JP2013142688A - Laser type liquid level meter - Google Patents

Laser type liquid level meter Download PDF

Info

Publication number
JP2013142688A
JP2013142688A JP2012013508A JP2012013508A JP2013142688A JP 2013142688 A JP2013142688 A JP 2013142688A JP 2012013508 A JP2012013508 A JP 2012013508A JP 2012013508 A JP2012013508 A JP 2012013508A JP 2013142688 A JP2013142688 A JP 2013142688A
Authority
JP
Japan
Prior art keywords
float
laser
perforated plate
liquid level
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012013508A
Other languages
Japanese (ja)
Other versions
JP5589248B2 (en
Inventor
Satoru Kitazawa
哲 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITAZAWA GIJUTSU JIMUSHO KK
Original Assignee
KITAZAWA GIJUTSU JIMUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITAZAWA GIJUTSU JIMUSHO KK filed Critical KITAZAWA GIJUTSU JIMUSHO KK
Priority to JP2012013508A priority Critical patent/JP5589248B2/en
Publication of JP2013142688A publication Critical patent/JP2013142688A/en
Application granted granted Critical
Publication of JP5589248B2 publication Critical patent/JP5589248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Level Indicators Using A Float (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measured distance calibration method for a laser type liquid level meter for arranging a wave eliminating pipe on a liquid surface to be measured and arranging a laser distance meter on an upper part of the wave eliminating pipe to send a laser beam and projecting the laser beam to a float floating on the liquid surface, and to provide a method for adjusting a projection angle of the laser beam to the float in the wave eliminating pipe.SOLUTION: In measured distance calibration, a float to be adsorbed by magnetic force in a wave eliminating pipe and a drilled plate having holes of which the diameter allows passage of a laser beam are adsorbed to each other by magnetic force; the float is pulled up to an arbitrary position by a wire attached to the drilled plate; and a wire length is set as a known calibration value. In projection angle adjustment of a laser beam to the float, a laser projection angle of a laser distance meter is horizontally and vertically oscillated; a non-reflection band, a reflection band and a reflected light change point of a non-reflection band mark on a concentric circle of the drilled plate are detected; and an oscillation angle of an intermediate angle between the detected non-reflection band, the reflection band and the reflected light change point of the non-reflection band mark and a non-reflection band, a reflection band and a reflected light change point of a non-reflection band mark which are located at an equal distance on the exact opposite side on the concentric circle is set as a correct projection angle to the float; and the projection angle of the laser beam is adjusted to the correct projection angle.

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

レーザー光を測定液面に浮かべたフロートに投射して、フロートまでの距離をレーザー距離計で測定することによるレーザー式液面計は公知技術として知られている。この方式によるレーザー式液面計は被接触方式のためにセンサー部の経年劣化が少なく、化学プラントの液面計、河川、用水路、貯水池などの水位測定に広く適用が可能である。しかし、従来、液面測定に適したレーザー距離計が高価であること。測定距離の校正および消波管内のフロートにレーザー光を正確に投射する方法が確立していないために普及が遅れている。レーザー距離計は建築現場用の距離測定用などとして低価格が進んでいる。本発明は広く産業上の利用に供するために、測定液面の校正およびフロートに対する投射角度調整を容易化したレーザー式水位計を提供するものである。  A laser-type liquid level gauge is known as a known technique by projecting laser light onto a float floated on a measurement liquid surface and measuring the distance to the float with a laser distance meter. Laser type liquid level gauges with this method have little sensor deterioration over time due to the contacted method, and can be widely applied to water level measurement in chemical plant liquid level gauges, rivers, irrigation canals, and reservoirs. However, a laser rangefinder suitable for liquid level measurement is expensive. Since the method for calibrating the measurement distance and accurately projecting the laser beam on the float in the quenching tube has not been established, the spread has been delayed. Laser rangefinders are becoming cheaper for distance measurement for construction sites. The present invention provides a laser-type water level meter that facilitates calibration of a measurement liquid surface and adjustment of a projection angle with respect to a float for wide industrial use.

レーザー距離計を用いた水位レベル計または液面レベル計の文献として下記が存在する。
特開平10−281854号公報 特開平09−203652号公報 特開平01−123115号公報 特開2006−258579号公報 特開2010−249790号公報 消波管中のフロートにレーザー光を投射し、反射レーザー光により水面までの距離を求めるレーザー距離計を用いたレーザー式液面計は公知技術として上記の文献に示されている。しかし、これらの文献に関して、測定距離の校正方法、フロートへの投射レーザー光の光軸合わせの方法は示されていない。
測定距離の校正方法は他方式の液面計を含めて一般に簡単で容易に行うことが困難である。細径で距離が長い消波管においてはフロートへ投射するレーザー光の光軸合わせを容易化にすることが重要である。本発明は測定距離の校正方法とフロートへ投射するレーザー光の光軸合わせの方法を提供するものである。
The following exists as literature on a water level meter or a liquid level meter using a laser distance meter.
Japanese Patent Laid-Open No. 10-281854 JP 09-203652 A JP 01-123115 A JP 2006-258579 A JP 2010-249790 A A laser-type liquid level gauge using a laser distance meter that projects laser light onto a float in a quenching tube and obtains the distance to the water surface by reflected laser light is disclosed in the above-mentioned document as a known technique. However, with respect to these documents, a calibration method for the measurement distance and a method for aligning the optical axis of the projection laser beam to the float are not shown.
The calibration method of the measurement distance is generally simple and difficult to perform easily including other types of liquid level gauges. In a breaker tube having a small diameter and a long distance, it is important to facilitate the optical axis alignment of the laser light projected onto the float. The present invention provides a method for calibrating a measurement distance and a method for aligning the optical axis of a laser beam projected onto a float.

