JP2013129000A - Processing method and processsing device - Google Patents

Processing method and processsing device Download PDF

Info

Publication number
JP2013129000A
JP2013129000A JP2011278454A JP2011278454A JP2013129000A JP 2013129000 A JP2013129000 A JP 2013129000A JP 2011278454 A JP2011278454 A JP 2011278454A JP 2011278454 A JP2011278454 A JP 2011278454A JP 2013129000 A JP2013129000 A JP 2013129000A
Authority
JP
Japan
Prior art keywords
processing
workpiece
post
tooth
phase shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011278454A
Other languages
Japanese (ja)
Other versions
JP5957872B2 (en
Inventor
Takashi Otani
尚 大谷
Hiroyuki Nakano
浩之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011278454A priority Critical patent/JP5957872B2/en
Publication of JP2013129000A publication Critical patent/JP2013129000A/en
Application granted granted Critical
Publication of JP5957872B2 publication Critical patent/JP5957872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gear Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method by which alignment between pre-processing and post-processing can be accurately and easily performed, and to provide a processing device miniaturized by simple structure.SOLUTION: A workpiece is subjected to pre-processing and post-processing while the workpiece is attached to an attaching part. Consequently, the position information of the post-processing is calculated based on the position information of the pre-processing. By measuring the predetermined position of the workpiece after the pre-processing, phase shifting of the post-processing from the pre-processing is calculated. Thus, alignment between the pre-processing and the post-processing and phase indexing are accurately and easily performed. Consequently, since no positional deviation occurs between the pre-processing and the post-processing, processing accuracy is improved. Further, since detaching of the workpiece between the pre-processing and the post-processing is unnecessary, setup time for the post-processing can be shortened.

Description

本発明は、前加工用工具と後加工用工具との交換が可能であり、工作物の取付部に取付けた工作物に対し前加工用工具を相対移動および相対回転させることにより前加工を行い、工作物を取付部に取付けたままで工作物に対し後加工用工具を相対移動および相対回転させることにより後加工を行う加工方法および加工装置に関する。   In the present invention, the pre-processing tool and the post-processing tool can be exchanged, and the pre-processing is performed by relative movement and relative rotation of the pre-processing tool with respect to the workpiece attached to the workpiece mounting portion. The present invention relates to a processing method and a processing apparatus for performing post-processing by relatively moving and relatively rotating a post-processing tool with respect to a workpiece while the workpiece is mounted on a mounting portion.

例えば、特許文献1には、前加工としてホブにより工作物を歯切り加工し、その後に後加工としてエンドミルにより歯面の面取り加工するときの歯面の位置合わせおよび位相割出し方法が開示されている。この方法は、近接スイッチが歯車の歯先または歯溝を検出したときに、タッチセンサが歯溝上に位置されるように、近接スイッチとタッチセンサとの位置関係を予め設定する。そして、近接スイッチが歯先または歯溝を検出するまで歯車を回転させ、タッチセンサを歯溝に進入させ、タッチセンサが歯面を検出するまで歯車を回転させる。これにより、歯溝の位置調整を工作物を目視することなく容易かつ確実に行うことができる。   For example, Patent Document 1 discloses a tooth surface positioning and phase indexing method when a workpiece is cut by a hob as a pre-processing, and then a tooth surface is chamfered by an end mill as a post-processing. Yes. In this method, the positional relationship between the proximity switch and the touch sensor is set in advance so that the touch sensor is positioned on the tooth gap when the proximity switch detects the tooth tip or tooth gap of the gear. Then, the gear is rotated until the proximity switch detects the tooth tip or the tooth gap, the touch sensor enters the tooth groove, and the gear is rotated until the touch sensor detects the tooth surface. Thereby, the position adjustment of a tooth gap can be performed easily and reliably without visually checking a workpiece.

特開平3−228519号公報JP-A-3-228519

上述の特許文献1に記載の方法では、近接スイッチが歯先または歯溝を検出するまで歯車を回転させ、タッチセンサを歯溝に進入させ、タッチセンサが歯面を検出するまで歯車を回転させる必要があるため、前加工と後加工との位置合わせおよび位相割出しに手間が掛かっている。また、近接スイッチ、タッチセンサおよびそれらを保持するホルダ等を備える必要があり、その設置スペースが必要になると共に装置コストが嵩む傾向にある。   In the method described in Patent Document 1 described above, the gear is rotated until the proximity switch detects the tooth tip or the tooth gap, the touch sensor is entered into the tooth groove, and the gear is rotated until the touch sensor detects the tooth surface. Since this is necessary, it takes time and effort to position and phase index the pre-processing and post-processing. Moreover, it is necessary to provide a proximity switch, a touch sensor, a holder for holding them, and the like, which requires an installation space and tends to increase the device cost.

本発明は、このような事情に鑑みてなされたものであり、前加工と後加工との位置合わせおよび位相割出しを正確に且つ簡易に行うことが可能な加工方法および簡易な構成により低コスト化が可能な加工装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and is low in cost by a processing method and a simple configuration capable of accurately and simply performing alignment and phase indexing between pre-processing and post-processing. An object of the present invention is to provide a processing device that can be manufactured.

(加工方法)
(請求項1)本発明の加工方法は、工作物に対し前加工用工具を相対移動および相対回転させることにより前加工を行う前加工工程と、前記前加工用工具を後加工用工具に交換する工具交換工程と、前記前加工における前記工作物と前記前加工用工具との相対位置に基づいて、前記後加工における前記工作物と前記後加工用工具との相対位置を算出する位置演算工程と、前記後加工における前記工作物の基準位置と前記工作物の回転軸における基準位置との前記回転軸における位相ずれを算出するための前記工作物の所定位置を測定する位置測定工程と、測定した前記工作物の所定位置に基づいて、前記位相ずれを算出する位相演算工程と、算出した前記位相ずれに基づいて、前記工作物の前記後加工用工具に対する位相割出しを行う位相割出し工程と、算出した前記工作物と前記後加工用工具との相対位置に基づいて、前記工作物の取付部に前記工作物を取付けたままで前記工作物に対し前記後加工用工具を相対移動および相対回転させることにより後加工を行う後加工工程と、を備える。
(Processing method)
(Claim 1) The machining method of the present invention includes a pre-machining step of performing pre-machining by relatively moving and relatively rotating a pre-machining tool with respect to a workpiece, and replacing the pre-machining tool with a post-machining tool. And a position calculating step for calculating a relative position between the workpiece and the post-processing tool in the post-processing based on a relative position between the workpiece and the pre-processing tool in the pre-processing. A position measuring step for measuring a predetermined position of the workpiece for calculating a phase shift in the rotation axis between a reference position of the workpiece in the post-processing and a reference position of the rotation axis of the workpiece; and a measurement A phase calculating step for calculating the phase shift based on the predetermined position of the workpiece, and a phase index for performing phase indexing of the workpiece with respect to the post-processing tool based on the calculated phase shift. And relative movement of the post-processing tool with respect to the work piece while the work piece is attached to the attachment portion of the work piece based on the calculated relative position between the work piece and the post-processing tool. And a post-processing step for performing post-processing by relative rotation.

(請求項2)また、前記前加工工程は、平歯の歯切りを行い、前記位置測定工程は、前記平歯の歯厚方向の所定位置を測定し、前記位相演算工程は、測定した前記平歯の歯厚方向の所定位置に基づいて、前記平歯の歯面の基準位置と前記工作物の回転軸における基準位置との前記回転軸における位相ずれ角を算出し、前記位相割出し工程は、算出した前記位相ずれ角で前記工作物を回転し、前記後加工工程は、前記平歯の歯面に対する加工を行うとよい。   (Claim 2) In addition, the pre-processing step performs gear cutting of a flat tooth, the position measuring step measures a predetermined position in the tooth thickness direction of the flat tooth, and the phase calculation step measures the measured Based on a predetermined position in the tooth thickness direction of the flat tooth, a phase shift angle in the rotation axis between a reference position of the tooth surface of the flat tooth and a reference position in the rotation axis of the workpiece is calculated, and the phase indexing step The workpiece may be rotated at the calculated phase shift angle, and the post-processing step may perform processing on the tooth surface of the spur tooth.

