JP2013130448A - Charging/discharging system and battery pack - Google Patents

Charging/discharging system and battery pack Download PDF

Info

Publication number
JP2013130448A
JP2013130448A JP2011279432A JP2011279432A JP2013130448A JP 2013130448 A JP2013130448 A JP 2013130448A JP 2011279432 A JP2011279432 A JP 2011279432A JP 2011279432 A JP2011279432 A JP 2011279432A JP 2013130448 A JP2013130448 A JP 2013130448A
Authority
JP
Japan
Prior art keywords
remaining capacity
secondary battery
circuit voltage
charging
residual amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011279432A
Other languages
Japanese (ja)
Inventor
Toshiaki Ishikawa
俊明 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011279432A priority Critical patent/JP2013130448A/en
Publication of JP2013130448A publication Critical patent/JP2013130448A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a stable residual amount calculation method by eliminating maintenance and scattering of the residual amount caused by an error between a method based on a circuit voltage near a charging/discharging tail end and a method based on a current integrated value.SOLUTION: A system includes a current detection part for detecting the charging/discharging current of a secondary battery, a battery voltage detection part for detecting the battery voltage of the secondary battery, and a residual amount calculation device for calculating the residual amount of the secondary battery. The residual amount calculation device includes a first residual part calculation part for calculating the residual amount of the secondary battery from a closed circuit voltage CCV by using a relationship between an open circuit voltage OCV of the secondary battery and a charging depth SOC, and a second residual amount calculation part for calculating the residual amount of the secondary battery by integrating the charging/discharging current of the secondary battery. By eliminating an error between the residual amount calculated by the first residual amount calculation part and the residual amount calculated by the second residual amount calculation part by feedback control, maintenance and scattering of the residual amount near the end of charging or discharging is eliminated.

Description

本発明は、二次電池を充放電する充放電システム、及び充電システムと二次電池を備えた電池パックに関するものである。   The present invention relates to a charging / discharging system for charging / discharging a secondary battery, and a battery pack including the charging system and the secondary battery.

従来の二次電池を備えた電池パックでは、充放電における残容量の算出において、二次電池の閉回路電圧CCV(Closed Circuit Voltage)から開回路電圧OCV(Open Circuit Voltage)を推定し、図4のような二次電池の劣化に依らない開回路電圧OCVと二次電池の充電深度SOCとの関係を利用し、開回路電圧OCVから充電深度SOC(State Of Charge)へ変換する手法と、二次電池に対する充電電流及び放電電流を積算する手法が用いられてきた。   In a battery pack including a conventional secondary battery, an open circuit voltage OCV (Open Circuit Voltage) is estimated from the closed circuit voltage CCV (Closed Circuit Voltage) of the secondary battery in calculating the remaining capacity in charge and discharge, and FIG. A method of converting the open circuit voltage OCV to the charge depth SOC (State Of Charge) using the relationship between the open circuit voltage OCV that does not depend on the deterioration of the secondary battery and the charge depth SOC of the secondary battery, A method of integrating charging current and discharging current for the secondary battery has been used.

特に、二次電池の閉回路電圧CCVから開回路電圧OCVを推定する手法においては、予め二次電池の内部インピーダンスをメモリ等に記録しておき、閉回路電圧CCVと充電電流または放電電流と二次電池の内部インピーダンスから開回路電圧OCVを推定する手法が知られている(例えば、特許文献1参照)。   In particular, in the method of estimating the open circuit voltage OCV from the closed circuit voltage CCV of the secondary battery, the internal impedance of the secondary battery is recorded in advance in a memory or the like, and the closed circuit voltage CCV and the charging current or discharging current are detected. A method for estimating the open circuit voltage OCV from the internal impedance of the secondary battery is known (see, for example, Patent Document 1).

しかしながら、回路電圧に基づく算出手法と電流積算値に基づく算出手法それぞれ次のような課題を有している。   However, each of the calculation method based on the circuit voltage and the calculation method based on the integrated current value has the following problems.

回路電圧に基づく残容量算出手法では、開回路電圧OCVと充電深度SOCとの関係を利用し、開回路電圧OCVは閉回路電圧CCVから推定するため、二次電池の内部インピーダンスの影響が生じにくい静的な状態では残容量の算出精度は良いが、充放電電流により二次電池の内部インピーダンスの影響が生じる動的な状態では、閉回路電圧CCVから推定される開回路電圧OCVと、実際の開回路電圧OCVとの誤差により、残容量の算出精度が悪くなるという課題を有している。   In the remaining capacity calculation method based on the circuit voltage, the relationship between the open circuit voltage OCV and the charging depth SOC is used, and the open circuit voltage OCV is estimated from the closed circuit voltage CCV, so that the influence of the internal impedance of the secondary battery is less likely to occur. The calculation accuracy of the remaining capacity is good in the static state, but in the dynamic state where the influence of the internal impedance of the secondary battery is caused by the charge / discharge current, the open circuit voltage OCV estimated from the closed circuit voltage CCV and the actual There is a problem that the calculation accuracy of the remaining capacity is deteriorated due to an error from the open circuit voltage OCV.

