, for example, desirably 1 to 25 mm, more preferably 3 to 20 mm, and still more preferably 5 to 15 mm. The smaller the pore diameter, the more preferable because hydrogen sulfide, which is a small molecule, can be captured. Further, the porous metal complex usually has a bottleneck structure in which the pore surface diameter is narrow and the pore internal diameter is wide. Therefore, when a porous metal complex is used as the porous material, it is preferable that both the pore surface diameter and the pore internal diameter of the porous metal complex are included in the above range.

<触媒>
配位不飽和状態の金属が存在する多孔性材料であっても、従来に比べ、優れた硫化水素除去能は発揮される。しかし、燃料ガス中の硫化水素を酸化し、無害化する目的で、前記多孔性材料に、酸化触媒として銀系触媒を担持させると、硫化水素の除去効率が飛躍的に向上することが分かった。そのため、本発明の多孔性複合材料は、多孔性材料に銀系触媒が担持されている点に特徴を有する。
銀系触媒としては、銀または銀化合物が好適に用いられ、前記銀化合物としては、例えば酸化銀、及び硫化銀が挙げられる。
<Catalyst>
Even in the case of a porous material containing a metal in a coordinated unsaturated state, an excellent hydrogen sulfide removing ability is exhibited as compared with the conventional material. However, for the purpose of oxidizing and detoxifying the hydrogen sulfide in the fuel gas, it was found that the removal efficiency of hydrogen sulfide is dramatically improved when the porous material is loaded with a silver-based catalyst as an oxidation catalyst. . Therefore, the porous composite material of the present invention is characterized in that a silver-based catalyst is supported on the porous material.
As the silver-based catalyst, silver or a silver compound is preferably used. Examples of the silver compound include silver oxide and silver sulfide.

前記銀系触媒の多孔性材料に対する担持量は、多孔性複合材料100質量%中、20質量%以下であることが好ましく、より好ましくは15質量%以下であり、さらに好ましくは8質量%以下であり、0.01質量%以上であることが好ましく、より好ましくは0.05質量%以上であり、さらに好ましくは0.07質量%以上である。銀系触媒の担持量が前記範囲内であれば、触媒と硫化水素の反応率を向上させることができる。   The supported amount of the silver-based catalyst with respect to the porous material is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 8% by mass or less in 100% by mass of the porous composite material. It is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.07% by mass or more. When the supported amount of the silver-based catalyst is within the above range, the reaction rate between the catalyst and hydrogen sulfide can be improved.

<<構成金属の配位不飽和化>>
多孔性材料は銀系触媒担持工程前に、真空加熱されることが望ましい。多孔性材料が多孔性金属錯体である場合、金属は、有機配位子のみならず、通常水分子とも配位結合している。ところがこの加熱により、金属と水分子との配位結合は切断され、一部または全部の金属が配位不飽和状態になる。多孔性材料を構成する金属の一部または全部を配位不飽和状態にすることにより、多孔性材料の硫化水素吸着能を向上させることができる。さらに本発明では、この配位不飽和状態の結合を利用して酸化触媒(銀系触媒)を担持させることにより、硫化水素除去能を飛躍的に向上できる。
<< Coordination desaturation of constituent metals >>
The porous material is desirably heated in a vacuum before the silver catalyst supporting step. When the porous material is a porous metal complex, the metal is usually coordinated not only with the organic ligand but also with water molecules. However, by this heating, the coordinate bond between the metal and the water molecule is broken, and a part or all of the metal is in a coordinated unsaturated state. By making a part or all of the metal constituting the porous material into a coordinated unsaturated state, the hydrogen sulfide adsorption ability of the porous material can be improved. Furthermore, in the present invention, the ability to remove hydrogen sulfide can be drastically improved by supporting the oxidation catalyst (silver-based catalyst) using the bond in the coordination unsaturated state.

真空加熱処理に関し、加熱温度は60〜180℃が好ましく、より好ましくは80〜160℃、更に好ましくは100〜140℃である。また加熱時間は、10時間以上が好適であり、より好適には12時間以上であり、24時間以下が好ましく、より好ましくは18時間以下である。真空加熱処理後、多孔性材料は室温まで放冷されることが望ましい。   Regarding the vacuum heat treatment, the heating temperature is preferably 60 to 180 ° C, more preferably 80 to 160 ° C, and still more preferably 100 to 140 ° C. The heating time is preferably 10 hours or longer, more preferably 12 hours or longer, preferably 24 hours or shorter, more preferably 18 hours or shorter. After the vacuum heat treatment, the porous material is preferably allowed to cool to room temperature.

<<多孔性複合材料の製造方法>>
本発明の多孔性複合材料は、配位不飽和状態の金属が存在する多孔性材料に銀系触媒を担持させることにより製造される。銀系触媒の担持方法としては、(1)銀系触媒を含む溶液に多孔性材料を含浸させる溶液含浸法、(2)高剪断力下で多孔性材料と銀系触媒を混合するメカノケミカル法、或いは、(3)化学蒸着法等が適宜用いられる。中でも、多孔性複合材料の製造が容易であることから、本発明では(1)溶液含浸法を採用することが望ましい。
<< Method for Producing Porous Composite Material >>
The porous composite material of the present invention is produced by supporting a silver-based catalyst on a porous material containing a metal in a coordinated unsaturated state. As a method for supporting a silver catalyst, (1) a solution impregnation method in which a solution containing a silver catalyst is impregnated with a porous material, and (2) a mechanochemical method in which the porous material and the silver catalyst are mixed under high shear force. Alternatively, (3) a chemical vapor deposition method or the like is appropriately used. Among these, it is desirable to employ the (1) solution impregnation method in the present invention because the production of the porous composite material is easy.

