JP2013133232A - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP2013133232A
JP2013133232A JP2011282482A JP2011282482A JP2013133232A JP 2013133232 A JP2013133232 A JP 2013133232A JP 2011282482 A JP2011282482 A JP 2011282482A JP 2011282482 A JP2011282482 A JP 2011282482A JP 2013133232 A JP2013133232 A JP 2013133232A
Authority
JP
Japan
Prior art keywords
hydrogen
magnesium hydride
hydrogen generator
cylindrical portion
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011282482A
Other languages
Japanese (ja)
Other versions
JP5874969B2 (en
Inventor
Hiroyuki Uesugi
浩之 上杉
Takashi Sugiyama
喬 杉山
Hiromi Arai
宏美 新居
Miki Mochizuki
実季 望月
Hirotaka Kasugai
博貴 春日井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio Coke Lab Co Ltd
Original Assignee
Bio Coke Lab Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Coke Lab Co Ltd filed Critical Bio Coke Lab Co Ltd
Priority to JP2011282482A priority Critical patent/JP5874969B2/en
Publication of JP2013133232A publication Critical patent/JP2013133232A/en
Application granted granted Critical
Publication of JP5874969B2 publication Critical patent/JP5874969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen generator capable of generating hydrogen stably by suppressing fluctuation of the hydrogen generation amount per unit time.SOLUTION: This hydrogen generator includes a reaction vessel 1 wherein a hydrolysis reaction of magnesium hydride is carried out, and generates hydrogen by supplying water or an acidic solution into the reaction vessel 1. The reaction vessel 1 includes a bottom part 11, and first to third cylindrical parts 31, 32, 33 having each different height and erected on the bottom part 11 for filling magnesium hydride therein, and further includes a dropping part 23 for dropping water or an acidic solution into magnesium hydride filled in the first cylindrical part 31 from above the highest first cylindrical part 31. The first to third cylindrical parts 31, 32, 33 are, for example cylindrical, and are arranged concentrically so that each height becomes lower in due order from the center part toward the outside.

Description

本発明は、水素化マグネシウムの加水分解反応が行われる反応容器を備え、該反応容器へ水又は酸性溶液を供給することによって、水素を発生させる水素発生装置に関する。   The present invention relates to a hydrogen generator that includes a reaction vessel in which a hydrolysis reaction of magnesium hydride is performed, and generates hydrogen by supplying water or an acidic solution to the reaction vessel.

水素の貯蔵方法の一つに吸蔵合金方式がある。吸蔵合金方式は、超高圧、極低温といった特殊状態で水素を貯蔵する必要がないため、取り扱いが容易で安全性が高く、しかも単位体積当たりの水素貯蔵量が高いという優れた特徴を有している。特許文献1には、吸蔵合金方式を採用した水素発生装置が開示されている。特許文献1に係る水素発生装置は、水素化マグネシウム粉末と、酸性物粉末との混合粉末を収容した円筒状の貯蔵室を備える。貯蔵室には、貯水室から導かれた注水管が挿入され、貯水室から貯蔵室へ水が供給されるように構成されている。貯蔵室に水が供給されると、水素化マグネシウム粉末が加水分解し、水素を発生させる。発生した水素は、例えば、燃料電池に供給され、電力に変換される。   One storage method for hydrogen is the storage alloy method. The storage alloy method does not need to store hydrogen in special conditions such as ultra-high pressure and cryogenic temperature, so it has excellent characteristics that it is easy to handle and safe, and has a high hydrogen storage amount per unit volume. Yes. Patent Document 1 discloses a hydrogen generator that employs an occlusion alloy system. The hydrogen generator according to Patent Document 1 includes a cylindrical storage chamber that contains a mixed powder of magnesium hydride powder and acidic powder. A water injection pipe led from the water storage chamber is inserted into the storage chamber, and water is supplied from the water storage chamber to the storage chamber. When water is supplied to the storage chamber, the magnesium hydride powder is hydrolyzed to generate hydrogen. The generated hydrogen is supplied to, for example, a fuel cell and converted into electric power.

特開2006−298670号公報JP 2006-298670 A

しかしながら、特許文献1に係る水素発生装置においては、貯蔵室の底に水素化マグネシウム粉末が単に満遍なく敷き詰められているような構成であるため、単位時間当たりの水素発生量が安定しないという問題があった。発生した水素を燃料電池に供給して発電するような場合、電力の出力が安定しなくなるという問題が発生する。   However, the hydrogen generator according to Patent Document 1 has a problem in that the amount of hydrogen generated per unit time is not stable because magnesium hydride powder is simply spread all over the bottom of the storage chamber. It was. When the generated hydrogen is supplied to the fuel cell to generate power, there is a problem that the power output becomes unstable.

本発明は斯かる事情に鑑みてなされたものであり、単位時間当たりの水素発生量の変動を抑えて、水素を安定的に発生させることができる水素発生装置を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the hydrogen generator which can suppress the fluctuation | variation of the amount of hydrogen generation per unit time, and can generate hydrogen stably.

本発明に係る水素発生装置は、水素化マグネシウムの加水分解反応が行われる反応容器を備え、該反応容器へ水又は酸性溶液を供給することによって、水素を発生させる水素発生装置において、前記反応容器の底部に、水素化マグネシウム装填用の高さが異なる複数の筒部が立設してあり、更に、最も高い前記筒部の上方から、該筒部に装填された水素化マグネシウムに水又は酸性溶液を滴下する滴下部を備えることを特徴とする。   A hydrogen generator according to the present invention includes a reaction vessel in which a hydrolysis reaction of magnesium hydride is performed, and in the hydrogen generator for generating hydrogen by supplying water or an acidic solution to the reaction vessel, the reaction vessel A plurality of cylindrical portions having different heights for loading magnesium hydride are erected at the bottom of the cylindrical portion. Further, from the upper side of the highest cylindrical portion, the magnesium hydride charged in the cylindrical portion is water or acidic. It is provided with the dripping part which dripping a solution.