電流積算値に基づく算出手法では、電荷の流入量及び流出量を元に残容量算出を行うため、相対的な残容量の変化を求めることはできるが、絶対的な残容量を求めることはできず電流値の測定誤差が蓄積されてしまう課題を有している。   In the calculation method based on the integrated current value, the remaining capacity is calculated based on the inflow and outflow of charge, so it is possible to determine the relative remaining capacity change, but not the absolute remaining capacity. Therefore, there is a problem in that current value measurement errors are accumulated.

したがって、両手法の長所と短所を補完するために、充電及び放電の終了状態の検出(例えば、特許文献2参照)、及び無負荷の状態での残容量算出には回路電圧に基づく残容量算出手法を用い、充電または放電中の残容量算出には電流積算値に基づく算出手法を用いるのが一般的である。   Therefore, in order to complement the advantages and disadvantages of both methods, the detection of the end state of charging and discharging (see, for example, Patent Document 2) and the calculation of the remaining capacity in the no-load state are performed based on the circuit voltage. In general, a calculation method based on an integrated current value is used to calculate the remaining capacity during charging or discharging using a method.

特開2010−124629号公報JP 2010-124629 A 特開2001−346339号公報JP 2001-346339 A

しかしながら、従来までの構成では、充放電の終端付近において、充放電中での電流積算値に基づく算出手法から回路電圧に基づく残容量算出手法へ切り替える際に、電流積算値に基づく算出手法で蓄積された誤差が図5のように生じ、残容量の維持または飛びが発生してしまう課題を有していた。   However, in the conventional configuration, when switching from the calculation method based on the current integrated value during charging / discharging to the remaining capacity calculation method based on the circuit voltage near the end of charge / discharge, accumulation is performed using the calculation method based on the current integrated value. The generated error occurs as shown in FIG. 5, and there is a problem that the remaining capacity is maintained or skipped.

すなわち、回路電圧に基づく算出手法では、二次電池の内部インピーダンスは固定ではないため、充放電電流と閉回路電圧CCVから推定する開回路電圧OCVに誤差が生じ、残容量算出における誤差が発生する。また、電流積算値に基づく算出手法では電流値の測定誤差は計上されていくが、絶対的な残容量の指標が無いため、回路電圧に基づく算出手法に切り替えるまで測定誤差を低減することはできず、最終的に残容量の維持または飛びの形で現れてきてしまう。   That is, in the calculation method based on the circuit voltage, since the internal impedance of the secondary battery is not fixed, an error occurs in the open circuit voltage OCV estimated from the charge / discharge current and the closed circuit voltage CCV, and an error occurs in the remaining capacity calculation. . In addition, the calculation method based on the integrated current value will account for the measurement error of the current value, but since there is no absolute remaining capacity index, the measurement error can be reduced until switching to the calculation method based on the circuit voltage. In the end, it will appear in the form of maintaining the remaining capacity or flying.

本発明は、前記従来の課題を解決するもので、充放電終端付近での回路電圧に基づく手法と電流積算値に基づく手法との誤差による残容量の維持及び飛びを解消し、安定した残容量の算出手法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, eliminates the remaining capacity maintenance and skipping due to an error between the technique based on the circuit voltage near the charge / discharge terminal and the technique based on the current integrated value, and stabilizes the remaining capacity. The purpose of this is to provide a calculation method.

前記従来の課題を解決するために、本発明の充放電システムは、二次電池の充放電電流を検出する電流検出部と、二次電池の電池電圧を検出する電池電圧検出部と、二次電池の残容量を算出する残容量算出装置と、残容量算出装置は、二次電池の開回路電圧OCVと充電深度SOCとの関係を利用して、閉回路電圧CCVから二次電池の残容量を算出する第1の残容量算出部と、二次電池の充放電電流の積算にて二次電池の残容量を算出する第2の残容量算出部とを備え、第1の残容量算出部で算出される残容量と、第2の残容量算出部で算出される残容量との誤差を、フィードバック制御にて解消することを特徴とする。   In order to solve the conventional problems, a charge / discharge system of the present invention includes a current detection unit that detects a charge / discharge current of a secondary battery, a battery voltage detection unit that detects a battery voltage of the secondary battery, and a secondary battery. The remaining capacity calculating device for calculating the remaining capacity of the battery and the remaining capacity calculating device use the relationship between the open circuit voltage OCV of the secondary battery and the charging depth SOC to determine the remaining capacity of the secondary battery from the closed circuit voltage CCV. A first remaining capacity calculation unit, and a second remaining capacity calculation unit that calculates the remaining capacity of the secondary battery by integrating the charge / discharge current of the secondary battery, the first remaining capacity calculation unit The error between the remaining capacity calculated in step 1 and the remaining capacity calculated by the second remaining capacity calculation unit is eliminated by feedback control.