溶液含浸法により多孔性複合材料を製造する場合、銀系触媒を含む溶液の調製方法としては、溶媒に銀系触媒を溶解させて銀イオンを生成させる方法や、溶媒に銀系触媒を分散させる方法等が適宜使用される。溶媒としては、水や、メタノール、エタノール等のアルコール系溶媒の使用が望ましい。また、これらの溶媒は単独で用いても、混合して用いてもよい。銀イオンを含むイオン溶液は、前記溶媒に、硝酸銀、ハロゲン化銀等の塩を混合することにより適宜調製される。   When producing a porous composite material by a solution impregnation method, a method for preparing a solution containing a silver-based catalyst includes a method in which a silver-based catalyst is dissolved in a solvent to produce silver ions, or a silver-based catalyst is dispersed in a solvent. A method etc. are used suitably. As the solvent, it is desirable to use water or an alcohol solvent such as methanol or ethanol. These solvents may be used alone or in combination. The ion solution containing silver ions is appropriately prepared by mixing a salt such as silver nitrate or silver halide with the solvent.

溶液含浸法の場合、多孔性複合材料は、真空加熱処理後の多孔性材料を、銀系触媒含有溶液に加え、多孔性材料に銀系触媒を含む溶液を充分に含浸させた後、固液分離した後、固体を乾燥させて製造される。銀系触媒含有溶液への含浸時間は、1〜48時間が好適であり、より好適には3〜24時間、さらに好適には10〜20時間である。含浸時には、溶液を攪拌することも可能である。また含浸後の固液分離操作としては、濾過、遠心分離、沈殿、溶媒留去等の公知の手段を適宜採用するとよい。   In the case of the solution impregnation method, the porous composite material is obtained by adding the porous material after the vacuum heat treatment to the silver catalyst-containing solution, sufficiently impregnating the porous material with the solution containing the silver catalyst, After separation, the solid is produced by drying. The impregnation time for the silver-based catalyst-containing solution is preferably 1 to 48 hours, more preferably 3 to 24 hours, and even more preferably 10 to 20 hours. It is also possible to stir the solution during impregnation. In addition, as the solid-liquid separation operation after impregnation, known means such as filtration, centrifugation, precipitation, and solvent distillation may be appropriately employed.

<銀系触媒のナノ化>
多孔性材料に銀系触媒含有溶液を含浸させた後、次いで還元剤を含む溶液と多孔性複合材料を混合することにより、銀系触媒を微粒子化することができる。本発明者らは、銀系触媒を微粒子化すると、得られた多孔性複合材料が、硫化水素除去材として長時間(例えば、10時間程度)連続的に使用された後であっても、硫化水素除去率100%という驚異的な硫化水素除去性能を発揮するという知見を得た。そのため本発明においては、銀系触媒の平均粒子径は10nm以下であることが好ましく、より好ましくは8nm以下、さらに好ましくは6nm以下である。なお、平均粒子径の測定方法については、実施例の欄に詳述する。
<Nano-based silver catalyst>
After impregnating the porous material with the silver-based catalyst-containing solution, the silver-based catalyst can be made into fine particles by mixing the solution containing the reducing agent and the porous composite material. When the inventors of the present invention have made the silver-based catalyst fine particles, the resulting porous composite material is sulfided even after being used continuously for a long time (for example, about 10 hours) as a hydrogen sulfide removing material. The inventor has obtained the knowledge that the hydrogen-removing rate is 100% and exhibits an amazing hydrogen sulfide removing performance. Therefore, in this invention, it is preferable that the average particle diameter of a silver-type catalyst is 10 nm or less, More preferably, it is 8 nm or less, More preferably, it is 6 nm or less. In addition, the measuring method of an average particle diameter is explained in full detail in the Example column.

銀系触媒を微粒子化する方法としては、例えば溶液含浸法で多孔性複合材料を製造する場合、多孔性材料に銀系触媒含有溶液を含浸させた後、一旦溶媒を留去し、そこへ還元剤と溶媒の混合溶液を添加し、一定時間多孔性複合材料を含浸させて還元処理を行うとよい。その後、固液分離操作を行い、得られる多孔性複合材料を加熱乾燥することが望ましい。還元剤含有溶液に多孔性複合材料を含浸させる時間は、5〜240分が好適であり、より好適には10〜120分、さらに好適には15〜60分である。   For example, when producing a porous composite material by a solution impregnation method, a silver catalyst is impregnated with a solution containing a silver catalyst, and then the solvent is once distilled off and reduced there. A reduction treatment may be performed by adding a mixed solution of an agent and a solvent and impregnating the porous composite material for a certain period of time. Thereafter, it is desirable to perform a solid-liquid separation operation and heat dry the resulting porous composite material. The time for impregnating the porous composite material into the reducing agent-containing solution is preferably 5 to 240 minutes, more preferably 10 to 120 minutes, and even more preferably 15 to 60 minutes.

還元剤としては、公知の還元剤を適宜使用することができ、例えば、水素化ホウ素ナトリウム(NaBH4)、水素化トリエチルホウ素リチウム([LiBH(C253])等の水素化ホウ素化合物;水素化アルミニウムリチウム(LiAlH4)、水素化ジイソブチルアルミニウム(DIBAH)等の水素化アルミニウム化合物が好適に使用される。 As the reducing agent, a known reducing agent can be used as appropriate, and examples thereof include borohydrides such as sodium borohydride (NaBH 4 ) and lithium triethylborohydride ([LiBH (C 2 H 5 ) 3 ]). Compound: Aluminum hydride compounds such as lithium aluminum hydride (LiAlH 4 ) and diisobutylaluminum hydride (DIBAH) are preferably used.

