JP2013139574A - Method and apparatus of degasification treatment of polymer film substrate - Google Patents

Method and apparatus of degasification treatment of polymer film substrate Download PDF

Info

Publication number
JP2013139574A
JP2013139574A JP2013028796A JP2013028796A JP2013139574A JP 2013139574 A JP2013139574 A JP 2013139574A JP 2013028796 A JP2013028796 A JP 2013028796A JP 2013028796 A JP2013028796 A JP 2013028796A JP 2013139574 A JP2013139574 A JP 2013139574A
Authority
JP
Japan
Prior art keywords
film
degassing
substrate
time
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013028796A
Other languages
Japanese (ja)
Inventor
Hideaki Matsuyama
秀昭 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013028796A priority Critical patent/JP2013139574A/en
Publication of JP2013139574A publication Critical patent/JP2013139574A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer film substrate for a thin film solar cell, which prevents film characteristics from degrading due to release gas from the polymer film substrate to be used in the thin film solar cell.SOLUTION: This method of degasification treatment comprises conducting degasification treatment by heating a polymer film substrate in a vacuum before forming a thin film on the surface of the substrate by a vacuum process, where the heating time is selected so that the temperature falls between 100°C and 250°C and below the decomposition temperature of the film; and the heating time is calculated, based on a time constant of gas release velocity exponentially decreasing with time, so as to become log10 times or more thereof; and the substrate is heated so that the temperature and time of the heating treatment are satisfied. The time constant of gas release velocity is proportional to exp(E/kT), where E is activation energy, T is absolute temperature and k is a Boltzmann constant.

Description

本発明は、薄膜太陽電池の電気絶縁性フィルム基板として使用可能な高分子フィルム基板の脱ガス処理方法及び脱ガス処理装置に関する。   The present invention relates to a degassing method and a degassing apparatus for a polymer film substrate that can be used as an electrically insulating film substrate for a thin film solar cell.

近年、環境保護の立場からクリーンエネルギーの研究開発が進められており、太陽電池は資源(太陽光)が無限であること及び無公害であることから注目を集めている。その中でも、薄膜太陽電池は、薄型・軽量で、製造コストも安く、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられており、特にプラスチックフィルムおよび金属フィルムを用いたフレキシブルタイプの太陽電池が軽量化、施工性、量産性の面で優れている。フレキシブルタイプの太陽電池の製造法として、ロールツーロール方式とステッピングロール方式とがある。   In recent years, research and development of clean energy has been promoted from the standpoint of environmental protection, and solar cells are attracting attention because of their infinite resources (sunlight) and no pollution. Among them, thin-film solar cells are considered to become the mainstream of future solar cells because they are thin and lightweight, are inexpensive to manufacture, and are easy to increase in area. Especially, plastic films and metal films are used. The flexible solar cell that was used is excellent in terms of weight reduction, workability, and mass productivity. As a method for producing a flexible solar cell, there are a roll-to-roll method and a stepping roll method.

薄膜太陽電池の場合、フレキシブルな電気絶縁性フィルム基板上に、金属電極層、薄膜半導体層からなる光電変換層、および透明電極層が積層されてなる光電変換素子(またはセル)が複数形成される(例えば、特許文献1参照)。ある光電変換素子の金属電極と隣接する光電変換素子の透明電極とを電気的に接続することを繰り返すことにより、最初の光電変換素子の金属電極と最後の光電変換素子の透明電極とに必要な電圧を出力させることができる。例えば、インバータにより交流化し商用電力源として交流100Vを得るためには、薄膜太陽電池の出力電圧は100V以上が望ましく、実際には数10個以上の素子が直列接続される。   In the case of a thin film solar cell, a plurality of photoelectric conversion elements (or cells) formed by laminating a metal electrode layer, a photoelectric conversion layer made of a thin film semiconductor layer, and a transparent electrode layer are formed on a flexible electrically insulating film substrate. (For example, refer to Patent Document 1). It is necessary for the metal electrode of the first photoelectric conversion element and the transparent electrode of the last photoelectric conversion element by repeatedly connecting the metal electrode of one photoelectric conversion element and the transparent electrode of the adjacent photoelectric conversion element. A voltage can be output. For example, in order to obtain an alternating current of 100 V as a commercial power source by alternating current with an inverter, the output voltage of the thin-film solar cell is desirably 100 V or higher, and actually several tens or more elements are connected in series.

図7に特許文献1記載の薄膜太陽電池の構成図を示す。
プラスチックフィルムからなる基板61の表面に形成した単位光電変換素子62および基板61の裏面に形成した接続電極層63はそれぞれ複数の単位ユニットに完全に分離され、それぞれの分離位置をずらして形成されている。このため、光電変換素子62のアモルファス半導体部分である光電変換層65で発生した電流は、まず透明電極層66に集められ、次に該透明電極層領域に形成された集電孔67を介して背面の接続電極層63に通じ、さらに該接続電極層領域で素子の透明電極層領域の外側に形成された直列接続用の接続孔68を介して上記素子と隣り合う素子の透明電極層領域の外側に延びている下電極層64に達し、両素子の直列接続が行われている。
FIG. 7 shows a configuration diagram of a thin film solar cell described in Patent Document 1.
The unit photoelectric conversion element 62 formed on the surface of the substrate 61 made of a plastic film and the connection electrode layer 63 formed on the back surface of the substrate 61 are completely separated into a plurality of unit units, and are formed by shifting the separation positions. Yes. For this reason, the current generated in the photoelectric conversion layer 65, which is an amorphous semiconductor portion of the photoelectric conversion element 62, is first collected in the transparent electrode layer 66, and then through the current collecting holes 67 formed in the transparent electrode layer region. The transparent electrode layer region of the element adjacent to the element is connected to the connection electrode layer 63 on the back surface through a connection hole 68 for series connection formed outside the transparent electrode layer region of the element in the connection electrode layer region. The lower electrode layer 64 extending outward is reached, and both elements are connected in series.

