JP2013132188A - Charger for electric vehicle and charging system for electric vehicle - Google Patents

Charger for electric vehicle and charging system for electric vehicle Download PDF

Info

Publication number
JP2013132188A
JP2013132188A JP2011282046A JP2011282046A JP2013132188A JP 2013132188 A JP2013132188 A JP 2013132188A JP 2011282046 A JP2011282046 A JP 2011282046A JP 2011282046 A JP2011282046 A JP 2011282046A JP 2013132188 A JP2013132188 A JP 2013132188A
Authority
JP
Japan
Prior art keywords
charging
electric vehicle
current
transmission
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011282046A
Other languages
Japanese (ja)
Other versions
JP5877370B2 (en
Inventor
Nobuhiko Toda
亘彦 戸田
Hisanori Fukuo
尚紀 福尾
Hironobu Hori
堀  宏展
Masashi Tanaka
昌史 田中
Akira Watanabe
旭 渡辺
Tsutomu Nagata
訓 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011282046A priority Critical patent/JP5877370B2/en
Priority to KR1020120146068A priority patent/KR101456907B1/en
Priority to CN201210562552.2A priority patent/CN103178592B/en
Publication of JP2013132188A publication Critical patent/JP2013132188A/en
Application granted granted Critical
Publication of JP5877370B2 publication Critical patent/JP5877370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/308Electric sensors
    • B60Y2400/3084Electric currents sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To resume charging normally after interruption of charging.SOLUTION: When resuming the charging of an electric car 200 after interruption, control means (communication control unit 14) controls transmission means (signal processing unit 10) to transmit a transmission signal after bringing the line-to-line voltage of a transmission line 151 equal to or below a predetermined voltage (e.g., zero volt). In other words, the charging ECU of the electric car 200 can be made to recognize removal of a charging connector 16 from an outlet, by bringing the line-to-line voltage of the transmission line 151 below a predetermined voltage. Consequently, when the signal processing unit 10 resumes oscillation of a pilot signal by applying the line-to-line voltage of the transmission line 151, the charging ECU determines that the charging connector 16 is plugged in again, and charging can be started with normal flow. As a result, charging can be resumed normally after interruption.

Description

本発明は、電気自動車などの電気車両に充電するための電気車両用充電装置及び電気車両用充電システムに関する。   The present invention relates to an electric vehicle charging device and an electric vehicle charging system for charging an electric vehicle such as an electric vehicle.

従来例として、例えば、特許文献1に記載されている充電装置がある。この充電装置は、バッテリ式フォークリフトを充電するためのものであり、ブレーカを介して工場内の設備電源に接続された電源コンセントに接続される電源コードを有している。また、充電装置には通信機能が搭載されており、設備電源に接続する他の充電装置との間で通信線を介して充電状態に関する情報を送受している。   As a conventional example, for example, there is a charging device described in Patent Document 1. This charging device is for charging a battery-type forklift, and has a power cord connected to a power outlet connected to a facility power source in a factory via a breaker. In addition, the charging device is equipped with a communication function, and transmits / receives information regarding the charging state to / from other charging devices connected to the facility power supply via a communication line.

この従来例では、設備電源に繋がれる充電装置全体で用いることが可能な電流値であるトータル電流制限値を任意の電流値に設定している。そして、この値を基に各充電装置で使用する電流は各々の充電装置が自動的に、他の充電装置の充電状況を確認したうえで設定するようになっている。このため、電気車両(バッテリ式フォークリフト)の充電時に充電装置で消費される電力が、充電装置に電源供給を行う設備電源の電源容量を考慮することなく、適切に設定される。故に、使用者は、設備電源の電源容量を増設することなく、また電源に繋がれる充電装置で使用中の電流量を気にすることなく、電気車両への充電を良好に行うことが可能となる。   In this conventional example, the total current limit value, which is a current value that can be used by the entire charging apparatus connected to the facility power supply, is set to an arbitrary current value. Based on this value, the current used by each charging device is automatically set by each charging device after confirming the charging status of the other charging devices. For this reason, the power consumed by the charging device when charging the electric vehicle (battery-type forklift) is appropriately set without considering the power capacity of the facility power source that supplies power to the charging device. Therefore, the user can charge the electric vehicle satisfactorily without increasing the power capacity of the equipment power source and without worrying about the amount of current in use with the charging device connected to the power source. Become.

特開2003−333706号公報JP 2003-333706 A

ところで、電気車両(電気自動車)を住宅で充電する場合、住宅で消費される電力(電流)の総量が主幹ブレーカ(あるいはリミッタ)の定格を超えないように電気自動車の充電電流を制限することが好ましい。例えば、主幹ブレーカに流れる電流を監視し、当該電流が主幹ブレーカの定格電流の90%を超えた場合、充電装置が電気自動車への充電電流の供給を停止することによって主幹ブレーカのトリップを防止することができる。このとき、充電装置が充電を停止する際に電気車両に対して充電が不可であることを通知する必要がある。   By the way, when charging an electric vehicle (electric vehicle) in a house, the charging current of the electric vehicle may be limited so that the total amount of electric power (current) consumed in the house does not exceed the rating of the main breaker (or limiter). preferable. For example, the current flowing through the main breaker is monitored, and when the current exceeds 90% of the rated current of the main breaker, the charging device prevents the main breaker from tripping by stopping the supply of charging current to the electric vehicle. be able to. At this time, when the charging device stops charging, it is necessary to notify the electric vehicle that charging cannot be performed.

ここで、米国自動車技術会(SAE)規格では、充電装置から電気自動車に対して1キロヘルツのパルス幅変調信号(コントロールパイロット信号と呼ばれる。)を伝送することで充電電流の上限値を通知し、オンデューティ比が97〜100%のときを充電不可と規定している。故に、パルス幅変調信号のオンデューティ比が100%に設定されることで充電装置から電気自動車へ充電不可の通知が可能である。しかしながら、充電装置が電気自動車の充電を再開する際、オンデューティ比を100%から97%未満の値に変更したときに電気自動車の側で異常が生じたと誤判断してしまう虞があった。   Here, in the American Automobile Engineers Association (SAE) standard, the charging device notifies the upper limit of the charging current by transmitting a pulse width modulation signal (called a control pilot signal) of 1 kHz to the electric vehicle, It is defined that charging is not possible when the on-duty ratio is 97-100%. Therefore, by setting the on-duty ratio of the pulse width modulation signal to 100%, the charging device can notify the electric vehicle that charging is impossible. However, when the charging device resumes charging the electric vehicle, there is a possibility that it is erroneously determined that an abnormality has occurred on the electric vehicle side when the on-duty ratio is changed from 100% to a value less than 97%.

