JP2013135793A - 超音波プローブおよび超音波検査装置 - Google Patents

超音波プローブおよび超音波検査装置 Download PDF

Info

Publication number
JP2013135793A
JP2013135793A JP2011288454A JP2011288454A JP2013135793A JP 2013135793 A JP2013135793 A JP 2013135793A JP 2011288454 A JP2011288454 A JP 2011288454A JP 2011288454 A JP2011288454 A JP 2011288454A JP 2013135793 A JP2013135793 A JP 2013135793A
Authority
JP
Japan
Prior art keywords
electrode
ultrasonic
ultrasonic probe
unit
piezoelectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011288454A
Other languages
English (en)
Other versions
JP5776542B2 (ja
Inventor
Takayuki Nagata
貴之 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011288454A priority Critical patent/JP5776542B2/ja
Publication of JP2013135793A publication Critical patent/JP2013135793A/ja
Application granted granted Critical
Publication of JP5776542B2 publication Critical patent/JP5776542B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

【課題】2次元アレイプローブに適したpMUT(Piezoelectric Micromachining Ultrasound Transducer)素子の高感度化、広帯域化を実現する。
【解決手段】上部電極をメイン電極とサブ電極に分け、それぞれに異なる駆動信号を送信することにより、発生する超音波を短パルス化する。また受信時には、サブ電極に送信からの時間の経過に応じた電圧を印加して振動部に与える応力を変化させ、共振周波数を時間の経過とともにシフトさせる。これにより、エコーの深さに合わせた効果的な周波数帯で受信することができる。
【選択図】図3