本発明にあっては、高さが高い筒部に水又は酸性溶液が滴下されるため、最も高い筒部に装填された水素化マグネシウムから加水分解反応が開始され、水素を発生する。水又は酸性溶液の滴下が続くと、最も高い筒部から水又は酸性溶液が溢れて、次に高さが高い筒部へ水又は酸性溶液が供給され、水素を発生する。このようにして、高さが高い筒部から低い筒部へと順に水又は酸性溶液が供給され、順々に水素化マグネシウムの加水分解反応が開始される。従って、単位時間当たりの水素発生量の変動を抑えて、水素を安定的に生成することが可能になる。   In this invention, since water or an acidic solution is dripped at the cylinder part with high height, a hydrolysis reaction is started from the magnesium hydride with which the highest cylinder part was loaded, and hydrogen is generated. If dripping of water or an acidic solution continues, water or an acidic solution will overflow from the highest cylinder part, and water or an acidic solution will be supplied to the cylinder part with the next highest height, and hydrogen will be generated. In this manner, water or an acidic solution is sequentially supplied from the cylinder portion having a high height to the cylinder portion having a low height, and the hydrolysis reaction of magnesium hydride is sequentially started. Accordingly, it is possible to stably generate hydrogen while suppressing fluctuations in the amount of hydrogen generated per unit time.

本発明に係る水素発生装置は、前記複数の筒部は同軸的に設けられており、中心部の筒部は、外側の筒部よりも高さが高いことを特徴とする。   In the hydrogen generator according to the present invention, the plurality of cylindrical portions are provided coaxially, and the central cylindrical portion is higher in height than the outer cylindrical portion.

本発明にあっては、複数の筒部の形状が筒状であり、かつ同軸的に配されているため、単位時間当たりの水素発生量の変動を抑え易く、安定的に水素を発生させることが可能である。   In the present invention, since the plurality of cylindrical portions are cylindrical and coaxially arranged, it is easy to suppress fluctuations in the amount of hydrogen generated per unit time and stably generate hydrogen. Is possible.

本発明に係る水素発生装置は、前記筒部は同心円状に設けられた円筒状であり、中心部の筒部は、外側の筒部よりも高さが高いことを特徴とする。   The hydrogen generating apparatus according to the present invention is characterized in that the cylindrical portion is a concentric cylindrical shape, and the central cylindrical portion is higher than the outer cylindrical portion.

本発明にあっては、複数の筒部の形状が円筒状であり、かつ同心円状に配されているため、より効果的に単位時間当たりの水素発生量の変動を抑え、安定的に水素を発生させることが可能である。   In the present invention, since the plurality of cylindrical portions are cylindrical and concentrically arranged, the fluctuation of the amount of hydrogen generated per unit time can be more effectively suppressed and hydrogen can be stably supplied. Can be generated.

本発明に係る水素発生装置は、前記筒部には、水素化マグネシウムと共にクエン酸粉末が装填されていることを特徴とする。   The hydrogen generator according to the present invention is characterized in that the cylindrical portion is loaded with citric acid powder together with magnesium hydride.

本発明にあっては、水素化マグネシウムと共にクエン酸粉末が装填されているため、効果的に水素化マグネシウムを加水分解し、水素を発生させることが可能である。   In the present invention, since citric acid powder is loaded together with magnesium hydride, magnesium hydride can be effectively hydrolyzed to generate hydrogen.

本発明に係る水素発生装置は、前記筒部には、水素化マグネシウムと共にクエン酸粉末が装填されており、水素化マグネシウムに対するクエン酸粉末の量は、外側の筒部に比べて、中心部の筒部の方が多いことを特徴とする。   In the hydrogen generator according to the present invention, the cylindrical portion is loaded with citric acid powder together with magnesium hydride, and the amount of the citric acid powder relative to magnesium hydride is smaller than that of the outer cylindrical portion. It is characterized in that there are more cylinder parts.

本発明にあっては、水又は酸性溶液の滴下が開始される筒部に装填されたクエン酸粉末の量が多いため、水素の発生量を、速やかに所定の必要量に到達させることができる。   In the present invention, since the amount of citric acid powder loaded in the cylindrical portion where the dropping of water or acidic solution is started is large, the amount of hydrogen generated can be quickly reached the predetermined required amount. .

本発明に係る水素発生装置は、前記水素化マグネシウムは、粉末状及び/又は固形状であることを特徴とする。   The hydrogen generator according to the present invention is characterized in that the magnesium hydride is in a powder form and / or a solid form.

本発明にあっては、筒部に、粉末状又は固形状の水素化マグネシウムが装填されている。また、筒部に粉末状及び固形状の水素化マグネシウムが装填されている。粉末状及び/又は固形状の水素化マグネシウムを組み合わせることによって、単位時間当たりの水素発生量の変動を抑えることが可能である。   In the present invention, the cylindrical portion is charged with powdered or solid magnesium hydride. Further, powdered and solid magnesium hydride is loaded in the cylindrical portion. By combining powdered and / or solid magnesium hydride, it is possible to suppress fluctuations in the amount of hydrogen generated per unit time.

本発明に係る水素発生装置は、中心部の筒部には、粉末状及び固形状の水素化マグネシウムが装填され、外側の筒部には固形状の水素化マグネシウムが装填されていることを特徴とする。   The hydrogen generator according to the present invention is characterized in that powder and solid magnesium hydride are loaded in the central tube portion, and solid magnesium hydride is loaded in the outer tube portion. And

本発明にあっては、水又は酸性溶液の滴下が開始される筒部に粉末状の水素化マグネシウムが含まれているため、水素の発生量を、速やかに所定の必要量に到達させることができる。また、水又は酸性溶液の滴下が開始される筒部には、粉末状のみならず、固形状の水素化マグネシウムも装填されているため、水素の発生量が急増することを抑えることが可能である。   In the present invention, since the powdered magnesium hydride is contained in the cylindrical portion where the dropping of water or acidic solution is started, the amount of hydrogen generated can be quickly reached the predetermined required amount. it can. In addition, since the cylindrical portion where the dropping of water or acidic solution is started is loaded with not only powder but also solid magnesium hydride, it is possible to suppress a rapid increase in the amount of hydrogen generated. is there.

本発明によれば、単位時間当たりの水素発生量の変動を抑えて、水素を安定的に生成することができる。   According to the present invention, hydrogen can be stably generated while suppressing fluctuations in the amount of hydrogen generated per unit time.