本発明は、上記課題に鑑みて為されたものであり、充電を中断した後に正常に充電を再開可能にすることを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to enable normal charging to be resumed after charging is interrupted.

本発明の電気車両用充電装置は、充電ケーブルを介して電気車両に接続され、前記充電ケーブルに含まれる伝送線を介して伝送信号を伝送することにより、前記電気車両に対して少なくとも充電電流の上限値を通知する電気車両用充電装置において、前記伝送線の線間電圧をパルス幅変調した伝送信号を伝送する伝送手段と、前記上限値を含む種々の情報を前記伝送信号によって前記伝送手段に伝送させる制御手段とを備え、前記制御手段は、前記電気車両への充電を中断した後に再開する場合、前記線間電圧を所定電圧以下にした後に前記伝送手段に前記伝送信号を伝送させることを特徴とする。   The charging device for an electric vehicle of the present invention is connected to the electric vehicle via a charging cable, and transmits a transmission signal via a transmission line included in the charging cable, so that at least a charging current is supplied to the electric vehicle. In the charging device for an electric vehicle for notifying the upper limit value, transmission means for transmitting a transmission signal obtained by pulse-width modulating the line voltage of the transmission line, and various information including the upper limit value are transmitted to the transmission means by the transmission signal. Control means for transmitting, and when the control means restarts after interrupting the charging of the electric vehicle, the control means causes the transmission means to transmit the transmission signal after setting the line voltage to a predetermined voltage or lower. Features.

この電気車両用充電装置において、前記制御手段は、充電不可の状態から充電可能な状態に遷移したときに前記線間電圧を前記所定電圧以下にした後に前記伝送手段に前記伝送信号を伝送させることが好ましい。   In this electric vehicle charging apparatus, the control means causes the transmission means to transmit the transmission signal after the line voltage is reduced to the predetermined voltage or lower when transitioning from a non-chargeable state to a chargeable state. Is preferred.

本発明の電気車両用充電システムは、前記電気車両用充電装置と、前記制御手段に対して前記上限値を指示する電力監視装置とを有し、前記制御手段は、前記電力監視装置から指示される前記上限値が所定のしきい値未満の場合は充電不可と判断し、前記電力監視装置から指示される前記上限値が前記しきい値以上の場合は充電可能と判断することを特徴とする。   The electric vehicle charging system of the present invention includes the electric vehicle charging device and a power monitoring device that instructs the upper limit value to the control means, and the control means is instructed by the power monitoring device. When the upper limit value is less than a predetermined threshold value, it is determined that charging is not possible, and when the upper limit value instructed by the power monitoring device is equal to or greater than the threshold value, it is determined that charging is possible. .

本発明の電気車両用充電装置及び電気車両用充電システムは、充電を中断した後に正常に充電が再開可能になるという効果がある。   The electric vehicle charging device and the electric vehicle charging system of the present invention have an effect that charging can be resumed normally after the charging is interrupted.

本発明に係る電気車両用充電装置の実施形態のブロック図並びに本発明に係る電気車両用充電システムの実施形態のシステム構成図である。1 is a block diagram of an embodiment of a charging device for an electric vehicle according to the present invention and a system configuration diagram of an embodiment of a charging system for an electric vehicle according to the present invention. 同上の動作説明用のタイムチャートである。It is a time chart for operation | movement description same as the above. 同上の基本的な動作説明用のタイムチャートである。It is a time chart for basic operation | movement description same as the above.

以下、戸建の住宅に設置され、電力系統から供給される電力を利用して電気自動車に充電するための電気車両用充電装置(以下、充電装置と略す。)及びそのシステムに本発明の技術思想を適用した実施形態について、図面を参照して詳細に説明する。ただし、電気車両は電気自動車に限定されず、例えば、従来技術で説明したようなバッテリ式フォークリフトなどであっても構わない。   Hereinafter, an electric vehicle charging device (hereinafter, abbreviated as a charging device) that is installed in a detached house and charges an electric vehicle using electric power supplied from an electric power system, and a system for the charging device. An embodiment to which the idea is applied will be described in detail with reference to the drawings. However, the electric vehicle is not limited to an electric vehicle, and may be, for example, a battery-type forklift as described in the related art.

図1に示すように、住宅には電力系統100から単相3線式の交流電力が住宅用分電盤(住宅盤)4を介して供給される。住宅盤4は1次側が電力系統100と接続される主幹ブレーカ40と、主幹ブレーカ40の2次側に分岐接続される複数の分岐ブレーカ41とを有している。ただし、主幹ブレーカ40の1次側にリミッタ(電流制限器)が挿入される場合もある。なお、図示は省略するが、各分岐ブレーカ41の2次側に屋内配線を介してコンセントや負荷(照明器具や電磁調理器、エアコンディショナなど)が接続される。   As shown in FIG. 1, single-phase, three-wire AC power is supplied from a power system 100 to a house through a residential distribution board (housing board) 4. The housing board 4 has a main breaker 40 whose primary side is connected to the power system 100, and a plurality of branch breakers 41 branched and connected to the secondary side of the main breaker 40. However, a limiter (current limiter) may be inserted on the primary side of the main breaker 40. In addition, although illustration is abbreviate | omitted, an outlet and load (a lighting fixture, an electromagnetic cooker, an air conditioner etc.) are connected to the secondary side of each branch breaker 41 via an indoor wiring.

本実施形態の電気車両用充電システムは、図1に示すように充電装置1と電力監視装置2を有している。   The electric vehicle charging system of the present embodiment includes a charging device 1 and a power monitoring device 2 as shown in FIG.