図8(a)〜(g)は上記薄膜太陽電池の簡略化した製造工程を示している。
プラスチックフィルムからなる基板71を準備し(工程(a))、これに接続孔78を形成し(工程(b))、基板71の両面に第1電極層(下電極)74および第3電極層(接続電極の一部)73を形成(工程(c))した後、接続孔78と所定の距離離れた位置に集電孔77を形成する(工程(d))。次に、第1電極層74の上に、光電変換層となる半導体層75および第2電極層である透明電極層76を順次形成するとともに(工程(e)および工程(f))、第3電極層73の上に第4電極層(接続電極層)79を形成する(工程(g))。この後、レーザビームを用いて、基板71の両側の薄膜を分離加工して図7に示すような直列接続構造を形成する。
FIGS. 8A to 8G show simplified manufacturing steps of the thin film solar cell.
A substrate 71 made of a plastic film is prepared (step (a)), connection holes 78 are formed in the substrate 71 (step (b)), and a first electrode layer (lower electrode) 74 and a third electrode layer are formed on both surfaces of the substrate 71. After forming (a part of connection electrode) 73 (step (c)), a current collecting hole 77 is formed at a position away from the connection hole 78 by a predetermined distance (step (d)). Next, a semiconductor layer 75 to be a photoelectric conversion layer and a transparent electrode layer 76 to be a second electrode layer are sequentially formed on the first electrode layer 74 (step (e) and step (f)), and the third A fourth electrode layer (connection electrode layer) 79 is formed on the electrode layer 73 (step (g)). Thereafter, the thin film on both sides of the substrate 71 is separated using a laser beam to form a series connection structure as shown in FIG.

図8の製造工程において、工程(a),(b)および(d)においては、大気中で基板71に対して加工が行われるが、その他の工程は、後述する真空成膜装置において処理される。従って、上記工程の場合、工程(b)および(d)の後工程においては、基板71は大気中で加工後、真空成膜装置の真空容器内に導入されることになる。   In the manufacturing process of FIG. 8, in steps (a), (b), and (d), processing is performed on the substrate 71 in the atmosphere, but the other steps are processed in a vacuum film forming apparatus described later. The Therefore, in the case of the above process, in the subsequent processes of the processes (b) and (d), the substrate 71 is processed in the atmosphere and then introduced into the vacuum container of the vacuum film forming apparatus.

上記薄膜太陽電池の薄膜の製造方法としては、前述のように、ロールツーロール方式またはステッピングロール方式がある。両方式共に、複数のロールによる基板搬送手段を備え、前者は各成膜室内を連続的に移動する基板上に連続的に成膜する方式であり、後者は各成膜室内で同時に停止させた基板上に成膜し,成膜の終わった基板部分を次の成膜室へ送り出す方式を採用している。   As described above, a method for producing a thin film of the thin film solar cell includes a roll-to-roll method or a stepping roll method. Both types are equipped with a substrate transport means by a plurality of rolls, the former is a method of continuously forming a film on a substrate that moves continuously in each film forming chamber, and the latter is stopped simultaneously in each film forming chamber. A method is employed in which a film is formed on a substrate and the substrate portion after film formation is sent to the next film formation chamber.

ステッピングロール方式の成膜装置は、隣接する成膜室間のガス相互拡散を防止できることから各薄膜の特性が安定して得られるなどの点で優れている(例えば、特許文献2、3参照)。   A stepping roll type film forming apparatus is excellent in that the characteristics of each thin film can be stably obtained because gas mutual diffusion between adjacent film forming chambers can be prevented (see, for example, Patent Documents 2 and 3). .

図9に、共通真空室内に成膜室を複数有するステッピングロール成膜方式の真空成膜装置の構成の概略を示す。同図に示すように、可撓性基板の巻出し用アンワインダー室290と、金属電極層,光電変換層および透明電極層などを形成するための複数個の独立した処理空間としてなる成膜室280と、巻取り用ワインダー室291とを備え、基板284はコア282から捲き出されコア283にまきとられる間に、複数の成膜室280で成膜されるように構成されている。共通室281は複数の成膜室280を内部に収めている。成膜室ではスパッタ成膜またはプラズマ化学気相成長法(以下プラズマCVD法と記す)などにより成膜が行われる。例えば、プラズマCVD法により成膜するステッピングロール方式では、成膜室開放−基板フレーム移動−成膜室封止−原料ガス導入−圧力制御−放電開始−放電終了−原料ガス停止−ガス引き−成膜室開放からなる操作が繰り返される。   FIG. 9 shows an outline of the configuration of a vacuum film forming apparatus of a stepping roll film forming system having a plurality of film forming chambers in a common vacuum chamber. As shown in the figure, an unwinder chamber 290 for unwinding a flexible substrate and a film forming chamber serving as a plurality of independent processing spaces for forming a metal electrode layer, a photoelectric conversion layer, a transparent electrode layer, and the like. 280 and a winding winder chamber 291, and the substrate 284 is configured to be deposited in a plurality of deposition chambers 280 while being rolled out from the core 282 and wound on the core 283. The common chamber 281 houses a plurality of film formation chambers 280 therein. In the film formation chamber, film formation is performed by sputtering film formation or plasma chemical vapor deposition (hereinafter referred to as plasma CVD method). For example, in the stepping roll method for forming a film by the plasma CVD method, the film formation chamber is opened, the substrate frame is moved, the film formation chamber is sealed, the raw material gas is introduced, the pressure is controlled, the discharge is started, the discharge is finished, the raw material gas is stopped, the gas is generated. The operation consisting of opening the membrane chamber is repeated.

ところで、太陽電池基板は、基板内部および基板表面に水分やその他揮発性分を有しており、不純物の混入や膜の変質が生じない品質のよい薄膜を効率よく形成するためには、これらの物質を除去するための脱ガス処理をする必要がある(例えば、特許文献4参照)。大気中にさらされた状態の基板を、真空成膜処理装置において真空成膜処理する前に、基板内部および基板表面から水分やその他揮発性分を除去するための専用の脱ガス処理装置により脱ガス処理を行った後に、真空成膜処理装置に導入することが提案されている。
図8の製造プロセスの場合、工程(b)および(d)の工程後に、それぞれ専用の脱ガス処理装置により脱ガス処理を行うことになる。
By the way, the solar cell substrate has moisture and other volatile components inside the substrate and the substrate surface, and in order to efficiently form a high-quality thin film that does not contain impurities or change the film, It is necessary to perform a degassing process for removing the substance (see, for example, Patent Document 4). The substrate exposed to the atmosphere is degassed by a dedicated degassing device for removing moisture and other volatile components from the inside of the substrate and the substrate surface before the vacuum film forming process is performed in the vacuum film forming apparatus. It has been proposed to introduce a vacuum film forming apparatus after performing the gas process.
In the case of the manufacturing process of FIG. 8, after the steps (b) and (d), the degassing process is performed by a dedicated degassing apparatus.

なお、上記薄膜太陽電池は、電気的直列接続を容易にするために、基板の裏面にも電極層を形成した例であるが、基板の表面の片面のみに太陽電池薄膜層を形成したものも一般的に使用されている。   The above thin film solar cell is an example in which an electrode layer is formed on the back surface of the substrate in order to facilitate electrical series connection, but a solar cell thin film layer is formed only on one surface of the substrate surface. Commonly used.

特開2000−223727号公報JP 2000-223727 A 特開平6−292349号公報JP-A-6-292349 特開平8−250431号公報JP-A-8-250431 特開2000−299481号公報JP 2000-299481 A

ところで、本発明者は、図8の工程(b)および(d)の各工程後のフィルム基板について脱ガス特性を測定した結果、図6に示す脱ガス特性を得た。なお、フィルム基板としてポリイミドフィルムを用い、電極膜としてはAg膜(200nm)を形成した。工程(b)後のフィルム基板であるポリイミドフィルム(A)、工程(d)後のフィルム基板である電極膜付きフィルムについて(B)、高真空昇温脱離ガス分析装置で評価した。昇温速度は0.5℃/sとした。   By the way, as a result of measuring the degassing characteristics of the film substrate after the steps (b) and (d) in FIG. 8, the inventor obtained the degassing characteristics shown in FIG. A polyimide film was used as the film substrate, and an Ag film (200 nm) was formed as the electrode film. The polyimide film (A) that is the film substrate after the step (b) and the film with an electrode film that is the film substrate after the step (d) (B) were evaluated with a high vacuum temperature programmed desorption gas analyzer. The heating rate was 0.5 ° C./s.

工程(b)後のフィルム基板であるポリイミドフィルム(A)からは80℃程度で脱ガスがあり、ガスの質量分析から主な成分は水分であった。また、250℃以上で圧力が徐々に増加するが、質量分析からフィルムが分解することが分かった。一方、電極膜付きフィルム(B)においては水分の脱離は80〜300℃の広い範囲に亘っており、その後にフィルムの分解が起きた。電極付きフィルムでは表面に電極がコーティングされていることより、ガスの放出が遅れていることが予測される。   From the polyimide film (A) which is the film substrate after the step (b), degassing occurred at about 80 ° C., and the main component was moisture from gas mass spectrometry. Further, although the pressure gradually increased at 250 ° C. or higher, it was found from mass spectrometry that the film was decomposed. On the other hand, in the film with electrode film (B), the desorption of moisture was over a wide range of 80 to 300 ° C., and the film was decomposed thereafter. In the film with an electrode, it is predicted that the release of gas is delayed because the electrode is coated on the surface.

これらのフィルム基板上に真空中で成膜を行う場合、この放出ガスが膜特性を劣化させるので、フィルム基板の脱ガスが完了してから成膜を開始することが望ましいが、まだ脱ガス処理をしていないフィルムについては水分の脱離が80より高い温度で広い範囲に亘っているので熱処理条件を決定するのが困難であった(図6のAを参照)。   When film formation is performed on these film substrates in a vacuum, it is desirable to start film formation after the degassing of the film substrate is completed because the released gas deteriorates the film characteristics. It was difficult to determine the heat treatment conditions for the films that had not been subjected to moisture desorption over a wide range at a temperature higher than 80 (see FIG. 6A).

本発明は、かかる点に鑑みてなされたものであり、高分子フィルム基板の脱ガス処理のための加熱条件を明確化して、高分子フィルム基板上に成膜する膜特性の劣化を防止できる高分子フィルム基板の脱ガス処理方法を提供することを目的とする。   The present invention has been made in view of the above points, and it is possible to clarify the heating conditions for the degassing treatment of the polymer film substrate and prevent deterioration of the film properties formed on the polymer film substrate. An object of the present invention is to provide a method for degassing a molecular film substrate.

本発明の高分子フィルム基板の脱ガス処理方法は、可撓性高分子フィルム基板を、当該高分子フィルム基板の表面に真空プロセスで薄膜を形成する前に、真空中で加熱処理して脱ガス処理する脱ガス処理方法であって、100℃以上250℃以下で、かつ前記可撓性フィルムの分解温度以下となるように加熱処理時間を選択し、時間とともに指数的に減少するガス放出速度のタイムコンスタントを基準に、そのloge10倍以上となるように加熱処理時間を算定し、前記加熱処理温度および前記加熱処理時間を満たすように、前記高分子フィルム基板を加熱処理し、前記指数的に減少するガス放出速度のタイムコンスタントは、その活性化エネルギーをEとし、絶対温度をT、ボルツマン定数をkとして、exp(E/kT)に比例することを特徴とする。

本発明の高分子フィルム基板の脱ガス処理方法において、加熱処理温度が150℃〜250℃であり、前記加熱処理時間が少なくとも2分〜5分であることとした。特に、加熱処理温度が150℃以上であり、脱ガス完了時間が5分以上であることが好ましい。
The method for degassing a polymer film substrate according to the present invention includes degassing a flexible polymer film substrate by heat treatment in vacuum before forming a thin film on the surface of the polymer film substrate by a vacuum process. A degassing method for processing, wherein a heat treatment time is selected so as to be not lower than 100 ° C. and not higher than 250 ° C. and not higher than a decomposition temperature of the flexible film, and a gas release rate that decreases exponentially with time. Based on the time constant, the heat treatment time is calculated so that the log is 10 times or more, and the polymer film substrate is heat treated so as to satisfy the heat treatment temperature and the heat treatment time, and decreases exponentially. The time constant of the gas release rate is characterized by being proportional to exp (E / kT), where the activation energy is E, the absolute temperature is T, and the Boltzmann constant is k.

In the degassing method for a polymer film substrate of the present invention, the heat treatment temperature is 150 ° C. to 250 ° C., and the heat treatment time is at least 2 minutes to 5 minutes. In particular, the heat treatment temperature is preferably 150 ° C. or higher, and the degassing completion time is preferably 5 minutes or longer.

本発明の高分子フィルム基板の脱ガス処理方法において、前記可撓性フィルムは、ポリイミド、ポリスチレン、ポリカーボネート、ポリブチレンテレフタラート、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリアリレート、ポリエーテルスルホン、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルイミド、アラミドからなる群から選ばれた高分子材料からなることが好ましい。



In the method of degassing a polymer film substrate of the present invention, the flexible film is polyimide, polystyrene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyethersulfone, polysulfone, polyphenylene. It is preferably made of a polymer material selected from the group consisting of sulfide, polyetheretherketone, polyetherimide, and aramid.



本発明によれば、高分子フィルム基板の脱ガス処理のための加熱条件を明確化でき、高分子フィルム基板上に成膜する膜特性の劣化を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heating conditions for the degassing process of a polymer film board | substrate can be clarified, and deterioration of the film | membrane characteristic formed into a film on a polymer film board | substrate can be prevented.

電極をコートしたポリイミドフィルムに対する高真空昇温熱脱離の時間依存性を示す図Diagram showing the time dependence of high vacuum thermal desorption for a polyimide film coated with an electrode 電極をコートしていないポリイミドフィルムに対する高真空昇温熱脱離の時間依存性を示す図Figure showing the time dependence of high vacuum thermal desorption for polyimide film without electrode coating フィルム基板からのガス放出速度の緩和時間を示す図Diagram showing the relaxation time of the gas release rate from the film substrate 本発明の方法に用いた脱ガス処理装置の概略図Schematic of the degassing apparatus used in the method of the present invention 昇温過程での脱離ガスのプロファイルを示す図Diagram showing desorbed gas profile during heating process ポリイミドおよび電極コートポリイミドフィルムに対する高真空昇温熱脱離特性を示す図The figure which shows the high vacuum temperature rising thermal desorption characteristic to the polyimide and the electrode coat polyimide film 薄膜太陽電池の構成の一例を概念的に示す斜視図The perspective view which shows an example of a structure of a thin film solar cell notionally 薄膜太陽電池の製造工程の一例を示す図The figure which shows an example of the manufacturing process of a thin film solar cell 従来の薄膜太陽電池の製造装置の概略構成を示す図The figure which shows schematic structure of the manufacturing apparatus of the conventional thin film solar cell

本発明の脱ガス処理方法では、高分子材料からなる可撓性フィルム基板において、その表面に真空プロセスにより薄膜を形成する工程の前に、このフィルム基板を真空中で加熱することでフィルム中に含まれているガスを取り除く脱ガスを行う。このとき、加熱処理温度は100℃以上250℃以下で、かつ可撓性フィルムの分解温度以下とする。加熱温度は、好ましくは150℃以上とする。また、加熱処理時間が、時間とともに指数的に減少するガス放出速度のタイムコンスタントを基準に、そのloge10倍以上とする。   In the degassing method of the present invention, a flexible film substrate made of a polymer material is heated in vacuum before the step of forming a thin film on the surface by a vacuum process. Degassing to remove the contained gas. At this time, heat processing temperature shall be 100 degreeC or more and 250 degrees C or less, and below the decomposition temperature of a flexible film. The heating temperature is preferably 150 ° C. or higher. Also, the heat treatment time is set to a log 10 times or more based on the time constant of the gas release rate that decreases exponentially with time.

可撓性フィルムを構成する高分子材料としては、ポリイミド、ポリスチレン、ポリカーボネート、ポリブチレンテレフタラート、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリアリレート、ポリエーテルスルホン、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルイミド、アラミドなどがある。
(参考例)
可撓性フィルムの表面のコーティング膜は、Ag、Ag合金、Al、Al合金などの高反射率材料および透明導電性材料で構成される。真空プロセスによりフィルム基板の表面に形成する薄膜としてシリコン系薄膜がある。薄膜太陽電池の場合、高分子フィルム基板として表面に金属電極層をコーティングしたものであり、上記脱ガス処理(加熱処理)後に、光電変換層および透明電極層を真空成膜装置にて順次形成する。脱ガス処理に使用される脱ガス処理装置については後述する。
Polymer materials that make up the flexible film include polyimide, polystyrene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyethersulfone, polysulfone, polyphenylene sulfide, polyetheretherketone, poly There are ether imide and aramid.
(Reference example)
The coating film on the surface of the flexible film is made of a highly reflective material such as Ag, Ag alloy, Al, Al alloy, and a transparent conductive material. There is a silicon-based thin film as a thin film formed on the surface of a film substrate by a vacuum process. In the case of a thin film solar cell, the surface is coated with a metal electrode layer as a polymer film substrate, and after the degassing treatment (heating treatment), a photoelectric conversion layer and a transparent electrode layer are sequentially formed with a vacuum film forming apparatus. . A degassing apparatus used for the degassing process will be described later.

可撓性フィルムの両面に金属膜をコーティングした高分子フィルム基板におけるガス離脱の時間依存性について調べた。可撓性フィルムとしてポリイミドを用い、コーティング膜となる電極としてAg膜(200nm)を形成した。室温から各設定温度(100,150,200,250,300℃)に3分間で昇温して一定温度に保ち、そのときのチャンバー内の圧力変化を測定した。また、その時のガス成分の質量分析をおこなった。   The time dependence of gas detachment in a polymer film substrate having a metal film coated on both sides of a flexible film was investigated. Polyimide was used as a flexible film, and an Ag film (200 nm) was formed as an electrode to be a coating film. The temperature was raised from room temperature to each set temperature (100, 150, 200, 250, 300 ° C.) over 3 minutes and kept at a constant temperature, and the pressure change in the chamber at that time was measured. Moreover, the mass analysis of the gas component at that time was performed.

図1は上記高分子フィルム基板について真空中でのガス脱離の時間依存性を調べたものである。その結果、設定温度到達前に圧力はピークを取り、その後、指数的に減少してバックグランドレベルまで低下していることが判った。高分子フィルム基板からの放出ガスは、質量分析より主に水分であることを確認した。ただし、300℃においてはフィルムの分解成分が混じっていた。金属膜をコーティングした高分子フィルム中の水分は少なくとも100℃以上の温度で長時間放置することによって取り除くことができる。   FIG. 1 shows the time dependence of gas desorption in a vacuum on the polymer film substrate. As a result, it was found that the pressure peaked before reaching the set temperature, and then decreased exponentially to the background level. It was confirmed by mass spectrometry that the gas released from the polymer film substrate was mainly water. However, the decomposition component of the film was mixed at 300 ° C. Water in the polymer film coated with the metal film can be removed by leaving it at a temperature of at least 100 ° C. for a long time.

フィルム基板からのガス放出速度を見積るために、図1の放出特性を指数関数でフィッティングしてそのガス放出速度(∝圧力)のタイムコンスタントを求めた。図3は、フィルム基板から放出されるガスの放出速度のタイムコンスタント(緩和時間)についてその熱処理温度依存性を示す図である。   In order to estimate the gas release rate from the film substrate, the release characteristic of FIG. 1 was fitted with an exponential function to obtain the time constant of the gas release rate (soot pressure). FIG. 3 is a diagram showing the heat treatment temperature dependence of the time constant (relaxation time) of the release rate of the gas released from the film substrate.

このときの各熱処理温度における脱ガス完了時間は、温度100℃では20分、温度150℃では5分、温度200℃では3.5分、温度250℃では2.5分、温度300℃では2分となった。ここで、フィルム基板に含まれているガスを加熱によりガス放出して90%減量した時点を脱ガス完了時間とする。脱ガス完了時間は、タイムコンスタント×loge10と表すことができる。図3より熱処理温度150℃〜300℃ではガス放出速度のタイムコンスタントが活性化型で、そのエネルギーが0.13eVであった。つまり、活性化エネルギーをE、絶対温度をT、ボルツマン定数をkとすると、タイムコンスタントはexp(E/kT)に比例する。この場合のタイムコンスタントτはτ=0.066exp(1470/T)と表された。ただし、熱処理温度100℃はこの関係から外れてタイムコンスタントが非常に長くなった。   The degassing completion time at each heat treatment temperature is 20 minutes at a temperature of 100 ° C., 5 minutes at a temperature of 150 ° C., 3.5 minutes at a temperature of 200 ° C., 2.5 minutes at a temperature of 250 ° C., and 2 at a temperature of 300 ° C. It became minutes. Here, the time when the gas contained in the film substrate is released by heating and reduced by 90% is defined as the degassing completion time. The degassing completion time can be expressed as time constant × loge10. As shown in FIG. 3, when the heat treatment temperature was 150 ° C. to 300 ° C., the time constant of the gas release rate was activated, and the energy was 0.13 eV. That is, if the activation energy is E, the absolute temperature is T, and the Boltzmann constant is k, the time constant is proportional to exp (E / kT). The time constant τ in this case was expressed as τ = 0.068exp (1470 / T). However, the heat treatment temperature of 100 ° C. was out of this relationship, and the time constant became very long.