(請求項3)また、前記前加工工程は、はす歯の歯切りを行い、前記位置測定工程は、前記はす歯の歯幅方向の所定位置を測定すると共に、前記はす歯の歯厚方向の所定位置を測定し、前記位相演算工程は、測定した前記はす歯の歯幅方向の所定位置と前記工作物の回転軸における基準位置との前記回転軸における第1の位相ずれ角を算出すると共に、測定した前記はす歯の歯厚方向の所定位置に基づいて、前記はす歯の歯面の基準位置と前記工作物の回転軸における基準位置との前記回転軸における第2の位相ずれ角を算出し、前記位相割出し工程は、算出した前記第1および第2の位相ずれ角で前記工作物を回転し、前記後加工工程は、前記はす歯の歯面に対する加工を行うとよい。   (Claim 3) Further, the pre-processing step performs cutting of a helical tooth, and the position measuring step measures a predetermined position in the tooth width direction of the helical tooth, and the tooth of the helical tooth A predetermined position in the thickness direction is measured, and the phase calculating step includes a first phase shift angle on the rotation axis between the measured predetermined position in the tooth width direction of the helical tooth and a reference position on the rotation axis of the workpiece. And a second position on the rotation axis between the reference position of the tooth surface of the helical tooth and the reference position on the rotation axis of the workpiece based on the measured predetermined position in the thickness direction of the helical tooth. The phase indexing step calculates the phase shift angle, the phase indexing step rotates the workpiece with the calculated first and second phase shift angles, and the post-processing step includes processing the tooth surface of the helical tooth. It is good to do.

(請求項4)また、前記位相演算工程および前記位相割出し工程を繰り返すことにより、前記第1の位相ずれ角を0にするとよい。   (Claim 4) The first phase shift angle may be set to 0 by repeating the phase calculation step and the phase indexing step.

(加工装置)
(請求項5)本発明の加工装置は、前加工用工具と後加工用工具との交換が可能であり、工作物の取付部に取付けた前記工作物に対し前記前加工用工具を相対移動および相対回転させることにより前加工を行い、前記工作物を前記取付部に取付けたままで前記工作物に対し前記後加工用工具を相対移動および相対回転させることにより後加工を行う加工装置であって、前記工作物に接触して信号を出力するタッチセンサ手段と、前記前加工および前記後加工に必要な情報を記憶する記憶手段と、前記記憶手段から読出した前記前加工における前記工作物と前記前加工用工具との相対位置に基づいて、前記後加工における前記工作物と前記後加工用工具との相対位置を算出して前記記憶手段に記憶する位置演算手段と、前記後加工における前記工作物の基準位置と前記工作物の回転軸における基準位置との前記回転軸における位相ずれを算出するための前記工作物の所定位置を、前記タッチセンサ手段から入力する前記信号に基づいて測定して前記記憶手段に記憶する位置測定手段と、前記記憶手段から読出した前記工作物の所定位置に基づいて、前記位相ずれを算出して前記記憶手段に記憶する位相演算手段と、前記前加工を行い、前記記憶手段から読出した前記位相ずれに基づいて、前記工作物の前記後加工用工具に対する位相割出しを行い、前記記憶手段から読出した前記工作物と前記後加工用工具との相対位置に基づいて前記後加工を行う加工制御手段と、を備える。
(Processing equipment)
(Claim 5) The machining apparatus according to the present invention is capable of exchanging a pre-machining tool and a post-machining tool, and relatively moving the pre-machining tool with respect to the work piece attached to the attachment portion of the work piece. And a processing device for performing post-processing by performing pre-processing by rotating relative to the workpiece and performing relative processing and rotating the post-processing tool relative to the workpiece while the workpiece is mounted on the mounting portion. Touch sensor means for outputting a signal in contact with the workpiece; storage means for storing information necessary for the pre-processing and the post-processing; the workpiece in the pre-processing read from the storage means; Based on the relative position with the pre-processing tool, the position calculating means for calculating the relative position between the workpiece and the post-processing tool in the post-processing and storing it in the storage means; A predetermined position of the workpiece for calculating a phase shift in the rotation axis between a reference position of the crop and a reference position in the rotation axis of the workpiece is measured based on the signal input from the touch sensor means. Based on a position measuring means stored in the storage means, a phase calculation means for calculating the phase shift based on a predetermined position of the workpiece read from the storage means and storing it in the storage means, and performing the pre-processing Then, based on the phase shift read from the storage means, the phase of the workpiece is indexed with respect to the post-processing tool, and the relative position between the workpiece read from the storage means and the post-processing tool is determined. Processing control means for performing the post-processing on the basis thereof.

(請求項1)本発明によると、工作物を取付部に取付けたままで前加工および後加工を行うので、前加工の位置情報に基づいて、後加工の位置情報を算出することができる。また、前加工後の工作物の所定位置を測定することにより、前加工に対する後加工の位相ずれを算出することができる。これにより、前加工と後加工との位置合わせおよび位相割出しを正確に且つ簡易に行うことが可能となる。よって、前加工と後加工との位置ずれが発生しないため、加工精度を向上させることができる。さらに、前加工と後加工との間で工作物を脱着する必要がないため、後加工のための段取り時間を短縮させることができる。   (Claim 1) According to the present invention, since the pre-processing and post-processing are performed with the workpiece attached to the attachment portion, the post-processing position information can be calculated based on the pre-processing position information. Moreover, the phase shift of the post-processing with respect to the pre-processing can be calculated by measuring the predetermined position of the workpiece after the pre-processing. This makes it possible to accurately and easily perform alignment and phase indexing between pre-processing and post-processing. Therefore, since the position shift between the pre-processing and the post-processing does not occur, the processing accuracy can be improved. Furthermore, since it is not necessary to detach the workpiece between pre-processing and post-processing, the setup time for post-processing can be shortened.

(請求項2)前加工工程において平歯の歯切りを行う場合には、平歯の歯厚方向の所定位置を測定し、該所定位置に基づいて平歯の歯面の基準位置と工作物の回転軸における基準位置との回転軸における位相ずれ角を算出するようにしている。これにより、前加工と後加工との位置合わせおよび位相割出しを正確に且つ簡易に行うことが可能となり、後加工工程において平歯の歯面に対する加工を行う場合には、平歯の歯面を後加工用工具により高精度に加工することが可能となる。   (Claim 2) When cutting a flat tooth in the pre-machining step, a predetermined position in the tooth thickness direction of the flat tooth is measured, and the reference position of the tooth surface of the flat tooth and the workpiece are determined based on the predetermined position. The phase shift angle on the rotation axis with respect to the reference position on the rotation axis is calculated. This makes it possible to accurately and easily perform positioning and phase indexing between the pre-processing and post-processing, and when performing processing on the tooth surface of the flat tooth in the post-processing step, Can be processed with high accuracy by a post-processing tool.

(請求項3)前加工工程においてはす歯の歯切りを行う場合には、はす歯の歯幅方向の所定位置およびはす歯の歯厚方向の所定位置を測定し、歯幅方向の所定位置と工作物の回転軸における基準位置との回転軸における第1の位相ずれ角を算出すると共に、歯厚方向の所定位置に基づいてはす歯の歯面の基準位置と工作物の回転軸における基準位置との回転軸における第2の位相ずれ角を算出するようにしている。これにより、前加工と後加工との位置合わせおよび位相割出しを正確に且つ簡易に行うことが可能となり、後加工工程においてはす歯の歯面に対する加工を行う場合には、はす歯の歯面を後加工用工具により高精度に加工することが可能となる。   (Claim 3) When cutting a tooth in the pre-processing step, a predetermined position in the tooth width direction of the helical tooth and a predetermined position in the tooth thickness direction of the helical tooth are measured, and the tooth width direction is measured. The first phase shift angle on the rotation axis between the predetermined position and the reference position on the rotation axis of the workpiece is calculated, and the reference position of the tooth surface of the helical tooth based on the predetermined position in the tooth thickness direction and the rotation of the workpiece The second phase shift angle on the rotation axis with respect to the reference position on the axis is calculated. This makes it possible to accurately and easily perform positioning and phase indexing between pre-processing and post-processing, and when processing the tooth surface of a tooth in the post-processing step, The tooth surface can be processed with high accuracy by a post-processing tool.