電力監視装置2は、制御部20、電流計測部21、通信部22などを備える。電流計測部21は、主幹ブレーカ40の1次側に接続される3本の電灯線のうちの中性線以外の2本の電灯線に流れる電流をそれぞれ電流センサ210,211を用いて計測し、それぞれの計測値を制御部20に出力する。制御部20はマイクロコンピュータを主構成要素とし、電流計測部21で計測される電流値と主幹ブレーカ40の1次側電圧(入力電圧)の計測値(電圧値)とに基づいて、電力系統100から供給される電力(供給電力)の瞬時値や積算値などを演算している。また通信部22は充電装置1との間で通信を行うものであって、例えば、RS485規格に準拠したシリアル通信を行う。ただし、通信部22の通信方式はRS485規格に限定されるものではなく、電力線搬送通信や無線通信(例えば、小電力無線通信等)などであっても構わない。   The power monitoring device 2 includes a control unit 20, a current measurement unit 21, a communication unit 22, and the like. The current measuring unit 21 measures the currents flowing in the two power lines other than the neutral line among the three power lines connected to the primary side of the main breaker 40 using current sensors 210 and 211, respectively. Each measurement value is output to the control unit 20. The control unit 20 has a microcomputer as a main component, and is based on the current value measured by the current measurement unit 21 and the measured value (voltage value) of the primary side voltage (input voltage) of the main breaker 40. The instantaneous value or integrated value of the power supplied from (the supplied power) is calculated. The communication unit 22 communicates with the charging device 1 and performs, for example, serial communication conforming to the RS485 standard. However, the communication method of the communication unit 22 is not limited to the RS485 standard, and power line carrier communication, wireless communication (for example, low power wireless communication, etc.) may be used.

充電装置1は、信号処理部10、零相変流器11、漏電検出部12、開閉部13、通信制御部14、充電ケーブル15、充電コネクタ16などを備える。また充電装置1は、電気自動車200の駐車スペース(車庫)に近い場所に設置され、住宅盤4の分岐ブレーカ41で分岐された分岐回路の一つ(図1では下段右端の分岐ブレーカ41)に接続される。充電ケーブル15は、電気自動車200への供給電流(充電電流)が流れる給電線150と、後述するパイロット信号が伝送される伝送線151とが絶縁シースで被覆されてなり、先端部分に充電コネクタ16が設けられている。充電コネクタ16は、電気自動車200の車体に設けられている差込口(インレット)に挿抜自在に差込接続される。そして、充電コネクタ16が差込口に差込接続されると、電力系統100から住宅盤4及び充電装置1を介した電力(充電電力)の供給と、充電装置1の信号処理部10と電気自動車200の充電用ECU(電子制御ユニット)との間のパイロット信号の伝送とが可能になる。   The charging device 1 includes a signal processing unit 10, a zero-phase current transformer 11, a leakage detection unit 12, an opening / closing unit 13, a communication control unit 14, a charging cable 15, a charging connector 16, and the like. Moreover, the charging device 1 is installed in a place near the parking space (garage) of the electric vehicle 200, and is connected to one of the branch circuits (the branch breaker 41 at the right end of the lower stage in FIG. 1) branched by the branch breaker 41 of the housing panel 4. Connected. The charging cable 15 is formed by covering a power supply line 150 through which a supply current (charging current) to the electric vehicle 200 flows and a transmission line 151 through which a pilot signal, which will be described later, is transmitted, with an insulating sheath, and a charging connector 16 at the tip portion. Is provided. The charging connector 16 is inserted and connected so as to be freely inserted into and removed from an insertion port (inlet) provided in the vehicle body of the electric vehicle 200. When the charging connector 16 is plugged into the insertion port, the power (charging power) is supplied from the power system 100 via the housing panel 4 and the charging device 1, and the signal processing unit 10 of the charging device 1 is electrically connected. Pilot signals can be transmitted to and from the charging ECU (electronic control unit) of the automobile 200.

開閉部13は、分岐ブレーカ41から給電線150までの給電路に挿入される電磁リレー(図示せず)を有し、信号処理部10からの指示に応じて電磁リレーをオン・オフすることで前記給電路を開閉する。漏電検出部12は、給電路に流れる不平衡電流を零相変流器11で検出し、当該不平衡電流の検出レベルがしきい値を超えた場合に漏電が生じていると判断し、開閉部13を制御して給電路を開成させる。通信制御部14は、電力監視装置2の通信部22との間で通信(RS485規格のシリアル通信)を行う機能(通信機能)と、後述するように電気自動車200に供給される充電電流を調整する機能(調整機能)とを有している。このような通信制御部14は、マイクロコンピュータ及びシリアル通信用の集積回路などで構成される。なお、電力監視装置2では、充電装置1を介して電気自動車200に供給される電流(充電電流)を電流センサ212で計測している。   The open / close unit 13 has an electromagnetic relay (not shown) inserted in the power supply path from the branch breaker 41 to the power supply line 150, and by turning the electromagnetic relay on and off according to instructions from the signal processing unit 10. Open and close the feeding path. The leakage detector 12 detects the unbalanced current flowing in the power supply path with the zero-phase current transformer 11, and determines that a leakage has occurred when the detected level of the unbalanced current exceeds the threshold value. The unit 13 is controlled to open the power supply path. The communication control unit 14 adjusts a function (communication function) for performing communication (RS485 standard serial communication) with the communication unit 22 of the power monitoring device 2 and a charging current supplied to the electric vehicle 200 as described later. Function (adjustment function). Such a communication control unit 14 includes a microcomputer and an integrated circuit for serial communication. In the power monitoring device 2, the current (charging current) supplied to the electric vehicle 200 via the charging device 1 is measured by the current sensor 212.

ここで、図3のタイムチャートを参照して充電装置1の基本的な充電動作を説明する。まず、時刻t0に充電コネクタ16が電気自動車200の差込口に接続されると、信号処理部10から所定の電圧V1(例えば、V1=12ボルト)が伝送線151に印加される。そして、伝送線151に印加される電圧(線間電圧)がコントロールパイロット(CPLT)信号(以下、パイロット信号と略す。)の伝送媒体となり、その電圧レベル及びオンデューティ比に応じて、後述するように充電用ECUと信号処理部10との間で種々の情報が授受される。   Here, the basic charging operation of the charging apparatus 1 will be described with reference to the time chart of FIG. First, when the charging connector 16 is connected to the insertion port of the electric vehicle 200 at time t0, a predetermined voltage V1 (for example, V1 = 12 volts) is applied from the signal processing unit 10 to the transmission line 151. The voltage (line voltage) applied to the transmission line 151 becomes a transmission medium for a control pilot (CPLT) signal (hereinafter abbreviated as a pilot signal), and will be described later according to the voltage level and on-duty ratio. Various information is exchanged between the charging ECU and the signal processing unit 10.