還元剤の添加量は、銀イオン1molに対し、5〜15molであることが好ましく、より好適には6〜12molであり、さらに好適には6.5〜10molである。還元剤の添加量が銀イオン1molに対し、5mol未満では、銀系触媒を微粒子化することが困難な場合がある。   It is preferable that the addition amount of a reducing agent is 5-15 mol with respect to 1 mol of silver ions, More preferably, it is 6-12 mol, More preferably, it is 6.5-10 mol. If the addition amount of the reducing agent is less than 5 mol with respect to 1 mol of silver ions, it may be difficult to make the silver catalyst fine.

<<硫化水素ガス除去材>>
本発明により得られる多孔性材料・多孔性複合材料は、硫化水素除去能に優れるため、本発明の多孔性材料・多孔性複合材料を燃料ガスの精製装置等に硫化水素ガス除去材として充填することにより、燃料ガス中の硫化水素量を簡便に低減することができる。硫黄化合物含量の少ない精製ガスは、発電機等の利用機器に損傷を与えることがなく、加えて、下流工程での触媒劣化を防止することができる。すなわち本発明の多孔性材料・多孔性複合材料によれば、発電機等のメンテナンスコストを大幅に削減することができるため、バイオガスや天然ガス等の石油代替エネルギーの利用拡大が期待される。また、本発明の多孔性材料・多孔性複合材料をフィルターに担持させた製品は、天然ガス精製等に用いられる硫化水素除去フィルターとしても使用可能である。
<< Hydrogen sulfide gas removal material >>
Since the porous material / porous composite material obtained by the present invention is excellent in hydrogen sulfide removal ability, the porous material / porous composite material of the present invention is filled in a fuel gas purifier or the like as a hydrogen sulfide gas removing material. As a result, the amount of hydrogen sulfide in the fuel gas can be easily reduced. The purified gas having a low sulfur compound content does not damage the utilization equipment such as a generator, and can prevent catalyst deterioration in the downstream process. That is, according to the porous material / porous composite material of the present invention, the maintenance cost of the generator and the like can be greatly reduced, so that the use of alternative energy for petroleum such as biogas and natural gas is expected to be expanded. The product in which the porous material / porous composite material of the present invention is supported on a filter can also be used as a hydrogen sulfide removal filter used for natural gas purification or the like.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、実施例及び比較例中における分析または評価は、以下のようにして行った。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range. In addition, the analysis or evaluation in an Example and a comparative example was performed as follows.

<粉末X線回折測定>
得られた複合材料について、粉末X線回折装置(ブルカー・エイエックスエス社製「NEW D8 ADVANCE」)を用いて、対称反射法で測定した。測定条件を以下に示す。
1)X線源:CuKα(λ=1.5418Å)40kV 200mA
2)ゴニオメーター:縦型ゴニオメーター
3)検出器:シンチレーションカウンター
4)回折角(2θ)範囲:3〜90°
5)スキャンステップ:0.05°
6)積算時間:0.5秒/ステップ
7)スリット:発散スリット=0.5°、受光スリット=0.15mm、散乱スリット=0.5°
<Powder X-ray diffraction measurement>
The obtained composite material was measured by a symmetrical reflection method using a powder X-ray diffractometer (“NEW D8 ADVANCE” manufactured by Bruker AXS). The measurement conditions are shown below.
1) X-ray source: CuKα (λ = 1.5418Å) 40 kV 200 mA
2) Goniometer: Vertical goniometer 3) Detector: Scintillation counter 4) Diffraction angle (2θ) range: 3-90 °
5) Scan step: 0.05 °
6) Integration time: 0.5 sec / step 7) Slit: Diverging slit = 0.5 °, Receiving slit = 0.15 mm, Scattering slit = 0.5 °

<透過型電子顕微鏡(TEM)観察>
透過型電子顕微鏡(日立製作所製「HT7700」、または日本電子社製「JEM−2200FS」)を用いて、得られた多孔性材料、及び多孔性複合材料を観察した。
<Transmission electron microscope (TEM) observation>
The obtained porous material and porous composite material were observed using a transmission electron microscope (“HT7700” manufactured by Hitachi, Ltd. or “JEM-2200FS” manufactured by JEOL Ltd.).

<硫化水素流通系吸着試験>
多孔性複合材料100mgをカラムに充填し、試験ガスを流し、経時的にカラム出口での硫化水素ガス濃度を、硫化水素ガス用検知管を用いて測定し、硫化水素(H2S)除去率を下記式(i);
硫化水素(H2S)除去率(%)={(カラム入口での硫化水素濃度−カラム出口での硫化水素濃度)/(カラム入口での硫化水素濃度)}×100 …(i)
に基づき算出した。
なお、試料としては、120℃で24時間真空乾燥し、吸着物質を除去したものを使用した。評価条件の詳細を以下に示す。
1)測定温度:25℃
2)湿度:0%RH
3)測定雰囲気:窒素下
4)圧力:常圧
5)試験ガス組成:硫化水素10ppm含有窒素ガス
6)流量:1L/min
<Hydrogen sulfide flow system adsorption test>
The column is packed with 100 mg of porous composite material, the test gas is flowed, and the hydrogen sulfide gas concentration at the column outlet is measured over time using a hydrogen sulfide gas detector tube, and the hydrogen sulfide (H 2 S) removal rate is measured. Is represented by the following formula (i);
Hydrogen sulfide (H 2 S) removal rate (%) = {(hydrogen sulfide concentration at the column inlet−hydrogen sulfide concentration at the column outlet) / (hydrogen sulfide concentration at the column inlet)} × 100 (i)
Calculated based on
In addition, as a sample, what vacuum-dried at 120 degreeC for 24 hours and removed the adsorbent was used. Details of the evaluation conditions are shown below.
1) Measurement temperature: 25 ° C
2) Humidity: 0% RH
3) Measurement atmosphere: under nitrogen 4) Pressure: normal pressure 5) Test gas composition: nitrogen gas containing 10 ppm of hydrogen sulfide 6) Flow rate: 1 L / min