Description

本発明は、MUT(Micromachining Ultrasound Transducer)素子を用いる超音波プローブおよび、それを用いた超音波検査装置に関する。特に、生体の体内観察を3次元的に行うための超音波プローブの広帯域化、高感度化に関する。
超音波検査装置は、超音波プローブから超音波ビームを被検体に送出し、被検体内部で反射した超音波信号(以後、超音波エコー)を超音波プローブで受信して、被検体内部の情報を得る装置である。この超音波検査装置では、超音波プローブから送信される超音波の周波数が高い程分解能が高くなるが、生体の体内観察を行う場合、超音波の到達深度は、超音波の周波数が高い程浅く、低い程深くなる。そのため、深部から浅部まで高分解能な画像を得るために、広帯域の超音波を送受信可能な超音波プローブが望まれている。
超音波プローブは、従来、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックからなる圧電振動子を多数配列して構成される。この構成において、送受信される超音波の帯域を広げる方法として、スライス方向に共振周波数の異なる振動子を配列する構成(例えば、特許文献1)、あるいは、アレイ方向に共振周波数の異なる振動子を配列する構成(例えば、特許文献2)などが提案されている。
しかしながら、このような方法は、振動子が1列に配列された1次元プローブでは実現できるものの、近年、要望の高まっている2次元アレイプローブでは実現が困難である。従来の1次元プローブの構造をそのまま2次元化するには、微細加工、配線、電気的インピーダンスの点で課題があり、そこに、スライス方向に分布を持つ振動子や、厚みの異なる振動子を加えると、難易度がさらに上がり現実的ではない。
このような2次元アレイプローブに適した構成として、近年、pMUT(Piezoelectric Micromachining Ultrasound Transducer:圧電型トランスデューサ)素子、および、cMUT(Capacitive Micromachining Ultrasound Transducer:静電容量型トランスデューサ)素子が注目されている。これらのトランスデューサは半導体製造技術を用いて形成されており、アレイ数増加の可能性や回路との集積化の容易性などが長所となっている。一方、このようなトランスデューサは、超音波プローブとして用いる場合、共振周波数の高さ、送受信される周波数帯域の広さ、送信出力および受信感度の大きさ、等を同時に満たすことが難しいという課題を有している。
この対策として、pMUTでは、圧電層を構造化することで感度を向上させる構成が提案されている(例えば、特許文献4)。また、cMUTでは、メンブレン表面に凹部を設け、メンブレンの密度を下げることにより、共振周波数の保持と感度向上の両立を狙った構成が提案されている(例えば、特許文献4)。
特開平6−121390号公報 特開2005−277988号公報 特開2011−15423号公報 特開2009−182838号公報
前記したように、特許文献1、2に記載された従来のバルク型構成の振動子は、微細加工、配線、電気的インピーダンス等の課題があり、2次元アレイプローブに適していない。
また、特許文献3に記載したcMUTは、受信感度の向上と広帯域特性を実現できるものの、送信素子としてみたときには、出力される超音波の音圧は従来のバルク型構成と比較して大きく劣る。
また、特許文献4に記載したpMUT素子は、cMUTより大きな送信出力が期待できるものの、広帯域特性との両立に関しては全く言及されていない。
本発明は、前記従来の課題を解決するもので、MUT素子、特に、pMUTの送信出力、および、受信感度を向上させるとともに、それぞれ広帯域の特性を両立した2次元アレイプローブを提供する。この超音波プローブを用いることにより、広範囲で明瞭な超音波画像が得られる超音波検査装置を提供することを目的とする。
上記目的を達成するために、本発明の超音波プローブは、2次元的に配列された複数の単位振動子を備え、前記単位振動子は、少なくとも、台座部と前記台座部上に形成された振動板と前記振動板の上面に形成された第1の圧電体膜および第2の圧電体膜と前記第1の圧電体膜の上面に形成された第1の電極と前記第2の圧電体膜の上面に形成された第2の電極から成る複数のMUT(Micromachining Ultrasound Transducer)素子を有し、前記第1の電極と前記第2の電極は、電気的に接続されていない構成とする。この構成により、発生する超音波を短パルス化し、送信される超音波を広帯域化することができる。