充電用ECUは、電圧V1のパイロット信号を検知すると、伝送線151の線間に挿入されているスイッチを閉じて抵抗を接続することにより、パイロット信号の電圧レベルをV1からV2(例えば、V2=9ボルト)に降圧させる(時刻t1〜t2)。信号処理部10は、パイロット信号がV1からV2に低下したことを検出すると、所定周波数(例えば1キロヘルツ)のパルス状のパイロット信号を出力する(時刻t2〜)。当該パイロット信号の信号レベルは±V1であるが、上限レベルはV2に降圧されている。パイロット信号のオンデューティ比は、充電電流の上限値(充電装置1の電流容量)を示し、充電装置1毎に予め設定されている。例えば、SAE規格では、オンデューティ比が10%〜85%の範囲ではオンデューティ比に0.6を乗じた数値を上限値とし、オンデューティ比が85%〜96%の範囲ではオンデューティ比に2.5を乗じた数値を上限値とする。また、オンデューティ比が96%〜97%の範囲では80アンペアを上限値とする。すなわち、パイロット信号は上限値の情報(値)をパルス幅変調信号として伝送線151の線間電圧に重畳して伝送している。   When the charging ECU detects the pilot signal of the voltage V1, the voltage level of the pilot signal is changed from V1 to V2 (for example, V2 =) by closing a switch inserted between the transmission lines 151 and connecting a resistor. The voltage is reduced to 9 volts (time t1 to t2). When the signal processing unit 10 detects that the pilot signal has decreased from V1 to V2, the signal processing unit 10 outputs a pulsed pilot signal having a predetermined frequency (for example, 1 kilohertz) (from time t2). The signal level of the pilot signal is ± V1, but the upper limit level is stepped down to V2. The on-duty ratio of the pilot signal indicates an upper limit value of the charging current (current capacity of the charging device 1), and is set in advance for each charging device 1. For example, in the SAE standard, when the on-duty ratio is in the range of 10% to 85%, the upper limit is a value obtained by multiplying the on-duty ratio by 0.6, and when the on-duty ratio is in the range of 85% to 96%, The multiplied value is the upper limit. Further, when the on-duty ratio is in the range of 96% to 97%, 80 amperes is set as the upper limit value. That is, the pilot signal is transmitted by superimposing the upper limit information (value) as a pulse width modulation signal on the line voltage of the transmission line 151.

充電用ECUは、パイロット信号のオンデューティ比を検知して電流容量を認識すると、パイロット信号の電圧レベルをV2からV3(例えば、6ボルト)に降圧する(時刻t3)。信号処理部10は、パイロット信号の信号レベルがV2からV3に低下したことを検知すると、開閉部13を閉成して充電電力の供給を開始する。   When the charging ECU detects the on-duty ratio of the pilot signal and recognizes the current capacity, it lowers the voltage level of the pilot signal from V2 to V3 (for example, 6 volts) (time t3). When the signal processing unit 10 detects that the signal level of the pilot signal has decreased from V2 to V3, the signal processing unit 10 closes the opening / closing unit 13 and starts supplying charging power.

充電用ECUは電流容量に基づいて蓄電池の充電レベルを目標レベルまで充電するための電流値(≦電流容量)を設定し、電気自動車200に搭載されている充電器(図示せず)に充電指令を出力する。充電指令を受けた充電器は、充電用ECUが設定した電流値を超えないように充電電流を調整しながら蓄電池を充電する(時刻t3〜)。充電用ECUは、蓄電池の充電レベルが目標レベルに達すると、充電器に充電終了指令を出力して蓄電池への充電を終了し、パイロット信号の電圧レベルをV3からV2に復帰させる(時刻t4)。充電器は、充電終了指令を受信すると蓄電池の充電を終了する。   The charging ECU sets the current value (≦ current capacity) for charging the storage battery to the target level based on the current capacity, and commands the charger (not shown) installed in the electric vehicle 200 to charge Is output. The charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the current value set by the charging ECU (from time t3). When the charge level of the storage battery reaches the target level, the charging ECU outputs a charge end command to the charger to finish charging the storage battery, and returns the voltage level of the pilot signal from V3 to V2 (time t4) . When the charger receives the charging end command, the charger ends the charging of the storage battery.

信号処理部10は、パイロット信号がV3からV2に変化したことを検出すると、開閉部13を開成して交流電力の供給を停止する。充電用ECUは、伝送線151の線間に挿入されているスイッチを開いて抵抗を切り離すことにより、パイロット信号の電圧レベルを当初のV1に復帰させる(時刻t5)。信号処理部10は、パイロット信号の電圧レベルがV1に復帰すると、所定周波数の発振を停止してパイロット信号の電圧レベルをV1に維持して待機状態に戻る(時刻t6)。   When the signal processing unit 10 detects that the pilot signal has changed from V3 to V2, the signal processing unit 10 opens the opening / closing unit 13 and stops supplying AC power. The charging ECU opens the switch inserted between the transmission lines 151 to disconnect the resistance, thereby returning the voltage level of the pilot signal to the original V1 (time t5). When the voltage level of the pilot signal returns to V1, the signal processing unit 10 stops oscillation at a predetermined frequency, maintains the voltage level of the pilot signal at V1, and returns to the standby state (time t6).

上述のように充電装置1は、電気自動車200への充電電力の供給を入切するとともに電気自動車200の充電用ECUに対して充電電流の上限値を指示することで電気自動車200に搭載されている蓄電池の充電を制御している。   As described above, the charging apparatus 1 is mounted on the electric vehicle 200 by turning on / off the supply of charging power to the electric vehicle 200 and instructing the charging ECU of the electric vehicle 200 to the upper limit value of the charging current. The charging of the storage battery is controlled.

ところで、電気自動車200の充電には、通常、十数アンペア〜数十アンペア程度の大きな充電電流が必要とされる。一方、通常の住宅では、主幹ブレーカ40(リミッタが設置されている場合はリミッタと主幹ブレーカ40)の定格電流が30アンペア〜60アンペア程度に設定されている。したがって、電磁調理器やエアコンディショナのように消費電流の大きい負荷機器が使用されているときに電気自動車200を充電する場合、充電装置1に予め設定されている上限値まで充電電流が流れると、主幹ブレーカ40やリミッタがトリップしてしまう虞がある。   By the way, charging of the electric vehicle 200 usually requires a large charging current of about several tens of amperes to several tens of amperes. On the other hand, in a normal house, the rated current of the main breaker 40 (limiter and main breaker 40 when the limiter is installed) is set to about 30 amperes to 60 amperes. Therefore, when charging the electric vehicle 200 when a load device with a large current consumption such as an electromagnetic cooker or an air conditioner is used, the charging current flows up to an upper limit value set in advance in the charging device 1. The main breaker 40 and the limiter may trip.