液面計は化学プラントのタンクの液位、上水道、下水道などの水処理用の貯留槽、河川、農業用水路などの分野で広く用いられている。解決しようとする課題はこれらの分野で共通的な部分が大きいが、以下に河川、農業用水路など水位計に的を絞り課題を示す。
従来、代表的な水位計として、河川、用水路、ダム、貯水地などの水位計には、機械的な方法としてフロート式が使用されていた。この方式は水面の上昇下降にしたがって上下するフロートに取付けたワイヤを巻き込むリールの回転角度から水位を換算するもので水位計測精度として±1cm程度が得られるが、土木構造物として大きな測水筒を必要とする。このために最近ではダム、大河川などの他はあまり使用されていない。しかし、フロート式はフロートに取り付けたワイヤの伸び縮みなどの機械的な要因以外では誤差が生じないために、校正頻度を少なくしても精度が維持できる方式である。
測定水面にセンサー部を接触して水位測定する代表的接触式水位計として水圧式水位計が多く使用されている。この方式は水深に比例した水圧を感圧素子で測定するもので、大気圧と比較して測定するために大気開放チューブを必要とし、このチューブから感圧部に湿気が侵入したり、感圧部が河川等の土砂に埋もれると測定誤差の原因となる。このために接触式センサーの共通的課題である安定性が課題となっている。
非接触水位計としては超音波式水位計に代わって最近では電波式水位計が用いられている。
電波式水位計は水面にセンサー部が接触しないために、経年的に安定な測定ができる。
しかし、水面の浮遊物がある場合、誤差の原因となる。また、センサーからの距離によって、放射角度が広がり、放射角度内に電波を遮断する障害物が存在すれば使用できない等の課題がある。
水圧式水位計、電波式水位計ともに、自己校正機能を持たないために水位計独自での校正ができない。このために、校正方法として、水位計の近傍に量水標を設けて、量水標のスケールを目視して測定値と比較して行う。
量水標の目盛りは最低1cm刻みであるが、波浪の影響などにより、現実的に±5cm程度の校正誤差が生じることが多い。
本発明のレーザー式水位計はフロート式のように規模の大きい測水筒を必要とせず、水圧式水位計のようにセンサーが水没していることによる接触式センサーに本質的な測定精度劣化の問題がなく、水圧式水位計、電波式水位計に共通な、自己校正の機能がない欠点を除去した自己校正機能を有し、実水位以外の水位で校正可能な水位計である。
Level gauges are widely used in the fields of chemical plant tanks, water treatment storage tanks such as waterworks and sewers, rivers, and agricultural waterways. The problems to be solved are common in these fields, but the following are the problems focused on water level gauges such as rivers and agricultural canals.
Conventionally, as a representative water level gauge, a float type has been used as a mechanical method for water level gauges such as rivers, irrigation canals, dams, and reservoirs. This method converts the water level from the rotation angle of the reel that winds the wire attached to the float that moves up and down as the water level rises and descends. It can obtain a water level measurement accuracy of about ± 1 cm, but requires a large water measuring tube as a civil engineering structure. And For this reason, dams, large rivers, etc. have not been used much recently. However, since the float type does not cause an error other than mechanical factors such as expansion and contraction of the wire attached to the float, the accuracy can be maintained even if the calibration frequency is reduced.
As a typical contact-type water level meter that measures a water level by contacting a sensor portion with a measurement water surface, a hydraulic water level meter is often used. This method measures the water pressure proportional to the water depth with a pressure-sensitive element, and requires an air release tube to measure it compared to the atmospheric pressure. If the part is buried in sediments such as rivers, it causes measurement errors. For this reason, stability, which is a common problem for contact sensors, has become an issue.
As a non-contact water level meter, a radio wave type water level meter has recently been used in place of the ultrasonic water level meter.
Radio wave level gauges can measure stably over time because the sensor unit does not touch the water surface.
However, if there are floating objects on the water surface, it will cause errors. In addition, the radiation angle increases depending on the distance from the sensor, and there is a problem that it cannot be used if there are obstacles that block radio waves within the radiation angle.
Since both the water pressure level gauge and radio wave type water level gauge do not have a self-calibration function, the water level gauge cannot be calibrated by itself. For this purpose, as a calibration method, a water meter is provided in the vicinity of the water level gauge, and the scale of the water meter is visually observed and compared with the measured value.
The scale of the quantity water mark is at least 1 cm. However, due to the effects of waves, a calibration error of about ± 5 cm is often caused in practice.
The laser-type water level meter of the present invention does not require a large-scale water measuring tube unlike the float type, and the measurement accuracy deterioration inherent in the contact-type sensor due to the submerged sensor like the water pressure type water level meter This is a water level meter that has a self-calibration function that eliminates the disadvantages of having no self-calibration function, common to water pressure level meters and radio wave type water level meters, and that can be calibrated at water levels other than the actual water level.

レーザー式水位計の測定原理は[特許文献5]特開2010−249790号公報 レーザー式水位計に示したものと同一である。この測定原理は測定水面下に内部が空胴の消波管を設置する。レーザー距離計を消波管の上部にレーザー距離計の投射光軸位置を消波管の中心軸に合わせて設置し、消波管の中にレーザー距離計より投射レーザー光を送出する。
消波管内部の水面にフロートを浮力で浮かべておく、フロートは水面の上下によって水面と同じ距離を上下する。投射レーザー光はフロートにあたり、その拡散反射光をレーザー距離計で受信してフロートまでの距離を求める。
フロート上端と水面との距離(L)はフロートの浮力によって、常に一定に保たれているため、フロート上端と水面との距離Lをレーザー距離計で測定した距離に加えることにより、レーザー距離計と水面の距離を正確に求めることができる。
消波管は水面の波浪によるフロートの上下を押さえる機能、フロートの移動を消波管内におさめる機能とレーザー距離計とフロート間に障害物が入り込まないようにする機能を有するものとする。
また、消波管には水の浸入、排出および砂塵の排出用の複数の小孔またはメッシュ状の孔を設けるものとする。
The measurement principle of the laser-type water level meter is the same as that shown in [Patent Document 5] Japanese Patent Application Laid-Open No. 2010-249790. In this measurement principle, a wave-dissipating tube with a cavity inside is installed under the surface of the measurement water. A laser rangefinder is installed on the top of the quencher tube so that the projection optical axis position of the laser rangefinder is aligned with the center axis of the quencher tube, and the projection laser beam is sent from the laser rangefinder into the quencher tube.
Float floats on the water surface inside the wave-dissipating tube. The float moves up and down by the same distance as the water surface. The projected laser light floats, and the diffuse reflected light is received by a laser distance meter to determine the distance to the float.
Since the distance (L) between the upper end of the float and the water surface is always kept constant by the buoyancy of the float, the distance L between the upper end of the float and the water surface is added to the distance measured by the laser rangefinder. The distance of the water surface can be obtained accurately.
The wave-dissipating tube has a function to hold the float up and down due to water waves, a function to keep the float moving in the wave-dissipating tube, and a function to prevent an obstacle from entering between the laser distance meter and the float.
Also, the wave-dissipating tube is provided with a plurality of small holes or mesh-shaped holes for ingress and discharge of water and discharge of dust.