本実施の形態に係る水素発生装置の一構成例を示した側断面図である。It is the sectional side view which showed the example of 1 structure of the hydrogen generator which concerns on this Embodiment. 本実施の形態に係る水素発生装置の平面図である。It is a top view of the hydrogen generator concerning this embodiment. 本実施の形態に係る水素発生装置のIII−III線断面図である。It is the III-III sectional view taken on the line of the hydrogen generator which concerns on this Embodiment. 本実施の形態に係る水素発生装置の要部を示した斜視図である。It is the perspective view which showed the principal part of the hydrogen generator which concerns on this Embodiment. 液体物質の供給開始時における水素発生装置の側断面図である。It is a sectional side view of the hydrogen generator at the time of the supply start of a liquid substance. 水素発生装置の作用を示した説明図である。It is explanatory drawing which showed the effect | action of the hydrogen generator. 変形例1に係る水素発生装置の要部を示した側断面図である。It is the sectional side view which showed the principal part of the hydrogen generator which concerns on the modification 1. 変形例2に係る水素発生装置の要部を示した平面図である。FIG. 10 is a plan view showing a main part of a hydrogen generator according to Modification 2. 変形例3に係る水素発生装置の一構成例を示した側断面図である。FIG. 10 is a side sectional view showing a configuration example of a hydrogen generator according to Modification 3.

以下、本発明をその実施の形態を示す図面に基づいて詳述する。
図1は、本実施の形態に係る水素発生装置の一構成例を示した側断面図、図2は、本実施の形態に係る水素発生装置の平面図、図3は、図1のIII−III線断面図、図4は、本実施の形態に係る水素発生装置の要部を示した斜視図である。本発明の実施の形態に係る水素発生装置は、水素化マグネシウム10a,10b及びクエン酸粉末10cを収容すると共に、水素化マグネシウム10a,10bの加水分解反応が行われる反応容器1と、反応容器1の内側に配されており、クエン酸水溶液、水等の液体物質20を収容する液体物質収容室2と、反応容器1の底部11に配された水素化マグネシウム装填用の装填部3と、凝縮部材4と、蓋部5と、取付部6と、クランプ継手7と、断熱部材8と、水素化マグネシウム10a,10b及び液体物質20の接触によって発生した水素を外部へ送出する水素送出部9とを有する。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
FIG. 1 is a side sectional view showing a configuration example of a hydrogen generator according to the present embodiment, FIG. 2 is a plan view of the hydrogen generator according to the present embodiment, and FIG. FIG. 4 is a perspective view showing a main part of the hydrogen generator according to the present embodiment. The hydrogen generator according to the embodiment of the present invention contains magnesium hydride 10a, 10b and citric acid powder 10c, and reaction vessel 1 in which hydrolysis reaction of magnesium hydride 10a, 10b is performed, and reaction vessel 1 A liquid substance storage chamber 2 for storing a liquid substance 20 such as a citric acid aqueous solution and water, a loading section 3 for loading magnesium hydride disposed at the bottom 11 of the reaction vessel 1, and condensation A member 4, a lid portion 5, a mounting portion 6, a clamp joint 7, a heat insulating member 8, and a hydrogen delivery portion 9 that sends out hydrogen generated by the contact of the magnesium hydrides 10 a and 10 b and the liquid substance 20 to the outside. Have

反応容器1は、円板状の底部11と、底部11の周縁部に設けられた周壁12とを有し、有底円筒状をなしている。反応容器1は、押し出し成型されたステンレス製、又はアルミニウム製である。底部11には、水素化マグネシウム10a,10b及びクエン酸粉末10cが装填される装填部3が設けられている。装填部3は、底部に立設された高さが異なる第1乃至第3筒部31,32,33を備える。第1乃至第3筒部31,32,33は同軸的に設けられている。中央部に設けられた第1筒部31が最も高さが高く、第1筒部31の外側に設けられた第2筒部32は第1筒部31よりも高さが低くなるように構成されている。同様にして、第2筒部32の外側に設けられた第3筒部33は、第2筒部32よりも高さが低くなるように構成されている。
なお、ここでは、第1乃至第3筒部31,32,33を円筒状として説明したが、円筒状に限定されるものでは無く、角柱状であっても良い。また、上述の説明では、同心円の第1乃至第3筒部31,32,33を3段としているが、水素生成容量によって段数、筒の数を4段以上に増やしても良い。また、各々の筒部に装填するMgH2 の粒度、クエン酸の配合は水素生成量によって決定する。
The reaction vessel 1 has a disk-like bottom portion 11 and a peripheral wall 12 provided at the peripheral edge of the bottom portion 11 and has a bottomed cylindrical shape. The reaction vessel 1 is made of extruded stainless steel or aluminum. The bottom portion 11 is provided with a loading portion 3 into which magnesium hydrides 10a and 10b and citric acid powder 10c are loaded. The loading unit 3 includes first to third cylindrical portions 31, 32, and 33 that are erected on the bottom and have different heights. The 1st thru | or 3rd cylinder parts 31, 32, and 33 are provided coaxially. 1st cylinder part 31 provided in the center part is the highest, and the 2nd cylinder part 32 provided in the outer side of the 1st cylinder part 31 is comprised so that height may become lower than the 1st cylinder part 31. Has been. Similarly, the third cylinder part 33 provided outside the second cylinder part 32 is configured to have a height lower than that of the second cylinder part 32.
Here, the first to third cylindrical portions 31, 32, and 33 have been described as being cylindrical, but are not limited to a cylindrical shape, and may be a prismatic shape. In the above description, the concentric first to third cylindrical portions 31, 32, and 33 have three stages, but the number of stages and the number of cylinders may be increased to four or more depending on the hydrogen generation capacity. Further, the particle size of MgH 2 to be loaded in each cylinder part and the blending of citric acid are determined by the amount of hydrogen produced.