そこで電力監視装置2の制御部20は、充電電流の上限値を、現在の充電電流の電流値から全消費電流と定格電流の差を差し引いた電流値とする指令(調整指令)を通信部22から定期的に(例えば、1秒間隔で)送信させる。なお、全消費電流は、充電電流と負荷機器の消費電流(負荷消費電流)の総和である。   Therefore, the control unit 20 of the power monitoring device 2 provides a command (adjustment command) for setting the upper limit value of the charging current to a current value obtained by subtracting the difference between the total current consumption and the rated current from the current charging current value. To send periodically (for example, at intervals of 1 second). The total consumption current is the sum of the charging current and the consumption current of the load device (load consumption current).

充電装置1においては、電力監視装置2から送信される調整指令を受信した通信制御部14が、信号処理部10に対して充電電流の上限値を調整指令で指示された上限値以下とするように指示する。そして、信号処理部10は通信制御部14からの指示を受けると、パイロット信号のオンデューティ比を減少させる。例えば、充電ケーブル15の電流容量が20アンペアである場合、当初50%であったオンデューティ比が40%〜20%に減少され、結果的に充電電流の上限値が当初の20アンペアよりも低い値(例えば、10アンペア)に調整されることになる。ただし、前回の上限値と今回の上限値が同じであれば、オンデューティ比は変更されない。   In the charging device 1, the communication control unit 14 that has received the adjustment command transmitted from the power monitoring device 2 sets the upper limit value of the charging current to the signal processing unit 10 to be equal to or lower than the upper limit value instructed by the adjustment command. To instruct. When receiving an instruction from the communication control unit 14, the signal processing unit 10 decreases the on-duty ratio of the pilot signal. For example, when the current capacity of the charging cable 15 is 20 amperes, the on-duty ratio, which was 50% at the beginning, is reduced to 40% to 20%, and as a result, the upper limit value of the charging current is lower than the original 20 amperes. Will be adjusted to a value (eg, 10 amps). However, if the previous upper limit value and the current upper limit value are the same, the on-duty ratio is not changed.

電気自動車200の充電用ECUは、調整後の上限値に基づいて再度充電電流の電流値を設定して充電器に充電指令を出力する。充電指令を受けた充電器は、充電用ECUが設定した新たな電流値を超えないように充電電流を調整しながら蓄電池を充電する。その結果、電気自動車200に供給される充電電流が減少するので、全消費電流が主幹ブレーカ40の定格電流を超えてしまうことが回避できる。   The charging ECU of the electric vehicle 200 sets the current value of the charging current again based on the adjusted upper limit value and outputs a charging command to the charger. The charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the new current value set by the charging ECU. As a result, since the charging current supplied to the electric vehicle 200 decreases, it can be avoided that the total current consumption exceeds the rated current of the main breaker 40.

しかしながら、充電装置1が充電電流を減らすように電気自動車200に指示してから、実際に電気自動車200側で充電電流を減少させるまでに相当の遅延時間が生じる。例えば、通信制御部14が調整指令を受信してからパイロット信号のオンデューティ比を変更するまでに時間T2を要し、電気自動車200がパイロット信号に応じて充電電流を減少させるまでに時間T3を要するとすれば、時間T1(=T2+T3)の遅延が生じる。その結果、主幹ブレーカ40には少なくとも遅延時間T1だけ継続して過負荷電流が流れるので、遅延時間T1が引き外し動作時間を越えると主幹ブレーカ40がトリップしてしまう虞がある。しかも、電気自動車200の車種によってパイロット信号のオンデューティ比を変更するまでに要する時間T2が異なっている場合が多い。   However, there is a considerable delay time from when the charging apparatus 1 instructs the electric vehicle 200 to reduce the charging current until the charging current is actually reduced on the electric vehicle 200 side. For example, it takes time T2 from the time when the communication control unit 14 receives the adjustment command to change the on-duty ratio of the pilot signal, and the time T3 until the electric vehicle 200 decreases the charging current according to the pilot signal. If necessary, a delay of time T1 (= T2 + T3) occurs. As a result, since the overload current continues to flow through the main breaker 40 for at least the delay time T1, the main breaker 40 may trip if the delay time T1 exceeds the trip time. Moreover, the time T2 required to change the on-duty ratio of the pilot signal is often different depending on the type of electric vehicle 200.

そこで、主幹ブレーカ40のトリップを防ぐためには、充電ECUに一旦充電を中断させ、充電を再開させる際に充電電流の上限値を中断以前よりも低い値に調整させることが好ましい。ここで、従来技術で説明したように、充電装置1が充電を停止する際に電気自動車200に対して充電停止を通知する必要がある。従来技術で説明したように、充電装置1から充電停止を通知する方法として、パイロット信号のオンデューティ比を100%にする方法がある。ところが、パイロット信号の状態遷移における遷移時間等が規定されている場合、充電中にパイロット信号のオンデューティ比が100%にされた後に再度100%未満の値(例えば、80%)に設定されると、電気自動車200の車種によっては予期せぬ異常が発生する可能性がある。   Therefore, in order to prevent the trip of the main breaker 40, it is preferable to temporarily stop the charging ECU and adjust the upper limit value of the charging current to a value lower than before the interruption when resuming the charging. Here, as described in the related art, when the charging device 1 stops charging, it is necessary to notify the electric vehicle 200 of the charging stop. As described in the prior art, as a method of notifying the charging stop from the charging device 1, there is a method of setting the on-duty ratio of the pilot signal to 100%. However, when the transition time or the like in the state transition of the pilot signal is specified, the on-duty ratio of the pilot signal is set to 100% during charging and then set again to a value less than 100% (for example, 80%). Depending on the type of electric vehicle 200, an unexpected abnormality may occur.

そこで本実施形態では、電気自動車200の充電を中断した後に再開する場合、通信制御部14が、信号処理部10を制御して伝送線151の線間電圧を所定電圧以下にした後に、オンデューティ比が100%未満の値(例えば、80%)に設定されたパイロット信号を伝送させる。充電用ECUは、パイロット信号のオンデューティ比が100%になると直ちに充電器に充電を中止させる。さらに充電用ECUは、伝送線151の線間電圧が所定電圧以下になると充電コネクタ16が差込口から外されたと判断する。なお、所定電圧は、充電用ECUが充電コネクタ16が差込口から外されたと判断するためのしきい値であり、例えば、数ボルト乃至ゼロボルトに設定される。ただし、以下の説明では所定電圧がゼロボルトに設定されているものとする。   Therefore, in this embodiment, when resuming charging after stopping the charging of the electric vehicle 200, the communication control unit 14 controls the signal processing unit 10 to reduce the line voltage of the transmission line 151 to a predetermined voltage or less, and then turns on the duty. A pilot signal whose ratio is set to a value less than 100% (for example, 80%) is transmitted. The charging ECU causes the charger to stop charging as soon as the on-duty ratio of the pilot signal reaches 100%. Further, the charging ECU determines that the charging connector 16 has been removed from the insertion port when the line voltage of the transmission line 151 becomes a predetermined voltage or less. The predetermined voltage is a threshold value for the charging ECU to determine that the charging connector 16 has been removed from the insertion port, and is set to, for example, several volts to zero volts. However, in the following description, it is assumed that the predetermined voltage is set to zero volts.