本発明の構成、原理の説明を図1、図2、図3に示す。図1は測定距離の校正時とレーザー光の光軸合わせ時の状態を示している。図2は距離校正およびレーザー光の光軸合わせのために13穴あき板が14フランジから開放され、12引き上げワイヤが伸ばされ、2フロートに向かって垂下している状態を示している。図3は通常の測定状態を示している。通常の測定状態では6レーザー距離計の11測定基準面より、4投射レーザー光を2フロートに向けて投射する。4投射レーザー光は15フロートの磁石または磁性体部分の表面で拡散反射し、5反射レーザー光が6レーザー距離計に戻りフロートまでの距離を測定する。
実際の1測定水面の位置はフロートの反射面よりフロートの浮力により一定の高さLだけ低い位置にあるために、レーザー距離計で測定した値にLを加えて水位を計算する。
Lはフロートが浮力で水面から浮上している高さでありフロートに固有の値である。
レーザー距離計とフロートの間には13穴あき板があるが、21穴あき部をとおしてレーザー光が通過できるために通過の障害とならない。13穴あき板は上部、下部とも磁石となっている。通常の測定状態では磁性体で構成した14フランジに磁力で吸着固定されている。
図2は距離校正およびレーザー光の光軸合わせの準備過程を示している。まず、13穴あき板を磁力で吸着している14フランジから開放する必要がある。開放方法の例は14フランジを上下に貫通している19穴あき板開放穴に細棒を挿入して、13穴あき板を上部から突き磁力から開放する。開放後は12引き上げワイヤを伸ばし、13穴あき板を1測定水面に浮いているフロートに到達するまでワイヤを伸ばし、15フロートの磁石または磁性体部分を吸着する。吸着状態において12引き上げワイヤを20ワイヤ巻き上げ機で巻き上げる。
巻き上げ位置は12引き上げワイヤの長さを11測定基準面で確認して、測定距離校正またはレーザー光の光軸合わせを行う任意位置で巻き上げを停止する。12引き上げワイヤの11測定基準面での長さはワイヤに長さ目盛りを付ける方法、20ワイヤ巻き上げ機の巻き上げリールの回転角度等により容易に測定できる。
図1において測定距離の校正方法は校正位置で、12引き上げワイヤの11測定基準面での長さを読みとる。この読み取り値に、13穴あき板の高さ(h)とフロートが水面に浮いている時、浮力で水面上に突出している一定の高さ(H)を加えた値を校正値とする。
次に、この位置でレーザー距離計の測定水位を読みとり、フロートが水面より浮力により浮上している高さHを加えた値を加えて被校正値として、ワイヤ長さより求めた校正値と比較して校正を行う。
校正後のレーザー距離計の測定値は水位信号に変換され、レーザー距離計より出力される。
レーザー光の光軸合わせについても13穴あき板にフロートを吸着して、フロートを任意の距離まで引き上げて行うことができる。
消波管の断面中心にレーザー距離計の光軸を配置しているがレーザー距離計の光軸は配置精度により中心が微妙なずれが発生している。このずれを修正するために、レーザー距離計の光軸を左右、前後の角度を調整する7レーザー距離計微動回転機構をもうけるものとする。この回転機構は14フランジに固定されており、レーザー距離計の光軸を消波管中心軸に対し左右、前後に振ることができるものとする。振り角度の回転中心は消波管の断面中心の11測定基準面になるようにする。
13穴あき板には同軸方向の等距離位置に図4に示すように順にレーザー光の無反射帯、反射帯、無反射帯を設ける。無反射帯位置では投射レーザー光が吸収され反射がレーザー距離計に戻らないために距離測定不能となる。
微動回転機構により投射レーザー光の光軸を左右に振る。左または右への振り角度の増加に従って、投射光はフロートをはずれ、13穴あき板の黒帯による32内側無反射帯に吸収される。振り角度をより増加すれば白帯による33反射帯によりレーザー光は反射する。
22左振り反射点または23右振り反射点からの反射光がレーザー距離計に戻り距離が読みとりできる。さらに振れば再び黒帯による34外側無反射帯に投射され反射光が戻らない。
この無反射帯から反射帯、反射帯から無反射帯へ変化する変化点である読み取り可能な白帯による反射帯のレーザー式水位計の水位計測値を読み取る。左右反射帯の水位計測値の差は穴あき板の水平からの傾きを示している。このため、この差の大小から13穴あき板の水平度を確認する。水平度が許容値内の場合、微動回転機構の振れ角度を読み取る。
13穴あき板の22左振り反射点、23右振り反射点の振れ角度を読みとり、24左右反射点の中点の角度を左右の消波管中心として光軸を合わせる。同様に、光軸を前後に振り、穴あき板の前方向点の25前振り反射点と後方向点での26後振り反射点の振れ角度の27前後反射点の中点角度を前後の消波管中心として光軸を合わせる。左右、前後の光軸合わせ後に、2フロートと13穴あき板は吸着状態で12引き上げワイヤにより、14フランジ位置まで引き上げ、13穴あき板が14フランジに磁力で吸着状態とする。この状態で2フロートを13穴あき板から開放する必要がある。開放方法の例は14フランジを上下に貫通した16穴あき板とフロートの引き離し穴に細棒を挿入して、上部より突き磁力から開放する。開放により、フロートは消波管中を水面まで落下し、図3に示す通常の測定状態となる。
Description of the configuration and principle of the present invention is shown in FIG. 1, FIG. 2, and FIG. FIG. 1 shows a state at the time of calibration of the measurement distance and an optical axis alignment of the laser beam. FIG. 2 shows a state where the 13-hole perforated plate is released from the 14 flange, the 12 pulling wire is extended, and hangs down toward the 2 float for distance calibration and laser beam optical axis alignment. FIG. 3 shows a normal measurement state. In a normal measurement state, 4 projection laser beams are projected toward 2 floats from 11 measurement reference planes of a 6 laser rangefinder. The 4-projection laser light is diffusely reflected on the surface of the 15-float magnet or magnetic part, and the 5-reflection laser light returns to the 6-laser distance meter to measure the distance to the float.
Since the actual position of one measurement water surface is lower than the reflection surface of the float by a certain height L due to the buoyancy of the float, the water level is calculated by adding L to the value measured by the laser distance meter.
L is the height at which the float floats from the water surface due to buoyancy, and is a value unique to the float.
There is a 13-hole perforated plate between the laser distance meter and the float, but the laser beam can pass through the 21-hole perforated portion so that it does not hinder the passage. The 13-hole perforated plate is a magnet on both the upper and lower sides. In a normal measurement state, it is adsorbed and fixed by a magnetic force to a 14 flange made of a magnetic material.
FIG. 2 shows a preparation process for distance calibration and laser beam optical axis alignment. First, it is necessary to open the 13-hole perforated plate from the 14 flange that is attracted by magnetic force. As an example of the opening method, a thin rod is inserted into a 19-hole perforated plate opening hole penetrating up and down 14 flanges, and the 13-hole perforated plate is released from the thrust from above. After opening, the 12 pulling wire is extended, and the 13-hole perforated plate is extended until it reaches the float floating on the surface of 1 measurement water, and the magnet or magnetic part of 15 float is adsorbed. In the suction state, the 12 pulling wire is wound up by a 20 wire winding machine.
As for the winding position, the length of the 12 pulling wire is confirmed on the 11 measurement reference plane, and the winding is stopped at an arbitrary position where the measurement distance calibration or the optical axis alignment of the laser beam is performed. The length of the 12 pull-up wire on the 11 measurement reference plane can be easily measured by a method of marking the length of the wire, the rotation angle of the winding reel of the 20-wire hoisting machine, or the like.
In FIG. 1, the calibration method of the measurement distance is the calibration position, and the length of the 12 pulling wire on the 11 measurement reference plane is read. The value obtained by adding the height (h) of the 13-hole perforated plate and a certain height (H) protruding above the water surface due to buoyancy to this reading value is taken as the calibration value.
Next, read the measured water level of the laser rangefinder at this position, and add the value of the height H where the float floats from the water surface due to buoyancy, and compare it with the calibration value obtained from the wire length. Perform calibration.
The measured value of the laser rangefinder after calibration is converted into a water level signal and output from the laser rangefinder.
Laser beam optical axis alignment can also be performed by adsorbing a float to a 13-hole plate and lifting the float to an arbitrary distance.
The optical axis of the laser distance meter is arranged at the center of the cross section of the quenching tube, but the center of the optical axis of the laser distance meter is slightly shifted due to the arrangement accuracy. In order to correct this deviation, a 7-laser distance meter fine rotation mechanism that adjusts the optical axis of the laser distance meter to the left and right and the front and rear angles is provided. This rotating mechanism is fixed to a 14 flange, and the optical axis of the laser rangefinder can be swung left and right and back and forth with respect to the central axis of the quenching tube. The rotation center of the swing angle is set to 11 measurement reference planes of the cross-sectional center of the wave-dissipating tube.
As shown in FIG. 4, a laser hole non-reflective band, a reflective band, and a non-reflective band are provided on the 13-hole perforated plate at equidistant positions in the coaxial direction. At the non-reflective band position, the projection laser light is absorbed and the reflection does not return to the laser rangefinder, making it impossible to measure distance.
The optical axis of the projected laser beam is swung to the left and right by a fine rotation mechanism. As the swing angle increases to the left or to the right, the projected light leaves the float and is absorbed by the 32 inner non-reflective band due to the black band of the 13-hole plate. If the swing angle is further increased, the laser beam is reflected by the 33 reflection band by the white band.
The reflected light from the 22 left-handed reflection point or 23 right-handed reflection point returns to the laser rangefinder and the distance can be read. If further shaken, it is projected again on the 34 outer non-reflective band by the black band, and the reflected light does not return.
The water level measurement value of the laser-type water level meter in the reflection band is read by the readable white band, which is the changing point from the non-reflection band to the reflection band and from the reflection band to the non-reflection band. The difference between the water level measurements in the left and right reflection bands indicates the inclination of the perforated plate from the horizontal. For this reason, the level of the 13-hole perforated plate is confirmed from the magnitude of this difference. When the level is within the allowable value, the deflection angle of the fine movement rotating mechanism is read.
The deflection angles of the 22 left-handed reflection point and the 23 right-handed reflection point of the 13-hole perforated plate are read, and the optical axis is aligned with the angle of the middle point of the 24 left-right reflection point as the center of the left and right quenching tubes. Similarly, the optical axis is swung back and forth, and the midpoint angle of the front and rear reflection points of the front and rear reflection points of the perforated plate is the front and rear reflection points of the front and rear reflection points of the front and rear reflection points. Align the optical axis as the center of the wave tube. After aligning the left, right, front, and rear optical axes, the 2 float and 13-hole plate are pulled up to the 14 flange position by the 12 pull-up wire in the suction state, and the 13-hole plate is pulled into the 14 flange by the magnetic force. In this state, it is necessary to release the 2 float from the 13-hole plate. An example of the opening method is to insert a thin rod into a 16 hole perforated plate vertically passing through 14 flanges and a separation hole of the float, and release from the thrust from the upper part. As a result of the opening, the float falls in the wave-dissipating tube to the water surface, and the normal measurement state shown in FIG. 3 is obtained.