(請求項4)はす歯の歯幅方向の所定位置を測定し、歯幅方向の所定位置に基づいてはす歯の歯面と後加工用工具による加工基準点との第1の位相ずれ角を算出する工程を繰り返して第1の位相ずれ角を0にしている。これにより、歯面が例えばインボリュート曲線の曲面に形成されている場合であっても、前加工と後加工との位置合わせおよび位相割出しを正確に且つ簡易に行うことが可能となる。   (Claim 4) A predetermined position in the tooth width direction of the helical tooth is measured, and the first phase shift between the tooth surface of the helical tooth and the processing reference point by the post-processing tool based on the predetermined position in the tooth width direction. The first phase shift angle is set to 0 by repeating the step of calculating the angle. As a result, even when the tooth surface is formed in, for example, a curved surface of an involute curve, it is possible to accurately and easily perform alignment and phase indexing between the pre-processing and the post-processing.

(請求項5)本発明の加工装置によれば、上述した加工方法における効果と同様の効果を奏する。特に、従来のような近接スイッチが不要となり、簡易な構成により低コスト化が可能となる。   (Claim 5) According to the processing apparatus of the present invention, the same effects as those in the above-described processing method can be obtained. In particular, a conventional proximity switch is not required, and the cost can be reduced with a simple configuration.

本発明の実施の形態に係る加工装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the processing apparatus which concerns on embodiment of this invention. 図1の加工装置の概略構成および制御装置を示す図である。It is a figure which shows schematic structure and the control apparatus of the processing apparatus of FIG. 図2の制御装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the control apparatus of FIG. (A)は、本発明の実施の形態に係る前加工における工作物と前加工用工具との相対位置関係を示す図、(B)は、本発明の実施の形態に係る後加工における工作物と後加工用工具との相対位置関係を示す図である。(A) is a figure which shows the relative positional relationship of the workpiece and pre-processing tool in the pre-processing which concerns on embodiment of this invention, (B) is the workpiece in the post-processing which concerns on embodiment of this invention It is a figure which shows the relative positional relationship of a tool for post-processing. (A)は、本発明の実施の形態に係る工作物としてはす歯歯車の位相ずれを求めるための第1および第2の測定点を示す図、(B)は、本発明の実施の形態に係る第1の測定点の測定方法を示す図、(C)は、第2の測定点の測定方法を示す図である。(A) is a figure which shows the 1st and 2nd measurement point for calculating | requiring the phase shift of the helical gear as a workpiece | work concerning embodiment of this invention, (B) is embodiment of this invention The figure which shows the measuring method of the 1st measuring point which concerns on (C), (C) is a figure which shows the measuring method of the 2nd measuring point. (A)は、図5の第1の測定点の位相ずれを示す図、(B)は、図5の第2の測定点の位相ずれを示す図である。(A) is a figure which shows the phase shift of the 1st measurement point of FIG. 5, (B) is a figure which shows the phase shift of the 2nd measurement point of FIG.

(1.加工装置の機械構成)
加工装置1の一例として、5軸マシニングセンタを例に挙げ、図1および図2を参照して説明する。つまり、当該加工装置1は駆動軸として、相互に直交する3つの直進軸(X,Y,Z軸)および2つの回転軸(A軸、C軸)を有する加工装置である。
(1. Machine configuration of processing equipment)
As an example of the processing apparatus 1, a five-axis machining center will be described as an example and will be described with reference to FIGS. That is, the processing apparatus 1 is a processing apparatus having three rectilinear axes (X, Y, Z axes) and two rotation axes (A axis, C axis) orthogonal to each other as drive axes.

図1および図2に示すように、加工装置1は、ベッド10と、コラム20と、サドル30と、回転主軸40と、テーブル50と、チルトテーブル60と、ターンテーブル70と、タッチセンサ80と、制御装置90とから構成される。なお、図示省略するが、ベッド10と並んで既知の自動工具交換装置が設けられている。この自動工具交換装置は、例えば、加工装置1において前加工および後加工が行われる場合、前加工後に前加工用の工具を後加工用の工具に自動的に交換する装置である。   As shown in FIGS. 1 and 2, the processing apparatus 1 includes a bed 10, a column 20, a saddle 30, a rotation spindle 40, a table 50, a tilt table 60, a turntable 70, and a touch sensor 80. And a control device 90. Although not shown, a known automatic tool changer is provided along with the bed 10. This automatic tool changer is, for example, a device that automatically changes a pre-processing tool to a post-processing tool after pre-processing when pre-processing and post-processing are performed in the processing apparatus 1.

ベッド10は、ほぼ矩形状からなり、床上に配置される。ただし、ベッド10の形状は矩形状に限定されるものではない。このベッド10の上面には、コラム20が摺動可能な一対のX軸ガイドレール11a,11bが、X軸方向(水平方向)に延びるように、且つ、相互に平行に形成されている。さらに、ベッド10には、一対のX軸ガイドレール11a,11bの間に、コラム20をX軸方向に駆動するための、図略のX軸ボールねじが配置され、このX軸ボールねじを回転駆動するX軸モータ11cが配置されている。   The bed 10 has a substantially rectangular shape and is disposed on the floor. However, the shape of the bed 10 is not limited to a rectangular shape. On the upper surface of the bed 10, a pair of X-axis guide rails 11 a and 11 b on which the column 20 can slide is formed in parallel to each other so as to extend in the X-axis direction (horizontal direction). Further, the bed 10 is provided with an unillustrated X-axis ball screw for driving the column 20 in the X-axis direction between the pair of X-axis guide rails 11a and 11b. The X-axis ball screw is rotated. A driving X-axis motor 11c is disposed.

コラム20の底面には、一対のX軸ガイド溝21a,21bがX軸方向に延びるように、且つ、相互に平行に形成されている。コラム20は、ベッド10に対してX軸方向に移動可能なように、一対のX軸ガイド溝21a,21bが一対のX軸ガイドレール11a,11b上にボールガイド22a,22bを介して嵌め込まれ、コラム20の底面がベッド10の上面に密接されている。   A pair of X-axis guide grooves 21a and 21b are formed on the bottom surface of the column 20 so as to extend in the X-axis direction and in parallel to each other. In the column 20, a pair of X-axis guide grooves 21a and 21b are fitted on the pair of X-axis guide rails 11a and 11b via ball guides 22a and 22b so that the column 20 can move in the X-axis direction with respect to the bed 10. The bottom surface of the column 20 is in close contact with the top surface of the bed 10.

さらに、コラム20のX軸に平行な側面(摺動面)20aには、サドル30が摺動可能な一対のY軸ガイドレール23a,23bがY軸方向(鉛直方向)に延びるように、且つ、相互に平行に形成されている。さらに、コラム20には、一対のY軸ガイドレール23a,23bの間に、サドル30をY軸方向に駆動するための、図略のY軸ボールねじが配置され、このY軸ボールねじを回転駆動するY軸モータ23cが配置されている。   Further, on a side surface (sliding surface) 20a parallel to the X axis of the column 20, a pair of Y axis guide rails 23a and 23b on which the saddle 30 can slide extends in the Y axis direction (vertical direction), and Are formed parallel to each other. Further, the column 20 is provided with a Y-axis ball screw (not shown) for driving the saddle 30 in the Y-axis direction between the pair of Y-axis guide rails 23a and 23b. The Y-axis ball screw is rotated. A Y-axis motor 23c to be driven is disposed.

コラム20の摺動面20aに対向するサドル30の側面30aには、一対のY軸ガイド溝31a,31bがY軸方向に延びるように、且つ、相互に平行に形成されている。サドル30は、コラム20に対してY軸方向に移動可能なように、一対のY軸ガイド溝31a,31bが一対のY軸ガイドレール23a,23bに嵌め込まれ、サドル30の側面30aがコラム20の摺動面20aに密接されている。   A pair of Y-axis guide grooves 31a and 31b are formed on the side surface 30a of the saddle 30 facing the sliding surface 20a of the column 20 so as to extend in the Y-axis direction and in parallel with each other. A pair of Y-axis guide grooves 31 a and 31 b are fitted into the pair of Y-axis guide rails 23 a and 23 b so that the saddle 30 can move in the Y-axis direction with respect to the column 20, and the side surface 30 a of the saddle 30 is aligned with the column 20. Are closely in contact with the sliding surface 20a.