<銀系触媒の平均粒子径の測定方法>
銀系触媒の粒子径は、透過型電子顕微鏡(日立製作所製「HT7700」、または日本電子社製「JEM−2200FS」)を用い、任意の200個の銀系触媒について、倍率10万倍で観察することにより測定した。そして、これらの平均値を、銀系触媒の平均粒子径とした。
<Measuring method of average particle diameter of silver-based catalyst>
The particle diameter of the silver-based catalyst was observed at a magnification of 100,000 times for any 200 silver-based catalysts using a transmission electron microscope (“HT7700” manufactured by Hitachi, Ltd. or “JEM-2200FS” manufactured by JEOL Ltd.). Was measured. And these average values were made into the average particle diameter of a silver-type catalyst.

実施例1
<配位不飽和部位を有する多孔性金属錯体[Cu3(BTC)2(H2O)3nへのAgの担持>
Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成された多孔性金属錯体(細孔径;細孔表面径9.5Å、細孔内部径13.3Å;BASF社製「Basolite(登録商標) C300」、[Cu3(BTC)2(H2O)3n)を120℃で15時間真空乾燥させて配位不飽和金属を生成させ、室温まで放冷した。この多孔性金属錯体300mgを、メタノール4.8mlに分散させ、ここへAgNO39.4mg(0.05mmol)を含むメタノール溶液1.3mlを加え、室温で1.5時間攪拌を行った。次いで、溶媒を留去し、メタノール3.0mlを加えた。その後、2.1mlのNaBH415.9mg(0.42mmol)を含むメタノール溶液を滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが2質量%担持された多孔性複合材料を得た(256mg、収率84%)。得られた複合材料について、粉末X線回折測定及びTEM観察を行った。粉末X線回折測定からは、Agのパターンが観測されなかったが、TEM観察により、2〜5nmのAg粒子が高分散状態で担持されている様子が観察された。TEM像を図1に示す。この複合材料を用い、硫化水素流通系吸着試験を行った。結果を図2に示す。
Example 1
<Supporting Ag on Porous Metal Complex [Co 3 (BTC) 2 (H 2 O) 3 ] n Having Coordination Unsaturation Site>
Porous metal complex formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC) (pore diameter; pore surface diameter 9.5 mm, pore inner diameter 13.3 mm; “Basolite (registered trademark)” manufactured by BASF ) C300 ”, [Cu 3 (BTC) 2 (H 2 O) 3 ] n ) were vacuum dried at 120 ° C. for 15 hours to form a coordinated unsaturated metal and allowed to cool to room temperature. 300 mg of this porous metal complex was dispersed in 4.8 ml of methanol, 1.3 ml of a methanol solution containing 9.4 mg (0.05 mmol) of AgNO 3 was added thereto, and the mixture was stirred at room temperature for 1.5 hours. Then the solvent was distilled off and 3.0 ml of methanol was added. Thereafter, a methanol solution containing 15.9 mg (0.42 mmol) of 2.1 ml of NaBH 4 was dropped and stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a porous composite material carrying 2% by mass of Ag (256 mg, 84% yield). The obtained composite material was subjected to powder X-ray diffraction measurement and TEM observation. From the powder X-ray diffraction measurement, an Ag pattern was not observed, but it was observed by TEM observation that 2-5 nm Ag particles were supported in a highly dispersed state. A TEM image is shown in FIG. Using this composite material, a hydrogen sulfide flow system adsorption test was conducted. The results are shown in FIG.

実施例2
<配位不飽和部位を有する多孔性金属錯体[Cu3(BTC)2(H2O)3nへのAgの担持>
Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成された多孔性金属錯体(細孔径;細孔表面径9.5Å、細孔内部径13.3Å;BASF社製「Basolite(登録商標) C300」、[Cu3(BTC)2(H2O)3n)を120℃で15時間真空乾燥させて配位不飽和金属を生成させ、室温まで放冷した。この多孔性金属錯体1.5gを、メタノール24mlに分散させ、AgNO323.6mg(0.14mmol)を含むメタノール溶液6.4mlを加え、室温で17時間攪拌を行った。次いで、溶媒を留去し、メタノール10mlを加えた。その後、5.2mlのNaBH439.8mg(1.05mmol)を含むメタノール溶液を滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが1質量%担持された多孔性複合材料を得た(1.51g、収率100%)。得られた複合材料について、粉末X線回折測定を行った。粉末X線回折測定からは、Agのパターンがほとんど観測されなかったことから、Ag粒子は微粒子化していると言える。この複合材料を用い、硫化水素流通系吸着試験を行った。結果を図2に示す。
Example 2
<Supporting Ag on Porous Metal Complex [Co 3 (BTC) 2 (H 2 O) 3 ] n Having Coordination Unsaturation Site>
Porous metal complex formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC) (pore diameter; pore surface diameter 9.5 mm, pore inner diameter 13.3 mm; “Basolite (registered trademark)” manufactured by BASF ) C300 ”, [Cu 3 (BTC) 2 (H 2 O) 3 ] n ) were vacuum dried at 120 ° C. for 15 hours to form a coordinated unsaturated metal and allowed to cool to room temperature. 1.5 g of this porous metal complex was dispersed in 24 ml of methanol, 6.4 ml of a methanol solution containing 23.6 mg (0.14 mmol) of AgNO 3 was added, and the mixture was stirred at room temperature for 17 hours. The solvent was then distilled off and 10 ml of methanol was added. Thereafter, a methanol solution containing 5.2 ml of NaBH 4 39.8 mg (1.05 mmol) was dropped and stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a porous composite material carrying 1% by mass of Ag (1.51 g, yield 100%). Powder X-ray diffraction measurement was performed on the obtained composite material. From the powder X-ray diffraction measurement, it can be said that the Ag particles are finely divided because almost no Ag pattern was observed. Using this composite material, a hydrogen sulfide flow system adsorption test was conducted. The results are shown in FIG.