従来の水位計の課題を解決することにより以下の効果が得られる。
第1に、最近、河川、用水路、調整池等の水位計として水圧式水位計および電波式水位計が多く用いられている。水圧式はセンサー部が接触式のため使用環境にもよるが頻繁に校正しないと精度の維持ができない欠点を有している。電波式は非接触式のため校正頻度は水圧式に比較して少ないが水面浮遊物により誤差を生じる欠点を有している。両方式の課題は水位計単体での校正ができないことである。いずれも近傍に設置している量水標の目盛りと対比または校正時に量水標に相当する目盛板を設置して測定値を校正する必要がある。本発明のレーザー式液面計は液面計単体での校正を可能とし、精度維持の向上と保守の容易化を実現している。
第2に、消波管中の投射レーザー光がフロートに正確に投射するための光軸合わせ機能を組込み、設置現場での調整を容易化している。
The following effects can be obtained by solving the problems of the conventional water level gauge.
First, recently, water pressure gauges and radio wave level gauges are frequently used as water level gauges for rivers, irrigation canals, adjustment ponds, and the like. The water pressure type has a drawback that accuracy cannot be maintained unless it is frequently calibrated although the sensor part is a contact type depending on the use environment. Since the radio wave type is a non-contact type, the calibration frequency is less than that of the water pressure type, but has the disadvantage of causing an error due to the floating surface. The problem with both types is that the water level gauge alone cannot be calibrated. In either case, it is necessary to calibrate the measured value by installing a scale plate corresponding to the quantitative water mark at the time of calibration or contrast with the scale of the quantitative water mark installed in the vicinity. The laser-type liquid level gauge of the present invention can be calibrated with a single liquid level gauge, improving accuracy maintenance and facilitating maintenance.
Secondly, it incorporates an optical axis alignment function for accurately projecting the projection laser light in the quenching tube onto the float, facilitating adjustment at the installation site.