また、第2の電極に送信する駆動信号を制御する制御部をさらに備え、制御部は、超音波を前記被検体内に送信した後の時間経過に応じて、印加電圧を制御可能な構成とする。この構成により、受信感度の高い周波数帯を、超音波エコーが返ってくる深さに応じて効果的に設定することができ、見かけ上、広帯域かつ高感度の特性が得られる。
また、本発明の超音波検査装置は、上記超音波プローブと、上記超音波プローブで検出した信号をデジタル変換する受信部と、上記受信部でデジタル変換された信号を用いてビームフォーミング処理を行う信号処理部と、上記信号処理部で得られた3次元データに基づいて3次元画像を生成する画像処理部と、上記3次元画像を表示する表示部を備えた構成とする。この構成により、広範囲で明瞭な超音波画像が得られる。
本発明の超音波プローブおよび超音波検査装置は、発生する超音波を短パルス化し、帯域の広い送信波を形成することができる。
さらに、受信時には、時間の経過とともに受信感度の高い周波数帯をシフトさせることにより、超音波エコーの返ってくる深さに応じた設定が行え、見かけ上、広帯域かつ高感度の信号検出が可能となる。
したがって、本発明にかかる超音波プローブを用いることにより、浅い部位から深い部位まで広範囲で高画質な超音波検査装置を実現できる。
本発明の実施の形態1にかかる超音波検査装置の概略構成を示すブロック図 本発明の実施の形態1にかかる超音波プローブの全体構成を示す構成図 本発明の実施の形態1にかかる振動子ユニットの構造を示した説明図で、(a)は上面図、(b)はAA断面における側面図 本発明の実施の形態1にかかるpMUT素子31の断面図で、(a)は電圧印加時の圧電体膜35に作用する圧力を示した説明図、(b)は振動板36に作用するモーメントおよび、それに伴う変形を示した説明図 本発明の実施の形態1にかかる単位振動子の別の構造を示した上面図 本発明の実施の形態1にかかる単位振動子のさらに別の構造を示した上面図
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同一の構成要素には同一の参照番号を付して説明を省略する。
(実施の形態1)
図1は本発明の実施の形態1にかかる超音波検査装置10の概略構成を示すブロック図である。超音波検査装置10は、超音波を被検体11に送信するとともに、被検体11の内部で反射した超音波信号を受信する超音波プローブ12と、超音波を送信するための駆動信号を発生して超音波プローブ12のメイン電極に供給するとともに、超音波プローブ12のメイン電極で検出した信号を増幅およびデジタル変換して出力する送受信部13と、送受信部13から出力された信号を用いてデジタルビームフォーミングを行う信号処理部14と、信号処理部14で生成された3次元データに基づいて、3次元画像のレンダリング処理等を施す画像処理部15と、処理を施された画像データに基づいて画像を表示する画像表示部16と、超音波を送信および受信する際に、超音波プローブ12のサブ電極に送信する駆動信号を発生して超音波プローブ12に供給するサブ送信部18と、所定のタイミングで駆動信号を発生するように送受信部13およびサブ送信部18を制御する制御部17を有している。
また、送受信部13、サブ送信部18、信号処理部14、画像処理部15、画像表示部16、制御部17は、検査装置本体19に格納されており、超音波プローブ12との間は、複数の信号線のケーブルをひとまとめにして被覆したプローブケーブルで接続されている。
図2は、本発明の実施の形態1にかかる超音波プローブ12の全体構成を示す構成図である。図2に示すように超音波プローブ12は、プローブケース21の内部に超音波を送受波する振動子ユニット22と、振動子ユニット22内の単位振動子のメイン電極およびサブ電極に対して独立に電気信号を入出力するための複数の信号線がプリントされたプリント基板24とを備えている。また、超音波プローブ12は、プローブケーブル25を介して検査装置本体19に接続されている。
ここで、振動子ユニット22は、複数のpMUT素子からなる単位振動子を2次元的に配列した振動子アレイで構成され、各単位振動子には、グランド接地された共通電極の他に、メイン電極とサブ電極の2種類の電極を有している。このメイン電極にパルス状の電圧を印加することにより、超音波パルスが発生するように構成され、送受信部13からメイン電極に遅延処理を施された駆動電圧を供給することにより、発生した超音波をフォーカスおよび偏向することができる。この構成により、超音波プローブ12は3次元方向に超音波を送信してセクタ走査が行えるように構成されている。
また、超音波の送信時、および受信時に、サブ電極に対して後で説明する所定の信号を送信することにより、広帯域の超音波を送受信できるように構成されている。