通信制御部14は、パイロット信号のオンデューティ比を100%にしてから所定の待機時間が経過したら、信号処理部10にオンデューティ比が100%未満の値(例えば、80%)に設定されたパイロット信号の伝送(発振)を開始させる。充電用ECUは、前記パイロット信号を受信すると充電コネクタ16が差込口に差込接続されたと判断する。さらに充電用ECUは、既に説明した通常のフローに従い、パイロット信号のオンデューティ比から検知した上限値に基づいて充電電流の電流値を設定して充電器に充電指令を出力する。充電指令を受けた充電器は、充電用ECUが設定した新たな電流値を超えないように充電電流を調整しながら蓄電池を充電する。   The communication control unit 14 sets the on-duty ratio to a value less than 100% (for example, 80%) in the signal processing unit 10 when a predetermined standby time has elapsed after setting the on-duty ratio of the pilot signal to 100%. Start transmission (oscillation) of the pilot signal. When the charging ECU receives the pilot signal, the charging ECU determines that the charging connector 16 has been plugged into the socket. Further, the charging ECU sets the current value of the charging current based on the upper limit value detected from the on-duty ratio of the pilot signal according to the normal flow already described, and outputs a charging command to the charger. The charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the new current value set by the charging ECU.

ここで、図2のタイムチャートを参照して、上述した充電装置1の充電動作をさらに詳しく説明する。なお、以下の説明では、充電電流の上限値に対するしきい値が6アンペアに規定されており、充電電流がしきい値未満に制限されているときは電気自動車200への充電が許可されないものと仮定する。   Here, the charging operation of the above-described charging device 1 will be described in more detail with reference to the time chart of FIG. In the following description, the threshold for the upper limit value of the charging current is defined as 6 amperes, and charging of the electric vehicle 200 is not permitted when the charging current is limited to less than the threshold value. Assume.

まず、充電コネクタ16が電気自動車200の差込口に差込接続され、信号処理部10から電圧V1が伝送線151に印加された後、時刻t1に充電用ECUがパイロット信号の電圧レベルをV1からV2に降圧する。このとき、電力監視装置2の制御部20から指示される調整値が0〜6アンペアの範囲内である場合、充電装置1の通信制御部14は、電気自動車200への充電が電力監視装置2から許可されていない(不許可)と判断してパイロット信号の発振を行わない。充電用ECUは、パイロット信号の発振が開始されずにオンデューティ比が100%に維持されている場合、充電器に充電指令を出力しない。   First, after the charging connector 16 is plugged into the insertion port of the electric vehicle 200 and the voltage V1 is applied from the signal processing unit 10 to the transmission line 151, the charging ECU sets the voltage level of the pilot signal to V1 at time t1. Step down from V2 to V2. At this time, when the adjustment value instructed from the control unit 20 of the power monitoring device 2 is within the range of 0 to 6 amperes, the communication control unit 14 of the charging device 1 can charge the electric vehicle 200 with the power monitoring device 2. Therefore, the pilot signal is not oscillated because it is determined that it is not permitted (not permitted). When the on-duty ratio is maintained at 100% without starting oscillation of the pilot signal, the charging ECU does not output a charging command to the charger.

そして、負荷機器の使用が中止されるなどして消費電流が減少すると、電力監視装置2の制御部20から指示される調整値が6アンペア以上に変更される。充電装置1の通信制御部14は、電気自動車200への充電が電力監視装置2から許可されたと判断し、信号処理部10に対して伝送線151への電圧印加を停止させて線間電圧をゼロボルトにする(時刻t2)。通信制御部14は、時刻t3から所定の待機時間が経過すれば、信号処理部10に対して伝送線151への電圧印加を再開させる(時刻t3)。充電用ECUは、伝送線151に電圧が印加されると、線間電圧をV2とする。信号処理部10は、線間電圧がV2になったことを検出すると、パイロット信号の発振を開始する(時刻t4〜)。   Then, when the consumption current decreases because the use of the load device is stopped, the adjustment value instructed from the control unit 20 of the power monitoring device 2 is changed to 6 amperes or more. The communication control unit 14 of the charging device 1 determines that charging to the electric vehicle 200 is permitted from the power monitoring device 2, stops the signal processing unit 10 from applying voltage to the transmission line 151, and sets the line voltage. Set to zero volts (time t2). When a predetermined standby time elapses from time t3, the communication control unit 14 causes the signal processing unit 10 to resume voltage application to the transmission line 151 (time t3). When a voltage is applied to the transmission line 151, the charging ECU sets the line voltage to V2. When the signal processing unit 10 detects that the line voltage has reached V2, the signal processing unit 10 starts oscillation of the pilot signal (from time t4).

充電用ECUは、パイロット信号のオンデューティ比を検知して電流容量を認識すると、パイロット信号の電圧レベルをV2からV3に降圧する。信号処理部10は、パイロット信号の信号レベルがV2からV3に低下したことを検知すると、開閉部13を閉成して充電電力の供給を開始する。さらに充電用ECUは電流容量に基づいて蓄電池の充電レベルを目標レベルまで充電するための電流値を設定し、充電器に充電指令を出力する。   When the charging ECU detects the on-duty ratio of the pilot signal and recognizes the current capacity, it lowers the voltage level of the pilot signal from V2 to V3. When the signal processing unit 10 detects that the signal level of the pilot signal has decreased from V2 to V3, the signal processing unit 10 closes the opening / closing unit 13 and starts supplying charging power. Further, the charging ECU sets a current value for charging the storage battery to the target level based on the current capacity, and outputs a charging command to the charger.