図3の消波管断面形状を円形とした場合、図5において、3穴あき板の穴あき部の半径r1、2フロートの半径R2、消波管の内径2R1としたとき、投射レーザー光が13穴あき板の穴あき部をとおして、2フロートに投射できる条件は、フロートが消波管の中でどのような動きをしても、穴あき板の穴あき部をとうして投射レーザー光がフロートに投射できる必要がある。この条件は
2R2>r1+R1
また、フロートは消波管中に収まる条件から
R2<R1
となる。
実際には、消波管、フロート、穴あき板の寸法誤差、消波管中でフロート、穴あき板が余裕を持って自由に動けること等を考え、上記寸法の制約に余裕を持たせる必要がある。
例として、直径2R1=150mmの消波管を使用する場合、フロート直径2R2=120mmに設定すれば、r1+R1は、120mm以下となり、R1は75mmであるからr1は45mm以下となる。余裕をみてr1を40mmに設定する。また、穴あき磁石板の外形2r2をフロートの外形に合わせて120mmとする。この場合、穴あき板の内外形差は40mmとなる。
When the cross-sectional shape of the wave-dissipating tube in FIG. 3 is circular, in FIG. 5, when the radius r1 of the holed portion of the three-holed plate, the radius R2 of the float, and the inner diameter 2R1 of the wave-dissipating tube, The conditions for projecting to the 2 float through the perforated part of the 13 perforated plate are that the projection laser passes through the perforated part of the perforated plate regardless of the movement of the float in the wave breaker. Light needs to be able to project to the float. This condition is 2R2> r1 + R1
In addition, the float is in a condition that fits in the wave-dissipating tube. R2 <R1
It becomes.
Actually, considering the dimensional error of the wave-dissipating tube, float, and perforated plate, and the fact that the float and perforated plate can move freely in the wave-dissipating tube, it is necessary to allow the above-mentioned dimensions to have a margin. There is.
For example, when a wave breaker having a diameter 2R1 = 150 mm is used, if the float diameter 2R2 = 120 mm is set, r1 + R1 is 120 mm or less, and R1 is 75 mm, so r1 is 45 mm or less. R1 is set to 40 mm with a margin. Further, the outer shape 2r2 of the perforated magnet plate is set to 120 mm in accordance with the outer shape of the float. In this case, the difference between the inner and outer shapes of the perforated plate is 40 mm.

図1において、7レーザー距離計微動回転機構の構成方法として、カメラの微動雲台、機器の姿勢調整や試料の傾斜回転などに使用する垂直Z軸に対してXY平面を自由に傾けるゴニオステージと呼ばれる回転機構の採用が考えられる。ここでは、小型で高精度の回転ができるゴニオステージを応用する例を示す。ゴニオステージは一般にステージの上に機器などを固定して使用することが多いが、ここではゴニオステージを上下逆にして、下向きステージにレーザー距離計を固定して回転するものとする。図6に11測定基準面に対して、下方の13穴あき板に投射するレーザー光の振れ角度を示している。例として、13穴あき板の直径は[0007]に示した120mmとしている。穴あき板までの距離を仮に10mとしたとき、これに対する微動回転機構の振れ角度はθ1=0.69度となる。
市販されているゴニオステージの例として、αβ軸ゴニオステージと呼ぶ製品があり、垂直軸に対して平面をX軸(左右方向)、Y軸(前後)方向に最大±15度、数分程度の精度で振ることができる。因みにαβ軸ゴニオステージはX軸(左右方向)、Y軸(前後方向)独立に回転ツマミを操作して1回転当たり2〜3度の角度を振ることができる。
穴あき磁石板までの距離を仮に1mとしたとき、これに対する微動回転機構の振り角度はθ2=6.9度となる。この場合、6.9度を振る回転ツマミは1回転当たり2度とすれば、3回転以上廻すことになり、高精度で中点を求めて光軸合わせができる。このように、投射レーザー光の中点は測定距離を短くして行うことにより容易に高精度で合わることができる利点がある。
In FIG. 1, as a method of configuring a 7 laser rangefinder fine rotation mechanism, a goniometer stage that freely tilts the XY plane with respect to a vertical Z axis used for camera fine adjustment head, device attitude adjustment, sample tilt rotation, etc. The adoption of a so-called rotation mechanism can be considered. Here, an example is shown in which a gonio stage capable of rotating with a small size and high accuracy is applied. In general, the gonio stage is often used with a device or the like fixed on the stage. Here, the gonio stage is turned upside down, and the laser distance meter is fixed to the downward stage and rotated. FIG. 6 shows the deflection angle of the laser light projected on the lower 13-hole plate with respect to the 11 measurement reference plane. As an example, the diameter of the 13-hole plate is 120 mm as shown in [0007]. When the distance to the perforated plate is 10 m, the deflection angle of the fine rotation mechanism relative to this is θ1 = 0.69 degrees.
As an example of a commercially available goniometer stage, there is a product called an αβ-axis goniometer stage, which has a plane that is up to ± 15 degrees in the X-axis (left-right direction) and Y-axis (front-rear) direction with respect to the vertical axis, about several minutes. Can be shaken with accuracy. Incidentally, the αβ-axis gonio stage can swing an angle of 2 to 3 degrees per rotation by operating the rotary knob independently of the X-axis (left-right direction) and Y-axis (front-back direction).
Assuming that the distance to the perforated magnet plate is 1 m, the swing angle of the fine rotation mechanism relative to this is θ2 = 6.9 degrees. In this case, if the rotation knob swinging 6.9 degrees is set to 2 degrees per rotation, it will be rotated three or more times, and the optical axis can be aligned with high accuracy by obtaining the midpoint. Thus, the midpoint of the projection laser beam has an advantage that it can be easily combined with high accuracy by shortening the measurement distance.