特にフィードバック制御にPID制御を用いることにより、回路電圧に基づく算出手法と電流積算値に基づく算出手法との誤差の解消を、古典制御論の枠組みで体系化された手法にてヒューリスティックに解決することができる。   In particular, using PID control for feedback control, heuristically resolves the error between the calculation method based on the circuit voltage and the calculation method based on the current integrated value by a method systematized in the framework of classical control theory. Can do.

つまり、二次電池を直流電圧源と内部インピーダンスとしての抵抗成分と容量成分との等価回路にてモデル化した場合、充放電電流による過渡的な応答は、抵抗成分と容量成分により電流値に対する比例動作と微分動作に現れる。   In other words, when a secondary battery is modeled by a DC voltage source and an equivalent circuit of a resistance component and a capacitance component as internal impedance, the transient response due to charge / discharge current is proportional to the current value due to the resistance component and the capacitance component. Appears in motion and differential motion.

従って、PID制御における比例動作P(Proportional)と微分動作D(Derivative)にて、閉回路電圧CCVを目標値としたフィードバックにて開回路電圧OCVを近似的に求めることができる。また、PID制御における積分動作I(Integral)も加えることにより、充電及び放電の終了状態付近において推定される開回路電圧OCVを目標値である閉回路電圧CCVに擬似的に近付けることもできる。   Accordingly, in the proportional operation P (Proportional) and the differential operation D (Derivative) in PID control, the open circuit voltage OCV can be obtained approximately by feedback using the closed circuit voltage CCV as a target value. Further, by adding the integral operation I (Integral) in the PID control, the open circuit voltage OCV estimated in the vicinity of the charging and discharging end states can be approximated to the closed circuit voltage CCV that is the target value.

本構成によって、充電または放電中の残容量の変化は電流積算値に基づく算出手法が支配的になり、充電及び放電の終了状態付近や無負荷の状態での残容量は回路電圧に基づく算出手法が支配的となり、両手法の切り替わりの際に発生していた残容量の維持及び飛びはフィードバック制御で補正される。   With this configuration, changes in the remaining capacity during charging or discharging are dominated by the calculation method based on the integrated current value, and the remaining capacity near the end state of charging and discharging or in the no-load state is calculated based on the circuit voltage. Thus, the remaining capacity maintenance and jumping that occurred when switching between the two methods is corrected by feedback control.

本発明の充放電システムによれば、電流積算値に基づく算出手法によって求まる残容量値を回路電圧に基づく算出手法によって求まる残容量値を目標値としたフィードバック制御により両者の差異を解消することができ、充電及び放電の終了状態付近における残容量値の維持または飛びを解消することができる。   According to the charge / discharge system of the present invention, the difference between the two can be eliminated by feedback control using the remaining capacity value obtained by the calculation method based on the integrated current value as the target value. Thus, the remaining capacity value can be maintained or skipped in the vicinity of the end state of charging and discharging.

また、フィードバック制御にPID制御を用いることにより、二次電池の特性を比例動作Pと微分動作Dと積分動作Iに近似でき、簡略化した演算にてヒューリスティックに二次電池の残容量を算出することができる。   Further, by using PID control for feedback control, the characteristics of the secondary battery can be approximated to the proportional action P, the differential action D, and the integral action I, and the remaining capacity of the secondary battery is calculated heuristically by a simplified calculation. be able to.

本発明の一実施形態に係る残容量算出装置を備えた電池パックの構成の一例を示すブロック図The block diagram which shows an example of a structure of the battery pack provided with the remaining capacity calculation apparatus which concerns on one Embodiment of this invention. 図1に示す残容量算出処理の一例を示すフローチャートThe flowchart which shows an example of the remaining capacity calculation process shown in FIG. 本発明でのフィードバック制御による残容量曲線図Remaining capacity curve diagram by feedback control in the present invention 開回路電圧OCVと二次電池の充電深度SOCとの相関図Correlation diagram between open circuit voltage OCV and charge depth SOC of secondary battery 従来技術の残容量の維持または飛びが発生する放電曲線図Discharge curve diagram for maintaining or skipping the remaining capacity of the prior art

以下本発明を実施するための形態について、図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る残容量算出装置20を備えた電池パック1の構成の一例を示すブロック図である。   FIG. 1 is a block diagram illustrating an example of a configuration of a battery pack 1 including a remaining capacity calculation device 20 according to an embodiment of the present invention.