実施例3
<配位不飽和部位を有する多孔性金属錯体[Cu3(BTC)2(H2O)3nへのAgの担持>
Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成された多孔性金属錯体(細孔径;細孔表面径9.5Å、細孔内部径13.3Å;BASF社製「Basolite(登録商標) C300」、[Cu3(BTC)2(H2O)3n)を120℃で15時間真空乾燥させて不飽和配位金属を生成させ、室温まで放冷した。この多孔性金属錯体1.5gを、メタノール24mlに分散させ、AgNO311.7mg(0.07mmol)を含むメタノール溶液3.2mlを加え、室温で17時間攪拌を行った。次いで、溶媒を留去し、メタノール10mlを加えた。その後、2.6mlのNaBH419.9mg(0.53mmol)を含むメタノール溶液を滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが0.5質量%担持された多孔性複合材料を得た(1.48g、収率98%)。得られた複合材料について、粉末X線回折測定を行った。粉末X線回折測定からは、Agのパターンがほとんど観測されなかったことから、Ag粒子は微粒子化していると言える。この複合材料を用い、硫化水素流通系吸着試験を行った。結果を図2に示す。
Example 3
<Supporting Ag on Porous Metal Complex [Co 3 (BTC) 2 (H 2 O) 3 ] n Having Coordination Unsaturation Site>
Porous metal complex formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC) (pore diameter; pore surface diameter 9.5 mm, pore inner diameter 13.3 mm; “Basolite (registered trademark)” manufactured by BASF ) C300 ”, [Cu 3 (BTC) 2 (H 2 O) 3 ] n ) were vacuum dried at 120 ° C. for 15 hours to form an unsaturated coordination metal and allowed to cool to room temperature. 1.5 g of this porous metal complex was dispersed in 24 ml of methanol, 3.2 ml of a methanol solution containing 11.7 mg (0.07 mmol) of AgNO 3 was added, and the mixture was stirred at room temperature for 17 hours. The solvent was then distilled off and 10 ml of methanol was added. Thereafter, a methanol solution containing 2.6 ml of NaBH 4 19.9 mg (0.53 mmol) was added dropwise and stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a porous composite material carrying 0.5% by mass of Ag (1.48 g, yield 98%). ). Powder X-ray diffraction measurement was performed on the obtained composite material. From the powder X-ray diffraction measurement, it can be said that the Ag particles are finely divided because almost no Ag pattern was observed. Using this composite material, a hydrogen sulfide flow system adsorption test was conducted. The results are shown in FIG.

実施例4
<配位不飽和部位を有する多孔性金属錯体[Cu3(BTC)2(H2O)3nへのAgの担持>
Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成された多孔性金属錯体(細孔径;細孔表面径9.5Å、細孔内部径13.3Å;BASF社製「Basolite(登録商標) C300」、[Cu3(BTC)2(H2O)3n)を120℃で15時間真空乾燥させて配位不飽和金属を生成させ、室温まで放冷した。この多孔性金属錯体1.5gを、メタノール24mlに分散させ、AgNO32.4mg(0.01mmol)を含むメタノール溶液0.6mlを加え、室温で17時間攪拌を行った。次いで、溶媒を留去し、メタノール10mlを加えた。その後、0.52mlのNaBH44.0mg(0.11mmol)を含むメタノール溶液を滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが0.1質量%担持された多孔性複合材料を得た(1.50g、収率100%)。得られた複合材料について、粉末X線回折測定を行った。粉末X線回折測定からは、Agのパターンがほとんど観測されなかったことから、Ag粒子は微粒子化していると言える。この複合材料を用い、硫化水素流通系吸着試験を行った。結果を図2に示す。
Example 4
<Supporting Ag on Porous Metal Complex [Co 3 (BTC) 2 (H 2 O) 3 ] n Having Coordination Unsaturation Site>
Porous metal complex formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC) (pore diameter; pore surface diameter 9.5 mm, pore inner diameter 13.3 mm; “Basolite (registered trademark)” manufactured by BASF ) C300 ”, [Cu 3 (BTC) 2 (H 2 O) 3 ] n ) were vacuum dried at 120 ° C. for 15 hours to form a coordinated unsaturated metal and allowed to cool to room temperature. 1.5 g of this porous metal complex was dispersed in 24 ml of methanol, 0.6 ml of a methanol solution containing 2.4 mg (0.01 mmol) of AgNO 3 was added, and the mixture was stirred at room temperature for 17 hours. The solvent was then distilled off and 10 ml of methanol was added. Thereafter, a methanol solution containing 4.02 mg (0.11 mmol) of 0.52 ml of NaBH 4 was dropped and stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a porous composite material carrying 0.1% by mass of Ag (1.50 g, yield 100%). ). Powder X-ray diffraction measurement was performed on the obtained composite material. From the powder X-ray diffraction measurement, it can be said that the Ag particles are finely divided because almost no Ag pattern was observed. Using this composite material, a hydrogen sulfide flow system adsorption test was conducted. The results are shown in FIG.