回転主軸40は、サドル30内に収容された主軸モータ41により回転可能に設けられ、工具42を支持している。工具42は、回転主軸40の先端に固定され、回転主軸40の回転に伴って回転する。また、工具42は、コラム20およびサドル30の移動に伴ってベッド10に対してX軸方向およびY軸方向に移動する。なお、工具42としては、例えば、ホブ、エンドミル、ドリル、タップ等である。   The rotary spindle 40 is rotatably provided by a spindle motor 41 accommodated in the saddle 30 and supports a tool 42. The tool 42 is fixed to the tip of the rotation main shaft 40 and rotates with the rotation of the rotation main shaft 40. Further, the tool 42 moves in the X-axis direction and the Y-axis direction with respect to the bed 10 as the column 20 and the saddle 30 move. The tool 42 is, for example, a hob, an end mill, a drill, or a tap.

さらに、ベッド10の上面には、テーブル50が摺動可能な一対のZ軸ガイドレール12a,12bがX軸方向と直交するZ軸方向(水平方向)に延びるように、且つ、相互に平行に形成されている。さらに、ベッド10には、一対のZ軸ガイドレール12a,12bの間に、テーブル50をZ軸方向に駆動するための、図略のZ軸ボールねじが配置され、このZ軸ボールねじを回転駆動するZ軸モータ12cが配置されている。   Further, on the upper surface of the bed 10, a pair of Z-axis guide rails 12 a and 12 b on which the table 50 can slide extend in the Z-axis direction (horizontal direction) orthogonal to the X-axis direction and are parallel to each other. Is formed. Further, the bed 10 is provided with an unillustrated Z-axis ball screw for driving the table 50 in the Z-axis direction between the pair of Z-axis guide rails 12a and 12b. The Z-axis ball screw is rotated. A Z-axis motor 12c to be driven is disposed.

テーブル50は、ベッド10に対してZ軸方向に移動可能なように、一対のZ軸ガイドレール12a,12b上に設けられている。テーブル50の上面には、チルトテーブル60を支持するチルトテーブル支持部63が設けられている。そして、チルトテーブル支持部63には、チルトテーブル60が水平方向のA軸回りで回転(揺動)可能に設けられている。チルトテーブル60は、テーブル50内に収容されたA軸モータ61により回転(揺動)される。   The table 50 is provided on the pair of Z-axis guide rails 12 a and 12 b so as to be movable in the Z-axis direction with respect to the bed 10. A tilt table support portion 63 that supports the tilt table 60 is provided on the upper surface of the table 50. The tilt table support portion 63 is provided with a tilt table 60 that can rotate (swing) about the A axis in the horizontal direction. The tilt table 60 is rotated (swinged) by an A-axis motor 61 housed in the table 50.

チルトテーブル60には、ターンテーブル70がA軸に直角なC軸回りで回転可能に設けられている。ターンテーブル70には、工作物Wがチャッキングされる。ターンテーブル70は、工作物WとともにC軸モータ62により回転される。   The tilt table 60 is provided with a turntable 70 so as to be rotatable around a C axis perpendicular to the A axis. A workpiece W is chucked on the turntable 70. The turntable 70 is rotated by the C-axis motor 62 together with the workpiece W.

タッチセンサ80は、サドル30の前面に設けられ、サドル30の移動に伴って移動可能となっている。タッチセンサ80には、下方向(Y軸方向)に延びるプローブ81が設けられている。プローブ81が工作物W等に接触することにより、接触信号を制御装置90に出力するようになっている。   The touch sensor 80 is provided on the front surface of the saddle 30 and can move as the saddle 30 moves. The touch sensor 80 is provided with a probe 81 extending downward (Y-axis direction). When the probe 81 contacts the workpiece W or the like, a contact signal is output to the control device 90.

制御装置90は、主軸モータ41を制御して、工具42を回転させ、X軸モータ11c、Z軸モータ12c、Y軸モータ23c、A軸モータ61およびC軸モータ62を制御して、工作物Wと工具42とをX軸方向、Z軸方向、Y軸方向、A軸回りおよびC軸回りに相対移動することにより、工作物Wの前加工および後加工を行う。例えば、前加工として前加工用の工具42であるホブにより工作物Wの歯切り加工を行い、その後に後加工として後加工用の工具42であるエンドミルにより歯面の面取り加工を行う。この制御装置90は、前加工と後加工との間において後述する方法により歯面の位置合わせおよび位相割出しを正確に且つ簡易行うことができる。よって、前加工と後加工との位置ずれが発生しないため、加工精度を向上させることができる。さらに、前加工と後加工との間で工作物Wを脱着する必要がなく、後加工のための段取り時間を短縮させることができる。   The control device 90 controls the spindle motor 41, rotates the tool 42, controls the X-axis motor 11c, the Z-axis motor 12c, the Y-axis motor 23c, the A-axis motor 61, and the C-axis motor 62, and works. Pre-working and post-working of the workpiece W are performed by relatively moving W and the tool 42 around the X-axis direction, the Z-axis direction, the Y-axis direction, the A-axis and the C-axis. For example, gear hobbing of the workpiece W is performed by a hob which is a pre-processing tool 42 as pre-processing, and then a tooth surface is chamfered by an end mill which is a post-processing tool 42 as post-processing. The control device 90 can accurately and simply perform tooth surface alignment and phase indexing by a method described later between the pre-processing and the post-processing. Therefore, since the position shift between the pre-processing and the post-processing does not occur, the processing accuracy can be improved. Furthermore, it is not necessary to detach the workpiece W between the pre-processing and the post-processing, and the setup time for the post-processing can be shortened.

(2.制御装置の構成)
図2に示すように、制御装置90は、X軸駆動制御部91と、Y軸駆動制御部92と、Z軸駆動制御部93と、A軸駆動制御部94と、C軸駆動制御部95と、主軸駆動制御部96と、位置演算部97と、位置測定部98と、位相演算部99と、記憶部100と、加工制御部101とを備えて構成される。ここで、各部91〜101は、それぞれ個別のハードウエアによる構成することもできるし、ソフトウエアによりそれぞれ実現する構成とすることもできる。
(2. Configuration of control device)
As shown in FIG. 2, the control device 90 includes an X-axis drive control unit 91, a Y-axis drive control unit 92, a Z-axis drive control unit 93, an A-axis drive control unit 94, and a C-axis drive control unit 95. A spindle drive control unit 96, a position calculation unit 97, a position measurement unit 98, a phase calculation unit 99, a storage unit 100, and a machining control unit 101. Here, each of the units 91 to 101 can be configured by individual hardware, or can be configured by software.

X軸駆動制御部91は、X軸モータ11cと接続され、コラム20をサドル30と共にX軸方向に駆動制御する。Y軸駆動制御部92は、Y軸モータ23cと接続され、サドル30を回転主軸40およびタッチセンサ80と共にY軸方向に駆動制御する。Z軸駆動制御部93は、Z軸モータ12cと接続され、テーブル50をZ軸方向に駆動制御する。A軸駆動制御部94は、A軸モータ61と接続され、チルトテーブル60をA軸回りで回転(揺動)させる。C軸駆動制御部95は、C軸モータ62と接続され、ターンテーブル70をC軸回りで回転させる。主軸駆動制御部96は、主軸モータ41と接続され、回転主軸40を回転させる。   The X-axis drive control unit 91 is connected to the X-axis motor 11c, and drives and controls the column 20 together with the saddle 30 in the X-axis direction. The Y-axis drive control unit 92 is connected to the Y-axis motor 23 c and drives and controls the saddle 30 in the Y-axis direction together with the rotation main shaft 40 and the touch sensor 80. The Z-axis drive control unit 93 is connected to the Z-axis motor 12c, and drives and controls the table 50 in the Z-axis direction. The A-axis drive control unit 94 is connected to the A-axis motor 61 and rotates (swings) the tilt table 60 about the A axis. The C-axis drive control unit 95 is connected to the C-axis motor 62 and rotates the turntable 70 around the C axis. The spindle drive control unit 96 is connected to the spindle motor 41 and rotates the rotary spindle 40.

位置演算部97は、前加工における工作物Wと前加工用の工具42との相対位置に基づいて、後加工における工作物Wと後加工用の工具42との相対位置を算出する。位置測定部98は、詳細は後述するが、図6(B)に示すように、後加工における工作物Wの基準位置M2と工作物Wの回転軸(C軸)における基準位置BaとのC軸における位相ずれ(第1位相ずれ角α+第2位相ずれ角β)を算出するため、工作物Wの所定位置を測定する。位相演算部99は、測定した工作物Wの所定位置に基づいて、上記C軸における位相ずれを算出する。記憶部100には、例えば、前加工における工作物Wと前加工用の工具42との相対位置等の前加工および後加工に必要な情報が記憶されている。加工制御部101は、工作物Wに対し前加工用の工具42を相対移動および相対回転させることにより前加工を行い、また上記C軸における位相ずれに基づいて、工作物Wの後加工用の工具42に対する位相割出しを行い、また算出した工作物Wと後加工用の工具42との相対位置に基づいて、工作物Wに対し後加工用の工具42を相対移動および相対回転させることにより後加工を行うよう、X軸駆動制御部91、Y軸駆動制御部92、Z軸駆動制御部93、A軸駆動制御部94、およびC軸駆動制御部95を制御する。   The position calculation unit 97 calculates the relative position between the workpiece W in the post-processing and the tool 42 for the post-processing based on the relative position between the workpiece W in the pre-processing and the tool 42 for the pre-processing. Although the details will be described later, the position measuring unit 98, as shown in FIG. 6B, shows the C between the reference position M2 of the workpiece W in post-processing and the reference position Ba on the rotation axis (C axis) of the workpiece W. In order to calculate the phase shift in the axis (first phase shift angle α + second phase shift angle β), a predetermined position of the workpiece W is measured. The phase calculation unit 99 calculates the phase shift in the C axis based on the measured predetermined position of the workpiece W. The storage unit 100 stores information necessary for pre-processing and post-processing, such as the relative position between the workpiece W and the pre-processing tool 42 in the pre-processing. The machining control unit 101 performs pre-machining by relatively moving and relatively rotating the pre-machining tool 42 with respect to the workpiece W, and for post-machining the workpiece W based on the phase shift in the C axis. By performing phase indexing with respect to the tool 42 and, based on the calculated relative position between the workpiece W and the post-processing tool 42, the post-processing tool 42 is relatively moved and rotated relative to the workpiece W. The X-axis drive control unit 91, the Y-axis drive control unit 92, the Z-axis drive control unit 93, the A-axis drive control unit 94, and the C-axis drive control unit 95 are controlled so as to perform post-processing.

(3.制御装置による加工制御動作)
次に、前加工として前加工用の工具42であるホブにより工作物Wに対しはす歯の歯切り加工を行い、その後に後加工として後加工用の工具42であるエンドミルによりはす歯の歯面の面取り加工を行う場合の制御装置90による加工制御動作について、図3のフローチャートを参照して説明する。図4(A)に示すように、前加工としてC軸を鉛直状態からA軸回りではす歯のヘリカル角度で設定される所定角度θ傾けた状態に回転し、C軸を割出しつつ、X,Y,Z軸を同時制御することによってホブ42aにより工作物Wに対しはす歯の歯切り加工を行う(ステップS1)。歯切り加工が完了したら、図4(B)に示すように、C軸を所定角度θ傾けた状態からA軸回りで所定角度−θ戻して鉛直に向ける。そして、後加工としてはす歯の歯面の面取り加工を行うためのエンドミル42bに工具交換する(ステップS2)。
(3. Machining control operation by the control device)
Next, as a pre-processing, hobbing is performed on the workpiece W by a hob which is a tool 42 for pre-processing, and then, as a post-processing, the tooth is cut by an end mill which is a tool 42 for post-processing. A machining control operation performed by the control device 90 when chamfering a tooth surface will be described with reference to a flowchart of FIG. As shown in FIG. 4A, as a pre-processing, the C axis is rotated from a vertical state to a state inclined at a predetermined angle θ set by the helical angle of the tooth around the A axis, , Y, and Z axes are simultaneously controlled, so that the hob 42a performs tooth cutting of the workpiece W (step S1). When the gear cutting is completed, as shown in FIG. 4B, the C-axis is tilted back by a predetermined angle −θ around the A-axis from a state where the C-axis is inclined by a predetermined angle θ and directed vertically. Then, as a post-processing, the tool is replaced with an end mill 42b for chamfering the tooth surface of the tooth (step S2).

ここで、工作物Wに対しはす歯の歯切り加工を行い、その後に工作物Wを着脱することなくワンチャックではす歯の歯面の面取り加工を高精度に行うには、歯部の位置座標を正確に求める必要がある。そこで、面取り加工の基準位置(X軸,Y軸,Z軸,A軸の各座標)および面取り加工の基準位相(面取り加工の基準位置のC軸の座標)を求める。面取り加工の基準位置(X軸,Y軸,Z軸,A軸の各座標)は、歯切り加工で用いた座標を変換することにより求めることができる。しかし、面取り加工の基準位相(面取り加工の基準位置のC軸の座標)は、歯切り加工で用いた座標からは分からないため、工作物Wをタッチセンサ80により測定することにより求める。   Here, in order to perform chamfering of the tooth surface of the tooth with a single chuck without performing removal of the workpiece W and then removing the workpiece W with high accuracy, It is necessary to obtain the position coordinates accurately. Therefore, a reference position for chamfering (X-axis, Y-axis, Z-axis, and A-axis coordinates) and a reference phase for chamfering (the C-axis coordinates of the reference position for chamfering) are obtained. The reference position for chamfering (X-axis, Y-axis, Z-axis, and A-axis coordinates) can be obtained by converting the coordinates used in gear cutting. However, since the reference phase of the chamfering process (the C-axis coordinate of the reference position of the chamfering process) is not known from the coordinates used in the gear cutting process, it is obtained by measuring the workpiece W with the touch sensor 80.

先ず、面取り加工の基準位置(X軸,Y軸,Z軸,A軸の各座標)を求める。具体的には、図4(A)に示す予め記憶されている歯切り加工における工作物Wの回転軸(C軸)における基準位置Bg(xg,yg,zg)、角度θおよび回転中心T(xt,yt,zt)に基づいて、図4(B)に示す面取り加工における工作物Wの回転軸(C軸)における基準位置Ba(xa,ya,za)を次式(1)により算出する(ステップS3)。ここで、〔M〕は、三角関数等の回転マトリックスを表す。

Figure 2013129000
First, a reference position for chamfering (coordinates of X axis, Y axis, Z axis, and A axis) is obtained. Specifically, the reference position Bg (xg, yg, zg), the angle θ, and the rotation center T (on the rotation axis (C axis) of the workpiece W in the pre-stored gear cutting shown in FIG. Based on xt, yt, zt), the reference position Ba (xa, ya, za) on the rotation axis (C axis) of the workpiece W in the chamfering process shown in FIG. (Step S3). Here, [M] represents a rotation matrix such as a trigonometric function.
Figure 2013129000

次に、面取り加工の基準位相(面取り加工の基準位置のC軸の座標)を求める。具体的には、図5(A)に示すように、工作物Wの歯面Gにおける歯厚方向および歯幅方向の中央の点をM1、該歯面Gと工作物Wの上端面Suとの境界線における歯幅方向の中央の点を面取り加工における工作物Wの基準位置M2としたとき、先ず、図6(A)に示すように、工作物Wの点M1と工作物Wの回転軸(C軸)における基準位置BaとのC軸における位相ずれを第1位相ずれ角度αとして求め、次に、図6(B)に示すように、面取り加工における工作物Wの基準位置M2と工作物Wの点M1とのC軸における位相ずれを第2位相ずれ角度βとして求める。そして、工作物Wを第1位相ずれ角度αおよび第2位相ずれ角度βの和の角度で回転することにより、面取り加工の基準位相(面取り加工の基準位置のC軸の座標)を求める。   Next, a reference phase for chamfering (coordinates of the C-axis of the reference position for chamfering) is obtained. Specifically, as shown in FIG. 5A, the center point in the tooth thickness direction and the tooth width direction on the tooth surface G of the workpiece W is M1, the tooth surface G and the upper end surface Su of the workpiece W, When the center point in the tooth width direction at the boundary line is the reference position M2 of the workpiece W in the chamfering process, first, as shown in FIG. 6A, the point M1 of the workpiece W and the rotation of the workpiece W The phase shift in the C axis with respect to the reference position Ba on the axis (C axis) is obtained as a first phase shift angle α, and then, as shown in FIG. 6B, the reference position M2 of the workpiece W in the chamfering process and A phase shift in the C axis with respect to the point M1 of the workpiece W is obtained as a second phase shift angle β. Then, by rotating the workpiece W by the sum of the first phase shift angle α and the second phase shift angle β, the reference phase of the chamfering process (the C-axis coordinate of the reference position of the chamfering process) is obtained.

そこで、先ず、図5(B)に示すように、点M1を通るY軸方向の直線Vと工作物Wの上端面Suおよび下端面Sdとの交点Q1,Q2にタッチセンサ80のプローブ81を接触させ、交点Q1,Q2のY軸座標位置yq1、yq2を求める。そして、次式(2)により点M1のY軸座標位置ym1を求め、点M1と工作物Wの上端面Suとの距離Lを算出する。
ym1=yq1−L・・・(2)
(なお、L=(yq1−yq2)/2)
Therefore, first, as shown in FIG. 5B, the probe 81 of the touch sensor 80 is placed at the intersections Q1 and Q2 of the straight line V in the Y-axis direction passing through the point M1 and the upper end surface Su and the lower end surface Sd of the workpiece W. The Y-axis coordinate positions yq1 and yq2 of the intersection points Q1 and Q2 are obtained by making contact. Then, the Y-axis coordinate position ym1 of the point M1 is obtained by the following equation (2), and the distance L between the point M1 and the upper end surface Su of the workpiece W is calculated.
ym1 = yq1-L (2)
(L = (yq1-yq2) / 2)

次に、図5(C)に示すように、点M1を通るZ軸方向の直線Hと歯面Gの両側縁との交点Q3,Q4にタッチセンサ80のプローブ81を接触させ、交点Q3,Q4のZ軸座標位置zq3、zq4を求める。そして、図6(A)に示すように、工作物Wの半径をdとしたとき、次式(3)により点M1での第1位相ずれ角度αを算出する(ステップS4)。
α=sin−1(zq3+zq4)/2d・・・(3)
Next, as shown in FIG. 5C, the probe 81 of the touch sensor 80 is brought into contact with the intersections Q3 and Q4 between the straight line H in the Z-axis direction passing through the point M1 and both side edges of the tooth surface G, and the intersection Q3. The Z-axis coordinate positions zq3 and zq4 of Q4 are obtained. Then, as shown in FIG. 6A, when the radius of the workpiece W is d, the first phase shift angle α at the point M1 is calculated by the following equation (3) (step S4).
α = sin −1 (zq3 + zq4) / 2d (3)

ここで、交点Q3,Q4のX軸座標位置は、歯面Gがインボリュート曲線の曲面に形成されているため正確には等しくなく、式(3)により算出した第1位相ずれ角度αは仮の値である。そこで、C軸を第1位相ずれ角度αだけ回転させたら(ステップS5)、第1位相ずれ角度αが0になったか否かを判断し(ステップS6)、第1位相ずれ角度αが0になっていないときは、ステップS3に戻って第1位相ずれ角度αを再度算出し、C軸を第1位相ずれ角度αだけ再度回転させるという処理を繰り返すことで第1位相ずれ角度αを0に収束させる。   Here, the X-axis coordinate positions of the intersection points Q3 and Q4 are not exactly equal because the tooth surface G is formed on the curved surface of the involute curve, and the first phase shift angle α calculated by the equation (3) is temporary. Value. Therefore, when the C-axis is rotated by the first phase shift angle α (step S5), it is determined whether or not the first phase shift angle α has become 0 (step S6), and the first phase shift angle α has become 0. If not, the process returns to step S3 to recalculate the first phase shift angle α, and repeat the process of rotating the C axis again by the first phase shift angle α to set the first phase shift angle α to zero. Converge.

ステップS6において、第1位相ずれ角度αが0になったときは、図6(B)に示すように、ステップS4で求めた点M1と工作物Wの上端面Suとの距離Lを用いて、第2の位相ずれ角度βを次式(4)により算出する(ステップS7)。なお、Pは、はす歯のヘリカル角度、Tは、歯数、Qは、モジュールである。
β=L・sinP/πTQ・・・(4)
When the first phase shift angle α becomes 0 in step S6, the distance L between the point M1 obtained in step S4 and the upper end surface Su of the workpiece W is used as shown in FIG. The second phase shift angle β is calculated by the following equation (4) (step S7). Here, P is a helical angle of a helical tooth, T is the number of teeth, and Q is a module.
β = L · sinP / πTQ (4)

そして、C軸を第2位相ずれ角度βだけ回転させる(ステップS8)。以上により、面取り加工の基準位相(面取り加工の基準位置のC軸の座標)が求まるでの、エンドミル42bにより歯面Gの面取りを正確に加工することができる(ステップS9)。そして、面取りの後加工が終了したら(ステップS10)、全ての処理を終了する。   Then, the C axis is rotated by the second phase shift angle β (step S8). As described above, the chamfering of the tooth surface G can be accurately processed by the end mill 42b since the reference phase of the chamfering process (the C-axis coordinate of the reference position of the chamfering process) is obtained (step S9). Then, when the post-chamfering is finished (step S10), all the processes are finished.

(4.加工方法による効果)
工作物Wをターンテーブル70に取付けたままで、前加工としてはす歯の歯切り加工および後加工としてはす歯の歯面Gの面取り加工を行うので、前加工の位置情報に基づいて、後加工の位置情報を算出することができる。また、前加工後の工作物Wの所定位置を測定することにより、前加工に対する後加工の位相ずれを算出することができる。よって、歯面Gの位置合わせおよび位相割出しを正確に且つ簡易行うことができ、前加工と後加工との位置ずれが発生しないため、加工精度を向上させることができる。さらに、前加工と後加工との間で工作物Wを脱着する必要がなく、後加工のための段取り時間を短縮させることができる。
(4. Effects of processing methods)
Since the workpiece W is attached to the turntable 70, the tooth cutting of the helical tooth as the pre-processing and the chamfering processing of the tooth surface G of the helical tooth as the post-processing are performed. Processing position information can be calculated. Moreover, the phase shift of the post-processing with respect to the pre-processing can be calculated by measuring the predetermined position of the workpiece W after the pre-processing. Therefore, the alignment and phase indexing of the tooth surface G can be performed accurately and simply, and the positional deviation between the pre-processing and the post-processing does not occur, so that the processing accuracy can be improved. Furthermore, it is not necessary to detach the workpiece W between the pre-processing and the post-processing, and the setup time for the post-processing can be shortened.

(5.変形態様)
なお、上述した実施形態では、前加工としてホブ42aにより工作物Wをはす歯の歯切り加工を行う場合を説明したが、前加工としてホブ42aにより工作物Wを平歯の歯切り加工を行う場合には、歯が傾斜していないため第2位相ずれ角度βの演算は不要である。よって、第1位相ずれ角度αのみにより、前加工と後加工との位置合わせを正確に且つ簡易に行うことができる。
(5. Modifications)
In the above-described embodiment, the case where the hobbing of the workpiece W is performed by the hob 42a as the pre-processing has been described. However, as the pre-processing, the work W is flat-toothed by the hob 42a. When performing, the calculation of the second phase shift angle β is unnecessary because the teeth are not inclined. Therefore, the alignment between the pre-processing and the post-processing can be accurately and easily performed only by the first phase shift angle α.

また、後加工として歯面の面取り加工を行う場合を説明したが、歯面のバリ取り加工や歯と歯の間の穴あけ加工等であっても高精度に加工を行うことができる。また、荒歯切り、バリ取り、仕上げ歯切りの順で工具交換しながら1チャック加工を行うことにより、2次バリのない良好な仕上げ面を得ることができる。   Moreover, although the case where the chamfering process of the tooth surface is performed as the post-processing has been described, the process can be performed with high accuracy even by the deburring process of the tooth surface or the drilling process between the teeth. In addition, a good finished surface free from secondary burrs can be obtained by performing one chuck processing while changing tools in the order of rough cutting, deburring, and finishing cutting.

また、5軸マシニングセンタである加工装置1は、工作物WをA軸旋回可能とするものとした。これに対して、5軸マシニングセンタは、縦形マシニングセンタとして、工具42をA軸旋回可能とする構成としてもよい。   In addition, the machining apparatus 1 that is a 5-axis machining center enables the workpiece W to be pivoted on the A axis. On the other hand, the 5-axis machining center may be configured as a vertical machining center that allows the tool 42 to turn on the A axis.

1:加工装置
10:ベッド、 11a,11b:X軸ガイドレール、 11c:X軸モータ
12a,12b:Z軸ガイドレール、 12c:Z軸モータ
20:コラム、 21a,21b:X軸ガイド溝、 22a,22b:ボールガイド
23a,23b:Y軸ガイドレール、 23c:Y軸モータ
30:サドル、 31a,31b:Y軸ガイド溝
40:回転主軸、 41:主軸モータ、 42:工具
50:テーブル
60:チルトテーブル、 61:A軸モータ、 62:C軸モータ
70:ターンテーブル
80:タッチセンサ、 81:プローブ
90:制御装置
91:X軸駆動制御部、 92:Y軸駆動制御部、 93:Z軸駆動制御部
94:A軸駆動制御部、 95:C軸駆動制御部、 96:主軸駆動制御部
97:位置演算部、 98:位置測定部、 99:位相演算部
100:記憶部、 101:加工制御部、W:工作物
1: Processing device 10: Bed, 11a, 11b: X-axis guide rail, 11c: X-axis motor 12a, 12b: Z-axis guide rail, 12c: Z-axis motor 20: Column, 21a, 21b: X-axis guide groove, 22a , 22b: Ball guide 23a, 23b: Y-axis guide rail, 23c: Y-axis motor 30: Saddle, 31a, 31b: Y-axis guide groove 40: Rotating spindle, 41: Spindle motor, 42: Tool 50: Table 60: Tilt Table: 61: A-axis motor 62: C-axis motor 70: Turntable 80: Touch sensor 81: Probe 90: Control device 91: X-axis drive controller 92: Y-axis drive controller 93: Z-axis drive Control unit 94: A-axis drive control unit, 95: C-axis drive control unit, 96: Spindle drive control unit 97: Position calculation unit, 98: Position measurement unit, 9 : Phase calculating unit 100: storage unit, 101: processing control unit, W: workpiece

Claims (5)

工作物に対し前加工用工具を相対移動および相対回転させることにより前加工を行う前加工工程と、
前記前加工用工具を後加工用工具に交換する工具交換工程と、
前記前加工における前記工作物と前記前加工用工具との相対位置に基づいて、前記後加工における前記工作物と前記後加工用工具との相対位置を算出する位置演算工程と、
前記後加工における前記工作物の基準位置と前記工作物の回転軸における基準位置との前記回転軸における位相ずれを算出するための前記工作物の所定位置を測定する位置測定工程と、
測定した前記工作物の所定位置に基づいて、前記位相ずれを算出する位相演算工程と、
算出した前記位相ずれに基づいて、前記工作物の前記後加工用工具に対する位相割出しを行う位相割出し工程と、
算出した前記工作物と前記後加工用工具との相対位置に基づいて、前記工作物の取付部に前記工作物を取付けたままで前記工作物に対し前記後加工用工具を相対移動および相対回転させることにより後加工を行う後加工工程と、を備える加工方法。
A pre-processing step of performing pre-processing by relatively moving and rotating the pre-processing tool relative to the workpiece;
A tool changing step for replacing the pre-processing tool with a post-processing tool;
A position calculating step of calculating a relative position between the workpiece and the post-processing tool in the post-processing based on a relative position between the workpiece and the pre-processing tool in the pre-processing;
A position measuring step for measuring a predetermined position of the workpiece for calculating a phase shift in the rotation axis between a reference position of the workpiece in the post-processing and a reference position in the rotation axis of the workpiece;
A phase calculation step for calculating the phase shift based on the measured predetermined position of the workpiece;
Based on the calculated phase shift, a phase indexing step for performing phase indexing on the post-processing tool of the workpiece;
Based on the calculated relative position between the workpiece and the post-processing tool, the post-processing tool is relatively moved and rotated relative to the workpiece while the workpiece is mounted on the workpiece mounting portion. And a post-processing step of performing post-processing.
請求項1において、
前記前加工工程は、平歯の歯切りを行い、
前記位置測定工程は、前記平歯の歯厚方向の所定位置を測定し、
前記位相演算工程は、測定した前記平歯の歯厚方向の所定位置に基づいて、前記平歯の歯面の基準位置と前記工作物の回転軸における基準位置との前記回転軸における位相ずれ角を算出し、
前記位相割出し工程は、算出した前記位相ずれ角で前記工作物を回転し、
前記後加工工程は、前記平歯の歯面に対する加工を行う加工方法。
In claim 1,
In the pre-processing step, flat teeth are cut,
The position measuring step measures a predetermined position in the tooth thickness direction of the spur tooth,
The phase calculation step is based on a measured predetermined position in the tooth thickness direction of the flat tooth, and a phase shift angle in the rotation axis between a reference position of the tooth surface of the flat tooth and a reference position in the rotation axis of the workpiece. To calculate
The phase indexing step rotates the workpiece at the calculated phase shift angle,
The post-processing step is a processing method for performing processing on the tooth surface of the spur tooth.
請求項1において、
前記前加工工程は、はす歯の歯切りを行い、
前記位置測定工程は、前記はす歯の歯幅方向の所定位置を測定すると共に、前記はす歯の歯厚方向の所定位置を測定し、
前記位相演算工程は、測定した前記はす歯の歯幅方向の所定位置と前記工作物の回転軸における基準位置との前記回転軸における第1の位相ずれ角を算出すると共に、測定した前記はす歯の歯厚方向の所定位置に基づいて、前記はす歯の歯面の基準位置と前記工作物の回転軸における基準位置との前記回転軸における第2の位相ずれ角を算出し、
前記位相割出し工程は、算出した前記第1および第2の位相ずれ角で前記工作物を回転し、
前記後加工工程は、前記はす歯の歯面に対する加工を行う加工方法。
In claim 1,
In the pre-processing step, the tooth is cut out,
The position measuring step measures a predetermined position in the tooth width direction of the helical tooth and measures a predetermined position in the tooth thickness direction of the helical tooth,
The phase calculation step calculates a first phase shift angle in the rotation axis between a predetermined position in the tooth width direction of the measured helical tooth and a reference position in the rotation axis of the workpiece, and the measured Based on a predetermined position in the tooth thickness direction of the tooth, a second phase shift angle in the rotation axis between a reference position of the tooth surface of the helical tooth and a reference position in the rotation axis of the workpiece is calculated,
The phase indexing step rotates the workpiece with the calculated first and second phase shift angles,
The post-processing step is a processing method for performing processing on the tooth surface of the helical tooth.
請求項3において、
前記位相演算工程および前記位相割出し工程を繰り返すことにより、前記第1の位相ずれ角を0にする加工方法。
In claim 3,
A processing method for setting the first phase shift angle to 0 by repeating the phase calculation step and the phase indexing step.
前加工用工具と後加工用工具との交換が可能であり、工作物の取付部に取付けた前記工作物に対し前記前加工用工具を相対移動および相対回転させることにより前加工を行い、前記工作物を前記取付部に取付けたままで前記工作物に対し前記後加工用工具を相対移動および相対回転させることにより後加工を行う加工装置であって、
前記工作物に接触して信号を出力するタッチセンサ手段と、
前記前加工および前記後加工に必要な情報を記憶する記憶手段と、
前記記憶手段から読出した前記前加工における前記工作物と前記前加工用工具との相対位置に基づいて、前記後加工における前記工作物と前記後加工用工具との相対位置を算出して前記記憶手段に記憶する位置演算手段と、
前記後加工における前記工作物の基準位置と前記工作物の回転軸における基準位置との前記回転軸における位相ずれを算出するための前記工作物の所定位置を、前記タッチセンサ手段から入力する前記信号に基づいて測定して前記記憶手段に記憶する位置測定手段と、
前記記憶手段から読出した前記工作物の所定位置に基づいて、前記位相ずれを算出して前記記憶手段に記憶する位相演算手段と、
前記前加工を行い、前記記憶手段から読出した前記位相ずれに基づいて、前記工作物の前記後加工用工具に対する位相割出しを行い、前記記憶手段から読出した前記工作物と前記後加工用工具との相対位置に基づいて前記後加工を行う加工制御手段と、を備える加工装置。
The pre-processing tool and the post-processing tool can be exchanged, and the pre-processing is performed by relative movement and relative rotation of the pre-processing tool with respect to the workpiece attached to the workpiece mounting portion. A processing device for performing post-processing by relatively moving and relatively rotating the post-processing tool with respect to the workpiece while the workpiece is mounted on the mounting portion,
Touch sensor means for outputting a signal in contact with the workpiece;
Storage means for storing information necessary for the pre-processing and the post-processing;
Based on the relative position between the workpiece and the pre-processing tool in the pre-processing read out from the storage means, the relative position between the workpiece and the post-processing tool in the post-processing is calculated and stored. Position calculating means for storing in the means;
The signal inputted from the touch sensor means, a predetermined position of the workpiece for calculating a phase shift in the rotation axis between a reference position of the workpiece in the post-processing and a reference position of the rotation axis of the workpiece. A position measuring means for measuring and storing in the storage means based on
Phase calculating means for calculating the phase shift based on a predetermined position of the workpiece read from the storage means and storing the phase shift in the storage means;
Based on the phase shift read out from the storage means after performing the pre-processing, the workpiece is indexed with respect to the post-processing tool, and the workpiece and the post-processing tool read out from the storage means And a processing control means for performing the post-processing based on the relative position to the processing device.
JP2011278454A 2011-12-20 2011-12-20 Processing method and processing apparatus Active JP5957872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278454A JP5957872B2 (en) 2011-12-20 2011-12-20 Processing method and processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278454A JP5957872B2 (en) 2011-12-20 2011-12-20 Processing method and processing apparatus

Publications (2)

Publication Number Publication Date
JP2013129000A true JP2013129000A (en) 2013-07-04
JP5957872B2 JP5957872B2 (en) 2016-07-27

Family

ID=48907018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278454A Active JP5957872B2 (en) 2011-12-20 2011-12-20 Processing method and processing apparatus

Country Status (1)

Country Link
JP (1) JP5957872B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104889699A (en) * 2015-06-23 2015-09-09 天津第一机床总厂 Large gear machine tool carriage saddle part machining method
JP2016093881A (en) * 2014-11-07 2016-05-26 株式会社ジェイテクト Gear processing device and gear processing method
CN107755826A (en) * 2016-08-23 2018-03-06 克林格伦贝格股份公司 Method for the flank of tooth of machined surface connection workpiece
JP2018134690A (en) * 2017-02-20 2018-08-30 アイシン精機株式会社 Combined gear cutting device
JP6466633B1 (en) * 2018-08-10 2019-02-06 ヤマザキマザック株式会社 Gear phase detecting method, gear manufacturing method, workpiece edge position detecting method, and machine tool for detecting gear phase
CN111633281A (en) * 2020-06-09 2020-09-08 新代科技(苏州)有限公司 High-speed secondary gear aligning method and system for gear hobbing machine
KR102404346B1 (en) * 2021-03-26 2022-05-31 박문선 Deburring device and deburring system
JP7494549B2 (en) 2020-04-23 2024-06-04 株式会社ジェイテクト Gear Processing Equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127830U (en) * 1987-02-09 1988-08-22
JPH03228519A (en) * 1990-01-31 1991-10-09 Suzuki Motor Corp Method of aligning tooth surface of gear
JP2003145350A (en) * 2001-11-07 2003-05-20 Honda Motor Co Ltd Automatic engagement method for gear grinding machine and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127830U (en) * 1987-02-09 1988-08-22
JPH03228519A (en) * 1990-01-31 1991-10-09 Suzuki Motor Corp Method of aligning tooth surface of gear
JP2003145350A (en) * 2001-11-07 2003-05-20 Honda Motor Co Ltd Automatic engagement method for gear grinding machine and its device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093881A (en) * 2014-11-07 2016-05-26 株式会社ジェイテクト Gear processing device and gear processing method
CN104889699A (en) * 2015-06-23 2015-09-09 天津第一机床总厂 Large gear machine tool carriage saddle part machining method
CN107755826A (en) * 2016-08-23 2018-03-06 克林格伦贝格股份公司 Method for the flank of tooth of machined surface connection workpiece
JP2018134690A (en) * 2017-02-20 2018-08-30 アイシン精機株式会社 Combined gear cutting device
JP6466633B1 (en) * 2018-08-10 2019-02-06 ヤマザキマザック株式会社 Gear phase detecting method, gear manufacturing method, workpiece edge position detecting method, and machine tool for detecting gear phase
WO2020031377A1 (en) 2018-08-10 2020-02-13 ヤマザキマザック株式会社 Gear phase detection method, gear production method, workpiece edge position detection method, and gear phase-detecting machine tool
US11933638B2 (en) 2018-08-10 2024-03-19 Yamazaki Mazak Corporation Method for detecting phase on gear, method for producing gear, method for detecting position on edge of workpiece, and machine tool for detecting phase on gear
JP7494549B2 (en) 2020-04-23 2024-06-04 株式会社ジェイテクト Gear Processing Equipment
CN111633281A (en) * 2020-06-09 2020-09-08 新代科技(苏州)有限公司 High-speed secondary gear aligning method and system for gear hobbing machine
KR102404346B1 (en) * 2021-03-26 2022-05-31 박문선 Deburring device and deburring system

Also Published As

Publication number Publication date
JP5957872B2 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
JP5957872B2 (en) Processing method and processing apparatus
US7083496B2 (en) Gear grinding machine
WO2010055766A1 (en) Method of measuring gear
US8567039B2 (en) Machine tool and process for machining a workpiece
JP6599832B2 (en) Machine tool and work plane machining method
US9168602B2 (en) Gear grinding machine and gear grinding method
WO2013157081A1 (en) Interference determination method and interference determination device for machine tool
JP2016083729A (en) Geometric error identification system, and geometric error identification method
US20110179659A1 (en) Method of measuring an involute gear tooth profile
JP5473665B2 (en) Workpiece measuring apparatus and method for machine tool
JP5705283B2 (en) Machine tool and measuring method of rotation axis of machine tool
JP2007044802A (en) Swivel axis center measuring method in multi-axis machine tool
JP6064723B2 (en) Gear processing equipment
JP2007168013A (en) Tool knife edge position computing method and machine tool
JP6606967B2 (en) Gear processing apparatus and gear processing method
KR101663677B1 (en) Machining apparatus having a function of automatic tool setting and alignment and a method thereof
JP7303593B2 (en) POSITIONAL RELATIONSHIP MEASUREMENT METHOD AND PROCESSING DEVICE
JP6623061B2 (en) Machine tool and control method of machine tool
CN105555451A (en) Measuring geometry, measuring device comprising said type of measuring geometry and measuring method
KR101271222B1 (en) CNC lathe
JP6871675B2 (en) Gear processing equipment and gear processing method
JP2007024819A (en) Method and device for measuring taper angle of dog tooth
JP5740202B2 (en) Geometric error identification device
JP5740201B2 (en) Geometric error identification device
JP2000158260A (en) Table for machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent or registration of utility model

Ref document number: 5957872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150