電池パック1は、二次電池11と、充放電スイッチング素子12と、プラスの接続端子13と、通信用の接続端子14と、マイナスの接続端子15と、残容量算出装置20と、電流検出部21と、電圧検出部22と、温度検出部23と、アナログ/デジタル変換器24と、通信部25を備えている。   The battery pack 1 includes a secondary battery 11, a charge / discharge switching element 12, a positive connection terminal 13, a communication connection terminal 14, a negative connection terminal 15, a remaining capacity calculation device 20, and a current detection unit. 21, a voltage detection unit 22, a temperature detection unit 23, an analog / digital converter 24, and a communication unit 25.

二次電池11は、単電池であってもよく、複数の単電池が直列接続された組電池であってもよく、複数の単電池が並列接続された組電池であってもよく、複数の単電池が直列と並列とが組み合わされて接続された組電池であってもよい。二次電池11としては、例えばリチウムイオン二次電池やニッケル水素二次電池等、種々の二次電池が用いられる。   The secondary battery 11 may be a single battery, an assembled battery in which a plurality of single batteries are connected in series, or an assembled battery in which a plurality of single batteries are connected in parallel. It may be a battery pack in which unit cells are connected in combination of series and parallel. As the secondary battery 11, various secondary batteries such as a lithium ion secondary battery and a nickel hydride secondary battery are used.

充放電スイッチング素子12は、さらに放電用スイッチング素子SW1と充電用スイッチング素子SW2分けて実装でき、例えばFET(Field Effect Transistor)が用いられる。残容量算出装置20により放電終了状態を検出すると、充放電スイッチング素子12はオフされ、放電方向の電流を遮断する。また、残容量算出装置20により充電終了状態を検出すると、充放電スイッチング素子12はオフされ、充電方向の電流を遮断する。   The charging / discharging switching element 12 can be further mounted separately by the discharging switching element SW1 and the charging switching element SW2, and for example, an FET (Field Effect Transistor) is used. When the discharge completion state is detected by the remaining capacity calculation device 20, the charge / discharge switching element 12 is turned off and the current in the discharge direction is cut off. Moreover, when the charge completion state is detected by the remaining capacity calculation device 20, the charge / discharge switching element 12 is turned off, and the current in the charging direction is cut off.

接続端子13,14,15は、電池搭載機器や充電装置等の外部機器と接続される接続端子である。接続端子13,14,15が外部機器と接続されると、二次電池11の放電電流が、接続端子13,15を介して外部機器へ供給されたり、外部機器から出力された充電電圧が、接続端子13,15を介して二次電池11へ印加されたりする。また、接続端子14は通信部25が充放電に関係するデータを送受信するための端子である。   The connection terminals 13, 14, and 15 are connection terminals that are connected to external devices such as battery-equipped devices and charging devices. When the connection terminals 13, 14, and 15 are connected to an external device, the discharge current of the secondary battery 11 is supplied to the external device via the connection terminals 13 and 15, or the charging voltage output from the external device is The voltage is applied to the secondary battery 11 via the connection terminals 13 and 15. The connection terminal 14 is a terminal for the communication unit 25 to transmit / receive data related to charging / discharging.

通信部25は、接続端子14を介して外部機器との間でデータ送受信可能に構成された通信インターフェイス回路である。   The communication unit 25 is a communication interface circuit configured to be able to transmit / receive data to / from an external device via the connection terminal 14.

電流検出部21は二次電池11の充放電電流値を電圧へ変換する。温度検出部23は二次電池の温度を電圧へ変換する。   The current detection unit 21 converts the charge / discharge current value of the secondary battery 11 into a voltage. The temperature detection unit 23 converts the temperature of the secondary battery into a voltage.

アナログ/デジタル変換器24は、電流検出部21や、電圧検出部22や、温度検出部23で検出された、二次電池11の電流,電圧,温度のアナログ電圧値をデジタル値へ変換する。   The analog / digital converter 24 converts the analog voltage values of the current, voltage, and temperature of the secondary battery 11 detected by the current detection unit 21, the voltage detection unit 22, and the temperature detection unit 23 into digital values.

残容量算出装置20は、回路電圧に基づく残容量算出部201と、電流積算に基づく残容量算出部202と、残容量フィードバック制御部203を備えている。   The remaining capacity calculation device 20 includes a remaining capacity calculation unit 201 based on circuit voltage, a remaining capacity calculation unit 202 based on current integration, and a remaining capacity feedback control unit 203.

残容量算出装置20は、アナログ/デジタル変換器24から入力される、二次電池11の電流値Ic,電圧値Vb,温度値Tbを用いて、電池パック1の残容量値を算出し、通信部25を通じて電池パック1の残容量を外部機器に送信し、また、残容量値に応じて充放電スイッチング素子12のオン,オフを制御する。   The remaining capacity calculation device 20 calculates the remaining capacity value of the battery pack 1 using the current value Ic, voltage value Vb, and temperature value Tb of the secondary battery 11 input from the analog / digital converter 24, and performs communication. The remaining capacity of the battery pack 1 is transmitted to the external device through the unit 25, and on / off of the charge / discharge switching element 12 is controlled according to the remaining capacity value.

上述のように構成された残容量算出装置20の動作について説明をする。図2は、図1に示す残容量算出処理の一例を示すフローチャートである。   The operation of the remaining capacity calculation device 20 configured as described above will be described. FIG. 2 is a flowchart showing an example of the remaining capacity calculation process shown in FIG.

まず、電流検出部21が二次電池11の充放電の電流を測定する(ステップS211)。そして、電圧検出部22が二次電池11の閉回路電圧CCVを測定する(ステップS212)。また、温度検出部23が二次電池11の温度を測定する(ステップS213)。   First, the current detector 21 measures the charge / discharge current of the secondary battery 11 (step S211). And the voltage detection part 22 measures the closed circuit voltage CCV of the secondary battery 11 (step S212). Moreover, the temperature detection part 23 measures the temperature of the secondary battery 11 (step S213).

これらの測定データを用いて、回路電圧に基づく残容量算出部201は、残容量算出装置20に記録されている二次電池の開回路電圧OCVと充電深度SOCの変換表を用いて、二次電池11の閉回路電圧Vbを充電深度に変換し、回路電圧に基づく残容量Rm1を算出する(ステップS221)。   Using these measurement data, the remaining capacity calculation unit 201 based on the circuit voltage uses the conversion table of the open circuit voltage OCV and the charging depth SOC of the secondary battery recorded in the remaining capacity calculation device 20 to obtain the secondary battery. The closed circuit voltage Vb of the battery 11 is converted into a charging depth, and the remaining capacity Rm1 based on the circuit voltage is calculated (step S221).

電流積算に基づく残容量算出部202は、二次電池11の電流値Icを充電方向であれば正の値に、放電方向であれば負の値として容量dQに変換し、dQを積算していき、電流積算に基づく残容量Rm2を算出する(ステップS222)。   The remaining capacity calculation unit 202 based on the current integration converts the current value Ic of the secondary battery 11 to a positive value if the charging direction is positive and to a capacity dQ as a negative value if the discharging direction is, and integrates dQ. The remaining capacity Rm2 based on the current integration is calculated (step S222).

残容量フィードバック制御部203は、回路電圧に基づく残容量算出部201で算出される残容量Rm1を目標値として、電流積算に基づく残容量算出部202で算出される残容量Rm2をフィードバック制御し、残容量Rm1と残容量Rm2との差分を縮小させていき、残容量Rm2を電池パック1の残容量Rmとして算出する(ステップS223)。   The remaining capacity feedback control unit 203 feedback-controls the remaining capacity Rm2 calculated by the remaining capacity calculation unit 202 based on current integration using the remaining capacity Rm1 calculated by the remaining capacity calculation unit 201 based on the circuit voltage as a target value. The difference between the remaining capacity Rm1 and the remaining capacity Rm2 is reduced, and the remaining capacity Rm2 is calculated as the remaining capacity Rm of the battery pack 1 (step S223).

特に、フィードバック制御としてPID制御を用いる場合は、以下の式を用いて電池パック1の残容量Rmを求める。   In particular, when PID control is used as feedback control, the remaining capacity Rm of the battery pack 1 is obtained using the following equation.

Rm1 = ConvVoltToCAP(Vb) ・・・(1)
Rm2old =Rm2 ・・・(2)
Rm2 = Rm2+dQ ・・・(3)
Rm2 = Rm2+Kp・(Rm1−Rm2)
+Ki・ΣdRm2+Kd・dRm2/dT・・・(4)
dRm2 = Rm2−Rm2old ・・・(5)
Rm =Rm2 ・・・(6)
式(1)は、回路電圧に基づく残容量算出部201における、二次電池11の閉回路電圧Vbから残容量Rm1への変換を示している。
Rm1 = ConvVoltToCAP (Vb) (1)
Rm2old = Rm2 (2)
Rm2 = Rm2 + dQ (3)
Rm2 = Rm2 + Kp. (Rm1-Rm2)
+ Ki · ΣdRm2 + Kd · dRm2 / dT (4)
dRm2 = Rm2-Rm2old (5)
Rm = Rm2 (6)
Expression (1) indicates conversion from the closed circuit voltage Vb of the secondary battery 11 to the remaining capacity Rm1 in the remaining capacity calculation unit 201 based on the circuit voltage.