参考例1
Cuと1,3,5−ベンゼントリカルボン酸(BTC)から形成された多孔性金属錯体(細孔径;細孔表面径9.5Å、細孔内部径13.3Å;BASF社製「Basolite(登録商標) C300」、[Cu3(BTC)2(H2O)3n)を用いて、硫化水素流通系吸着試験を行った。結果を図2に示す。
Reference example 1
Porous metal complex formed from Cu and 1,3,5-benzenetricarboxylic acid (BTC) (pore diameter; pore surface diameter 9.5 mm, pore inner diameter 13.3 mm; “Basolite (registered trademark)” manufactured by BASF ) C300 ”, [Cu 3 (BTC) 2 (H 2 O) 3 ] n ), a hydrogen sulfide flow system adsorption test was performed. The results are shown in FIG.

比較例1
<配位不飽和部位を有しない多孔性金属錯体[Zn(MeIm)2nへのAgの担持>
本比較例においては、真空加熱処理を行っても、構成金属が配位不飽和状態にならない多孔性材料として、Znと2−メチルイミダゾール(MeIm)から形成される多孔性金属錯体(細孔径;細孔表面径3.4Å、細孔内部径11.6Å;BASF社製「Basolite(登録商標) Z1200」、[Zn(MeIm)2n)を試料に用いた。この多孔性金属錯体を構成する金属には、水分子が配位していない。そのため、錯体を真空条件下で加熱しても、配位不飽和状態の金属は形成されない。この多孔性金属錯体を120℃で15時間真空乾燥させ、その後、室温まで放冷した。この多孔性金属錯体1.5gを、メタノール24mlに分散させ、ここへAgNO347.3mg(0.28mmol)を含むメタノール溶液12.8mlを加え、室温で24時間攪拌を行った。その後、溶媒を留去し、メタノール10mlを加えた。その後、10.5mlのNaBH480.0mg(2.11mmol)を含むメタノール溶液を滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが2質量%担持された多孔性複合材料を得た(1.48g、収率96%)。得られた複合材料について、粉末X線回折測定及びTEM観察を行った。粉末X線回折測定からは、Agのパターンがほとんど観測されなかったことから、Ag粒子は微粒子化していると言える。この複合材料を用い、硫化水素流通系吸着試験を行った。結果を図2に示す。
Comparative Example 1
<Supporting Ag on porous metal complex [Zn (MeIm) 2 ] n having no coordination unsaturated site>
In this comparative example, a porous metal complex (pore diameter; formed from Zn and 2-methylimidazole (MeIm) is used as a porous material in which the constituent metal does not become a coordination unsaturated state even when vacuum heat treatment is performed. A sample having a pore surface diameter of 3.4 mm and a pore internal diameter of 11.6 mm; “Basolite (registered trademark) Z1200” manufactured by BASF, [Zn (MeIm) 2 ] n ) was used as a sample. Water molecules are not coordinated to the metal constituting the porous metal complex. Therefore, even when the complex is heated under vacuum conditions, a metal in a coordinated unsaturated state is not formed. This porous metal complex was vacuum-dried at 120 ° C. for 15 hours, and then allowed to cool to room temperature. 1.5 g of this porous metal complex was dispersed in 24 ml of methanol, and 12.8 ml of a methanol solution containing 47.3 mg (0.28 mmol) of AgNO 3 was added thereto, followed by stirring at room temperature for 24 hours. Thereafter, the solvent was distilled off, and 10 ml of methanol was added. Thereafter, a methanol solution containing 10.5 ml of NaBH 4 80.0 mg (2.11 mmol) was dropped, and the mixture was stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a porous composite material carrying 2% by mass of Ag (1.48 g, yield 96%). The obtained composite material was subjected to powder X-ray diffraction measurement and TEM observation. From the powder X-ray diffraction measurement, it can be said that the Ag particles are finely divided because almost no Ag pattern was observed. Using this composite material, a hydrogen sulfide flow system adsorption test was conducted. The results are shown in FIG.

比較例2
<NaY型ゼオライトへのAgの担持>
NaY型ゼオライト(平均細孔径;7.4Å)を予め120℃で15時間真空乾燥させた後、室温まで放冷した。このゼオライト300mgを、メタノール4.8mlに分散させ、ここへ1.3mlのAgNO39.4mg(0.05mmol)を含むメタノール溶液を加え、室温で22時間攪拌を行った。次いで、溶媒を留去し、メタノール3.0mlを加えた。その後、2.1mlのNaBH416.0mg(0.42mmol)を含むメタノール溶液を滴下し、30分間攪拌を行った。得られた溶液を濾過し、固体をメタノールで洗浄した後、120℃で真空乾燥を行い、Agが2質量%担持された複合材料を得た(206mg、収率67%)。得られた複合材料について、粉末X線回折測定及びTEM観察を行った。粉末X線回折測定からは、Agパターンがわずかに観測され、Agの生成が確認できた。またTEM観察により、12〜24nmのAg粒子が担持されている様子が観察された。TEM像を図3に示す。この複合材料を用い、硫化水素流通系吸着試験を行った。結果を図2に示す。
Comparative Example 2
<Supporting of Ag on NaY-type zeolite>
NaY-type zeolite (average pore size; 7.4 mm) was vacuum dried at 120 ° C. for 15 hours in advance, and then allowed to cool to room temperature. 300 mg of this zeolite was dispersed in 4.8 ml of methanol, and a methanol solution containing 9.4 mg (0.05 mmol) of 1.3 ml of AgNO 3 was added thereto, followed by stirring at room temperature for 22 hours. Then the solvent was distilled off and 3.0 ml of methanol was added. Then, a methanol solution containing 2.1 ml of NaBH 4 16.0 mg (0.42 mmol) was added dropwise, and the mixture was stirred for 30 minutes. The obtained solution was filtered, and the solid was washed with methanol, followed by vacuum drying at 120 ° C. to obtain a composite material carrying 2 mass% of Ag (206 mg, 67% yield). The obtained composite material was subjected to powder X-ray diffraction measurement and TEM observation. From the powder X-ray diffraction measurement, a slight Ag pattern was observed, confirming the formation of Ag. Further, it was observed by TEM observation that Ag particles of 12 to 24 nm were carried. A TEM image is shown in FIG. Using this composite material, a hydrogen sulfide flow system adsorption test was conducted. The results are shown in FIG.

Claims (8)

多孔性材料に、銀系触媒が担持された多孔性複合材料であって、
前記多孔性材料の一部または全部の金属が、配位不飽和状態であることを特徴とする多孔性複合材料。
A porous composite material in which a silver-based catalyst is supported on a porous material,
A porous composite material, wherein a part or all of the metal of the porous material is in a coordinated unsaturated state.
前記多孔性材料が、金属及び有機配位子から構成される多孔性金属錯体である請求項1に記載の多孔性複合材料。   The porous composite material according to claim 1, wherein the porous material is a porous metal complex composed of a metal and an organic ligand. 前記有機配位子が1,3,5−ベンゼントリカルボン酸及びその誘導体である請求項2に記載の多孔性複合材料。   The porous composite material according to claim 2, wherein the organic ligand is 1,3,5-benzenetricarboxylic acid and a derivative thereof. 前記金属が銅である請求項1〜3のいずれかに記載の多孔性複合材料。   The porous composite material according to claim 1, wherein the metal is copper. 銀系触媒の平均粒子径が10nm以下である請求項1〜4のいずれかに記載の多孔性複合材料。   The porous composite material according to claim 1, wherein the silver catalyst has an average particle size of 10 nm or less. 請求項1〜5のいずれかに記載の多孔性複合材料からなることを特徴とする硫化水素ガス除去材。   A hydrogen sulfide gas removing material comprising the porous composite material according to claim 1. 水分子と配位結合している多孔性材料を真空加熱して、配位不飽和状態の金属を形成し、次いで銀系触媒を担持させることを特徴とする多孔性複合材料の製造方法。   A method for producing a porous composite material, characterized in that a porous material coordinated with water molecules is heated in a vacuum to form a coordinated unsaturated metal, and then a silver-based catalyst is supported. 多孔性複合材料を還元する工程を含む請求項7に記載の多孔性複合材料の製造方法。   The method for producing a porous composite material according to claim 7, comprising a step of reducing the porous composite material.
JP2012006553A 2012-01-16 2012-01-16 Porous composite material, method for producing the same, and hydrogen sulfide gas removing material Active JP5829924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012006553A JP5829924B2 (en) 2012-01-16 2012-01-16 Porous composite material, method for producing the same, and hydrogen sulfide gas removing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012006553A JP5829924B2 (en) 2012-01-16 2012-01-16 Porous composite material, method for producing the same, and hydrogen sulfide gas removing material

Publications (2)

Publication Number Publication Date
JP2013144284A true JP2013144284A (en) 2013-07-25
JP5829924B2 JP5829924B2 (en) 2015-12-09

Family

ID=49040418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006553A Active JP5829924B2 (en) 2012-01-16 2012-01-16 Porous composite material, method for producing the same, and hydrogen sulfide gas removing material

Country Status (1)