図3は、本発明の実施の形態1にかかる振動子ユニット22の構造を示した説明図で、(a)は上面図、(b)はAA断面における側面図である。
図3(a)(b)に示すように振動子ユニット22は、例えばpMUT素子31を4つ含む単位振動子32を2次元に配列して構成されている。また各pMUT素子は、白金(Pt)、金(Au)、アルミニウム(Al)等の金属薄膜から成るメイン電極33、およびサブ電極34、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミック等からなる圧電体膜35aおよび35b、銅(Cu)、クロム(Cr)等の金属膜からなり、共通電極を兼ねた振動板36、剛性を有する素材で構成された台座37で構成されている。
またpMUT素子31のメイン電極33およびサブ電極34は、それぞれ単位振動子ごとに連結され、引き出し部33aおよび引き出し部34aから個別に図2に示したプリント基板24に接続される。また、共通電極を兼ねた振動板36の引き出し部はプリント基板24のグランド線に接続される。この構成により、単位振動子32のメイン電極およびサブ電極ごとに独立して電圧を印加することができ、対応する圧電体膜35aおよび35bを駆動することができる。
なお、上記したメイン電極33およびサブ電極34、圧電体膜35、振動板36の素材は一例であり、同様の機能を有する素材であれば、いかなる素材を用いてもよい。
次に、このように構成された本実施の形態1の超音波検査装置10の動作について図1〜図3、および図4を用いて具体的に説明する。図4は本発明の実施の形態1にかかるpMUT素子31の断面図で、(a)は電圧印加時の圧電体膜35に作用する圧力を示した説明図、(b)は振動板36に作用するモーメントおよび、それに伴う変形を示した説明図である。
図1〜図3において、まず、制御部17が所定のタイミングでパルス信号を発生するように送受信部13を制御し、送受信部13は超音波をフォーカス及び偏向させるための遅延処理を行い、プローブケーブル25内にまとめられた信号線を経由して超音波プローブ12に駆動信号を送信する。このとき、制御部17からの信号により、サブ送信部18からも同様に駆動信号が送信される。送受信部13から送信される遅延処理された駆動信号は、プリント基板24を経由して振動子ユニット22のメイン電極33に送られ、サブ送信部18から送信される駆動信号は同様の経路でサブ電極34に送られる。メイン電極33およびサブ電極34に印加された電圧により圧電体膜35aおよび35bが歪み、各単位振動子から所定の時間差で超音波が発生する。この超音波の位相分布により所定の波面が形成され、被検体11内に超音波ビームが送信される。
この超音波を送信する動作を、図4を用いて具体的に説明する。まず、図4(a)において、メイン電極33に駆動信号が送信されると、それに応じて、圧電体膜35aの厚み方向にパルス状の電圧が印加され、圧電体膜35aは、例えば、面内で縮む方向に歪む。このとき、サブ電極34にメイン電極33と逆の電位の電圧を印加し、圧電体膜35bを面内で伸びる方向に歪ませる。圧電体膜35aおよび35bが図4(a)に示した矢印の方向に歪むと、振動板36の圧電体膜35aおよび35bに接する部分に、それぞれ図4(b)の矢印で示すようなモーメントが発生し、振動板36が瞬間的に撓んで超音波を発生する。
そして、超音波を送信直後にサブ電極34に印加する電圧を制御して圧電体膜35bを駆動し、超音波送信直後の振動板36の振動を抑える。振動板36の振動を効果的に抑えることにより、短パルスの超音波が送信される。
ここで、本実施の形態では、圧電体膜35aと35bを用いて駆動することにより、圧電体膜を中央のみに配置する場合と比べて振動板36の変位を大きくすることができ、送信出力を向上させている。また、超音波送信直後に圧電体膜35bを駆動して振動を抑えることにより、送信波を通常より短パルス化し、帯域の広い信号が送信できるようにしている。
なお、サブ電極34および圧電体膜35bの配置は、台座37と空間38の境界線39を振動板36上に投影した位置に端面が揃うように配置するのが望ましい。この位置は振動板36の振動の節となるため、圧電体膜35bで発生したモーメントを効果的に振動板36に伝えることができる。
また、超音波送信時にサブ電極に送信する信号は、メイン電極に送信される信号の電位を反転させたものを用いることが出来、また、制振のための信号もメイン電極に送信される信号の位相をずらしたものを用いてもよい。このような制御とすると、サブ送信部の構成を簡略化することができる。
超音波プローブ12から送信された超音波は、被検体11内部の反射組織で反射され、超音波エコーとなって被検体11の表面に伝搬し、振動子ユニット22を振動させる。