式(2)は、電流積算に基づく残容量算出部202、及び残容量フィードバック制御部203における、残容量Rm2の変化量を求めるための前回値の記録を示している。   Expression (2) shows the recording of the previous value for obtaining the amount of change in the remaining capacity Rm2 in the remaining capacity calculation section 202 and the remaining capacity feedback control section 203 based on current integration.

式(3)は、電流積算に基づく残容量算出部202における、dQによる積算での残容量Rm2の算出を示している。   Formula (3) shows calculation of the remaining capacity Rm2 in the integration by dQ in the remaining capacity calculation unit 202 based on the current integration.

式(4)は、PID制御による残容量Rm1を目標値とした残容量Rm2のフィードバック制御を示している。Kpは比例係数、Kiは積分係数、Kdは微分係数であり、項(Rm1−Rm2)は目標値との差分、ΣdRm2はRm2の変化量の積算値、dRm2/dTはRm2の変化速度を示している。   Expression (4) represents feedback control of the remaining capacity Rm2 with the remaining capacity Rm1 by PID control as a target value. Kp is a proportional coefficient, Ki is an integral coefficient, Kd is a differential coefficient, the term (Rm1-Rm2) is the difference from the target value, ΣdRm2 is the integrated value of the change amount of Rm2, and dRm2 / dT is the change rate of Rm2. ing.

式(5)は、電流積算に基づく残容量算出部202、及び残容量フィードバック制御部203における、残容量Rm2の変化量算出を示している。   Equation (5) shows calculation of the amount of change in the remaining capacity Rm2 in the remaining capacity calculation unit 202 and the remaining capacity feedback control unit 203 based on current integration.

式(6)は、残容量Rm2を電池パック1の残容量Rmとしての算出を示している。   Equation (6) shows calculation using the remaining capacity Rm2 as the remaining capacity Rm of the battery pack 1.

ステップS223で残容量算出装置20が残容量を補正した後、残容量算出装置20は通信部25に送信する通信データを更新する(ステップS231)。   After the remaining capacity calculation device 20 corrects the remaining capacity in step S223, the remaining capacity calculation device 20 updates the communication data transmitted to the communication unit 25 (step S231).

また、残容量算出装置20は補正した残容量値に応じて充放電スイッチング素子12のオン,オフを制御する(ステップS232)。   Further, the remaining capacity calculation device 20 controls on / off of the charge / discharge switching element 12 according to the corrected remaining capacity value (step S232).

図3は、図5の従来技術と同様に単位時間に対して放電電流が変動したときの残容量算出装置20における、回路電圧に基づく残容量算出部201において二次電池11の閉回路電圧Vbにて擬似的に算出した残容量Rm1と、残容量フィードバック制御部203にて算出した残容量Rmとの関係を示している。   FIG. 3 shows the closed circuit voltage Vb of the secondary battery 11 in the remaining capacity calculation unit 201 based on the circuit voltage in the remaining capacity calculation device 20 when the discharge current fluctuates with respect to the unit time as in the prior art of FIG. 4 shows the relationship between the remaining capacity Rm1 calculated in a pseudo manner and the remaining capacity Rm calculated by the remaining capacity feedback control unit 203.

まず、測定された放電電流値と閉回路電圧CCVから開回路OCVとの内部インピーダンスによる誤差を回路電圧に基づく残容量算出部201算出する。そして、二次電池の開回路電圧OCVと充電深度SOCの変換表を用いて、二次電池11の閉回路電圧Vbを充電深度に変換し、回路電圧に基づく残容量Rm1が算出される。   First, the remaining capacity calculation unit 201 based on the circuit voltage calculates an error due to the internal impedance of the open circuit OCV from the measured discharge current value and the closed circuit voltage CCV. Then, using the conversion table of the open circuit voltage OCV and the charge depth SOC of the secondary battery, the closed circuit voltage Vb of the secondary battery 11 is converted into the charge depth, and the remaining capacity Rm1 based on the circuit voltage is calculated.

最後に、残容量Rm1は充放電電流値の変化に対して過渡的な応答が現れるが、残容量フィードバック制御部203が電流積算に基づく残容量算出部202で算出された残容量Rm2を用い、残容量Rmは残容量Rm1を目標値としてフィードバック制御により算出されるため、放電電流値の変化に対して緩やかな応答となる。   Finally, the remaining capacity Rm1 shows a transient response to the change in the charge / discharge current value, but the remaining capacity feedback control unit 203 uses the remaining capacity Rm2 calculated by the remaining capacity calculation unit 202 based on current integration, Since the remaining capacity Rm is calculated by feedback control using the remaining capacity Rm1 as a target value, it has a gradual response to changes in the discharge current value.

これにより、充放電終端に向かって残容量Rmは残容量Rm1に漸近するため、充放電終端付近における残容量Rmの急激な維持及び飛びは発生しない。   As a result, the remaining capacity Rm gradually approaches the remaining capacity Rm1 toward the charging / discharging terminal, so that the rapid maintenance and jumping of the remaining capacity Rm in the vicinity of the charging / discharging terminal do not occur.

かかる構成によれば、二次電池の開回路電圧OCVと充電深度SOCとの関係を利用して、閉回路電圧CCVから算出した二次電池の残容量と、二次電池の充放電電流の積算にて算出した二次電池の残容量との誤差を、フィードバック制御にて解消することにより、充電及び放電の終了状態付近において推定される開回路電圧OCVを目標値である閉回路電圧CCVに擬似的に近付けることもでき、充電及び放電の終了状態付近における残容量値の維持または飛びを解消することができる。   According to this configuration, the remaining capacity of the secondary battery calculated from the closed circuit voltage CCV and the charge / discharge current of the secondary battery are calculated using the relationship between the open circuit voltage OCV and the charging depth SOC of the secondary battery. The open circuit voltage OCV estimated in the vicinity of the end state of charge and discharge is simulated to the closed circuit voltage CCV that is the target value by eliminating the error from the remaining capacity of the secondary battery calculated in step 3 by feedback control. The remaining capacity value can be maintained or skipped in the vicinity of the charging and discharging end states.

なお、本実施の形態において、フィードバック制御としてとしてPID制御としたが、より簡略化したP制御(比例動作)、PI制御(比例積分動作)、PD制御(比例微分動作)としても良く、これらは各係数Ki,Kdを0とすることで代用可能である。   In this embodiment, PID control is used as feedback control. However, simplified P control (proportional operation), PI control (proportional integral operation), and PD control (proportional derivative operation) may be used. Substitution is possible by setting each coefficient Ki, Kd to 0.

本発明に係る二次電池の残容量算出手法、及びこの残容量算出装置を備える電池パックは、簡略化した演算にて充放電の終端付近における残容量値の維持または飛びを解消した残容量の算出が可能となるので、携帯型パーソナルコンピュータやデジタルカメラ、携帯電話機等の電子機器等、種々の電池搭載装置に用いられる二次電池の残容量算出装置、及び電池パックとして有用である。   The method for calculating the remaining capacity of the secondary battery according to the present invention and the battery pack provided with the remaining capacity calculating device are provided with a remaining capacity that is obtained by eliminating the maintenance or skipping of the remaining capacity value in the vicinity of the terminal end of charging and discharging by simplified calculation. Since calculation is possible, it is useful as a remaining battery capacity calculation device for secondary batteries used in various battery-mounted devices such as portable personal computers, digital cameras, and mobile phones, and battery packs.

1 電池パック
11 二次電池
12 充放電スイッチング素子
13〜15 接続端子
20 残容量算出装置
21 電流検出部
22 電圧検出部
23 温度検出部
24 アナログ/デジタル変換器
25 通信部
201 回路電圧に基づく残容量算出部
202 電流積算に基づく残容量算出部
203 残容量フィードバック制御部
DESCRIPTION OF SYMBOLS 1 Battery pack 11 Secondary battery 12 Charging / discharging switching element 13-15 Connection terminal 20 Remaining capacity calculation apparatus 21 Current detection part 22 Voltage detection part 23 Temperature detection part 24 Analog / digital converter 25 Communication part 201 Remaining capacity based on circuit voltage Calculation unit 202 Remaining capacity calculation unit based on current integration 203 Remaining capacity feedback control unit

Claims (5)