このように、ガス放出速度のタイムコンスタントから脱ガス処理時間を算出することができ、金属膜をコーティングした高分子フィルム基板の真空中での熱処理条件を算定することができる。   In this way, the degassing processing time can be calculated from the time constant of the gas release rate, and the heat treatment conditions in vacuum of the polymer film substrate coated with the metal film can be calculated.

以上の分析結果から、真空中の加熱処理温度は100℃以上であれば脱ガス可能であり、上限温度としてはフィルムの分解温度(約400℃)となる。また、脱ガス完了時間となる加熱処理時間は、2分以上であれば脱ガス可能であることが分かる。好ましくは、熱処理温度150℃以上で、処理時間を5分以上とすれば十分に脱ガスが可能となる。
(実施例)
図2は、金属膜をコーティングしていないポリイミドフィルムについて、図1と同様のガス脱離の時間依存性を調べたものである。300℃の例(E)では、100℃〜250℃の例(A,B,C)に比べて圧力が高かった。これは、図6のAの温度プロファイルを参照すると、250℃以上の温度で圧力が上昇しており、上記の本願の課題で説明したように、フィルムが分解していることが原因である。なお、金属膜のコーティング有無によるガス脱離の時間依存性の違いは、金属膜によるガス放出の遮蔽効果によることが理解される。
From the above analysis results, degassing is possible if the heat treatment temperature in vacuum is 100 ° C. or higher, and the upper limit temperature is the film decomposition temperature (about 400 ° C.). Further, it can be seen that degassing is possible if the heat treatment time which is the degassing completion time is 2 minutes or more. Preferably, if the heat treatment temperature is 150 ° C. or higher and the treatment time is 5 minutes or longer, sufficient degassing is possible.
(Example)
FIG. 2 shows the time dependence of gas desorption similar to that of FIG. 1 for a polyimide film not coated with a metal film. In Example (E) at 300 ° C., the pressure was higher than in Examples (A, B, C) at 100 ° C. to 250 ° C. This is because the pressure rises at a temperature of 250 ° C. or higher with reference to the temperature profile of FIG. 6A, and the film is decomposed as described in the problem of the present application. It is understood that the difference in the time dependence of gas desorption depending on whether or not the metal film is coated is due to the shielding effect of the gas release by the metal film.

(実施例1)
上記脱ガス処理を実施するための脱ガス処理装置の実施例について説明する。
図4は実施例に係る脱ガス処理装置の概略的な構成図である。真空槽11内に巻き出しロール12と巻取りロール13とを備え、ガイドロール14a〜14dにて矩形状に形成されたフィルム搬送路に沿って基板加熱用加熱ヒータ15が配置されている。高分子フィルム基板16は、真空槽11内の巻き出しロール12に取り付けられ、基板加熱用加熱ヒータ15で加熱され巻取りロール13で巻き取られる。真空槽11は真空ポンプ17で排気されることで真空に保たれる。
Example 1
An embodiment of a degassing apparatus for carrying out the degassing process will be described.
FIG. 4 is a schematic configuration diagram of a degassing apparatus according to the embodiment. An unwinding roll 12 and a winding roll 13 are provided in the vacuum chamber 11, and a heater 15 for heating the substrate is disposed along a film transport path formed in a rectangular shape by guide rolls 14a to 14d. The polymer film substrate 16 is attached to the unwinding roll 12 in the vacuum chamber 11, heated by the substrate heating heater 15 and wound by the winding roll 13. The vacuum chamber 11 is kept in vacuum by being evacuated by the vacuum pump 17.

ここで、高分子フィルム基板16を構成する可撓性フィルムとして、ポリイミド系のフィルムを用いた。ポリイミド系フィルムの他に、ポリイミド、ポリスチレン、ポリカーボネート、ポリブチレンテレフタラート、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリアリレート、ポリエーテルスルホン、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルイミド、アラミドなどを使用することが出来る。この可撓性フィルムを高分子フィルム基板16とした。この高分子フィルム基板16を大気雰囲気下でその表面を大気に触れながら2時間かけて巻き出しロール12に巻き取った。   Here, a polyimide film was used as the flexible film constituting the polymer film substrate 16. Besides polyimide film, polyimide, polystyrene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyethersulfone, polysulfone, polyphenylene sulfide, polyetheretherketone, polyetherimide, aramid, etc. Can be used. This flexible film was used as the polymer film substrate 16. The polymer film substrate 16 was wound around the unwinding roll 12 over 2 hours while the surface of the polymer film substrate 16 was exposed to the air.

以上のように構成された脱ガス処理装置において、熱処理温度が250℃になるように加熱ヒータ16の出力を調整すると共に、高分子フィルム基板16の熱処理時間が5分となるように高分子フィルム基板16の搬送速度を40cm/minに調節して搬送した。このとき、真空槽11に窒素ガスを100sccm流すとともに、バルブ18で排気量を制御して圧力を1torrに調節した。これは、ガスによる熱伝導で高分子フィルム基板16を加熱するためである。   In the degassing apparatus configured as described above, the output of the heater 16 is adjusted so that the heat treatment temperature is 250 ° C., and the heat treatment time of the polymer film substrate 16 is 5 minutes. The substrate 16 was conveyed at a conveyance speed adjusted to 40 cm / min. At this time, 100 sccm of nitrogen gas was passed through the vacuum chamber 11 and the exhaust amount was controlled by the valve 18 to adjust the pressure to 1 torr. This is because the polymer film substrate 16 is heated by heat conduction with gas.

この真空中での加熱処理を終えた高分子フィルム基板16を巻取りロール13から巻き出して切り取り、高真空昇温脱離ガス分析装置に装着して脱離ガス特性を昇温速度0.5℃/sで測定した。   The polymer film substrate 16 that has been subjected to the heat treatment in vacuum is unwound from the take-up roll 13 and cut out, and is attached to a high-vacuum temperature-programmed desorption gas analyzer so that the desorption gas characteristics have a temperature increase rate of 0.5 Measured at ° C / s.

図5に昇温過程での脱離ガスのプロファイルを示す。水分の脱離による80−300℃ピークは観測されず、200℃以上における脱ガスはフィルムの分解によることが質量分析から確認された。この真空中熱処理でフィルム基板中のガス脱離していることが確認できた。   FIG. 5 shows a profile of desorbed gas during the temperature rising process. The 80-300 ° C. peak due to moisture desorption was not observed, and it was confirmed from mass spectrometry that the degassing at 200 ° C. or higher was due to the decomposition of the film. It was confirmed that gas was desorbed from the film substrate by the heat treatment in vacuum.

(実施例2)
上記実施例1の脱ガス処理装置を用いて脱ガス処理した高分子フィルム基板を用いて、図7に示す構造を有する薄膜太陽電池を製造する。薄膜太陽電池の製造工程は図8(a)〜(g)の製造工程に従うものとする。
(Example 2)
A thin film solar cell having the structure shown in FIG. 7 is manufactured using the polymer film substrate that has been degassed using the degassing apparatus of Example 1 above. The manufacturing process of a thin film solar cell shall follow the manufacturing process of Fig.8 (a)-(g).

図8の工程(b)および工程(d)後に実施例1の脱ガス処理装置を用いて脱ガス処理を実施する。特に、工程(d)後は基板71の両面に第1電極層(下電極)74および第3電極層(接続電極の一部)73が形成されているので、加熱処理条件として熱処理温度150℃、熱処理時間10分で脱ガス処理を実施する。   After the steps (b) and (d) in FIG. 8, the degassing process is performed using the degassing apparatus of Example 1. In particular, after the step (d), the first electrode layer (lower electrode) 74 and the third electrode layer (part of the connection electrode) 73 are formed on both surfaces of the substrate 71, so that the heat treatment temperature is 150 ° C. The degassing process is performed with a heat treatment time of 10 minutes.

以上のようにして基板71を脱ガス処理した後、第1電極層74の上に光電変換層となる半導体層75および第2電極層である透明電極層76を順次形成し(工程(e)および工程(f))、第3電極層73の上に第4電極層(接続電極層)79を形成する(工程(g))。この後、レーザビームを用いて、基板71の両側の薄膜を分離加工して図7に示すような直列接続構造を得た。   After the substrate 71 is degassed as described above, a semiconductor layer 75 that becomes a photoelectric conversion layer and a transparent electrode layer 76 that is a second electrode layer are sequentially formed on the first electrode layer 74 (step (e)). And step (f)), a fourth electrode layer (connection electrode layer) 79 is formed on the third electrode layer 73 (step (g)). Thereafter, a thin film on both sides of the substrate 71 was separated using a laser beam to obtain a series connection structure as shown in FIG.

本発明は、高分子フィルム基板の脱ガス化処理を行う薄膜太陽電池の製造設備に適用可能である。   The present invention can be applied to a manufacturing facility for a thin-film solar cell that performs a degassing process on a polymer film substrate.

Claims (4)

可撓性高分子フィルム基板を、当該高分子フィルム基板の表面に真空プロセスで薄膜を形成する前に、真空中で加熱処理して脱ガス処理する脱ガス処理方法であって、
100℃以上250℃以下で、かつ前記可撓性フィルムの分解温度以下となるように加熱処理時間を選択し、
時間とともに指数的に減少するガス放出速度のタイムコンスタントを基準に、そのloge10倍以上となるように加熱処理時間を算定し、
前記加熱処理温度および前記加熱処理時間を満たすように、前記高分子フィルム基板を加熱処理し、
前記指数的に減少するガス放出速度のタイムコンスタントは、その活性化エネルギーをEとし、絶対温度をT、ボルツマン定数をkとして、exp(E/kT)に比例することを特徴とする高分子フィルム基板の脱ガス処理方法。
Before forming a thin film on the surface of the polymer film substrate by a vacuum process, the flexible polymer film substrate is a degassing method for heat treatment in vacuum and degassing,
The heat treatment time is selected so as to be 100 ° C. or more and 250 ° C. or less and not more than the decomposition temperature of the flexible film,
Based on the time constant of the gas release rate that decreases exponentially with time, calculate the heat treatment time so that it is more than 10 times the log,
The polymer film substrate is heat-treated so as to satisfy the heat treatment temperature and the heat treatment time,
The time constant of the exponentially decreasing gas release rate is proportional to exp (E / kT), where the activation energy is E, the absolute temperature is T, and the Boltzmann constant is k. A method for degassing a substrate.
加熱処理温度が150℃〜250℃であり、前記加熱処理時間が少なくとも2分〜5分であることを特徴とする請求項1に記載の高分子フィルム基板の脱ガス処理方法。   The method for degassing a polymer film substrate according to claim 1, wherein the heat treatment temperature is 150 ° C to 250 ° C, and the heat treatment time is at least 2 minutes to 5 minutes. 加熱処理温度が150℃以上であり、脱ガス完了時間が5分以上であることを特徴とする請求項2記載の高分子フィルム基板の脱ガス処理方法。   The method for degassing a polymer film substrate according to claim 2, wherein the heat treatment temperature is 150 ° C or higher and the degassing completion time is 5 minutes or longer. 前記可撓性フィルムは、ポリイミド、ポリスチレン、ポリカーボネート、ポリブチレンテレフタラート、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリアリレート、ポリエーテルスルホン、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルイミド、アラミドからなる群から選ばれた高分子材料からなることを特徴とする請求項1から請求項3のいずれか一項に記載の高分子フィルム基板の脱ガス処理方法。   The flexible film is made of polyimide, polystyrene, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyethersulfone, polysulfone, polyphenylene sulfide, polyetheretherketone, polyetherimide, and aramid. The method for degassing a polymer film substrate according to any one of claims 1 to 3, comprising a polymer material selected from the group.
JP2013028796A 2008-08-29 2013-02-18 Method and apparatus of degasification treatment of polymer film substrate Withdrawn JP2013139574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013028796A JP2013139574A (en) 2008-08-29 2013-02-18 Method and apparatus of degasification treatment of polymer film substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008220904 2008-08-29
JP2008220904 2008-08-29
JP2013028796A JP2013139574A (en) 2008-08-29 2013-02-18 Method and apparatus of degasification treatment of polymer film substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010526605A Division JP5273147B2 (en) 2008-08-29 2009-06-12 Method and apparatus for degassing polymer film substrate

Publications (1)

Publication Number Publication Date
JP2013139574A true JP2013139574A (en) 2013-07-18

Family

ID=41721193

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010526605A Expired - Fee Related JP5273147B2 (en) 2008-08-29 2009-06-12 Method and apparatus for degassing polymer film substrate
JP2013028796A Withdrawn JP2013139574A (en) 2008-08-29 2013-02-18 Method and apparatus of degasification treatment of polymer film substrate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010526605A Expired - Fee Related JP5273147B2 (en) 2008-08-29 2009-06-12 Method and apparatus for degassing polymer film substrate

Country Status (2)

Country Link
JP (2) JP5273147B2 (en)
WO (1) WO2010024018A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024018A1 (en) * 2008-08-29 2010-03-04 富士電機アドバンストテクノロジー株式会社 Degasification method for polymer film substrate and degasification apparatus
JP2016121380A (en) 2014-12-25 2016-07-07 株式会社神戸製鋼所 Heat treatment apparatus
JP6969111B2 (en) * 2017-03-02 2021-11-24 東洋紡株式会社 Polyimide / inorganic substrate laminate with gas barrier layer and its manufacturing method
JP7370229B2 (en) * 2018-12-28 2023-10-27 旭化成株式会社 Semiconductor device and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024018A1 (en) * 2008-08-29 2010-03-04 富士電機アドバンストテクノロジー株式会社 Degasification method for polymer film substrate and degasification apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299481A (en) * 1999-04-12 2000-10-24 Fuji Electric Co Ltd Manufacture of thin-film solar battery and degassing processor for solar battery substrate
JP4763165B2 (en) * 2001-07-19 2011-08-31 ヒラノ光音株式会社 Surface treatment apparatus for continuous sheet material and gas seal structure thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024018A1 (en) * 2008-08-29 2010-03-04 富士電機アドバンストテクノロジー株式会社 Degasification method for polymer film substrate and degasification apparatus
JP5273147B2 (en) * 2008-08-29 2013-08-28 富士電機株式会社 Method and apparatus for degassing polymer film substrate

Also Published As

Publication number Publication date
JP5273147B2 (en) 2013-08-28
WO2010024018A1 (en) 2010-03-04
JPWO2010024018A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5182610B2 (en) Thin film solar cell manufacturing equipment
WO2003085746A1 (en) Method for fabricating tandem thin film photoelectric converter
US8465589B1 (en) Machine and process for sequential multi-sublayer deposition of copper indium gallium diselenide compound semiconductors
TW201140738A (en) Roll-to-roll evaporation system and method to manufacture group IBIIIAVIA photovoltaics
JP2013139574A (en) Method and apparatus of degasification treatment of polymer film substrate
TWI558830B (en) Method of making a transparent conductive oxide layer
WO2010023947A1 (en) Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system
JP4985209B2 (en) Thin film solar cell manufacturing equipment
JP4497660B2 (en) Photovoltaic element manufacturing method
JP3787410B2 (en) Deposited film manufacturing method and photovoltaic device manufacturing method
JP2006344883A (en) Method of manufacturing solar cell
JP2001007367A (en) Method and device for manufacturing film solar cell
WO2011096338A1 (en) Transparent-conductive-film-attached substrate for solar cell, solar cell, and processes for production of those products
JP2000299481A (en) Manufacture of thin-film solar battery and degassing processor for solar battery substrate
JP4967272B2 (en) Method for crystallizing Cu2O thin film and laminate having Cu2O thin film
JP5169068B2 (en) Thin film solar cell manufacturing equipment
TWI550112B (en) Manufacturing method of substrate of photoelectric conversion device
US20090255582A1 (en) Methods of drying glass for photovoltaic applications
JP2000236105A (en) Method and apparatus for manufacturing thin-film solar battery
JP2011176148A (en) Method of manufacturing solar cell module, and solar cell module obtained by using the same method
JP5071010B2 (en) Method and apparatus for manufacturing photoelectric conversion element
EP3138133B1 (en) Additional temperature treatment step for thin-film solar cells
JP2001156313A (en) Solar battery and base therefor
JPH06204138A (en) Thin film forming method and thin film forming equipment and semiconductor element
CN117693825A (en) Method for producing starting material for silicon solar cells with passivated contacts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140310