第1乃至第3筒部31,32,33には、水素化マグネシウム10a及びクエン酸粉末10cが装填される。液体物質収容室2から液体物質が最初に供給される第1筒部31には、迅速に水素を発生させるべく、更に粉末状の水素化マグネシウム10bを装填すると良い。もちろん、必要に応じて第2筒部32又は第3筒部33にも粉末状の水素化マグネシウムを装填しても良い。また、安定的に水素を発生させるべく、第1乃至第3筒部31,32,33のいずれにも固形状の水素化マグネシウム10aを装填すると良い。
水素化マグネシウムに対するクエン酸粉末の量は、第2及び第3筒部32,33に比べて、中心部の第1筒部31の方が多くなるようにすると良い。同様に、水素化マグネシウムに対するクエン酸粉末の量は、第3筒部33に比べて、中心側の第2筒部32の方が多くなるようにすると良い。
なお、第1乃至第3筒部31,32,33に装填すべき水素化マグネシウム10a,10b及びクエン酸粉末10cの量、割合、水素化マグネシウム10a,10bの形状は、必要な水素発生量に応じて適宜決定される。
The first to third cylinder portions 31, 32, 33 are loaded with magnesium hydride 10a and citric acid powder 10c. The first cylindrical portion 31 to which liquid material is first supplied from the liquid material storage chamber 2 may be further loaded with powdered magnesium hydride 10b in order to generate hydrogen quickly. Of course, the powdered magnesium hydride may be loaded into the second cylinder part 32 or the third cylinder part 33 as necessary. Moreover, in order to generate hydrogen stably, solid magnesium hydride 10a may be loaded in any of the first to third cylindrical portions 31, 32, and 33.
The amount of citric acid powder with respect to magnesium hydride is preferably larger in the first cylindrical portion 31 in the center than in the second and third cylindrical portions 32 and 33. Similarly, the amount of citric acid powder with respect to magnesium hydride is preferably larger in the second cylindrical portion 32 on the center side than in the third cylindrical portion 33.
The amount and ratio of magnesium hydride 10a, 10b and citric acid powder 10c to be loaded in the first to third cylindrical portions 31, 32, 33, and the shape of the magnesium hydride 10a, 10b are set to the required hydrogen generation amount. It is determined accordingly.

液体物質収容室2は、円板状の底部21と、底部21の周縁部に設けられた周壁22とを有し、有底円筒状をなしている。液体物質収容室2は、反応容器1よりも小寸法であり、反応容器1、液体物質収容室2の各底部11,21及び周壁12,22が互いに離隔するように配されている。底部21の略中央部には、液体物質20を反応容器1へ滴下するための滴下部23が設けられている。滴下部23は、一定流量の液体物質20を滴下できるように構成されている。滴下部23の下方には第1筒部31が位置している。
また、液体物質収容室2は、反応容器1に液体物質収容室2及び蓋部5を取り付けるための図示しない雄ねじ部分を上端部の外周の一部に有している。
The liquid substance storage chamber 2 has a disk-shaped bottom portion 21 and a peripheral wall 22 provided at the peripheral edge portion of the bottom portion 21, and has a bottomed cylindrical shape. The liquid substance storage chamber 2 has a smaller size than the reaction container 1, and the reaction container 1, the bottom portions 11 and 21 of the liquid substance storage chamber 2, and the peripheral walls 12 and 22 are arranged so as to be separated from each other. A dripping portion 23 for dripping the liquid substance 20 into the reaction vessel 1 is provided at a substantially central portion of the bottom portion 21. The dropping unit 23 is configured to drop the liquid material 20 at a constant flow rate. A first cylinder portion 31 is located below the dripping portion 23.
Further, the liquid substance storage chamber 2 has a male screw portion (not shown) for attaching the liquid substance storage chamber 2 and the lid 5 to the reaction container 1 at a part of the outer periphery of the upper end portion.

凝縮部材4は、反応容器1の周壁12と、液体物質収容室2の周壁22との間に配されており、水素と共に水素送出部9側へ上昇する液体物質20の蒸気を凝縮させる。凝縮部材4は、金属メッシュ、セラミック等で構成されている。   The condensing member 4 is disposed between the peripheral wall 12 of the reaction vessel 1 and the peripheral wall 22 of the liquid material storage chamber 2, and condenses the vapor of the liquid material 20 rising to the hydrogen delivery unit 9 side together with hydrogen. The condensing member 4 is made of a metal mesh, ceramic, or the like.

蓋部5は、全体として円板状をなしており、円板部51と、円板部51の外周側に配された円環部52とを有し、円板部51は円環部52にボルト53,53…にて締結されている。円板部51の略中央部には、液体物質供給路開閉機構54が設けられている。液体物質供給路開閉機構54は、円板状のハンドル54aと、ハンドル54aに設けられた軸部54cと、軸部54cのハンドル54a側に形成された送りねじ54bと、軸部54cの先端側に設けられた弁体54dと、軸部54cのハンドル54a側の適宜箇所に設けられたストッパ部54eとを有する。また、蓋部5には、液体物質20を液体物質収容室2へ供給するための給水口55と、水素発生反応を開始させる際、反応容器1及び液体物質収容室2を連通させる連通手段56と、液体物質収容室2内のガスを抜く安全弁57、57と、図2に示すように、液体物質収容室2内部の圧力を監視するための圧力計58と、水素を送出する水素送出部9が設けられている。水素送出部9には開閉弁91が設けられている。また、連通手段56は、蓋部5の外周側、つまり反応容器1に連通する開閉弁付きの外側連通口56aと、蓋部5の内周側、つまり液体物質収容室2に連通する内側連通口56cと、外側連通口56a及び内側連通口56cを連結する連通路56bとを有する。なお、液体物質収容室2は、蓋部5に固定されている。   The lid portion 5 has a disc shape as a whole, and includes a disc portion 51 and an annular portion 52 disposed on the outer peripheral side of the disc portion 51, and the disc portion 51 is an annular portion 52. Are fastened with bolts 53, 53. A liquid substance supply path opening / closing mechanism 54 is provided at a substantially central portion of the disc portion 51. The liquid substance supply path opening / closing mechanism 54 includes a disc-shaped handle 54a, a shaft portion 54c provided on the handle 54a, a feed screw 54b formed on the handle 54a side of the shaft portion 54c, and a distal end side of the shaft portion 54c. And a stopper 54e provided at an appropriate location on the handle 54a side of the shaft 54c. In addition, the lid 5 has a water supply port 55 for supplying the liquid substance 20 to the liquid substance storage chamber 2 and communication means 56 for communicating the reaction container 1 and the liquid substance storage chamber 2 when starting the hydrogen generation reaction. And safety valves 57, 57 for extracting gas from the liquid substance storage chamber 2, a pressure gauge 58 for monitoring the pressure inside the liquid substance storage chamber 2, and a hydrogen delivery unit for sending hydrogen as shown in FIG. 9 is provided. The hydrogen delivery unit 9 is provided with an on-off valve 91. The communication means 56 includes an outer communication port 56 a with an on-off valve that communicates with the outer peripheral side of the lid 5, that is, the reaction vessel 1, and an inner communication that communicates with the inner peripheral side of the lid 5, that is, the liquid substance storage chamber 2. It has a port 56c and a communication path 56b that connects the outer communication port 56a and the inner communication port 56c. The liquid substance storage chamber 2 is fixed to the lid 5.