二次電池の充放電電流を検出する電流検出部と、
前記二次電池の電池電圧を検出する電池電圧検出部と、
前記二次電池の残容量を算出する残容量算出装置と、
前記残容量算出装置は、
前記二次電池の開回路電圧OCVと充電深度SOCとの関係を利用して、閉回路電圧CCVから前記二次電池の残容量を算出する第1の残容量算出部と、
前記二次電池の充放電電流の積算にて前記二次電池の残容量を算出する第2の残容量算出部とを備え、
前記第1の残容量算出部で算出される残容量と、前記第2の残容量算出部で算出される残容量との誤差を、フィードバック制御にて解消することを特徴とする、充放電システム。
A current detector for detecting a charge / discharge current of the secondary battery;
A battery voltage detector for detecting a battery voltage of the secondary battery;
A remaining capacity calculating device for calculating a remaining capacity of the secondary battery;
The remaining capacity calculation device
A first remaining capacity calculator that calculates a remaining capacity of the secondary battery from a closed circuit voltage CCV using a relationship between the open circuit voltage OCV of the secondary battery and a charging depth SOC;
A second remaining capacity calculator that calculates the remaining capacity of the secondary battery by integrating the charge / discharge current of the secondary battery;
An error between the remaining capacity calculated by the first remaining capacity calculator and the remaining capacity calculated by the second remaining capacity calculator is eliminated by feedback control. .
前記フィードバック制御をPID制御により行う、請求項1に記載の充放電システム。   The charge / discharge system according to claim 1, wherein the feedback control is performed by PID control. 前記二次電池の導電経路にスイッチング素子を備え、前記残容量算出装置にて算出する残容量にて前記スイッチング素子を制御することを特徴とする、請求項2記載の充放電システム。   The charging / discharging system according to claim 2, wherein a switching element is provided in a conductive path of the secondary battery, and the switching element is controlled by a remaining capacity calculated by the remaining capacity calculating device. 外部機器との通信端子と、前記外部機器との間でデータ送受信可能に構成された通信部とを備え、
前記残容量算出装置にて算出する残容量を前記外部機器へ通信することを特徴とする、請求項2記載の充放電システム。
A communication terminal with an external device, and a communication unit configured to be able to transmit and receive data between the external device,
The charge / discharge system according to claim 2, wherein the remaining capacity calculated by the remaining capacity calculation device is communicated to the external device.
請求項1〜4のいずれか1項に記載の充放電システムと、
前記二次電池とを備えることを特徴とする電池パック。
The charge / discharge system according to any one of claims 1 to 4,
A battery pack comprising the secondary battery.
JP2011279432A 2011-12-21 2011-12-21 Charging/discharging system and battery pack Pending JP2013130448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279432A JP2013130448A (en) 2011-12-21 2011-12-21 Charging/discharging system and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279432A JP2013130448A (en) 2011-12-21 2011-12-21 Charging/discharging system and battery pack

Publications (1)

Publication Number Publication Date
JP2013130448A true JP2013130448A (en) 2013-07-04

Family

ID=48908120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279432A Pending JP2013130448A (en) 2011-12-21 2011-12-21 Charging/discharging system and battery pack

Country Status (1)

Country Link
JP (1) JP2013130448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122503A (en) * 2014-07-30 2014-10-29 厦门科华恒盛股份有限公司 Constant-voltage retrospective online testing device and constant-voltage retrospective online testing method for batteries of uninterrupted power systems
JP2018129209A (en) * 2017-02-09 2018-08-16 株式会社ケーヒン Power supply device
US10183664B2 (en) * 2016-08-30 2019-01-22 Hyundai Motor Company Vehicle system, battery system and control method thereof
WO2023132563A1 (en) * 2022-01-06 2023-07-13 주식회사 엘지에너지솔루션 Charging control method for battery pack, and battery system using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122503A (en) * 2014-07-30 2014-10-29 厦门科华恒盛股份有限公司 Constant-voltage retrospective online testing device and constant-voltage retrospective online testing method for batteries of uninterrupted power systems
US10183664B2 (en) * 2016-08-30 2019-01-22 Hyundai Motor Company Vehicle system, battery system and control method thereof
JP2018129209A (en) * 2017-02-09 2018-08-16 株式会社ケーヒン Power supply device
WO2023132563A1 (en) * 2022-01-06 2023-07-13 주식회사 엘지에너지솔루션 Charging control method for battery pack, and battery system using same

Similar Documents

Publication Publication Date Title
US20220082631A1 (en) Method and apparatus for determining the state of health and state of charge of lithium sulfur batteries
JP6403746B2 (en) Battery state estimation device
JP6848144B2 (en) A device for estimating the charge state of a secondary battery and its method
JP5863603B2 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
JP5318128B2 (en) Battery charge rate estimation device
JP4571000B2 (en) Remaining capacity calculation device for power storage device
US10408887B2 (en) Method for estimating degradation of rechargeable battery, degradation estimation circuit, electronic apparatus and vehicle including same
TWI422849B (en) Battery capacity estimation by dcir
US20140095092A1 (en) State evaluation apparatus of secondary battery, state evaluation method of secondary battery, and computer-readable medium storing state evaluation program of secondary battery
KR102349235B1 (en) Apparatus and method for estimating state of charge for battery
KR20140139322A (en) Battery management system and driving method thereof
JP2011169817A (en) Battery state detection device
US9891287B2 (en) Temperature-compensated state of charge estimation for rechargeable batteries
JP6958965B2 (en) Battery SOC Estimator and Method
US20170199250A1 (en) Apparatus and method for estimating open circuit voltage
JP2015185284A (en) Secondary-battery internal temperature estimating device and method
JP2018054371A (en) Battery device and method of setting parameter
JP2013130448A (en) Charging/discharging system and battery pack
JP2012198175A (en) Battery state monitor device
JP5851514B2 (en) Battery control device, secondary battery system
JP6350174B2 (en) Battery system control device and battery system control method
JP2011172415A (en) Secondary battery device
JP2015114135A (en) Battery control device
JP5601214B2 (en) Battery capacity correction device and battery capacity correction method
JP2010002374A (en) Battery pack