また、全消費電流が増えるなどして電力監視装置2の制御部20から指示される調整値が6アンペア以下に変更されたと仮定する。充電装置1の通信制御部14は、電気自動車200への充電が不許可になったと判断し、信号処理部10に対してパイロット信号の発振を停止させてオンデューティ比を100%に維持する(時刻t5〜)。充電用ECUは、パイロット信号の発振が中止されてオンデューティ比が100%に維持されると、充電器への充電指令の出力を停止する。   Further, it is assumed that the adjustment value instructed from the control unit 20 of the power monitoring device 2 has been changed to 6 amperes or less due to an increase in the total current consumption. The communication control unit 14 of the charging apparatus 1 determines that charging to the electric vehicle 200 has been disapproved, and causes the signal processing unit 10 to stop the oscillation of the pilot signal and maintain the on-duty ratio at 100% ( Time t5 ~). When the oscillation of the pilot signal is stopped and the on-duty ratio is maintained at 100%, the charging ECU stops outputting the charging command to the charger.

さらに、電力監視装置2の制御部20から指示される調整値が再び6アンペア以上に変更されると、充電装置1の通信制御部14は、信号処理部10に対して伝送線151への電圧印加を停止させて線間電圧をゼロボルトにする(時刻t6)。通信制御部14は、時刻t6から待機時間が経過すれば、信号処理部10に対して伝送線151への電圧印加を再開させる(時刻t7)。充電用ECUは、伝送線151に電圧が印加されると、線間電圧をV2とする。信号処理部10は、線間電圧がV2になったことを検出すると、パイロット信号の発振を開始する(時刻t8〜)。   Furthermore, when the adjustment value instructed from the control unit 20 of the power monitoring device 2 is changed again to 6 amperes or more, the communication control unit 14 of the charging device 1 applies the voltage to the transmission line 151 to the signal processing unit 10. The application is stopped and the line voltage is set to zero volts (time t6). When the standby time elapses from time t6, the communication control unit 14 causes the signal processing unit 10 to resume voltage application to the transmission line 151 (time t7). When a voltage is applied to the transmission line 151, the charging ECU sets the line voltage to V2. When the signal processing unit 10 detects that the line voltage has reached V2, it starts oscillation of the pilot signal (from time t8).

充電用ECUは、パイロット信号のオンデューティ比を検知して電流容量を認識すると、パイロット信号の電圧レベルをV2からV3に降圧する。信号処理部10は、パイロット信号の信号レベルがV2からV3に低下したことを検知すると、開閉部13を閉成して充電電力の供給を開始する。さらに充電用ECUは電流容量に基づいて蓄電池の充電レベルを目標レベルまで充電するための電流値を設定し、充電器に充電指令を出力する。   When the charging ECU detects the on-duty ratio of the pilot signal and recognizes the current capacity, it lowers the voltage level of the pilot signal from V2 to V3. When the signal processing unit 10 detects that the signal level of the pilot signal has decreased from V2 to V3, the signal processing unit 10 closes the opening / closing unit 13 and starts supplying charging power. Further, the charging ECU sets a current value for charging the storage battery to the target level based on the current capacity, and outputs a charging command to the charger.

上述のように本実施形態の充電装置1では、制御手段(通信制御部14)が、電気自動車200への充電を中断した後に再開する場合、伝送線151の線間電圧をゼロボルトにした後に伝送手段(信号処理部10)に伝送信号を伝送させる。つまり、伝送線151の線間電圧をゼロボルトにすることにより、電気自動車200の充電用ECUに充電コネクタ16が差込口から外されたと認識させることができる。そのため、信号処理部10が伝送線151に線間電圧を印加してパイロット信号の発振を再開させれば、充電用ECUは、再び充電コネクタ16が差込口に差込接続されたと判断し、通常のフローで充電を開始することができる。その結果、充電を中断した後に正常に充電が再開可能になるものである。   As described above, in the charging device 1 of the present embodiment, when the control means (communication control unit 14) resumes after interrupting the charging of the electric vehicle 200, the transmission is performed after setting the line voltage of the transmission line 151 to zero volts. The transmission signal is transmitted to the means (signal processing unit 10). That is, by setting the line voltage of the transmission line 151 to zero volts, the charging ECU of the electric vehicle 200 can recognize that the charging connector 16 has been removed from the insertion port. Therefore, if the signal processing unit 10 applies a line voltage to the transmission line 151 and restarts the oscillation of the pilot signal, the charging ECU determines that the charging connector 16 is plugged into the insertion port again, Charging can be started with a normal flow. As a result, the charging can be resumed normally after the charging is interrupted.

1 電気車両用充電装置
10 信号処理部(伝送手段)
14 通信制御部(制御手段)
15 充電ケーブル
151 伝送線
200 電気自動車(電気車両)
1 Electric vehicle charger
10 Signal processor (transmission means)
14 Communication control unit (control means)
15 Charging cable
151 Transmission line
200 Electric vehicle (electric vehicle)

Claims (3)

充電ケーブルを介して電気車両に接続され、前記充電ケーブルに含まれる伝送線を介して伝送信号を伝送することにより、前記電気車両に対して少なくとも充電電流の上限値を通知する電気車両用充電装置において、前記伝送線の線間電圧をパルス幅変調した伝送信号を伝送する伝送手段と、前記上限値を含む種々の情報を前記伝送信号によって前記伝送手段に伝送させる制御手段とを備え、前記制御手段は、前記電気車両への充電を中断した後に再開する場合、前記線間電圧を所定電圧以下にした後に前記伝送手段に前記伝送信号を伝送させることを特徴とする電気車両用充電装置。   A charging device for an electric vehicle that is connected to an electric vehicle via a charging cable and transmits a transmission signal via a transmission line included in the charging cable to notify at least an upper limit value of the charging current to the electric vehicle. A transmission means for transmitting a transmission signal obtained by pulse-width modulating the line voltage of the transmission line; and a control means for transmitting various information including the upper limit value to the transmission means by the transmission signal. When the charging is resumed after the charging to the electric vehicle is interrupted, the electric vehicle charging device transmits the transmission signal to the transmission unit after setting the line voltage to a predetermined voltage or lower. 前記制御手段は、充電不可の状態から充電可能な状態に遷移したときに前記線間電圧を前記所定電圧以下にした後に前記伝送手段に前記伝送信号を伝送させること特徴とする請求項1記載の電気車両用充電装置。   2. The control unit according to claim 1, wherein the transmission unit transmits the transmission signal after setting the line voltage to be equal to or lower than the predetermined voltage when transitioning from a non-chargeable state to a chargeable state. Electric vehicle charging device. 請求項2の電気車両用充電装置と、前記制御手段に対して前記上限値を指示する電力監視装置とを有し、前記制御手段は、前記電力監視装置から指示される前記上限値が所定のしきい値未満の場合は充電不可と判断し、前記電力監視装置から指示される前記上限値が前記しきい値以上の場合は充電可能と判断することを特徴とする電気車両用充電システム。   3. The electric vehicle charging device according to claim 2, and a power monitoring device that instructs the upper limit value to the control means, wherein the control means has a predetermined upper limit value instructed from the power monitoring device. A charging system for an electric vehicle that determines that charging is impossible when it is less than a threshold value, and that charging is possible when the upper limit value instructed by the power monitoring device is equal to or greater than the threshold value.
JP2011282046A 2011-12-22 2011-12-22 Electric vehicle charging device and electric vehicle charging system Active JP5877370B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011282046A JP5877370B2 (en) 2011-12-22 2011-12-22 Electric vehicle charging device and electric vehicle charging system
KR1020120146068A KR101456907B1 (en) 2011-12-22 2012-12-14 Electric vehicle charging device and electric vehicle charging system
CN201210562552.2A CN103178592B (en) 2011-12-22 2012-12-21 Electric vehicles charging device and electric vehicles charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282046A JP5877370B2 (en) 2011-12-22 2011-12-22 Electric vehicle charging device and electric vehicle charging system