取付部6は、反応容器1の上端部に形成されており、液体物質収容室2及び蓋部5を反応容器1に着脱可能に取り付けるための図示しない雌ねじ、つまり、液体物質収容室2の雄ねじにねじ止め可能な雌ねじを一部に有する。また、取付部6と、蓋部5との間をシールするリング状のシール部材61が取付部6に設けられている。
断熱部材8は、筒状をなし、反応容器1を構成する周壁12の外周面を覆っている。
また、水素発生装置は、蓋部5を反応容器1に固定するためのクランプ継手7を有する。
The attachment portion 6 is formed at the upper end portion of the reaction vessel 1, and a female screw (not shown) for detachably attaching the liquid substance storage chamber 2 and the lid portion 5 to the reaction vessel 1, that is, a male screw of the liquid substance storage chamber 2. A female screw that can be screwed on is partly provided. A ring-shaped seal member 61 that seals between the attachment portion 6 and the lid portion 5 is provided on the attachment portion 6.
The heat insulating member 8 has a cylindrical shape and covers the outer peripheral surface of the peripheral wall 12 constituting the reaction vessel 1.
The hydrogen generator has a clamp joint 7 for fixing the lid 5 to the reaction vessel 1.

なお、上述の説明では、蓋部5及び取付部6、蓋部5及び周壁12、円板部51及び円環部52を別体で構成した例を説明したが、各部を一体成形しても良い。水素発生装置を分解不能に一体成形した場合においては、所定量の水素を発生させた後の水素発生装置はリサイクル処理される。   In the above description, the example in which the lid portion 5 and the attachment portion 6, the lid portion 5 and the peripheral wall 12, the disc portion 51, and the annular portion 52 are configured separately has been described. good. When the hydrogen generator is integrally formed so as not to be decomposed, the hydrogen generator after a predetermined amount of hydrogen is generated is recycled.

以下、このように構成された水素発生装置の動作について説明する。
図5は、液体物質20の供給開始時における水素発生装置の側断面図、図6は、水素発生装置の作用を示した説明図である。図1に示した状態で連通手段56を連通させるため、液体物質供給路開閉機構54のハンドル54aを回すことによって、滴下部23を開放させると、図6Aに示すように、液体物質収容室2に収容された液体物質20が第1筒部31に滴下される。そして、開閉弁91を開状態にする。
Hereinafter, the operation of the hydrogen generator configured as described above will be described.
FIG. 5 is a side sectional view of the hydrogen generator at the start of supply of the liquid substance 20, and FIG. 6 is an explanatory view showing the operation of the hydrogen generator. In order to connect the communication means 56 in the state shown in FIG. 1, when the drip portion 23 is opened by turning the handle 54a of the liquid substance supply path opening / closing mechanism 54, as shown in FIG. The liquid substance 20 accommodated in the tank is dropped on the first tube portion 31. Then, the on-off valve 91 is opened.

図6Aに示すように、液体物質収容室2に収容された液体物質20が、第1筒部31に供給された場合、水素化マグネシウム10a,10b及び液体物質20の接触によって、反応容器1で水素が発生する。水素化マグネシウム10a,10bと液体物質20との反応は、下記化学式(1)で表される。
MgH2+2H2 O→Mg(OH)2 +2H2 …(1)
発生した水素は、反応容器1の周壁12と、液体物質収容室2の周壁22との間を上昇し、水素送出部9を通じて外部へ送出される。また、水素発生反応の発熱反応によって、水素と共に液体物質20の蒸気が発生するが、反応容器1で発生した蒸気は、水素と同様に反応容器1の周壁12と、液体物質収容室2の周壁22との間を上昇する。そして、各周壁12,22の間には凝縮部材4が備えられているため、前記蒸気は外部へ送出されることなく凝縮し、凝縮した水は反応容器1へ回収される。この凝縮した液体物質を回収することによって、水素発生反応で得られた熱も回収される。また、液体物質20の蒸気が除去された水素が水素送出部9から送出される。
As shown in FIG. 6A, when the liquid substance 20 accommodated in the liquid substance accommodation chamber 2 is supplied to the first cylinder portion 31, the contact between the magnesium hydrides 10 a and 10 b and the liquid substance 20 causes Hydrogen is generated. The reaction between the magnesium hydrides 10a and 10b and the liquid substance 20 is represented by the following chemical formula (1).
MgH 2 + 2H 2 O → Mg (OH) 2 + 2H 2 (1)
The generated hydrogen rises between the peripheral wall 12 of the reaction vessel 1 and the peripheral wall 22 of the liquid substance storage chamber 2 and is sent to the outside through the hydrogen delivery unit 9. Further, the vapor of the liquid material 20 is generated together with hydrogen due to the exothermic reaction of the hydrogen generation reaction. The vapor generated in the reaction vessel 1 is similar to the hydrogen in the peripheral wall 12 of the reaction vessel 1 and the peripheral wall of the liquid material storage chamber 2. Ascend between 22. Since the condensing member 4 is provided between the peripheral walls 12 and 22, the steam is condensed without being sent to the outside, and the condensed water is recovered into the reaction vessel 1. By recovering the condensed liquid material, the heat obtained by the hydrogen generation reaction is also recovered. Further, hydrogen from which the vapor of the liquid substance 20 has been removed is sent out from the hydrogen delivery unit 9.

更に、液体物質20の滴下が続くと、図6Bに示すように第1筒部31から液体物質20が溢れ出し、該液体物質20が第1筒部31の外側に配された第2筒部32に供給され、第2筒部32においても水素の発生が開始される。つまり、第1筒部31における水素の発生量が低下し始める直前に、第2筒部32への液体物質20の供給が始まるように構成する。そうすると、第1筒部31における水素供給を引き継ぐようにして、第2筒部32から水素が発生し、単位時間当たりの水素発生量の変動を抑えながら長時間にわたって安定的に水素を発生させることができる。   Further, when the dripping of the liquid substance 20 continues, as shown in FIG. 6B, the liquid substance 20 overflows from the first cylinder part 31, and the second cylinder part in which the liquid substance 20 is arranged outside the first cylinder part 31. The hydrogen generation is started also in the second cylindrical portion 32. That is, the configuration is such that the supply of the liquid substance 20 to the second cylinder portion 32 starts immediately before the amount of hydrogen generated in the first cylinder portion 31 starts to decrease. Then, hydrogen is generated from the second cylinder part 32 so as to take over the hydrogen supply in the first cylinder part 31, and hydrogen is stably generated over a long period of time while suppressing fluctuations in the amount of hydrogen generation per unit time. Can do.