Country Link
JP (1) JP5829924B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100655A (en) * 2012-11-20 2014-06-05 Toyobo Co Ltd Sulfur compound adsorbing and removing filter
JP2015066483A (en) * 2013-09-27 2015-04-13 東洋紡株式会社 Aldehydes decomposition material
WO2018139108A1 (en) 2017-01-26 2018-08-02 パナソニック株式会社 Desulfurization apparatus and desulfurization method
CN112517078A (en) * 2020-12-15 2021-03-19 长安大学 MOF-based cotton cloth immobilized polyacid catalytic material and preparation method and application thereof
CN112657558A (en) * 2021-01-29 2021-04-16 昆明理工大学 Application of plasma modified catalyst in removal of hydrogen sulfide, phosphine and arsine
CN114214644A (en) * 2022-01-07 2022-03-22 辽宁大学 Novel MOFs-derived Pd @ Cu composite material, preparation method thereof and application thereof in electrocatalysis of carbon dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285315A (en) * 2002-05-15 2004-10-14 Nippon Shokubai Co Ltd Porous unsaturated coordination metal complex
WO2010058123A1 (en) * 2008-11-18 2010-05-27 Centre National De La Recherche Scientifique -Cnrs- Method for hydrothermal preparation of metal-organic framework crystallised porous aluminium carboxylates
US20100176031A1 (en) * 2006-08-10 2010-07-15 Jacobson Allan J Porous solids, selective separations, removal of sulfur compounds, adsorption
WO2010136677A1 (en) * 2009-05-28 2010-12-02 Centre National De La Recherche Scientifique -Cnrs Use of a porous crystalline hybrid solid as a nitrogen oxide reduction catalyst and devices
WO2010148374A2 (en) * 2009-06-19 2010-12-23 The Regents Of The University Of California Organo-metallic frameworks and methods of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285315A (en) * 2002-05-15 2004-10-14 Nippon Shokubai Co Ltd Porous unsaturated coordination metal complex
US20100176031A1 (en) * 2006-08-10 2010-07-15 Jacobson Allan J Porous solids, selective separations, removal of sulfur compounds, adsorption
WO2010058123A1 (en) * 2008-11-18 2010-05-27 Centre National De La Recherche Scientifique -Cnrs- Method for hydrothermal preparation of metal-organic framework crystallised porous aluminium carboxylates
WO2010136677A1 (en) * 2009-05-28 2010-12-02 Centre National De La Recherche Scientifique -Cnrs Use of a porous crystalline hybrid solid as a nitrogen oxide reduction catalyst and devices
WO2010148374A2 (en) * 2009-06-19 2010-12-23 The Regents Of The University Of California Organo-metallic frameworks and methods of making same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100655A (en) * 2012-11-20 2014-06-05 Toyobo Co Ltd Sulfur compound adsorbing and removing filter
JP2015066483A (en) * 2013-09-27 2015-04-13 東洋紡株式会社 Aldehydes decomposition material
WO2018139108A1 (en) 2017-01-26 2018-08-02 パナソニック株式会社 Desulfurization apparatus and desulfurization method
JP6406745B1 (en) * 2017-01-26 2018-10-17 パナソニック株式会社 Desulfurization apparatus and desulfurization method
US10625198B2 (en) 2017-01-26 2020-04-21 Panasonic Corporation Desulfurization apparatus and desulfurization method
CN112517078A (en) * 2020-12-15 2021-03-19 长安大学 MOF-based cotton cloth immobilized polyacid catalytic material and preparation method and application thereof
CN112657558A (en) * 2021-01-29 2021-04-16 昆明理工大学 Application of plasma modified catalyst in removal of hydrogen sulfide, phosphine and arsine
CN114214644A (en) * 2022-01-07 2022-03-22 辽宁大学 Novel MOFs-derived Pd @ Cu composite material, preparation method thereof and application thereof in electrocatalysis of carbon dioxide
CN114214644B (en) * 2022-01-07 2023-11-10 辽宁大学 MOFs derived Pd@Cu composite material, preparation method thereof and application thereof in electrocatalytic carbon dioxide

Also Published As

Publication number Publication date
JP5829924B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP6089618B2 (en) Sulfur compound adsorption / removal filter
Jiang et al. Porous metal–organic frameworks as platforms for functional applications
JP5829924B2 (en) Porous composite material, method for producing the same, and hydrogen sulfide gas removing material
Kobayashi et al. Metal nanoparticles covered with a metal–organic framework: From one-pot synthetic methods to synergistic energy storage and conversion functions
Liu et al. Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications
Petit et al. Reactive adsorption of acidic gases on MOF/graphite oxide composites
Wu et al. Facile incorporation of Au nanoparticles into an unusual twofold entangled Zn (II)-MOF with nanocages for highly efficient CO2 fixation under mild conditions
JP2005525218A (en) Method for taking up, storing or releasing gas with a new skeletal material
Montazerolghaem et al. A metal–organic framework MIL-101 doped with metal nanoparticles (Ni & Cu) and its effect on CO 2 adsorption properties
JP2011126775A (en) Hybrid porous material and method for producing the same
Li et al. Calcium-based metal–organic framework for simultaneous capture of trace propyne and propadiene from propylene
Zhu et al. A Facile Strategy to Obtain Low‐Cost and High‐Performance Gold‐Based Catalysts from Artificial Electronic Waste by [Zr48Ni6] Nano‐Cages in MOFs for CO2 Electroreduction to CO
KR20110041381A (en) The preparation method of scaffold materials-transition metal hydride complexes and intermediates therefor
Tran et al. Esoteric CO adsorption by CuCl-NiCl2 embedded microporous MIL-101 (Cr)
JP2013040147A (en) Metal complex and adsorbing material, storing material, separating material comprising the same
JP5156445B2 (en) Acetylene storage material, acetylene storage container, high purity acetylene supply device, and high purity acetylene purification device
JP2014218603A (en) Porous metal coordination polymer compound and production method of porous carbon material
Lashgari et al. Catalytic effect of solvothermally prepared Cu2 (bdc) 2 (bpy) metal-organic framework on thermal decomposition of ammonium perchlorate
Wang et al. Synergistic effect of bimetal in isoreticular Zn–Cu–1, 3, 5-benzenetricarboxylate on room temperature gaseous sulfides removal
Chen et al. Core-shell Bi2S3 nanorods loaded ZIF-8 nanocomposites for efficient and reversible capture of radioactive iodine
Khasevani et al. Metal-organic framework-templated synthesis of t-ZrO2/γ-Fe2O3 supported AgPt nanoparticles with enhanced catalytic and photocatalytic properties
KR102186025B1 (en) A adsorbent with olefins sorption selectivity, manufacturing method of the same and method of selectively adsorbing olefin using the same
JP5854427B2 (en) Hydrogen storage material
Li et al. Pore-Window Partitions in Metal–Organic Frameworks for Highly Efficient Reversed Ethylene/Ethane Separations
JP5509415B2 (en) Hydrogen storage material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151023

R151 Written notification of patent or utility model registration

Ref document number: 5829924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250