Publications (2)

Publication Number Publication Date
JP2013132188A true JP2013132188A (en) 2013-07-04
JP5877370B2 JP5877370B2 (en) 2016-03-08

Family

ID=48638274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282046A Active JP5877370B2 (en) 2011-12-22 2011-12-22 Electric vehicle charging device and electric vehicle charging system

Country Status (3)

Country Link
JP (1) JP5877370B2 (en)
KR (1) KR101456907B1 (en)
CN (1) CN103178592B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908428B2 (en) 2014-12-16 2018-03-06 Hyundai Motor Company Method and charging system for selecting charging mode of electric vehicle
JP2021027674A (en) * 2019-08-02 2021-02-22 パナソニックIpマネジメント株式会社 Power supply device, power supply system, power supply method, and program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015101041A1 (en) * 2015-01-26 2016-07-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Electric charging device, electric charging station and method for controlling an electric charging device
CN105932739A (en) * 2016-06-01 2016-09-07 肇庆高新区凯盈顺汽车设计有限公司 Charging device for electric automobile
JP7092032B2 (en) * 2016-09-30 2022-06-28 日本電気株式会社 Charging system, charging controller, charger, information device, charging method and recording medium
KR102006639B1 (en) * 2018-12-26 2019-08-05 쌍용자동차 주식회사 Vehicle diagnosis and reprogramming method using electric vehicle charging interface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171733A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Charge control unit for vehicle
JP2011130648A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Power supply system for electric vehicle
JP2011250587A (en) * 2010-05-27 2011-12-08 Mitsubishi Electric Corp Electric hot-water supplier and battery charger
JP2012143026A (en) * 2010-12-28 2012-07-26 Toyota Motor Corp Charger for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810564B2 (en) * 2008-11-17 2011-11-09 トヨタ自動車株式会社 Charging cable for electric vehicle and management method thereof
JP2011035975A (en) * 2009-07-30 2011-02-17 Toyota Motor Corp Vehicle and vehicle control method
JP5555004B2 (en) * 2010-02-17 2014-07-23 本田技研工業株式会社 Charging cable, vehicle, and vehicle charging system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171733A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Charge control unit for vehicle
JP2011130648A (en) * 2009-12-21 2011-06-30 Panasonic Electric Works Co Ltd Power supply system for electric vehicle
JP2011250587A (en) * 2010-05-27 2011-12-08 Mitsubishi Electric Corp Electric hot-water supplier and battery charger
JP2012143026A (en) * 2010-12-28 2012-07-26 Toyota Motor Corp Charger for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908428B2 (en) 2014-12-16 2018-03-06 Hyundai Motor Company Method and charging system for selecting charging mode of electric vehicle
JP2021027674A (en) * 2019-08-02 2021-02-22 パナソニックIpマネジメント株式会社 Power supply device, power supply system, power supply method, and program
JP7261983B2 (en) 2019-08-02 2023-04-21 パナソニックIpマネジメント株式会社 POWER SUPPLY DEVICE, POWER SUPPLY SYSTEM, POWER SUPPLY METHOD, PROGRAM

Also Published As

Publication number Publication date
JP5877370B2 (en) 2016-03-08
CN103178592A (en) 2013-06-26
CN103178592B (en) 2015-11-25
KR101456907B1 (en) 2014-10-31
KR20130079163A (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5877370B2 (en) Electric vehicle charging device and electric vehicle charging system
TWI429546B (en) Electrical power feeding system for electrical vehicle
US8633678B2 (en) Electric vehicle supply equipment with over-current protection
JP5793672B2 (en) Electric vehicle charging device and electric vehicle charging system
US9293938B2 (en) Charging control device to prevent supplied power from exceeding contract demand
JP6083553B2 (en) Electric vehicle charging device
US20130207608A1 (en) Vehicle charging system
US20140375265A1 (en) Vehicle Charging System
US20140002020A1 (en) Circuit for controlling an electric vehicle pilot signal level for connector disconnect
JP2013225971A (en) Charge controller and vehicle charging system
CN105122577A (en) Overcurrent detection device, charging/discharging system using said overcurrent detection device, distribution board, charging control device, vehicle charging/discharging device, and vehicle electrical apparatus
WO2014122647A1 (en) System and method for protecting against electric current leakages
JP6098334B2 (en) Power supply device, power supply system, and control method for power supply device
JP6273850B2 (en) Power supply device, moving object, and power distribution system
KR20160026404A (en) Recharging device and recharging method for vehicle
JP2013138535A (en) Charge control system
US4560886A (en) Alternating current power source
WO2012132459A1 (en) Vehicle charging device
JP5834245B2 (en) Charge control device and charge control system
JP5906471B2 (en) Power monitoring apparatus and charging control system
KR101185484B1 (en) Apparatus for blocking standby power having a function for connecting normal power on emergency
US20130119765A1 (en) Power Supply and Method for Operating the Power Supply
JP2010086791A (en) Wiring apparatus
JP5811941B2 (en) Power supply system
EP3166192A1 (en) Leakage protection device and leakage protection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150918

R151 Written notification of patent or utility model registration

Ref document number: 5877370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151