同様にして、更に液体物質20の滴下が続くと、図6Cに示すように、第2筒部32から液体物質20があふれ出し、該液体物質20が第2筒部32の外側に配された第3筒部33に供給され、第3筒部33においても水素の発生が開始される。ここでも、第2筒部32における水素の発生量が低下し始める直前に、第3筒部33への液体物質20の供給が始まるように構成する。そうすると、更に長時間にわたって安定的に水素を発生させることができる。   Similarly, when the dripping of the liquid substance 20 continues, as shown in FIG. 6C, the liquid substance 20 overflows from the second cylinder part 32, and the liquid substance 20 is arranged outside the second cylinder part 32. Hydrogen is generated in the third cylinder portion 33 and is supplied to the third cylinder portion 33. Also here, the supply of the liquid substance 20 to the third cylinder portion 33 is started immediately before the amount of hydrogen generated in the second cylinder portion 32 starts to decrease. Then, hydrogen can be generated stably over a longer time.

このように構成された水素発生装置においては、長時間にわたって、単位時間当たりの水素発生量の変動を抑えて、水素を安定的に生成することができる。   In the hydrogen generator configured in this manner, hydrogen can be stably generated over a long period of time while suppressing fluctuations in the amount of hydrogen generated per unit time.

特に、実施の形態においては、第1乃至第3筒部31,32,33の形状が円筒状であり、かつ同心円状に配されているため、単位時間当たりの水素発生量の変動を抑え易く、安定的に水素を発生させることができる。   In particular, in the embodiment, since the first to third cylindrical portions 31, 32, and 33 are cylindrical and concentrically arranged, it is easy to suppress fluctuations in the amount of hydrogen generated per unit time. , Can stably generate hydrogen.

(変形例1)
実施の形態では、複数の筒部を同心円状に配した例を説明したが、複数の筒部の配置方法はこれに限定されるものでは無い。変形例1に係る水素発生装置は複数の筒部の構成のみが実施の形態と異なるため、以下では主に上記相異点について説明する。
(Modification 1)
In the embodiment, the example in which the plurality of cylindrical portions are arranged concentrically has been described, but the arrangement method of the plurality of cylindrical portions is not limited to this. Since the hydrogen generator according to Modification 1 is different from the embodiment only in the configuration of the plurality of cylindrical portions, the above differences will be mainly described below.

図7は、変形例1に係る水素発生装置の要部を示した側断面図である。変形例1に係る水素発生装置に係る装填部103は、反応容器の立設された高さが異なる複数の第1乃至第4筒部131,132,133,134を備える。第1乃至第4筒部131,132,133,134は、高さが順々に低くなるように隣接し、第1乃至第4筒部131,132,133,134には、各筒部に供給された液体物質20を隣の筒部へ流すための流路131a,132a,133aが設けられている。第1乃至第4筒部131,132,133,134は、直線状に配列させても良いし、螺旋状に配列させても良い。   FIG. 7 is a side cross-sectional view showing a main part of the hydrogen generator according to the first modification. The loading unit 103 according to the hydrogen generator according to the first modification includes a plurality of first to fourth cylindrical portions 131, 132, 133, and 134 having different reaction vessel heights. The 1st thru | or 4th cylinder parts 131,132,133,134 are adjacent so that height may become low in order, and the 1st thru | or 4th cylinder parts 131,132,133,134 are in each cylinder part. Channels 131a, 132a, and 133a are provided for flowing the supplied liquid substance 20 to the adjacent cylinder portion. The 1st thru | or 4th cylinder parts 131,132,133,134 may be arranged linearly, and may be arranged helically.

このように構成された水素発生装置の作用を説明する。まず、実施の形態1と同様、最も高い第1筒部131に液体物質20が滴下され、水素の発生が開始される。一定量の液体物質20が供給されると、第1筒部131から次に高さが低い第2筒部132へ、流路131aを通じて、液体物質20が供給される。そして、第1筒部131に引き続き、第2筒部132で水素が発生する。以下同様にして、第3筒部133、第4筒部134で、順々に水素の発生が開始される。   The operation of the hydrogen generator configured as described above will be described. First, as in the first embodiment, the liquid substance 20 is dropped on the highest first cylinder 131, and generation of hydrogen is started. When a certain amount of the liquid substance 20 is supplied, the liquid substance 20 is supplied from the first cylinder part 131 to the second cylinder part 132 having the next lowest height through the channel 131a. Then, hydrogen is generated in the second cylindrical portion 132 following the first cylindrical portion 131. In the same manner, the generation of hydrogen is sequentially started in the third cylinder portion 133 and the fourth cylinder portion 134.

変形例1にあっても、実施の形態と同様にして、長時間にわたって、単位時間当たりの水素発生量の変動を抑えて、水素を安定的に生成することができる。   Even in the first modification, similarly to the embodiment, hydrogen can be stably generated over a long period of time while suppressing fluctuations in the amount of hydrogen generated per unit time.

(変形例2)
図8は、変形例2に係る水素発生装置の要部を示した平面図である。変形例2に係る水素発生装置に係る装填部203は、反応容器の立設された高さが異なる複数の第1乃至第4筒部231,232,233,234を備える。第1筒部231を中心にして、2つの第2筒部232,232が略対称的に配されており、第2筒部232,232から時計回りに第3筒部及び第4筒部233,223,234,234が略対称的に、時計回りに並び配されている。第1乃至第4筒部231,232,233,234は、高さが順々に低くなるように隣接し、第1乃至第4筒部231,232,233,234には、各筒部に供給された液体物質20を隣の筒部へ流すための流路が設けられている。
(Modification 2)
FIG. 8 is a plan view showing a main part of the hydrogen generator according to the second modification. The loading unit 203 related to the hydrogen generator according to Modification 2 includes a plurality of first to fourth cylindrical portions 231, 232, 233, and 234 having different heights at which the reaction vessel is erected. Two second cylindrical portions 232 and 232 are arranged substantially symmetrically with the first cylindrical portion 231 as the center, and the third cylindrical portion and the fourth cylindrical portion 233 are clockwise from the second cylindrical portions 232 and 232. , 223, 234, 234 are arranged substantially symmetrically in a clockwise direction. The first to fourth tube portions 231, 232, 233, and 234 are adjacent to each other so that the height thereof decreases in order, and the first to fourth tube portions 231, 232, 233, and 234 are adjacent to each tube portion. A flow path for flowing the supplied liquid substance 20 to the adjacent cylinder part is provided.