このときサブ送信部18は、超音波を送信後の時間経過に応じた電圧がサブ電極34に印加されるように駆動信号を送信する。サブ電極34により厚み方向に電圧を印加された圧電体膜35は、面内方向に伸縮して振動板36に引張あるいは圧縮応力を与え、振動板36の見かけ上の剛性を時間とともに変化させる。
超音波エコーによって各pMUT素子の振動板36が振動すると、中央の圧電体膜35aは平面内で引張、圧縮されて歪を生じ、この歪に応じて圧電体膜35aの厚み方向に電圧を発生する。このとき、メイン電極33と振動板36の間の電圧を検出することにより、超音波エコーに応じた振動を検出することができる。
ところで、超音波プローブ12から送信される超音波は、周波数が高い程高い分解能が得られるが、その到達深度は、周波数が高い程浅く、低い程深くなる。したがって、超音波を被検体内に送信後、短時間で検出される信号は高い周波数成分を有するが、時間と共に検出される信号の高周波成分は低下する。そこで、超音波送信後の時間経過に応じて、振動子ユニット22の受信感度の周波数特性を高い周波数帯から低い周波数帯にずらしていくと、見かけ上、広い周波数帯域で高い受信感度を実現できる。
本実施の形態では、サブ送信部18により、超音波送信後の時間経過に応じてサブ電極34に印加する電圧を制御してpMUT素子31の振動板36に応力を与え、pMUT素子31の共振周波数を時間経過に応じてずらす。これにより、受信感度の中心周波数が時間経過に応じて変わり、浅い部位から深い部位まで広範囲で発生する超音波エコーが感度よく検出される。
再び図1に戻り、超音波プローブ12で検出された信号は送受信部13に送られ、送受信部13で増幅、およびデジタル変換され、信号処理部14で超音波の送信経路(以後、音線)に沿った領域のビームフォーミング処理が行われる。
以上の動作は超音波プローブ12から送信される超音波の音線を被検体内で走査しながら行われ、検査領域全体の情報が演算されて、信号処理部14内の画像メモリに保存される。画像メモリに保存された3次元データは、画像処理部15で3次元画像のレンダリング処理が施され、画像表示部16に画像が表示される。
以上に説明したように本実施の形態1の超音波検査装置10は、超音波を被検体内に送受信する際に、パルス長を短くすることができる。これにより、広帯域の超音波を送信することができる。また、超音波エコーを受信する際には、時間の経過に応じて、受信感度の周波数特性をずらすことにより、浅い部位から深い部位まで広範囲で発生する超音波エコーを高感度に検出することができる。これにより、広範囲で高画質の3次元画像を取得可能な超音波検査装置が実現できる。
なお、本実施の形態では、受信時にサブ電極に印加する電圧を、時間の経過に応じて制御する手法としたが、送受信する超音波の周波数より十分高い周波数でサブ電極に印加する電圧を変調し、メイン電極で検出される信号の周波数変化でエコー信号の検出を行うように構成してもよい。このように振動型センサとすると、分解能、温度特性に優れ、出力信号が交流で、超音波エコーの音圧に応じてその周波数が変動するのでデジタル信号処理が容易となる。
また、本実施の形態では、pMUT素子31の形状を正方形としたが、この形状は長方形、あるいは図5に示すような六角形、あるいは、その他の形状であってもよい。また、1つの単位振動子に含まれるpMUT素子31の数は4つに限らず、それ以上の数でも良い。例えば図6に示すようにpMUT素子31を9つ含むように構成することもできる。
また、本実施の形態では、検出した信号のAD変換を検査装置本体19内の送受信部13で行うとしたが、超音波プローブ12内の単位振動子32の数が多い場合、アナログ信号のまま検出信号を送信しようとすると、多くの信号線が必要となり、プローブケーブル25が太く硬くなってしまう。この結果、ハンドリングが悪くなってしまうため、送受信部13の機能の一部、または全部は超音波プローブ12と一体に設け、デジタル変換した信号をプローブケーブル25で通信するように構成してもよい。
以上本発明によれば、広帯域にわたって高感度な2次元アレイプローブを実現できる。これにより、浅い部位から深い部位まで広範囲で高画質な超音波診断装置を実現できる。
10 超音波検査装置
11 被検体
12 超音波プローブ
13 送受信部
14 信号処理部
15 画像処理部
16 画像表示部
17 制御部
18 サブ送信部
19 検査装置本体
21 プローブケース
22 振動子ユニット
24 プリント基板
25 プローブケーブル
31 pMUT素子
32 単位振動子
33 メイン電極
33a 引き出し部
34 サブ電極
34a 引き出し部
35 圧電体膜
35a 圧電体膜
35b 圧電体膜
36 振動板
37 台座
38 空間
39 境界線

Claims (10)

  1. 被検体の体内観察を行うための超音波プローブであって、
    2次元的に配列された複数の単位振動子を備え、
    前記単位振動子は、少なくとも、台座部と前記台座部上に形成された振動板と前記振動板の上面に形成された第1の圧電体膜および第2の圧電体膜と前記第1の圧電体膜の上面に形成された第1の電極と前記第2の圧電体膜の上面に形成された第2の電極から成る複数のMUT(Micromachining Ultrasound Transducer)素子を有し、
    前記第1の電極と前記第2の電極は、電気的に接続されていないことを特徴とする超音波プローブ。
  2. 前記第1の電極と第2の電極にそれぞれ異なる駆動信号を送信して超音波を発生させることを特徴とする請求項1記載の超音波プローブ。
  3. 各前記MUT素子において、前記第2の圧電体膜は前記第1の圧電体膜の周囲に配置され、同じ単位振動子内で隣接するMUT素子の第1の電極どうし、および、第2の電極どうしは電気的に接続されていることを特徴とする請求項1、2記載の超音波プローブ。
  4. 前記振動板上の前記台座部を投影した領域に前記第2の圧電体膜が配置されていることを特徴とする請求項3記載の超音波プローブ。
  5. 前記第1の電極に送信する駆動信号を、位相をずらして前記第2の電極に送信することを特徴とする請求項2記載の超音波プローブ。
  6. 前記第1の電極に電圧を印加する際に、前記第2の電極に前記第1の電極に印加する電圧と逆の電位の電圧を印加することを特徴とする請求項2記載の超音波プローブ。
  7. 前記第2の電極に送信する駆動信号を制御する制御部をさらに備え、
    前記制御部は、超音波を前記被検体内に送信した後の時間経過に応じて、印加電圧を制御することを特徴とする請求項2記載の超音波プローブ。
  8. 前記第2の電極に送信する駆動信号を制御する制御部をさらに備え、
    前記制御部は、前記振動板が特定の周波数で振動するように、印加電圧を周期的に変調することを特徴とする請求項2記載の超音波プローブ。
  9. 請求項1〜請求項8に記載の超音波プローブと、前記超音波プローブで検出した信号をデジタル変換する受信部と、前記受信部でデジタル変換された信号を用いてビームフォーミング処理を行う信号処理部と、前記信号処理部で得られた3次元データに基づいて3次元画像を生成する画像処理部と、前記3次元画像を表示する表示部を備えた超音波検査装置。
  10. 前記受信部が、前記超音波プローブ内に配置されていることを特徴とする請求項9記載の超音波検査装置。
JP2011288454A 2011-12-28 2011-12-28 超音波プローブおよび超音波検査装置 Active JP5776542B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011288454A JP5776542B2 (ja) 2011-12-28 2011-12-28 超音波プローブおよび超音波検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011288454A JP5776542B2 (ja) 2011-12-28 2011-12-28 超音波プローブおよび超音波検査装置