フロートは白色処理を施して、投射光を拡散反射するようにしている。より良好な反射を行うために、フロート上部表面に方向性反射材料を配置することにより最適の反射を行うことができる。方向性反射材料は反射光が投射方向と同じ方向に帰る反射特性を有する。
フロート上部に方向性反射材料を配置して、5反射レーザー光を4投射レーザー光の方向に反射させるようする。方向性反射材料から反射した5反射レーザー光は4投射光と同一方向に対して狭い反射角で反射し、レーザー距離計で効率良く受信できる。方向性反射材料は小さなプリズムを多数並べてシート状としたものが実用化されている。また、3消波管は鋼管、塩化ビニル管などが用いられるが管内面の光学的反射率が大きい場合、大きな乱反射光がレーザー受光器に入ると距離測定の障害となる。この乱反射光がレーザー受光器へ入る量を小さくするために黒色塗装処理を行い、乱反射光を吸収する。
The float is subjected to white processing to diffusely reflect the projected light. For better reflection, optimal reflection can be achieved by placing a directional reflective material on the float upper surface. The directional reflective material has a reflection characteristic in which reflected light returns in the same direction as the projection direction.
A directional reflective material is disposed on the float to reflect 5 reflected laser light in the direction of 4 projected laser light. The five-reflection laser light reflected from the directional reflection material is reflected at a narrow reflection angle with respect to the same direction as the four projection light, and can be efficiently received by the laser distance meter. As the directional reflecting material, a sheet in which a large number of small prisms are arranged has been put into practical use. In addition, steel pipes, vinyl chloride pipes, etc. are used as the three quenching tubes. If the optical reflectivity of the inner surface of the tube is large, distance measurement becomes an obstacle when large irregularly reflected light enters the laser receiver. In order to reduce the amount of the irregularly reflected light entering the laser receiver, a black coating process is performed to absorb the irregularly reflected light.

本発明において、13穴あき板は14フランジおよび15フロートの磁石または磁性体部分と磁力により吸着する。この場合の結合方法の組み合わせは
一方が磁石他方も磁石
一方が磁石他方は磁性体
また、磁石の場合、永久磁石と電磁石がある。これらの組合せは、物理的な形状および磁力の開放の仕方により選択する。[課題を解決するための手段]の項では13穴あき板と2フロートとの磁力による吸着の開放方法として、13穴あき板と2フロートの引き離し方法は14フランジに設けた穴に細棒を挿入して突き落とす方法を例として説明したが、電磁力とすることによって、ワイヤを引き延ばしてフロートを水面近くまで降下して、電磁力を開放すればフロートは水面に緩やかに降下できる。この場合、13穴あき板は電磁石を有する必要がある。この場合の電源供給は12引き上げワイヤを電線として電磁石に電気を供給する。また、フロート、穴あき板、フランジに適用する磁石および磁性体の形状は磁力による吸着、引き離し等を考慮して、各種の選択が可能なものとする。なお、フランジと穴あき板は磁力によらず引き上げワイヤで中心穴あき板を引き上げ状態に保持する選択肢もある。
In the present invention, the 13-hole plate is adsorbed by a magnetic force to a 14 flange and 15 float magnet or magnetic part. In this case, the combination of the coupling methods includes a permanent magnet and an electromagnet in the case where one is a magnet and the other magnet is a magnetic body or a magnet. These combinations are selected depending on the physical shape and the way of releasing the magnetic force. In the section [Means for Solving the Problems], as a method of releasing the adsorption by the magnetic force between the 13-hole perforated plate and the 2-float, the 13-hole perforated plate and the 2-float are separated by using a thin rod in the hole provided on the 14 flange. Although the method of inserting and pushing down has been described as an example, by using electromagnetic force, the float can be lowered to the water surface by extending the wire to lower the float to near the water surface and releasing the electromagnetic force. In this case, the 13-holed plate needs to have an electromagnet. The power supply in this case supplies electricity to the electromagnet using 12 pulling wires as electric wires. In addition, the shape of the magnet and the magnetic material applied to the float, the perforated plate, and the flange can be selected in various ways in consideration of adsorption and separation by magnetic force. Note that the flange and the perforated plate have an option to hold the central perforated plate in a pulled state with a pulling wire regardless of the magnetic force.

測定距離の校正時とレーザー光の光軸合わせの状態を示している。It shows the state of calibration of the measurement distance and the alignment of the optical axis of the laser beam. 測定距離校正およびレーザー光の光軸合わせの準備過程を示している。The preparation process of measurement distance calibration and laser beam optical axis alignment is shown. 通常の距離測定状態を示している。A normal distance measurement state is shown. 穴あき板へ投射するレーザー光による光軸合わせ方法の説明図。Explanatory drawing of the optical axis alignment method by the laser beam projected to a perforated board. 消波管内径、フロート外径、穴あき板の外径、穴径の制約条件の説明図。Explanatory drawing of the inner diameter of a quenching tube, the float outer diameter, the outer diameter of a perforated board, and the constraint conditions of a hole diameter. 投射レーザー光の光軸合せの距離による難易の説明図。Explanatory drawing of the difficulty by the distance of the optical axis alignment of a projection laser beam.

Claims (2)

(イ)消波管、レーザー距離計、フロートを有し、測定液中に内部が空胴の消波管を設置する。レーザー距離計を消波管の上部に配置して、消波管の中にレーザー距離計より投射レーザー光を送出する。
(ロ)消波管内部の液面にフロートを浮力で浮かべておく、フロートは液面の上下によって液面と同じ距離を上下する。
(ハ)投射レーザー光はフロートに投射され、その反射レーザー光をレーザー距離計で受信してフロートまでの距離を求め、液面に換算する。
(ニ)磁石または磁性体部を有する穴あき板を有するものとし、穴あき板は複数の吊り下げワイヤを有するものとする。穴あき板をレーザー距離計とフロート間に穴あき板の穴中心が消波管の中心軸及び投射レーザー光の光軸と一致するように吊り下げワイヤで消波管の軸中心に対し直角になるように吊り下げる。
(ホ)穴あき板の穴は投射レーザー光および反射レーザー光が通過できる大きさとする。
(ヘ)穴あき板は複数の吊り下げワイヤを同じ長さになるように上下し、消波管の中心軸に対して直角状態を保持して上げ下げする。レーザー距離計の測定基準面と穴あき板の距離はワイヤの上げ下げ距離を測定することにより容易に知ることができる。
(ト)フロートは磁石または磁性体部を有するものとし、穴あき板が接近した場合、磁力で互いに吸着するものとする。
(チ)実際の液面より上にあるレーザー式液面計の任意位置での液面測定値を校正するために、穴あき板に取り付けたワイヤを延ばして引き下げ、フロートを磁力で吸着させ、再び液面よりフロートを吸着した状態で任意位置まで引き上げて校正を行う。
(リ)この任意位置での吊り下げワイヤの測定基準面からの長さは、穴あき板の正確な位置を示しており、この長さに穴あき板高さと液の比重により定まるフロートが浮力で液面に突出している高さを加えた値を校正値とする。
(ヌ)この任意位置でのレーザー光の投射、反射によるレーザー距離計の読みを測定して被校正値とする。
(ル)上記の校正値と被校正値を比較することにより任意位置において測定距離校正を行うものとする。校正後は通常の液位測定状態に戻すためにフロートと穴あき板の磁力による吸着を開放し、フロートを液面に戻すものとする。以上の構成と液面測定値の校正方法を特徴とするレーザー式液面計
(B) A wave-dissipating tube, a laser distance meter, and a float are installed, and a wave-dissipating tube with a cavity inside is installed in the measurement liquid. A laser distance meter is arranged on the upper part of the quenching tube, and a projection laser beam is transmitted from the laser distance meter into the quenching tube.
(B) Float floats on the liquid level inside the wave-dissipating tube. The float moves up and down the same distance as the liquid level depending on the liquid level.
(C) The projected laser beam is projected onto the float, the reflected laser beam is received by a laser distance meter, the distance to the float is obtained, and converted to the liquid level.
(D) It shall have a perforated plate having a magnet or a magnetic part, and the perforated plate shall have a plurality of hanging wires. Place the perforated plate between the laser distance meter and the float with a suspension wire so that the hole center of the perforated plate coincides with the center axis of the silencer tube and the optical axis of the projected laser beam. Suspend to be.
(E) The hole in the perforated plate is sized so that the projection laser beam and the reflected laser beam can pass through.
(F) The perforated plate moves up and down a plurality of suspending wires so as to have the same length, and lifts and lowers while maintaining a state perpendicular to the central axis of the wave-dissipating tube. The distance between the measurement reference plane of the laser distance meter and the perforated plate can be easily known by measuring the distance of raising and lowering the wire.
(G) Float shall have a magnet or a magnetic part, and shall adsorb | suck mutually with magnetic force, when a perforated board approaches.
(H) In order to calibrate the liquid level measurement value at an arbitrary position of the laser level gauge above the actual liquid level, the wire attached to the perforated plate is extended and pulled down, and the float is adsorbed by magnetic force, With the float again adsorbed from the liquid level, it is raised to an arbitrary position for calibration.
(I) The length of the hanging wire from the measurement reference plane at this arbitrary position indicates the exact position of the perforated plate, and the float determined by the height of the perforated plate and the specific gravity of the liquid has buoyancy. The value obtained by adding the height protruding from the liquid surface is the calibration value.
(Nu) The laser distance meter reading due to the projection and reflection of the laser beam at this arbitrary position is measured to obtain the value to be calibrated.
(L) The measurement distance is calibrated at an arbitrary position by comparing the calibration value with the value to be calibrated. After calibration, in order to return to the normal liquid level measurement state, the float and the perforated plate are released from the magnetic force, and the float is returned to the liquid level. Laser level gauge characterized by the above configuration and calibration method for liquid level measurement values
(イ)請求項1によるレーザー式液面計において、消波管中心軸を基準として、レーザー距離計の光軸を左右、前後に角度を調整できるレーザー距離計微動回転機構を有するものとする。
(ロ)穴あき板には穴中心に対し同軸方向の等距離位置に順にレーザー光の無反射帯、反射帯、無反射帯を設ける。無反射帯位置では投射レーザー光が吸収され反射光がレーザー距離計に戻らないために距離測定不能となる。
(ハ)実際の液面より上にある任意位置で投射レーザー光の光軸合わせを行うために、穴あき板に取り付けたワイヤを延ばして引き下げ、フロートを磁力で吸着させ、再び液面よりフロートを吸着した状態で任意位置まで引き上げて光軸合わせを行う。
(ニ)微動回転機構により投射レーザー光の光軸を左右に振る。左または右への振り角度の増加に従って、投射光は穴あき板の穴あき部をはずれ、無反射帯に投射され距離測定不能となる。振り角度をより増加すれば反射帯に投射され反射光がレーザー距離計に戻り距離が読みとりできる。この位置での微動回転機構の振れ角度を読みとる。さらに振れば再び次の無反射帯に投射され反射光が戻らない。
(ホ)穴あき板の左に振った時の反射帯位置と右に振った時の反射帯位置の振れ角度を読みとり、その中点角度を左右の消波管中心として光軸を合わせる。同様に、光軸を前後に振り、穴あき板の前に振った時の反射帯位置と後に振った時の反射帯位置の振れ角度の中点角度を前後の消波管中心として光軸を合わせる。
(ヘ)上記の左右および前後の中点角度を消波管中心として、投射レーザー光の光軸合わせを行うことを特徴とするレーザー式液面計
(A) The laser-type liquid level meter according to claim 1 has a laser range finder fine rotation mechanism capable of adjusting the angle of the optical axis of the laser range finder to the left and right and back and forth with respect to the central axis of the quenching tube.
(B) A non-reflective band, a reflective band, and a non-reflective band for laser light are provided in order on the perforated plate at equidistant positions in the coaxial direction with respect to the hole center. At the non-reflective band position, the projection laser light is absorbed, and the reflected light does not return to the laser distance meter, making distance measurement impossible.
(C) To align the optical axis of the projected laser beam at an arbitrary position above the actual liquid level, the wire attached to the perforated plate is extended and pulled down, the float is adsorbed by magnetic force, and then floated again from the liquid level. The optical axis is adjusted by pulling up to an arbitrary position while adsorbing.
(D) The optical axis of the projection laser beam is swung to the left and right by the fine rotation mechanism. As the swing angle increases to the left or to the right, the projected light comes off the perforated portion of the perforated plate and is projected onto the non-reflective zone, making it impossible to measure the distance. If the swing angle is further increased, the light is projected onto the reflection band, and the reflected light returns to the laser rangefinder to read the distance. Read the deflection angle of the fine rotation mechanism at this position. If it is further shaken, it is projected again to the next non-reflective band and the reflected light does not return.
(E) Read the deflection angle between the reflection band position when swung to the left of the perforated plate and the reflection band position when swung to the right, and align the optical axis with the midpoint angle as the center of the left and right quenching tubes. Similarly, the optical axis is swung back and forth, and the optical axis is centered on the midpoint of the deflection angle between the reflection band position when swung in front of the perforated plate and the reflection band position when swung back and forth. Match.
(F) A laser-type liquid level gauge characterized by aligning the optical axis of the projected laser light with the above-mentioned left and right and front and rear midpoint angles as the center of the wave-dissipating tube
JP2012013508A 2012-01-06 2012-01-06 Laser level gauge Expired - Fee Related JP5589248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013508A JP5589248B2 (en) 2012-01-06 2012-01-06 Laser level gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013508A JP5589248B2 (en) 2012-01-06 2012-01-06 Laser level gauge

Publications (2)

Publication Number Publication Date
JP2013142688A true JP2013142688A (en) 2013-07-22
JP5589248B2 JP5589248B2 (en) 2014-09-17

Family

ID=49039302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013508A Expired - Fee Related JP5589248B2 (en) 2012-01-06 2012-01-06 Laser level gauge

Country Status (1)

Country Link
JP (1) JP5589248B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003133A (en) * 2011-06-16 2013-01-07 Satoru Kitazawa Light spot discriminating water gauge
JP2013253955A (en) * 2012-05-11 2013-12-19 Kitazawa Gijutsu Jimusho Kk Laser type liquid level gauge
JP2014145756A (en) * 2013-01-07 2014-08-14 Kitazawa Gijutsu Jimusho Kk Laser type level meter
DE102014114139A1 (en) * 2014-09-29 2016-03-31 Endress+Hauser Yamanashi Co., Ltd. Test device for checking the accuracy of level gauges
RU2627569C1 (en) * 2016-04-20 2017-08-08 Федеральное государственное бюджетное учреждение "ВЫСОКОГОРНЫЙ ГЕОФИЗИЧЕСКИЙ ИНСТИТУТ" (ФГБУ "ВГИ") Device for measuring water level in reservoirs
RU178306U1 (en) * 2016-10-12 2018-03-29 Альберт Галиуллович Абдуллин LASER LIQUID LEVEL METER
CN108344467A (en) * 2018-03-20 2018-07-31 中国地质调查局南京地质调查中心 A kind of field one fluid measurement device of well depth water level and its measurement method
CN112611436A (en) * 2020-12-29 2021-04-06 深圳市利拓光电有限公司 Laser liquid level measuring device and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193329U (en) * 1985-05-27 1986-12-02
JPS6263821A (en) * 1985-09-13 1987-03-20 Ohbayashigumi Ltd Sand-surface meter
JPH10281854A (en) * 1997-03-31 1998-10-23 Ikeda Keiki Seisakusho:Kk Apparatus for measuring change amount of water level or the like
JP2000171211A (en) * 1998-12-04 2000-06-23 Nkk Corp Pipe length measuring instrument
JP2003065684A (en) * 2001-08-27 2003-03-05 Kawasaki Steel Corp Detecting method of molten iron surface level in molten iron pot
JP2010249790A (en) * 2009-04-20 2010-11-04 Satoru Kitazawa Laser-type water gauge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193329U (en) * 1985-05-27 1986-12-02
JPS6263821A (en) * 1985-09-13 1987-03-20 Ohbayashigumi Ltd Sand-surface meter
JPH10281854A (en) * 1997-03-31 1998-10-23 Ikeda Keiki Seisakusho:Kk Apparatus for measuring change amount of water level or the like
JP2000171211A (en) * 1998-12-04 2000-06-23 Nkk Corp Pipe length measuring instrument
JP2003065684A (en) * 2001-08-27 2003-03-05 Kawasaki Steel Corp Detecting method of molten iron surface level in molten iron pot
JP2010249790A (en) * 2009-04-20 2010-11-04 Satoru Kitazawa Laser-type water gauge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003133A (en) * 2011-06-16 2013-01-07 Satoru Kitazawa Light spot discriminating water gauge
JP2013253955A (en) * 2012-05-11 2013-12-19 Kitazawa Gijutsu Jimusho Kk Laser type liquid level gauge
JP2014145756A (en) * 2013-01-07 2014-08-14 Kitazawa Gijutsu Jimusho Kk Laser type level meter
DE102014114139A1 (en) * 2014-09-29 2016-03-31 Endress+Hauser Yamanashi Co., Ltd. Test device for checking the accuracy of level gauges
RU2627569C1 (en) * 2016-04-20 2017-08-08 Федеральное государственное бюджетное учреждение "ВЫСОКОГОРНЫЙ ГЕОФИЗИЧЕСКИЙ ИНСТИТУТ" (ФГБУ "ВГИ") Device for measuring water level in reservoirs
RU178306U1 (en) * 2016-10-12 2018-03-29 Альберт Галиуллович Абдуллин LASER LIQUID LEVEL METER
CN108344467A (en) * 2018-03-20 2018-07-31 中国地质调查局南京地质调查中心 A kind of field one fluid measurement device of well depth water level and its measurement method
CN112611436A (en) * 2020-12-29 2021-04-06 深圳市利拓光电有限公司 Laser liquid level measuring device and control method

Also Published As

Publication number Publication date
JP5589248B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5589248B2 (en) Laser level gauge
CN100399001C (en) Alignment device for use with a filling level measurement instrument
JP2010249790A (en) Laser-type water gauge
JP5707629B2 (en) Laser level gauge
KR101041169B1 (en) Subsurface topography data collection system
US20130104408A1 (en) Bullseye indicator and method
KR102199036B1 (en) Ultrasonic Water Level Meter for Real Time Tide Observation
JP5707627B2 (en) Laser level gauge
CN107255473B (en) measuring method for establishing dynamic reference plane
CN209706913U (en) Adjustable groundwater level monitoring device
CN206430787U (en) Groundwater level measuring system
CN114966706B (en) Determining method, determining system, reflector, vertical tank external liquid level meter and mounting method thereof
JP2011007574A (en) Target for measuring vertical precision of steel pipe and method of installing the target
KR101280251B1 (en) Apparatus and method for estimating perpendicularity of large steel pile
JP3962408B2 (en) Liquid storage tank leak inspection device
CN106768194A (en) Groundwater level measuring system and method
CN108195432A (en) A kind of electronic floating unit
US4335520A (en) Survey spar system for precision offshore seafloor surveys
JP2005292043A (en) Apparatus for measuring shape of inner wall surface of cavity
CN206618417U (en) A kind of levelling rod of automatic vertical precise positioning
CN112284301A (en) Verticality detection system with telescopic circular pipe column circle center self-positioning function
CN219038133U (en) Measuring device for avoiding land settlement caused by excessive super-mining of underground water
KR101123416B1 (en) Verticality measuring device
CN118166848A (en) Laser scanning device suitable for pile foundation pore-forming quality detects
CN109444860A (en) Multibeam echosounder analog calibration device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140418

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140711

R150 Certificate of patent or registration of utility model

Ref document number: 5589248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees