JP2013141814A - Composite molded article and method for manufacturing the same - Google Patents

Composite molded article and method for manufacturing the same Download PDF

Info

Publication number
JP2013141814A
JP2013141814A JP2012004132A JP2012004132A JP2013141814A JP 2013141814 A JP2013141814 A JP 2013141814A JP 2012004132 A JP2012004132 A JP 2012004132A JP 2012004132 A JP2012004132 A JP 2012004132A JP 2013141814 A JP2013141814 A JP 2013141814A
Authority
JP
Japan
Prior art keywords
resin
composite molded
hole
metal
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012004132A
Other languages
Japanese (ja)
Inventor
Yuki Kan
雪 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012004132A priority Critical patent/JP2013141814A/en
Publication of JP2013141814A publication Critical patent/JP2013141814A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite molded article in which joining strength between resin and metal is sufficiently high.SOLUTION: The composite molded article 1 is formed by joining a resin part 3 comprising a fiber-reinforced resin containing a reinforcing fiber F to a metal part 2. The metal part 2 has in a part thereof, a plate like joining part 4. The joining part 4 has two opposed main surfaces 4a, 4b and a plurality of through-holes P penetrating the joining part 4 from the one main surface to the other main surface out of two main surfaces 4a, 4b, the surface area of one through-hole on one or both main surfaces is 0.008-20 mmper one through-hole, and the opening ratio of the through-hole on one or both main surface is 10-60%. The metal part is joined to the resin part by covering each of two main surface of the joining part with the fiber-reinforced resin and filling the fiber-reinforced resin into inside the through-holes.

Description

本発明は、樹脂と金属とが接合された複合成形体及び複合成形体の製造方法に関する。   The present invention relates to a composite molded body in which a resin and a metal are joined, and a method for manufacturing the composite molded body.

近年、樹脂材料の軽量性、加工性、絶縁性などの特性と金属材料の導電性、放熱性、高強度などの特性とを有効に組み合わせた複合成形体が注目されている。このような複合成形体の製造方法としては、化学的反応や化学的処理により樹脂と金属とを接合させる方法の他、物理的に樹脂と金属とを接合させる方法が知られている。   In recent years, attention has been focused on composite molded articles that effectively combine the properties of resin materials such as lightness, workability, and insulation with the properties of metal materials such as conductivity, heat dissipation, and high strength. As a method for producing such a composite molded body, in addition to a method of bonding a resin and a metal by chemical reaction or chemical treatment, a method of physically bonding a resin and a metal is known.

例えば、特許文献1には、熱可塑性樹脂の成形体の表面に、多数の細孔を穿孔加工した金属板をプレス加熱成形で積層することにより、物理的に金属板と樹脂成形体とを接合したものが開示されている。また、特許文献2には、金属板をインサート体とする射出成形において、射出成形時にウェルドが発生する箇所に一致させて貫通孔を金属板に設け、当該貫通孔を通じて金属板の両面の樹脂を連結させることで、金属板と樹脂との密着性を高めたものが開示されている。   For example, in Patent Document 1, a metal plate and a resin molded body are physically bonded to each other by laminating a metal plate with a large number of pores formed on the surface of a molded body of a thermoplastic resin by press thermoforming. Has been disclosed. Patent Document 2 discloses that in injection molding using a metal plate as an insert body, a through hole is provided in the metal plate so as to coincide with a place where a weld occurs during injection molding, and resin on both sides of the metal plate is passed through the through hole. The thing which improved the adhesiveness of a metal plate and resin by connecting is disclosed.

特開平5−185561号公報JP-A-5-185561 特開2006−110924号公報JP 2006-110924 A

しかしながら、前述した従来の技術では樹脂と金属との十分な接合強度を確保できない場合があり、樹脂と金属との接合強度を向上させる技術が強く求められていた。   However, there are cases in which the above-described conventional technology cannot secure a sufficient bonding strength between the resin and the metal, and a technique for improving the bonding strength between the resin and the metal has been strongly demanded.

そこで、本発明は、樹脂と金属との接合強度が十分に高い複合成形体及びその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a composite molded body having a sufficiently high bonding strength between a resin and a metal and a method for producing the same.

上記課題を解決するため、本発明は、強化繊維を含有する繊維強化樹脂からなる樹脂部と金属部とが接合された複合成形体であって、金属部は、その一部に板状の接合部を有し、接合部は、互いに対向する2つの主面と、2つの主面のうちの一方の主面から他方の主面まで、接合部を貫通する複数の貫通孔とを有し、一方又は両方の主面上の貫通孔の一つ当たりの面積が、0.008〜20mmであり、一方又は両方の主面上の貫通孔の開口率が10〜60%であり、金属部は、接合部の2つの主面がそれぞれ繊維強化樹脂に被覆され、かつ貫通孔の内部に繊維強化樹脂が充填されることによって樹脂部と接合されたことを特徴とする。 In order to solve the above-mentioned problems, the present invention is a composite molded body in which a resin part made of a fiber-reinforced resin containing reinforcing fibers and a metal part are joined, and the metal part has a plate-like joint on a part thereof The joint portion has two main surfaces facing each other and a plurality of through holes penetrating the joint portion from one main surface to the other main surface of the two main surfaces, The area per one of the through holes on one or both main surfaces is 0.008 to 20 mm 2 , the aperture ratio of the through holes on one or both main surfaces is 10 to 60%, and the metal part Is characterized in that the two principal surfaces of the joint portion are each coated with a fiber reinforced resin and are joined to the resin portion by filling the inside of the through hole with the fiber reinforced resin.

本発明に係る複合成形体においては、貫通孔の内部における繊維強化樹脂中の強化繊維の濃度Winの、貫通孔の外部における繊維強化樹脂中の強化繊維の濃度Woutに対する比(Win/Wout)が0.6〜1.4であることが好ましい。 In the composite molded product according to the present invention, the ratio of the through-hole density W in the reinforcing fibers of the fiber-reinforced resin, for concentration W out of the reinforcing fibers of the fiber reinforced resin in the exterior of the through-hole (W in / W out) it is preferable that 0.6 to 1.4.

また、本発明に係る複合成形体においては、接合部の縦幅Lの、接合部の厚みdに対する比(L/d)が1〜20であることが好ましい。   Moreover, in the composite molded object which concerns on this invention, it is preferable that ratio (L / d) with respect to the thickness d of the junction part of the vertical width L of a junction part is 1-20.

本発明は、強化繊維を含有する繊維強化樹脂からなる樹脂部と金属部とが接合された複合成形体の製造方法であって、金属部の一部であり、かつ互いに対向する2つの主面を有する板状の接合部に、2つの主面のうち一方又は両方の主面上の貫通孔の面積が0.008〜20mmとなり、一方又は両方の主面上の貫通孔の開効率が10〜60%となるように貫通孔を設ける金属部穿孔工程と、接合部の2つの主面をそれぞれ繊維強化樹脂によって被覆するとともに、貫通孔の内部に繊維強化樹脂を充填することにより、金属部と接合された樹脂部を形成する樹脂部形成工程とを含むことを特徴とする。 The present invention relates to a method for producing a composite molded body in which a resin part made of a fiber reinforced resin containing reinforcing fibers and a metal part are joined, and is a part of the metal part, and two main surfaces facing each other The area of the through hole on one or both main surfaces of the two main surfaces is 0.008 to 20 mm 2 in the plate-like joint having two , and the opening efficiency of the through holes on one or both main surfaces is A metal part drilling step for providing a through hole so as to be 10 to 60%, and coating the two main surfaces of the joint part with a fiber reinforced resin, and filling the inside of the through hole with a fiber reinforced resin And a resin part forming step of forming a resin part joined to the part.

本発明に係る複合成形体の製造方法においては、樹脂部形成工程において、金属部を金型のキャビティ内にインサートし、その後、金型のキャビティ内に繊維強化樹脂を射出することにより、金属部と接合された樹脂部を形成することが好ましい。   In the method for producing a composite molded body according to the present invention, in the resin part forming step, the metal part is inserted into the cavity of the mold, and then the fiber reinforced resin is injected into the cavity of the mold to thereby form the metal part. It is preferable to form a resin portion bonded to the.

本発明は、樹脂と金属との接合強度が十分に高い複合成形体を得ることができる。   The present invention can provide a composite molded body having a sufficiently high bonding strength between a resin and a metal.

本発明に係る複合成形体の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the composite molded object which concerns on this invention. 図1の金属部を示す斜視図である。It is a perspective view which shows the metal part of FIG. 図1のIII−III線に沿った断面図である。It is sectional drawing along the III-III line of FIG. 貫通孔内の強化繊維の配向状態を説明するための拡大断面図である。It is an expanded sectional view for demonstrating the orientation state of the reinforcing fiber in a through-hole. (a)は、金属部に対するマスキング処理を示す図である。(b)は、複合成形体の製造用型枠を示す図である。(A) is a figure which shows the masking process with respect to a metal part. (B) is a figure which shows the formwork for manufacture of a composite molded object. (a)は、樹脂部の射出成形を示す図である。(b)は、実施例に係る複合成形体の完成状態を示す図である。(A) is a figure which shows the injection molding of the resin part. (B) is a figure which shows the completion state of the composite molded object which concerns on an Example.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図面における寸法、形状、構成要素間の大小関係は実際の製品と必ずしも同一ではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the size, the shape, and the magnitude relationship between components in each drawing are not necessarily the same as an actual product.

[複合成形体]
図1〜図3に示されるように、本実施形態に係る複合成形体1は、平板状の金属部2とブロック状の樹脂部3との接合により形成されている。本実施形態では単純形状の複合成形体1について説明するが、本発明にかかる複合成形体の外形は、様々な複雑な形状をとることができる。
[Composite molded body]
As shown in FIGS. 1 to 3, the composite molded body 1 according to this embodiment is formed by joining a flat metal part 2 and a block resin part 3. In the present embodiment, the composite molded body 1 having a simple shape will be described, but the outer shape of the composite molded body according to the present invention can take various complicated shapes.

金属部2の材料は、例えば、アルミニウム、銅、鉄、鉄鋼、各種合金の中から使用目的に応じて選択される。この金属部2は、その一部に、樹脂部3と一体に接合された平板状の接合部4を有している。   The material of the metal part 2 is selected according to the intended use from aluminum, copper, iron, steel, and various alloys, for example. The metal part 2 has a flat plate-like joint part 4 joined integrally with the resin part 3 at a part thereof.

平板状の接合部4は、互いに対向する2つの主面4a及び4bを有し、金属部2は、2つの主面4a,4bがそれぞれ繊維強化樹脂に被覆されることによって樹脂部3と接合されている。主面4a及び4bには、樹脂部3との接合強度を高めるため微細な凹凸を設けることができる。このような微細な凹凸は、サンドペーパー処理やサンドブラスト等の機械加工、又は化学処理により形成される。その他、樹脂部3との接合強度を高めるための接着層等を主面4a及び/又は4bの上に設けてもよい。   The flat joint portion 4 has two main surfaces 4a and 4b facing each other, and the metal portion 2 is joined to the resin portion 3 by covering the two main surfaces 4a and 4b with fiber reinforced resin, respectively. Has been. The main surfaces 4 a and 4 b can be provided with fine irregularities in order to increase the bonding strength with the resin portion 3. Such fine irregularities are formed by mechanical processing such as sandpaper processing or sandblasting, or chemical processing. In addition, an adhesive layer or the like for increasing the bonding strength with the resin portion 3 may be provided on the main surface 4a and / or 4b.

また、接合部4には、主面4aから主面4bにかけて貫通する多数の貫通孔Pが形成されている。これらの貫通孔Pは、例えば接合部4に対してプレス加工を行うことにより形成される。貫通孔Pは、接合部4を厚さ方向に貫通して形成されている。   The joint 4 is formed with a large number of through holes P penetrating from the main surface 4a to the main surface 4b. These through-holes P are formed by, for example, pressing the joint 4. The through hole P is formed so as to penetrate the joint portion 4 in the thickness direction.

主面4aと主面4bのうちの一方又は両方の主面上の貫通孔Pの一つ当たりの面積は、一つ当たり0.008〜20mmである。また、好ましくは0.2〜13mmである。なお、主面4b上の貫通孔Pの一つ当たりの面積は、主面4a上の貫通孔Pの一つ当たりの面積と同一であってもよく、異なっていてもよい。 The area per through hole P on one or both of the main surface 4a and the main surface 4b is 0.008 to 20 mm2. Further, preferably 0.2~13mm 2. The area per through hole P on the main surface 4b may be the same as or different from the area per through hole P on the main surface 4a.

また、主面4aと主面4bのうちの一方又は両方の主面上における多数の貫通孔Pの開口率は、10〜60%である。また、好ましくは20〜50%である。なお、ここでいう開口率は、主面4a又は主面4b上における貫通孔Pの面積の合計を、当該主面の面積(貫通孔Pの面積も含む)で除して求められる割合を意味する。   Moreover, the aperture ratio of many through-holes P on one or both of the main surfaces 4a and 4b is 10 to 60%. Moreover, Preferably it is 20 to 50%. Here, the aperture ratio means the ratio obtained by dividing the total area of the through holes P on the main surface 4a or the main surface 4b by the area of the main surface (including the area of the through holes P). To do.

貫通孔Pの形状としては、正円、楕円などの円形状:三角形状、四角形状などの多角形状:星形などの形状を挙げることができる。   Examples of the shape of the through hole P include a circular shape such as a perfect circle and an ellipse: a polygonal shape such as a triangular shape and a quadrangular shape: a star shape and the like.

また、貫通孔Pの貫通方向は、接合部4の厚さ方向と同じであってもよく、異なっていてもよい。貫通孔Pの内面は、主面4a及び主面4bに対して垂直であってもよく、あるいは主面4aから主面4bに向かってテーパ状に傾いていてもよく、また段差等が形成されていてもよい。   Further, the penetration direction of the through hole P may be the same as or different from the thickness direction of the joint portion 4. The inner surface of the through hole P may be perpendicular to the main surface 4a and the main surface 4b, or may be inclined in a tapered shape from the main surface 4a to the main surface 4b, and a step or the like is formed. It may be.

また、多数の貫通孔Pは、全てが同じ面積や形状である必要はなく、場所により面積や形状、面積比率が変化してもよい。このような貫通孔Pの面積や面積比率、形状の組み合わせは、複合成形体1の使用目的や複合成形体1に加わる荷重条件等に応じて適切なものが選択される。   Moreover, it is not necessary for all the through holes P to have the same area and shape, and the area, shape, and area ratio may vary depending on the location. An appropriate combination of the area, the area ratio, and the shape of the through-hole P is selected according to the purpose of use of the composite molded body 1, the load condition applied to the composite molded body 1, and the like.

接合部4の縦幅Lの、接合部4の厚みdに対する比(L/d)は、好ましくは1〜20であり、より好ましくは2〜18であり、さらに好ましくは5〜15である。ここで、接合部4の縦幅とは、金属と樹脂との接合部4における樹脂部3への金属部2の奥行き(樹脂部3へ入り込む金属部2の深さ)を指す。接合部4が矩形である場合のL及びdは図1に示す通りである。   The ratio (L / d) of the longitudinal width L of the joint portion 4 to the thickness d of the joint portion 4 is preferably 1 to 20, more preferably 2 to 18, and further preferably 5 to 15. Here, the vertical width of the joint portion 4 refers to the depth of the metal portion 2 to the resin portion 3 in the joint portion 4 of metal and resin (depth of the metal portion 2 entering the resin portion 3). L and d when the joint portion 4 is rectangular are as shown in FIG.

樹脂部3は、強化繊維Fを含有する繊維強化樹脂から形成されている。樹脂材料としては、例えばポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート、アクリル樹脂、スチレン−ブタジエンブロック共重合体、アクリロニトリル−スチレン−ブタジエンブロック共重合体等の一般的な熱可塑性樹脂、EPM、EPDM等の熱可塑性エストラマ−、これらの混合物、これらを用いたポリマーアロイ等が挙げられる。   The resin part 3 is formed from a fiber reinforced resin containing the reinforced fiber F. Examples of the resin material include general thermoplastic resins such as polypropylene, polyethylene, polystyrene, polyamide, polyvinyl chloride, polycarbonate, acrylic resin, styrene-butadiene block copolymer, acrylonitrile-styrene-butadiene block copolymer, and EPM. And thermoplastic elastomers such as EPDM, mixtures thereof, polymer alloys using these, and the like.

樹脂材料の230℃、荷重2.16kgで測定したメルトマスフローレイト(MFR)は、好ましくは5g/10分〜200g/10分である。   The melt mass flow rate (MFR) measured at 230 ° C. and a load of 2.16 kg of the resin material is preferably 5 g / 10 min to 200 g / 10 min.

また、樹脂部3に含有される強化繊維Fとしては、例えばガラス繊維、有機繊維、炭素繊維、金属繊維等が挙げられる。このような強化繊維Fを含有する繊維強化樹脂を用いることで、樹脂部3の熱膨張率が金属部2の熱膨張率に近づくので、熱膨張による剥離を避けることができる。また、繊維強化樹脂を用いることにより複合成形体1の強度及び耐熱性の向上が図られる。繊維強化樹脂における強化繊維Fの割合は、10重量%〜60重量%であることが好ましい。   Examples of the reinforcing fiber F contained in the resin portion 3 include glass fiber, organic fiber, carbon fiber, and metal fiber. By using such a fiber reinforced resin containing the reinforcing fiber F, the thermal expansion coefficient of the resin part 3 approaches the thermal expansion coefficient of the metal part 2, so that peeling due to thermal expansion can be avoided. Moreover, the strength and heat resistance of the composite molded body 1 can be improved by using the fiber reinforced resin. The ratio of the reinforcing fiber F in the fiber reinforced resin is preferably 10% by weight to 60% by weight.

その他、樹脂部3の樹脂材料には、通常使用される各種のフィラー、安定剤、分散剤、紫外線吸収剤、離型剤、滑材、帯電防止剤、顔料等の各種添加材が含有されていてもよい。   In addition, the resin material of the resin portion 3 contains various commonly used fillers, stabilizers, dispersants, ultraviolet absorbers, mold release agents, lubricants, antistatic agents, pigments and other various additives. May be.

樹脂部3は、接合部4の主面4a及び4bと密着し、貫通孔P内も満たしている。図3に、樹脂部3と接合部4とを含む複合成形体1の接合部分をJとして示す。   The resin portion 3 is in close contact with the main surfaces 4 a and 4 b of the joint portion 4 and fills the through hole P. In FIG. 3, a joint portion of the composite molded body 1 including the resin portion 3 and the joint portion 4 is indicated as J.

樹脂部3に含有される強化繊維Fの平均繊維長は、0.1mm〜5.0mmであることが好ましい。これらの強化繊維Fが貫通孔P内に存在することにより、特定方向に対する樹脂部3の強度を高めることができる。平均繊維長は、例えば特開2002−5924号公報に記載の方法により測定される。また、強化繊維Fの繊維径は、好ましくは5μm〜100μmである。   The average fiber length of the reinforcing fibers F contained in the resin part 3 is preferably 0.1 mm to 5.0 mm. The presence of these reinforcing fibers F in the through holes P can increase the strength of the resin part 3 with respect to a specific direction. The average fiber length is measured, for example, by the method described in JP-A-2002-5924. The fiber diameter of the reinforcing fiber F is preferably 5 μm to 100 μm.

図4は、貫通孔P内の強化繊維の状態を説明するための拡大断面図である。貫通孔Pの内部における繊維強化樹脂中の強化繊維の濃度Winの、貫通孔Pの外部における繊維強化樹脂中の強化繊維の濃度Woutに対する比(Win/Wout)は、0.6〜1.4であり、好ましくは0.8〜1.2であり、より好ましくは0.9〜1.1である。ここで、繊維強化樹脂中の強化繊維の濃度とは、繊維強化樹脂の重量に対する強化繊維の重量の割合を表す。貫通孔Pの内部又は外部における繊維強化樹脂中の強化繊維の濃度は、下記の方法により求めることができる。
(1)複合成形体1の貫通孔Pの内部、または外部のそれぞれ約10箇所から、樹脂をサンプリングする。
(2)サンプリングした繊維強化樹脂の合計の重量を測定する。
(3)上記のサンプリングした樹脂を加熱し、繊維強化樹脂に含まれる樹脂材料を熱分解させる。
(4)残った強化繊維の重量を測定し、得られた強化繊維の重量を、(2)で測定した繊維強化樹脂の合計の重量で除した値を、繊維強化樹脂中の強化繊維の濃度とする。
なお、上記(3)における加熱温度は、繊維強化樹脂に含まれる樹脂材料のみが熱分解し、強化繊維が熱分解しない温度であり、樹脂材料及び強化繊維の種類に応じて適宜設定すればよい。熱可塑性樹脂がポリプロピレンであり、強化繊維がガラス繊維である場合、通常は500〜700℃である。また、加熱時間は通常は20分〜1時間である。
FIG. 4 is an enlarged cross-sectional view for explaining the state of the reinforcing fiber in the through hole P. Concentration W in the reinforcing fibers of the fiber reinforced resin in the through hole P, the ratio of the concentration W out of the reinforcing fibers of the fiber reinforced resin in the exterior of the through hole P (W in / W out) is 0.6 It is -1.4, Preferably it is 0.8-1.2, More preferably, it is 0.9-1.1. Here, the density | concentration of the reinforced fiber in fiber reinforced resin represents the ratio of the weight of a reinforced fiber with respect to the weight of a fiber reinforced resin. The concentration of the reinforcing fiber in the fiber reinforced resin inside or outside the through hole P can be obtained by the following method.
(1) The resin is sampled from approximately 10 locations inside or outside the through hole P of the composite molded body 1.
(2) The total weight of the sampled fiber reinforced resin is measured.
(3) The sampled resin is heated to thermally decompose the resin material contained in the fiber reinforced resin.
(4) The weight of the remaining reinforcing fiber is measured, and the value obtained by dividing the weight of the obtained reinforcing fiber by the total weight of the fiber reinforced resin measured in (2) is the concentration of the reinforcing fiber in the fiber reinforced resin. And
The heating temperature in (3) above is a temperature at which only the resin material contained in the fiber reinforced resin is thermally decomposed and the reinforcing fibers are not thermally decomposed, and may be set as appropriate according to the type of the resin material and the reinforcing fibers. . When the thermoplastic resin is polypropylene and the reinforcing fiber is glass fiber, the temperature is usually 500 to 700 ° C. The heating time is usually 20 minutes to 1 hour.

[複合成形体の製造方法]
上述した複合成形体1の製造方法の製造方法について説明する。複合成形体1の製造方法は、金属部2の接合部4に貫通孔Pを設ける金属部穿孔工程と、樹脂部3を形成する樹脂部形成工程とから構成される。
[Method for producing composite molded body]
The manufacturing method of the manufacturing method of the composite molded object 1 mentioned above is demonstrated. The manufacturing method of the composite molded body 1 includes a metal part drilling process in which a through hole P is provided in the joint 4 of the metal part 2 and a resin part forming process in which the resin part 3 is formed.

(金属部穿孔工程)
金属部穿孔工程では、例えば、平板の金属板の一部である接合部4にプレス加工で多数の貫通孔Pを設ける。なお、金属部穿孔工程は上述した方法以外の方法を用いてもよく、例えば、切削加工により貫通孔Pを設けてもよい。
(Metal part drilling process)
In the metal part drilling step, for example, a large number of through holes P are provided by pressing in the joint part 4 which is a part of a flat metal plate. In addition, the metal part drilling process may use methods other than the method mentioned above, for example, may provide the through-hole P by cutting.

(樹脂部形成工程)
樹脂部形成工程では、金属部2を金型のキャビティ内にインサートし、その後、金型のキャビティ内に繊維強化樹脂を射出することにより樹脂部3が形成される。
(Resin part forming process)
In the resin part forming step, the metal part 2 is inserted into the mold cavity, and then the resin part 3 is formed by injecting the fiber reinforced resin into the mold cavity.

具体的には、まず金属部2のうち接合部4のみがキャビティ内に露出した状態で金型に配置される。接合部4は、主面4a及び主面4bの何れも金型の内面と接触しない状態で配置される。   Specifically, first, only the joint portion 4 of the metal portion 2 is placed in the mold in a state of being exposed in the cavity. The joint portion 4 is arranged in a state where neither the main surface 4a nor the main surface 4b is in contact with the inner surface of the mold.

その後、金型のキャビティ内に溶融した繊維強化樹脂を注入することで、接合部4の周囲に樹脂が充填される。このとき、接合部4の主面4a及び主面4bの両方から樹脂が貫通孔P内に入り込み、貫通孔P内が繊維強化樹脂によって充填された状態となる。   Thereafter, molten fiber reinforced resin is injected into the cavity of the mold so that the resin is filled around the joint 4. At this time, the resin enters the through hole P from both the main surface 4a and the main surface 4b of the joint portion 4, and the inside of the through hole P is filled with the fiber reinforced resin.

樹脂部形成工程における成形温度は、使用する樹脂材料の種類に応じて適宜設定すればよい。一例として、樹脂材料がポリプロピレンの場合、好ましくは220℃〜270℃であり、より好ましくは230℃〜260℃である。また、金型温度は通常は20℃〜60℃である。樹脂部形成工程における射出率は、通常は10〜300cm/sである。 What is necessary is just to set the shaping | molding temperature in a resin part formation process suitably according to the kind of resin material to be used. As an example, when the resin material is polypropylene, it is preferably 220 ° C. to 270 ° C., more preferably 230 ° C. to 260 ° C. The mold temperature is usually 20 ° C to 60 ° C. The injection rate in the resin part forming step is usually 10 to 300 cm 3 / s.

その後、保圧処理及び冷却処理を経て主面4a及び主面4bが繊維強化樹脂によって被覆され、貫通孔P内にも樹脂が充填された状態で形成される。そして、所定の成形処理を経て複合成形体1が製造される。   Thereafter, the main surface 4a and the main surface 4b are covered with a fiber reinforced resin through a pressure holding process and a cooling process, and the through hole P is filled with the resin. And the composite molded object 1 is manufactured through a predetermined shaping | molding process.

以上説明した本実施形態に係る複合成形体1及びその製造方法によれば、強化繊維Fを含有する繊維強化樹脂から樹脂部3を形成することにより、強化繊維を含まない樹脂から樹脂部3を形成する場合と比べて複合成形体の強度向上を図ることができる。しかも、金属部2の接合部4に多数の貫通孔Pが形成されており、多数の貫通孔Pを通じて主面4a側の樹脂と主面4b側の樹脂とが繋がる構成とすることで、樹脂部3と接合部4とが構造的に係止され、金属部2と樹脂部3との接合強度を高めることができる。更に、貫通孔P内に強化繊維Fが存在するので、接合部4に加えられる力、特に樹脂部3から接合部4を引き抜く方向の力は貫通孔P内の強化繊維Fを通じて樹脂部3内に広く分散される。その結果、金属部2と樹脂部3との接合強度が十分に高い複合成形体を得ることができる。   According to the composite molded body 1 and the manufacturing method thereof according to the present embodiment described above, by forming the resin part 3 from the fiber reinforced resin containing the reinforcing fiber F, the resin part 3 is formed from the resin not including the reinforcing fiber. The strength of the composite molded body can be improved as compared with the case of forming. In addition, a large number of through holes P are formed in the joint 4 of the metal part 2, and the resin on the main surface 4a side and the resin on the main surface 4b side are connected through the large number of through holes P. The part 3 and the joint part 4 are structurally locked, and the joint strength between the metal part 2 and the resin part 3 can be increased. Furthermore, since the reinforcing fiber F exists in the through hole P, the force applied to the joint portion 4, particularly the force in the direction of pulling out the joint portion 4 from the resin portion 3, is generated in the resin portion 3 through the reinforcing fiber F in the through hole P. Widely dispersed. As a result, a composite molded body having a sufficiently high bonding strength between the metal part 2 and the resin part 3 can be obtained.

また、本実施形態に係る複合成形体1及び複合成形体の製造方法によれば、金属部2をインサート体とした射出成形により金属部2と樹脂部3とが接合されるので、少ない工程で複合成形体1を製造することができる。また、複合成形体1の量産化に有利である。   Further, according to the composite molded body 1 and the method of manufacturing the composite molded body according to the present embodiment, the metal part 2 and the resin part 3 are joined by injection molding using the metal part 2 as an insert body. The composite molded body 1 can be manufactured. Moreover, it is advantageous for mass production of the composite molded body 1.

また、接合部4の形状については、平板状以外の形状であってもよく、例えば、L字形状や湾曲形状であってもよく、波板形状であってもよい。また、一つの金属部2が複数の接合部4を有していてもよい。   Moreover, about the shape of the junction part 4, shapes other than flat form may be sufficient, for example, L shape and a curved shape may be sufficient, and a corrugated plate shape may be sufficient. One metal part 2 may have a plurality of joints 4.

(実施例1)
実施例1では、図5(a)に示す平板状の金属部10を準備して、インサート射出成形により複合成形体を製造した。金属部10として、長さ50mm、幅20mm、厚さ0.5mmのSPCC(冷間圧延鋼板)を使用した。
Example 1
In Example 1, a flat metal part 10 shown in FIG. 5A was prepared, and a composite molded body was manufactured by insert injection molding. As the metal part 10, SPCC (cold rolled steel plate) having a length of 50 mm, a width of 20 mm, and a thickness of 0.5 mm was used.

金属部10は、いわゆるパンチングメタルであり、プレス加工により形成された多数の貫通孔Qを有している。貫通孔Qの形状としては、正円の他、半円や四分円が存在する。正円の貫通孔Qの直径は1.0mm(面積は0.785mm)であった。 The metal part 10 is a so-called punching metal and has a large number of through holes Q formed by pressing. As the shape of the through hole Q, there are a semicircle and a quadrant in addition to a perfect circle. The diameter of the perfect circular through hole Q was 1.0 mm (the area was 0.785 mm 2 ).

以下、図5及び図6を参照して実施例1に係る複合成形体の製造方法を説明する。図5(a)は、金属部10に対するマスキング処理を示す図である。図5(a)では、金属部10のうち接合部11を除く部分を樹脂製のマスキング12で覆うマスキング処理を行った。貫通孔Qの開口率(接合部11の主面における複数の貫通孔Qの開口率)は22.6%であった。   Hereinafter, with reference to FIG.5 and FIG.6, the manufacturing method of the composite molded object which concerns on Example 1 is demonstrated. FIG. 5A is a diagram showing a masking process for the metal part 10. In FIG. 5A, a masking process is performed in which a portion of the metal portion 10 excluding the joint portion 11 is covered with a resin masking 12. The opening ratio of the through hole Q (the opening ratio of the plurality of through holes Q in the main surface of the joint portion 11) was 22.6%.

図5(b)は、複合成形体の製造用型枠20の成形を示す図である。今回は、樹脂製の製造用型枠20を利用して複合成形体の製造を行った。この製造用型枠20は、縦幅150mm、横幅150mm、厚さ2.5mmのキャビティを有する金型を用いて射出成形により形成した。樹脂材料は、平均繊維長が9mm、繊維径が22μmであるガラス長繊維を40重量%含有したガラス長繊維強化ポリプロピレン(住友化学株式会社製、熱可塑性樹脂)を用いた。これにより製造された正方形の樹脂板Nに、金属部10が配置される切り出し部21を形成して型枠20とした。   FIG. 5 (b) is a diagram illustrating the molding of the composite molded body manufacturing form 20. This time, a composite molded body was manufactured using a resin-made manufacturing form 20. The manufacturing form 20 was formed by injection molding using a mold having a cavity having a vertical width of 150 mm, a horizontal width of 150 mm, and a thickness of 2.5 mm. As the resin material, glass long fiber reinforced polypropylene (thermoplastic resin, manufactured by Sumitomo Chemical Co., Ltd.) containing 40% by weight of glass long fibers having an average fiber length of 9 mm and a fiber diameter of 22 μm was used. A cutout portion 21 in which the metal portion 10 is disposed is formed on the square resin plate N manufactured in this manner to form a mold 20.

図6(a)は、樹脂部の射出成形を示す図である。図6(a)に示されるように、金属部10を型枠20の切り出し部21内に配置して射出成形を行った。射出成形機として、株式会社日本製鋼所製のJ100(最大圧力2510kgf/cm,最大射出率280cm/s)を使用した。成形温度は250℃、金型温度は50℃、射出率を最大射出率の20%とした。 Fig.6 (a) is a figure which shows the injection molding of the resin part. As shown in FIG. 6A, the metal part 10 was placed in the cutout part 21 of the mold 20 and injection molding was performed. As an injection molding machine, J100 (maximum pressure 2510 kgf / cm 2 , maximum injection rate 280 cm 3 / s) manufactured by Nippon Steel Co., Ltd. was used. The molding temperature was 250 ° C., the mold temperature was 50 ° C., and the injection rate was 20% of the maximum injection rate.

射出成形で用いられる樹脂は、平均繊維長が9mm、繊維径が22μmであるガラス長繊維を40重量%含有したガラス長繊維強化ポリプロピレンとした。金属板10の接合部11をインサート体とし、切り出し部21内で金属板10の接合部11のみが露出した状態で射出成形を行った。切り出し部21内に注入された樹脂は、接合部11の周囲に流れ込んで貫通孔Q内を満たし、接合部11と接合した樹脂部30が形成された。   The resin used in the injection molding was a glass long fiber reinforced polypropylene containing 40% by weight of glass long fibers having an average fiber length of 9 mm and a fiber diameter of 22 μm. The joining part 11 of the metal plate 10 was used as an insert body, and injection molding was performed in a state where only the joining part 11 of the metal plate 10 was exposed in the cutout part 21. The resin injected into the cutout portion 21 flowed around the joint portion 11 to fill the through hole Q, and the resin portion 30 joined to the joint portion 11 was formed.

図6(b)は、複合成形体の完成状態を示す図である。図6(b)に示されるように、射出成形により樹脂部30が形成された後、マスキング12を剥がすことにより金属部10が露出され、実施例1に係る複合成形体を得た。この複合成形体の接合部分(接合部11を内包する樹脂部分)の寸法は、横幅20mm、縦幅5mm、厚さ2.5mmである。なお、接合部分の縦幅は、樹脂部30内に入り込んでいる接合部11の長さに等しい。   FIG. 6B is a diagram illustrating a completed state of the composite molded body. As shown in FIG. 6B, after the resin part 30 was formed by injection molding, the metal part 10 was exposed by peeling the masking 12, and the composite molded body according to Example 1 was obtained. The dimensions of the joint part (resin part including the joint part 11) of the composite molded body are 20 mm in width, 5 mm in length, and 2.5 mm in thickness. The vertical width of the joint portion is equal to the length of the joint portion 11 entering the resin portion 30.

(実施例2)
金属部10として、長さ50mm、幅20mm、厚さ1.0mmのSPCC(冷間圧延鋼板)を使用した。また、金属部10における貫通孔Qの直径を2.0mm(面積は3.141mm)とし、貫通孔Qの開口率を40.2%とした。製造用型枠20を成形する時の金型キャビティの厚さを5.0mmとし、接合部分の縦幅は8.0mmとした。その他の製造条件は実施例1と同様にした。
(Example 2)
As the metal part 10, SPCC (cold rolled steel plate) having a length of 50 mm, a width of 20 mm, and a thickness of 1.0 mm was used. Moreover, the diameter of the through-hole Q in the metal part 10 was 2.0 mm (area is 3.141 mm < 2 >), and the aperture ratio of the through-hole Q was 40.2%. The thickness of the mold cavity when molding the manufacturing form 20 was 5.0 mm, and the longitudinal width of the joined portion was 8.0 mm. Other manufacturing conditions were the same as in Example 1.

(比較例1)
実施例1の金属部10に代えて、貫通孔を有さない同寸法の金属板を使用した。その他の製造条件は実施例1と同様にした。
(Comparative Example 1)
Instead of the metal part 10 of Example 1, a metal plate of the same size without a through hole was used. Other manufacturing conditions were the same as in Example 1.

(比較例2)
実施例2の金属部10に代えて、貫通孔を有さない同寸法の金属板を使用した。その他の製造条件は実施例2と同様にした。
(Comparative Example 2)
Instead of the metal part 10 of Example 2, a metal plate of the same size without a through hole was used. Other manufacturing conditions were the same as in Example 2.

以上説明した実施例1,2及び比較例1,2の複合成形体について接合状態を評価した。また、複合成形体に対して23℃の温度環境下で図6(b)の矢印Tの方向に荷重を加え、破断時の最大荷重を計測した。これらの結果を表1に示す。なお、表1に示す接合強度は、破断時の最大荷重を接合部分の断面積で除すことにより求めた。

Figure 2013141814
The joint state of the composite molded bodies of Examples 1 and 2 and Comparative Examples 1 and 2 described above was evaluated. Further, a load was applied to the composite molded body in the direction of arrow T in FIG. 6B under a temperature environment of 23 ° C., and the maximum load at the time of fracture was measured. These results are shown in Table 1. In addition, the joint strength shown in Table 1 was calculated | required by remove | dividing the maximum load at the time of a fracture | rupture by the cross-sectional area of a junction part.
Figure 2013141814

表1に示されるように、貫通孔Qを有さない比較例1,2では、繊維強化樹脂からなる樹脂部と金属部とを接合させることができなかった。一方、実施例1,2では、繊維強化樹脂からなる樹脂部30と金属部10とを接合することができた。実施例1では、破断時までに複合成形体に加えられた最大荷重が1234N、接合強度が12.3MPaであった。また、実施例2では、破断時までに複合成形体に加えられた最大荷重が2791.7N、接合強度が17.5MPaであった。   As shown in Table 1, in Comparative Examples 1 and 2 having no through-hole Q, the resin part made of fiber-reinforced resin and the metal part could not be joined. On the other hand, in Examples 1 and 2, the resin part 30 made of fiber reinforced resin and the metal part 10 could be joined. In Example 1, the maximum load applied to the composite molded body by the time of fracture was 1234N, and the bonding strength was 12.3 MPa. In Example 2, the maximum load applied to the composite molded body by the time of fracture was 2791.7 N, and the bonding strength was 17.5 MPa.

1…複合成形体 2,10…金属部 3…樹脂部 4,11…接合部 4a…主面 4b…主面 12…マスキング 20…型枠 F…強化繊維 N…樹脂板 P,Q…貫通孔 Pc…中心軸

DESCRIPTION OF SYMBOLS 1 ... Composite molded object 2,10 ... Metal part 3 ... Resin part 4,11 ... Joint part 4a ... Main surface 4b ... Main surface 12 ... Masking 20 ... Formwork F ... Reinforcement fiber N ... Resin board P, Q ... Through-hole Pc: Center axis

Claims (5)

強化繊維を含有する繊維強化樹脂からなる樹脂部と金属部とが接合された複合成形体であって、
前記金属部は、その一部に板状の接合部を有し、
前記接合部は、
互いに対向する2つの主面と、前記2つの主面のうちの一方の主面から他方の主面まで、前記接合部を貫通する複数の貫通孔とを有し、
前記一方又は両方の主面上の前記貫通孔の一つ当たりの面積が、0.008〜20mmであり、
前記一方又は両方の主面上の貫通孔の開口率が10〜60%であり、
前記金属部は、前記接合部の前記2つの主面がそれぞれ繊維強化樹脂に被覆され、かつ前記貫通孔の内部に繊維強化樹脂が充填されることによって前記樹脂部と接合された複合成形体。
A composite molded body in which a resin part made of a fiber reinforced resin containing reinforcing fibers and a metal part are joined,
The metal part has a plate-like joint part in a part thereof,
The joint is
Two main surfaces opposed to each other, and from one main surface of the two main surfaces to the other main surface, a plurality of through-holes penetrating the joint,
An area per one of the through holes on the one or both main surfaces is 0.008 to 20 mm 2 ;
The opening ratio of the through holes on the one or both main surfaces is 10 to 60%,
The metal part is a composite molded body joined to the resin part by covering the two main surfaces of the joint part with fiber reinforced resin and filling the through hole with fiber reinforced resin.
前記貫通孔の内部における繊維強化樹脂中の強化繊維の濃度Winの、前記貫通孔の外部における繊維強化樹脂中の強化繊維の濃度Woutに対する比(Win/Wout)が0.6〜1.4である請求項1に記載の複合成形体。 The concentration W in the reinforcing fibers of the fiber reinforced resin in the through hole, the ratio to the concentration W out of the reinforcing fibers of the fiber reinforced resin in the outside of the through-hole (W in / W out) is 0.6 The composite molded article according to claim 1, which is 1.4. 前記接合部の縦幅Lの、前記接合部の厚みdに対する比(L/d)が1〜20である請求項1又は2に記載の複合成形体。   The composite molded body according to claim 1 or 2, wherein a ratio (L / d) of a longitudinal width L of the joint portion to a thickness d of the joint portion is 1 to 20. 強化繊維を含有する繊維強化樹脂からなる樹脂部と金属部とが接合された複合成形体の製造方法であって、
前記金属部の一部であり、かつ互いに対向する2つの主面を有する板状の接合部に、前記2つの主面のうちの一方又は両方の主面上の貫通孔の面積が0.008〜20mmとなり、前記一方又は両方の主面上の貫通孔の開口率が10〜60%となるように貫通孔を設ける金属部穿孔工程と、
前記接合部の前記2つの主面をそれぞれ繊維強化樹脂によって被覆するとともに、前記貫通孔の内部に繊維強化樹脂を充填することにより、前記金属部と接合された樹脂部を形成する樹脂部形成工程とを含む複合成形体の製造方法。
A method for producing a composite molded body in which a resin part and a metal part made of a fiber reinforced resin containing reinforcing fibers are joined,
An area of a through hole on one or both main surfaces of the two main surfaces is 0.008 in a plate-shaped joint portion having two main surfaces that are part of the metal portion and face each other. to 20 mm 2, and the metal portion piercing step of forming a through hole as the aperture ratio of the through hole on the one or both major surfaces is 10 to 60%
A resin part forming step of forming the resin part joined to the metal part by covering the two main surfaces of the joint part with fiber reinforced resin and filling the through hole with fiber reinforced resin. The manufacturing method of the composite molded object containing these.
前記樹脂部形成工程において、前記金属部を金型のキャビティ内にインサートし、その後、前記金型のキャビティ内に繊維強化樹脂を射出することにより、前記金属部と接合された樹脂部を形成する請求項4に記載の複合成形体の製造方法。
In the resin part forming step, the metal part is inserted into a mold cavity, and then a fiber reinforced resin is injected into the mold cavity to form a resin part joined to the metal part. The manufacturing method of the composite molded object of Claim 4.
JP2012004132A 2012-01-12 2012-01-12 Composite molded article and method for manufacturing the same Pending JP2013141814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012004132A JP2013141814A (en) 2012-01-12 2012-01-12 Composite molded article and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012004132A JP2013141814A (en) 2012-01-12 2012-01-12 Composite molded article and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013141814A true JP2013141814A (en) 2013-07-22

Family

ID=49038645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012004132A Pending JP2013141814A (en) 2012-01-12 2012-01-12 Composite molded article and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013141814A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124508A (en) * 2016-01-12 2017-07-20 トヨタ紡織株式会社 Metal-resin integrally-molded product and method for manufacturing the same
JP2019048431A (en) * 2017-09-12 2019-03-28 株式会社Subaru Metal-fiber-reinforced resin bonded member and method of manufacturing the same
JP2020104442A (en) * 2018-12-28 2020-07-09 株式会社マーレ フィルターシステムズ Junction structure and manufacturing method of junction structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124508A (en) * 2016-01-12 2017-07-20 トヨタ紡織株式会社 Metal-resin integrally-molded product and method for manufacturing the same
US10497961B2 (en) 2016-01-12 2019-12-03 Toyota Boshoku Kabushiki Kaisha Integrated metal-and-plastic molded article and method for manufacturing integrated metal-and-plastic molded article
JP2019048431A (en) * 2017-09-12 2019-03-28 株式会社Subaru Metal-fiber-reinforced resin bonded member and method of manufacturing the same
JP7026466B2 (en) 2017-09-12 2022-02-28 株式会社Subaru Metal-fiber reinforced resin joint member
JP2020104442A (en) * 2018-12-28 2020-07-09 株式会社マーレ フィルターシステムズ Junction structure and manufacturing method of junction structure

Similar Documents

Publication Publication Date Title
KR101968484B1 (en) Resin composite
JP5417631B2 (en) Molding method of thermoplastic resin composite material molded product
JP2014091263A (en) Composite molding
JP6199655B2 (en) Composite molded product
TW200924956A (en) Composite molded article and method for manufacturing the same
JP6464602B2 (en) LAMINATED SUBSTRATE MANUFACTURING METHOD AND LAMINATED SUBSTRATE
JP2013176876A (en) Manufacturing method of molding
US7998389B2 (en) Method for septumizing injection molded thermoplastic core
EP3069851A1 (en) Resin joined body, manufacturing method of resin joined body, and vehicle structure
JP2013141814A (en) Composite molded article and method for manufacturing the same
JP6107787B2 (en) Manufacturing method of fiber reinforced resin molded member and connecting method of member
JP2015178241A (en) Method of producing fiber-reinforced resin material
JP6089342B2 (en) Method and apparatus for molding fiber reinforced composite material
JP2020032535A (en) Method for producing fiber-reinforced plastic molded product
JP6239533B2 (en) Method for producing resin molded body and graphite sheet laminate
JP6083248B2 (en) Manufacturing method of fiber reinforced thermoplastic resin integrated structure
WO2013176059A1 (en) Manufacturing method for molded resin product with metal insert
JP2012183705A (en) Composite molded product and method of manufacturing composite molded product
US20130074312A1 (en) Method of joining magnesium
TW201618962A (en) Sandwich components composed of poly(meth)acrylate-based foam bodies and reversibly crosslinkable composites
JP2020049925A (en) Method for producing carbon fiber-reinforced thermoplastic resin composite material
CA2638891C (en) Foam product having an accessory and method of making
JP2009214371A (en) Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member
JP2013169647A (en) Composite molded object and method for manufacturing the same
EP3370955A1 (en) Forming metal composites