Publications (2)

Publication Number Publication Date
JP2013135793A true JP2013135793A (ja) 2013-07-11
JP5776542B2 JP5776542B2 (ja) 2015-09-09

Family

ID=48912082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011288454A Active JP5776542B2 (ja) 2011-12-28 2011-12-28 超音波プローブおよび超音波検査装置

Country Status (1)

Country Link
JP (1) JP5776542B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995821B2 (en) 2014-10-15 2018-06-12 Qualcomm Incorporated Active beam-forming technique for piezoelectric ultrasonic transducer array
KR20180066096A (ko) * 2015-10-14 2018-06-18 퀄컴 인코포레이티드 통합된 압전 마이크로기계식 초음파 트랜스듀서 픽셀 및 어레이
WO2018163963A1 (ja) * 2017-03-09 2018-09-13 京セラ株式会社 超音波センサおよび超音波センサ装置
WO2023042755A1 (ja) 2021-09-14 2023-03-23 日清紡ホールディングス株式会社 圧電体デバイスおよび圧電体モジュール

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527285A (ja) * 2004-02-27 2007-09-27 ジョージア テック リサーチ コーポレイション 多要素電極cmut素子及び製作方法
JP2011259274A (ja) * 2010-06-10 2011-12-22 Konica Minolta Medical & Graphic Inc 超音波探触子および超音波診断装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527285A (ja) * 2004-02-27 2007-09-27 ジョージア テック リサーチ コーポレイション 多要素電極cmut素子及び製作方法
JP2011259274A (ja) * 2010-06-10 2011-12-22 Konica Minolta Medical & Graphic Inc 超音波探触子および超音波診断装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995821B2 (en) 2014-10-15 2018-06-12 Qualcomm Incorporated Active beam-forming technique for piezoelectric ultrasonic transducer array
US10001552B2 (en) 2014-10-15 2018-06-19 Qualcomm Incorporated Three-port piezoelectric ultrasonic transducer
US10139479B2 (en) 2014-10-15 2018-11-27 Qualcomm Incorporated Superpixel array of piezoelectric ultrasonic transducers for 2-D beamforming
KR20180066096A (ko) * 2015-10-14 2018-06-18 퀄컴 인코포레이티드 통합된 압전 마이크로기계식 초음파 트랜스듀서 픽셀 및 어레이
US10497748B2 (en) 2015-10-14 2019-12-03 Qualcomm Incorporated Integrated piezoelectric micromechanical ultrasonic transducer pixel and array
KR102136375B1 (ko) 2015-10-14 2020-07-21 퀄컴 인코포레이티드 통합된 압전 마이크로기계식 초음파 트랜스듀서 픽셀 및 어레이
WO2018163963A1 (ja) * 2017-03-09 2018-09-13 京セラ株式会社 超音波センサおよび超音波センサ装置
JPWO2018163963A1 (ja) * 2017-03-09 2019-12-26 京セラ株式会社 超音波センサおよび超音波センサ装置
US11331075B2 (en) 2017-03-09 2022-05-17 Kyocera Corporation Ultrasonic sensor and ultrasonic sensor device
WO2023042755A1 (ja) 2021-09-14 2023-03-23 日清紡ホールディングス株式会社 圧電体デバイスおよび圧電体モジュール

Also Published As

Publication number Publication date
JP5776542B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5303472B2 (ja) 超音波診断装置と超音波探触子
JP5205110B2 (ja) 超音波撮像装置
JP5399632B2 (ja) 超音波診断装置
US20070016020A1 (en) Ultrasonic probe, ultrasonographic device, and ultrasonographic method
JP5702326B2 (ja) 超音波プローブおよびそれを備える超音波診断装置
JP6770663B2 (ja) 容量性マイクロマシン超音波トランスデューサ(cmut)装置と制御方法
US10031226B2 (en) Ultrasonic measurement apparatus, ultrasonic diagnostic apparatus, and ultrasonic measurement method
JP5836537B2 (ja) ユニモルフ型超音波探触子
KR20160069293A (ko) 프로브, 초음파 영상장치, 및 초음파 영상장치의 제어방법
JP2013123150A (ja) 圧電デバイスおよび超音波探触子
JP5026770B2 (ja) 超音波探触子及び超音波診断装置
JP5776542B2 (ja) 超音波プローブおよび超音波検査装置
JP4632728B2 (ja) 超音波プローブおよび超音波画像診断装置
US10849598B2 (en) Ultrasonic measurement apparatus, ultrasonic imaging apparatus, and ultrasonic measurement method
JP2008048276A (ja) 超音波トランスデューサ及び超音波トランスデューサアレイ
JP5842533B2 (ja) 超音波プローブおよび超音波検査装置
JP2018140061A (ja) 超音波撮像装置
JP6390428B2 (ja) 超音波振動子セル、超音波プローブ、及び超音波振動子セルの制御方法
JP5637960B2 (ja) 超音波診断装置および超音波画像生成方法
JP5869411B2 (ja) 超音波診断装置および超音波画像生成方法
JP5682762B2 (ja) 圧電デバイスおよび超音波探触子
US9291601B2 (en) Ambient sound velocity obtaining method and apparatus
JP2020115940A (ja) 超音波プローブ、及び超音波診断装置
JP2007288397A (ja) 超音波用探触子
JP6744769B2 (ja) 超音波診断装置および生体内部の超音波画像を取得する方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150