このように構成された水素発生装置の作用を説明する。まず、実施の形態1と同様、最も高い第1筒部231に液体物質20が滴下され、水素の発生が開始される。一定量の液体物質20が供給されると、第1筒部231から次に高さが低い第2筒部232,232へ、流路を通じて、液体物質20が供給される。そして、第1筒部231に引き続き、第2筒部232,232で水素が発生する。以下同様にして、第3筒部233,233、第4筒部234,234で、順々に水素の発生が開始される。   The operation of the hydrogen generator configured as described above will be described. First, as in the first embodiment, the liquid substance 20 is dropped on the highest first cylindrical portion 231 and generation of hydrogen is started. When a certain amount of the liquid substance 20 is supplied, the liquid substance 20 is supplied from the first cylinder part 231 to the second cylinder parts 232 and 232 having the next lowest height through the flow path. Then, hydrogen is generated in the second cylindrical portions 232 and 232 following the first cylindrical portion 231. In the same manner, generation of hydrogen is sequentially started in the third cylinder portions 233 and 233 and the fourth cylinder portions 234 and 234 in order.

変形例2にあっても、実施の形態と同様にして、長時間にわたって、単位時間当たりの水素発生量の変動を抑えて、水素を安定的に生成することができる。   Even in the second modification, similarly to the embodiment, hydrogen can be stably generated over a long period of time while suppressing fluctuations in the amount of hydrogen generated per unit time.

(変形例3)
変形例3に係る水素発生装置は、基本的には実施の形態と同様の構成であり、蓋部、取付部、クランプ継手及び液体物質収容室の構成のみが異なるため、以下では主に上記相異点について説明する。
(Modification 3)
The hydrogen generator according to Modification 3 basically has the same configuration as that of the embodiment, and only the configuration of the lid, the attachment, the clamp joint, and the liquid substance storage chamber is different. The differences will be described.

図9は、変形例3に係る水素発生装置の一構成例を示した側断面図である。変形例3に係る蓋部305は、実施の形態における蓋部305、取付部及びクランプ継手を一体とした円板状部材であり、反応容器1の開口部に固定され、該開口部を封止している。また、蓋部305には、給水口及び連通手段が設けられておらず、液体物質収容室302には予め液体物質20が封入されている。液体物質収容室302の上部には、気体が通流する連通孔302aが形成されている。連通孔302aは、例えば、液体物質収容室302の周面に等間隔に複数設けられている。液体物質供給路開閉機構54のハンドル54aが操作され、弁体54dが上方へ移動すると、液体物質20が滴下する。反応容器1内の気体は、連通孔302aを通じて液体物質収容室302へ通流するため、液体物質20の滴下によって液体物質収容室302が負圧になることは無く、液体物質20の滴下は継続される。連通孔302aの大きさは、水素発生装置を倒置しても、液体物質20の表面張力で連通孔302aを通過しないが、気体が通流できるような大きさが好ましい。なお、図示しない封止部材によって、連通孔302aを塞いでおき、使用時に、封止部材を除去するように構成しても良い。例えば、封止部材は、液体物質供給路開閉機構54によって移動するように構成すると良い。具体的には、封止部材は軸部54cに接続され、連通孔302aを封止する円環状の部材である。封止部材は、軸部54cの上下動に伴って上下し、弁体54dが滴下部23に当接した場合、封止部材によって連通孔302aが封止され、弁体54dが滴下部23から離隔した場合、連通孔302aが開放されるように構成すると良い。   FIG. 9 is a side sectional view showing a configuration example of the hydrogen generator according to Modification 3. The lid portion 305 according to the modification 3 is a disk-shaped member in which the lid portion 305, the attachment portion, and the clamp joint in the embodiment are integrated, and is fixed to the opening portion of the reaction vessel 1 to seal the opening portion. doing. Further, the lid 305 is not provided with a water supply port and communication means, and the liquid material 20 is sealed in the liquid material storage chamber 302 in advance. A communication hole 302 a through which gas flows is formed in the upper part of the liquid substance storage chamber 302. For example, a plurality of communication holes 302 a are provided at equal intervals on the peripheral surface of the liquid substance storage chamber 302. When the handle 54a of the liquid substance supply path opening / closing mechanism 54 is operated and the valve body 54d moves upward, the liquid substance 20 drops. Since the gas in the reaction vessel 1 flows to the liquid substance storage chamber 302 through the communication hole 302a, the liquid substance storage chamber 302 does not become negative due to the dripping of the liquid substance 20, and the dripping of the liquid substance 20 continues. Is done. The size of the communication hole 302a is preferably such that even if the hydrogen generator is inverted, it does not pass through the communication hole 302a due to the surface tension of the liquid substance 20, but gas can flow. Note that the communication hole 302a may be closed by a sealing member (not shown), and the sealing member may be removed during use. For example, the sealing member may be configured to move by the liquid substance supply path opening / closing mechanism 54. Specifically, the sealing member is an annular member that is connected to the shaft portion 54c and seals the communication hole 302a. The sealing member moves up and down with the vertical movement of the shaft portion 54c, and when the valve body 54d comes into contact with the dropping portion 23, the communication hole 302a is sealed by the sealing member, and the valve body 54d is removed from the dropping portion 23. When separated, the communication hole 302a is preferably opened.

今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The embodiments disclosed herein are illustrative in all respects and should not be considered as restrictive. The scope of the present invention is defined not by the above-mentioned meaning but by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

1 反応容器
23 滴下部
31 第1筒部
32 第2筒部
33 第3筒部
DESCRIPTION OF SYMBOLS 1 Reaction container 23 Dripping part 31 1st cylinder part 32 2nd cylinder part 33 3rd cylinder part

Claims (7)

水素化マグネシウムの加水分解反応が行われる反応容器を備え、該反応容器へ水又は酸性溶液を供給することによって、水素を発生させる水素発生装置において、
前記反応容器の底部に、水素化マグネシウム装填用の高さが異なる複数の筒部が立設してあり、
更に、最も高い前記筒部の上方から、該筒部に装填された水素化マグネシウムに水又は酸性溶液を滴下する滴下部を備える
ことを特徴とする水素発生装置。
In a hydrogen generator that includes a reaction vessel in which a hydrolysis reaction of magnesium hydride is performed, and generates hydrogen by supplying water or an acidic solution to the reaction vessel.
A plurality of cylindrical portions with different heights for loading magnesium hydride are erected at the bottom of the reaction vessel,
The hydrogen generator further includes a dropping unit that drops water or an acidic solution onto the magnesium hydride charged in the cylindrical portion from above the highest cylindrical portion.
前記複数の筒部は同軸的に設けられており、
中心部の筒部は、外側の筒部よりも高さが高い
ことを特徴とする請求項1に記載の水素発生装置。
The plurality of cylindrical portions are provided coaxially,
The hydrogen generator according to claim 1, wherein the central cylindrical portion is higher than the outer cylindrical portion.
前記筒部は同心円状に設けられた円筒状であり、
中心部の筒部は、外側の筒部よりも高さが高い
ことを特徴とする請求項1又は請求項2に記載の水素発生装置。
The cylindrical portion is a cylindrical shape provided concentrically,
The hydrogen generator according to claim 1 or 2, wherein the central cylindrical portion has a height higher than that of the outer cylindrical portion.
前記筒部には、
水素化マグネシウムと共にクエン酸粉末が装填されている
ことを特徴とする請求項1乃至請求項3のいずれか一つに記載の水素発生装置。
In the cylinder part,
The hydrogen generator according to any one of claims 1 to 3, wherein citric acid powder is loaded together with magnesium hydride.
前記筒部には、
水素化マグネシウムと共にクエン酸粉末が装填されており、
水素化マグネシウムに対するクエン酸粉末の量は、外側の筒部に比べて、中心部の筒部の方が多い
ことを特徴とする請求項2又は請求項3に記載の水素発生装置。
In the cylinder part,
Citric acid powder is loaded with magnesium hydride,
The amount of citric acid powder with respect to magnesium hydride is larger in the central cylindrical portion than in the outer cylindrical portion. The hydrogen generator according to claim 2 or 3, wherein the central cylindrical portion is larger.
前記水素化マグネシウムは、
粉末状及び/又は固形状である
ことを特徴とする請求項1乃至請求項5のいずれか一つに記載の水素発生装置。
The magnesium hydride is
It is a powder form and / or solid form. The hydrogen generator as described in any one of Claim 1 thru | or 5 characterized by the above-mentioned.
中心部の筒部には、粉末状及び固形状の水素化マグネシウムが装填され、外側の筒部には固形状の水素化マグネシウムが装填されている
ことを特徴とする請求項2、請求項3、請求項5又は請求項6に記載の水素発生装置。
The central cylindrical portion is filled with powdered and solid magnesium hydride, and the outer cylindrical portion is filled with solid magnesium hydride. The hydrogen generator according to claim 5 or 6.
JP2011282482A 2011-12-23 2011-12-23 Hydrogen generator Expired - Fee Related JP5874969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011282482A JP5874969B2 (en) 2011-12-23 2011-12-23 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282482A JP5874969B2 (en) 2011-12-23 2011-12-23 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2013133232A true JP2013133232A (en) 2013-07-08
JP5874969B2 JP5874969B2 (en) 2016-03-02

Family

ID=48910186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282482A Expired - Fee Related JP5874969B2 (en) 2011-12-23 2011-12-23 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP5874969B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238786A (en) * 1999-02-22 2000-09-05 Takashi Kitamura Vertical storage device for housing rod-like article
JP2006327871A (en) * 2005-05-26 2006-12-07 Nitto Denko Corp Apparatus and method for generating hydrogen
JP2008037683A (en) * 2006-08-03 2008-02-21 Aquafairy Kk Hydrogen-generating agent, and apparatus and method for generating hydrogen
JP2009001451A (en) * 2007-06-21 2009-01-08 Toyota Motor Corp Method and apparatus for generating hydrogen
WO2011097198A1 (en) * 2010-02-08 2011-08-11 Eveready Battery Company, Inc. Fuel cell cartridge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238786A (en) * 1999-02-22 2000-09-05 Takashi Kitamura Vertical storage device for housing rod-like article
JP2006327871A (en) * 2005-05-26 2006-12-07 Nitto Denko Corp Apparatus and method for generating hydrogen
JP2008037683A (en) * 2006-08-03 2008-02-21 Aquafairy Kk Hydrogen-generating agent, and apparatus and method for generating hydrogen
JP2009001451A (en) * 2007-06-21 2009-01-08 Toyota Motor Corp Method and apparatus for generating hydrogen
WO2011097198A1 (en) * 2010-02-08 2011-08-11 Eveready Battery Company, Inc. Fuel cell cartridge
JP2013518805A (en) * 2010-02-08 2013-05-23 エバレデイ バツテリ カンパニー インコーポレーテツド Fuel cell cartridge

Also Published As

Publication number Publication date
JP5874969B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP4792632B2 (en) Hydrogen gas generator
TWI480425B (en) Divided electrochemical cell and low cost high purity hydride gas production process
US20070077470A1 (en) Fuel cartridge for fuel cells
CN101973520B (en) Portable hydrogen generator based on aluminium hydrolysis reaction and control method
US9845239B2 (en) Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
SG174594A1 (en) Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
JP5986718B2 (en) Hydrogen water production apparatus and hydrogen water production method
JP2005213069A (en) Hydrogen supply/storage apparatus and hydrogen supply/storage system
JP5874969B2 (en) Hydrogen generator
JP5186824B2 (en) Hydrogen generator
GB2556127A (en) An apparatus for generating hydrogen
JP4653023B2 (en) Ozone concentrator
US20130195729A1 (en) On-Demand Gas Generator
JP4132776B2 (en) Gas generator
KR101584520B1 (en) Apparatus for generating hydrogen comprising water vapor reusing unit
EP2812105A1 (en) Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials
JP2014105152A (en) Method for producing 1,2 group hydroxide in the periodic table, production device therefor, and method fr using the same
JP2003346861A (en) Fuel cell system
EP3411328B1 (en) A gas generator and method of generating a gas
CN109415204B (en) Device for measuring the position of a moving object
JP2010001188A (en) Hydrogen production apparatus and fuel cell
WO2017094603A1 (en) Method for producing high-pressure hydrogen
RU2733200C1 (en) Compact system for stabilizing hydrogen pressure in portable power source based on chemical reactor
JP7359474B1 (en) Hydrogen production equipment and production method
JP2013112576A (en) Method and apparatus for generating hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160107

R150 Certificate of patent or registration of utility model

Ref document number: 5874969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees