JP2013126374A - Gene related to action of isoflavones - Google Patents

Gene related to action of isoflavones Download PDF

Info

Publication number
JP2013126374A
JP2013126374A JP2010048398A JP2010048398A JP2013126374A JP 2013126374 A JP2013126374 A JP 2013126374A JP 2010048398 A JP2010048398 A JP 2010048398A JP 2010048398 A JP2010048398 A JP 2010048398A JP 2013126374 A JP2013126374 A JP 2013126374A
Authority
JP
Japan
Prior art keywords
equol
papd5
cells
daidzein
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010048398A
Other languages
Japanese (ja)
Inventor
Hirofumi Tachibana
宏文 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2010048398A priority Critical patent/JP2013126374A/en
Priority to PCT/JP2011/055057 priority patent/WO2011108699A1/en
Publication of JP2013126374A publication Critical patent/JP2013126374A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Abstract

PROBLEM TO BE SOLVED: To provide a method for use of Pap associated domain containing 5 (Papd5), identified as a gene necessary for expressing an anticancer action of estrogen receptor-independent isoflavones.SOLUTION: There are disclosed a method for screening a substance for treating a disease or condition improved by an estrogen receptor (ER)-independent action of equol or daidzein characterized by using Papd5 gene or a product thereof, and a method for detecting a cell necessary for treating a disease or condition improved by the an estrogen receptor (ER)-independent action of equol or daidzein including a stage of determining presence of mutation of the Papd5 gene or an amount of the transcription or expression of Papd5.

Description

本発明は、イソフラボン類がエストロゲン受容体非依存的に対象に作用する際に依拠する遺伝子又はその産物に関する。本発明は、特にがんの処置のための、医療、代替医療、並びに医薬品及び食品開発のために有用である。   The present invention relates to genes or products thereof that depend on isoflavones acting on a subject in an estrogen receptor-independent manner. The present invention is useful for medicine, alternative medicine, and pharmaceutical and food development, particularly for the treatment of cancer.

がんは1981年以降、わが国の死因第1位の疾患であり、その数は年々増加の一途をたどっている。現在、がんに対する有効な治療法はまだ確立されていないと言える。こうした中、我々は、がんの予防や治療に役立つ物質として食品成分に着目している。がんに有効な食品については現在までに多くの報告がなされている。肉や卵に含まれるConjugatedLinoleic Acid (CLA)や緑茶葉中の主要成分であるEpigallocatechin-3-O-gallate(EGCG)に抗がん作用が報告されている(非特許文献1、2)。また、イソフラボン類であるgenisteinやdaidzeinにも抗がん作用が報告されている(非特許文献3)。   Cancer has been the number one cause of death in Japan since 1981, and its number has been increasing year by year. It can be said that an effective treatment for cancer has not been established yet. Under these circumstances, we are focusing on food ingredients as substances useful for the prevention and treatment of cancer. There have been many reports on foods effective for cancer. Anti-cancer activity has been reported to Conjugated Linoleic Acid (CLA) contained in meat and eggs and Epigallocatechin-3-O-gallate (EGCG), which is a major component in green tea leaves (Non-patent Documents 1 and 2). In addition, anticancer activity has been reported to isoflavones such as genistein and daidzein (Non-patent Document 3).

イソフラボン類は大豆、主に大豆胚芽に多く含まれるフラボノイドの一種であり、genistein、daidzein、glyciteinの3種類が存在する。味噌、納豆等の大豆発酵食品中にはこれらがアグリコンとして多く含まれるが、ほとんどの食品中では配糖体の状態で含まれる。配糖体は、消化酵素や腸内細菌の持つβ-グルコシダーゼにより加水分解され、アグリコンが生成される。また、daidzeinはある種の腸内細菌によってequolへ代謝される。日本人の約半分、西洋人の約20%が、daidzeinをequolへと変換する腸内細菌を有していると言われている。イソフラボン類は、多彩な生理機能を有しており、閉経後の女性において更年期障害の改善作用や骨粗鬆症改善効果(非特許文献4)等が報告されている。がんに対しては、乳がん(非特許文献5)や前立線がん(非特許文献6)のようにホルモン依存性のがんに対して、抗がん作用を発揮することが広く知られている。イソフラボン類は、分子構造がestrogenに類似しているため、生体内でestrogen receptor(ER)に結合し(エストロゲン様作用)、又はエストロゲンと拮抗して(抗エストロゲン作用)、このような生理作用を発揮すると考えられている。   Isoflavones are a kind of flavonoids that are abundant in soybean, mainly soybean germ, and there are three kinds of genistein, daidzein, and glycitein. In soybean fermented foods such as miso and natto, these are contained in large amounts as aglycones, but in most foods, they are contained in the state of glycosides. Glycosides are hydrolyzed by digestive enzymes and β-glucosidase of enteric bacteria to produce aglycones. Daidzein is also metabolized to equol by certain intestinal bacteria. About half of the Japanese and about 20% of Westerners are said to have enteric bacteria that convert daidzein to equol. Isoflavones have a variety of physiological functions and have been reported to improve menopause, osteoporosis, and the like (non-patent document 4) in postmenopausal women. For cancer, it is widely known that it exhibits anticancer activity against hormone-dependent cancers such as breast cancer (Non-patent document 5) and prostate cancer (Non-patent document 6). It has been. Isoflavones have a molecular structure similar to that of estrogen, so they bind to estrogen receptor (ER) (estrogenic effect) or antagonize estrogen (antiestrogenic effect) in vivo. It is thought to be demonstrated.

一方において、イソフラボン類のER非依存的作用の存在が注目されている。例えば、genisteinは、チロシンキナーゼやトポイソメラーゼを阻害することにより、胃がん、メラノーマ、膵臓がん等のホルモン非依存性のがんに対して抗がん作用を発揮する(非特許文献7)。また、genisteinは胸腺を委縮させるが、その作用の一部はER非依存的な作用であることが報告されている(非特許文献8)。一方、equolの機能として抗アレルギー機能(非特許文献9)や血管弛緩機能(非特許文献10)もER非依存性の作用であることが明らかとなっている。しかしながら、こうしたイソフラボン類のER非依存的作用のメカニズムについては不明である。   On the other hand, the existence of an ER-independent action of isoflavones has attracted attention. For example, genistein exhibits an anticancer action against hormone-independent cancers such as gastric cancer, melanoma, and pancreatic cancer by inhibiting tyrosine kinase and topoisomerase (Non-patent Document 7). Moreover, although genistein contracts the thymus, it is reported that a part of its action is an ER-independent action (Non-patent Document 8). On the other hand, it has been clarified that an antiallergic function (Non-Patent Document 9) and a vascular relaxation function (Non-Patent Document 10) are ER-independent actions as equol functions. However, the mechanism of ER-independent action of these isoflavones is unclear.

抗がん作用を示す食品因子をがんの予防、治療、再発予防などの代替医療の手段として利用する試みがあるが、一方でがんの増悪化を招く可能性などの弊害が指摘されている。イソフラボン類に関するin vitroの報告として、ヒトがん細胞に対してアポトーシスの誘導や増殖抑制作用(前掲非特許文献5)を示す一方、発がん促進を示唆する作用が報告されている(非特許文献11)。またin vivo動物実験において、臓器によっては発がん促進作用を示す等の報告がある(非特許文献12及び13)。   Attempts have been made to use food factors that exhibit anticancer effects as alternative medicines such as cancer prevention, treatment, and recurrence prevention, but adverse effects such as the possibility of cancer progression have been pointed out. Yes. As an in vitro report on isoflavones, it has been reported to induce apoptosis and inhibit growth of human cancer cells (Non-Patent Document 5), while suggesting an effect of promoting carcinogenesis (Non-Patent Document 11). ). In in vivo animal experiments, some organs have been reported to have a carcinogenic promoting effect (Non-patent Documents 12 and 13).

一方、Pap associated domain containing 5(Papd5)については、トポイソメラーゼをターゲットにした抗がん剤カンプトテシンの効果がPapd5の存在により低下することが報告されているに過ぎない(非特許文献14)。   On the other hand, for Pap associated domain containing 5 (Papd5), it has only been reported that the effect of the anticancer drug camptothecin targeting topoisomerase is reduced by the presence of Papd5 (Non-patent Document 14).

Kelly NS, Hubbard NE, Elickson KL. Conjugated linoleic acid isomers and cancer. J. Nutr. 137, 2599-2607 (2007).Kelly NS, Hubbard NE, Elickson KL.Conjugated linoleic acid isomers and cancer.J. Nutr. 137, 2599-2607 (2007). Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer. 9,429-439 (2009).Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer. 9,429-439 (2009). Messina MJ, Persky V, Setchell KD, Barnes S. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer 21, 113-131 (2009).Messina MJ, Persky V, Setchell KD, Barnes S. Soy intake and cancer risk: a review of the in vitro and in vivo data.Nutr Cancer 21, 113-131 (2009). Ishimi Y. Soybean isoflavones in bone health. Forum Nutr. 61, 104-116 (2009).Ishimi Y. Soybean isoflavones in bone health. Forum Nutr. 61, 104-116 (2009). Katdare M, Osborne M, Telang NT. Soy isoflavone genistein modulates cell cycle progression and induces apoptosis in HER-2/neu oncogene expressing human breast epithelial cells. Int J Oncol. 21, 809-815 (2002).Katdare M, Osborne M, Telang NT.Soy isoflavone genistein modulates cell cycle progression and induces apoptosis in HER-2 / neu oncogene expressing human breast epithelial cells.Int J Oncol. 21, 809-815 (2002). Mitchell JH, Duthie SJ, Collins AR. Effects of phytoestrogens on growth and DNA integrity in human prostate tumor cell lines: PC-3 and LNCaP. Nutr Cancer. 38, 223-228 (2000).Mitchell JH, Duthie SJ, Collins AR. Effects of phytoestrogens on growth and DNA integrity in human prostate tumor cell lines: PC-3 and LNCaP. Nutr Cancer. 38, 223-228 (2000). Banerjee S, Li Y, Wang Z,Fazlul H. Sarkar.Multi-targeted therapy of cancer by genistein. Cancer Lett. 269, 226-242 (2008).Banerjee S, Li Y, Wang Z, Fazlul H. Sarkar. Multi-targeted therapy of cancer by genistein. Cancer Lett. 269, 226-242 (2008). Yellayl S, Naaz A, Szewczycowski MA, Sato T, Woods JA, Chang J, Segre M, Allred CD, Helferich WG, Cooke PS. The phytoestrogen genistein induces thymic and immune changes : A human health concern ? Proc. Natl. Acad. Sci. USA. 99, 7616-7621 (2002).Yellayl S, Naaz A, Szewczycowski MA, Sato T, Woods JA, Chang J, Segre M, Allred CD, Helferich WG, Cooke PS.The phytoestrogen genistein induces thymic and immune changes: A human health concern? Proc. Natl. Acad. Sci. USA. 99, 7616-7621 (2002). 立花宏文, 矢野知美, 山田耕路. 大豆成分の抗アレルギー性発現に関与する標的分子に関する研究. 大豆たん白質研究. Vol.10. 128-133 (2007)Tachibana Hirofumi, Yano Tomomi, Yamada Koji. Studies on target molecules involved in the expression of anti-allergic properties in soybean components. Soy protein research. Vol.10. 128-133 (2007) Joy S, Siow RCM, Rowlands DJ, Becker M, Wyatt AW, Aaronson PI, Coen CW, Kallo I, Jacob R, Mann GE. The Isoflavone Equol Mediates Rapid Vascular Relaxation. J. Biol. Chem. 291, 27335-27345 (2006).Joy S, Siow RCM, Rowlands DJ, Becker M, Wyatt AW, Aaronson PI, Coen CW, Kallo I, Jacob R, Mann GE.The Isoflavone Equol Mediates Rapid Vascular Relaxation. J. Biol. Chem. 291, 27335-27345 ( 2006). Murata M, Midorikawa K, Koh M, Umezawa K, Kawanishi S. Genistein and daidzein induce cell proliferation and their metabolites cause oxidative DNA damage in relation to isoflavone-induced cancer of estrogen-sensitive organs. Biochemistry. 43, 2569-2577 (2004)Murata M, Midorikawa K, Koh M, Umezawa K, Kawanishi S. Genistein and daidzein induce cell proliferation and their metabolites cause oxidative DNA damage in relation to isoflavone-induced cancer of estrogen-sensitive organs. Biochemistry. 43, 2569-2577 (2004 ) Rao CV, Wang CX, Simi B, Lubet R, Kelloff G, Steele V, Reddy BS. Enhancement of experimental colon cancer by genistein. Cancer Res. 57, 3717-3722 (1997).Rao CV, Wang CX, Simi B, Lubet R, Kelloff G, Steele V, Reddy BS.Enhancement of experimental colon cancer by genistein.Cancer Res. 57, 3717-3722 (1997). Seike N, Wanibuchi H, Morimura K, Wei M, Nishikawa T, Hirata K, Yoshikawa J, Fukushima S. Enhancement of lung carcinogenesis by nonylphenol and genistein in a F344 rat multiorgan carcinogenesis model. Cancer Lett. 192, 25-36 (2003).Seike N, Wanibuchi H, Morimura K, Wei M, Nishikawa T, Hirata K, Yoshikawa J, Fukushima S. Enhancement of lung carcinogenesis by nonylphenol and genistein in a F344 rat multiorgan carcinogenesis model.Cancer Lett. 192, 25-36 (2003 ). Walowsky C, Fitzhugh DJ, Castano, IB, Ju JY, Levin NA, Christman MF. The Topoisomerase-related function Gene TRF4 Affects Cellular Sensitivity to the Antitumor Agent Camptothecin. J. Biol. Chem. 274, 7320-7308 (1999).Walowsky C, Fitzhugh DJ, Castano, IB, Ju JY, Levin NA, Christman MF.The Topoisomerase-related function Gene TRF4 Affects Cellular Sensitivity to the Antitumor Agent Camptothecin.J. Biol. Chem. 274, 7320-7308 (1999).

イソフラボン類をがん予防・治療剤として安全かつ効果的に活用するためには、イソフラボン類が抗がん作用を示すがんを個別に見極める必要がある。機能性食品因子の生理作用に対する感受性には、医薬品同様、個人差や臓器差があると認識されつつあるが、その差が何に起因するのか多くの場合不明である。この原因の一つは、食品因子の機能性発現を担う生体側の遺伝子 (食品因子感知遺伝子)がほとんど明らかにされていないことにある。   In order to use isoflavones safely and effectively as cancer preventive / therapeutic agents, it is necessary to individually identify cancers for which isoflavones exhibit anticancer effects. It is being recognized that there are individual differences and organ differences in the sensitivity of functional food factors to physiological effects, as in the case of pharmaceuticals, but it is often unclear what causes these differences. One of the causes is that the genes on the living body responsible for the functional expression of food factors (food factor-sensing genes) have not been clarified.

本発明者らは、緑茶カテキン EGCG の場合、その抗がん作用が発揮されるために不可欠ながん細胞側に発現する遺伝子(EGCG感知遺伝子)として67 kDa laminin receptor (67 LR) を同定してきた(Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol. 11, 380-381 (2004))。今般、equol のER 非依存的な抗がん作用が発現するために必須の遺伝子を同定すべく、鋭意研究した。本発明者らは、まず、イソフラボン類の一種であるequolが、前立線がん細胞株 PC-3 やヒト子宮頸がん細胞株 HeLaの増殖を抑制することを見出し、さらにエストロゲン受容体(ER)アンタゴニストであるICI182,780存在下でも、このequolの細胞増殖抑制作用が阻害されないことから、この作用がER非依存性であることを明らかにした(実施例及び図1)。さらにgenetic suppressor elements (GSE) 法を用いて、equolのがん細胞増殖抑制活性や細胞致死活性の発現を担う遺伝子の同定を試みた。その結果、equolのがん細胞増殖抑制活性の発現に必須の遺伝子としてPap associated domain containing 5(Papd5)を同定した。   In the case of green tea catechin EGCG, the present inventors have identified 67 kDa laminin receptor (67 LR) as a gene (EGCG sensing gene) that is expressed on the side of cancer cells indispensable for its anticancer activity. (Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol. 11, 380-381 (2004)). Recently, intensive research was conducted to identify genes essential for the expression of equol's ER-independent anticancer activity. The present inventors first found that equol, which is a kind of isoflavones, suppresses the growth of prostate cancer cell line PC-3 and human cervical cancer cell line HeLa, and further, estrogen receptor ( Since the cytostatic action of this equol was not inhibited even in the presence of ICI182,780, which is an ER) antagonist, it was clarified that this action is ER-independent (Example and FIG. 1). Furthermore, using genetic suppressor elements (GSE) method, we tried to identify genes responsible for the expression of equol's cancer cell growth inhibitory activity and cell lethal activity. As a result, Pap associated domain containing 5 (Papd5) was identified as an essential gene for the expression of equol's cancer cell growth inhibitory activity.

本発明は、以下を提供する。
1) Papd5遺伝子又はその産物を用いることを特徴とする、イコール(equol)又はダイゼイン(daidzein)のエストロゲン受容体(ER)非依存的な作用により改善する疾患又は状態の処置のための、物質のスクリーニング方法。
2) equol又はdaidzeinのER非依存的な作用により改善する疾患又は状態が、がんである、1)に記載の方法。
3) Papd5遺伝子又はその産物の、equol又はdaidzeinのエストロゲン受容体(ER)非依存的な作用により改善する疾患又は状態の処置のためのマーカーとしての使用。
4) equol又はdaidzeinのER非依存的な作用により改善する疾患又は状態が、がんである、3)に記載の使用。
5) Papd5遺伝子の変異の有無、又は転写若しくは発現の量を決定する段階を含む、equol又はdaidzeinのエストロゲン受容体(ER)非依存的な作用により改善する疾患又は状態の処置が必要な細胞の検出方法。
6) equol又はdaidzeinのER非依存的な作用により改善する疾患又は状態が、がんである、5)に記載の方法。
7) Papd5遺伝子の変異の有無、又は転写若しくは発現の量を指標とした、equol又はdaidzeinのER非依存的な作用により改善する疾患又は状態の処置のための、医薬品若しくは食品の、又はその投与若しくは摂取計画の、設計方法。
8) equol又はdaidzeinのER非依存的な作用により改善する疾患又は状態が、がんである、7)に記載の方法。
The present invention provides the following.
1) Use of a substance for the treatment of a disease or condition ameliorated by an estrogen receptor (ER) -independent action of equol or daidzein, characterized by using the Papd5 gene or its product Screening method.
2) The method according to 1), wherein the disease or condition ameliorated by the ER-independent action of equol or daidzein is cancer.
3) Use of the Papd5 gene or a product thereof as a marker for treatment of a disease or condition that is ameliorated by an estrogen receptor (ER) -independent action of equol or daidzein.
4) The use according to 3), wherein the disease or condition ameliorated by ER-independent action of equol or daidzein is cancer.
5) The presence or absence of mutations in the Papd5 gene, or the determination of the amount of transcription or expression of cells in need of treatment of diseases or conditions that are ameliorated by estrogen receptor (ER) -independent action of equol or daidzein Detection method.
6) The method according to 5), wherein the disease or condition ameliorated by ER-independent action of equol or daidzein is cancer.
7) Drugs or foods or their administration for the treatment of diseases or conditions ameliorated by ER-independent action of equol or daidzein using the presence or absence of Papd5 gene mutation or the amount of transcription or expression as an index Or how to design an intake plan.
8) The method according to 7), wherein the disease or condition ameliorated by the ER-independent action of equol or daidzein is cancer.

図1は、各種がん細胞に対するequolの細胞増殖抑制活性と ER 依存性を示したグラフである。ヒト子宮頸がん細胞株HeLa又はヒト前立腺がん細胞株 PC-3 を 2 x 104 cells/mLにて24穴培養プレートに播種し、24時間前培養した。ERアンタゴニストである ICI182,780 を1 mM になるよう添加した培地で 30 分間処理した後、equolを添加して 72 時間培養し、細胞数を計測した。FIG. 1 is a graph showing the cell growth inhibitory activity and ER dependence of equol against various cancer cells. Human cervical cancer cell line HeLa or human prostate cancer cell line PC-3 was seeded in a 24-well culture plate at 2 × 10 4 cells / mL and pre-cultured for 24 hours. After treatment with a medium supplemented with 1 mM of ICI182,780, which is an ER antagonist, for 30 minutes, equol was added and cultured for 72 hours, and the number of cells was counted. 図2は、マウスメラノーマ細胞株 B16 に対するequolの細胞増殖抑制活性を示したグラフである。マウスメラノーマ細胞株 B16 を 2 x 104 cells/mL で 24 穴培養プレートに播種し、 equol を添加した培地で 72 時間培養後、細胞数を計測した。FIG. 2 is a graph showing the cytostatic activity of equol against mouse melanoma cell line B16. The mouse melanoma cell line B16 was seeded at 2 × 10 4 cells / mL in a 24-well culture plate, cultured for 72 hours in a medium supplemented with equol, and the number of cells was counted. 図3は、B16 細胞のequol感受性に及ぼすICIの影響を示したグラフである。B16 細胞を 2 x 104 cells/mL で 24 穴プレートに播種し、ICI182,780 を終濃度 1 mM で添加した培地で 30 分間前処理した後、各濃度の equol を添加した。 72 時間培養後、細胞数を測定した。ICI : ER 阻害剤 ICI182,780FIG. 3 is a graph showing the effect of ICI on the equol sensitivity of B16 cells. B16 cells were seeded in a 24-well plate at 2 × 10 4 cells / mL, pretreated for 30 minutes with a medium supplemented with ICI182,780 at a final concentration of 1 mM, and equol at each concentration was then added. After culturing for 72 hours, the number of cells was measured. ICI: ER inhibitor ICI182,780 図4は、HeLa 細胞の equol 感受性に対する Papd5 発現の関与について示したグラフである。a) Scramble-shRNA 発現ベクター導入 HeLa 細胞又は Papd5-shRNA 発現ベクター導入 HeLa 細胞から RNA を回収しcDNA 合成後、 Real time RT-PCR によってPapd5 mRNA 発現量を検討した。b) Scramble-shRNA あるいは Papd5-shRNA 発現ベクターを導入した HeLa 細胞を 2 x 104 cells/mL で 24 穴 培養プレート に播種し、各濃度の equol を添加した培地で 72 時間培養し、細胞数を測定した。scramble:scramble-shRNA 発現ベクター導入 HeLa 細胞、siPapd5:Papd5-shRNA 発現ベクター導入 HeLa 細胞FIG. 4 is a graph showing the involvement of Papd5 expression on the equol sensitivity of HeLa cells. a) Scramble-shRNA expression vector introduced HeLa cells or Papd5-shRNA expression vector introduced RNA was collected from HeLa cells, and after cDNA synthesis, the expression level of Papd5 mRNA was examined by Real time RT-PCR. b) HeLa cells transfected with Scramble-shRNA or Papd5-shRNA expression vector were seeded in a 24-well culture plate at 2 x 10 4 cells / mL, and cultured for 72 hours in a medium supplemented with each concentration of equol. It was measured. scramble: HeLa cells introduced with scramble-shRNA expression vector, siPapd5: HeLa cells introduced with Papd5-shRNA expression vector 図5は、Figure 5 B16 細胞の equol 感受性に対するPapd5 発現の関与について示したグラフである。a) Scramble-shRNA 発現ベクター導入 B16 細胞又は Papd5-shRNA 発現ベクター導入 B16 細胞から RNA を回収しcDNA 合成後、 RT-PCR によって Papd5 mRNA 発現量を検討した。b) Scramble-shRNA あるいは Papd5-shRNA 発現ベクターを導入した B16 細胞を 2 x 104 cells/mL で 24 穴 培養プレート に播種し、equol を添加した培地で 72 時間培養し、細胞数を測定した。FIG. 5 is a graph showing the involvement of Papd5 expression on the equol sensitivity of B16 cells. a) RNA was collected from Scramble-shRNA expression vector introduced B16 cells or Papd5-shRNA expression vector introduced B16 cells, and after cDNA synthesis, the expression level of Papd5 mRNA was examined by RT-PCR. b) B16 cells transfected with Scramble-shRNA or Papd5-shRNA expression vector were seeded at 2 x 10 4 cells / mL in a 24-well culture plate, cultured in medium supplemented with equol for 72 hours, and the number of cells was measured. 図6は、機能性食品因子のがん細胞増殖抑制作用における Papd5 発現の関与について示したグラフである。Scramble-shRNA あるいは Papd5-shRNA 発現ベクターを導入した HeLa 細胞に、 equol、genistein、 daidzein、 EGCG をそれぞれ各濃度添加し、 72 時間培養した後細胞数を測定した。FIG. 6 is a graph showing the involvement of Papd5 expression in the cancer cell growth inhibitory action of functional food factors. Each concentration of equol, genistein, daidzein, and EGCG was added to HeLa cells into which Scramble-shRNA or Papd5-shRNA expression vector was introduced, and the number of cells was measured after culturing for 72 hours.

本発明においては、Papd5遺伝子又はその産物がイソフラボン類のエストロゲン受容体(ER)非依存的な作用に関連して利用される。
本発明で「Papd5遺伝子」というときは、特に記載した場合を除き、配列表に、配列番号:1、3又は5として表されたヌクレオチド配列若しくはそれと相補的なヌクレオチド配列からなるポリヌクレオチド、配列番号:2、4又は6のアミノ酸配列をコードするポリヌクレオチド、又はそのホモログを指す。具体的には、下記(a)、(b)、(c)、(d)、(e)、(f)又は(g)のいずれかである。
(a)配列番号:1、3若しくは5のヌクレオチド配列、又はそれと相補的なヌクレオチド配列からなる、ポリヌクレオチド;
(b)(a)のポリヌクレオチドと相補的な配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつequol又はdaidzein存在下でエストロゲン受容体(ER)非依存的に細胞増殖抑制活性を発揮しうる、ポリヌクレオチド;
(c)(a)のポリヌクレオチドと高い配列同一性を有し、かつequol又はdaidzein存在下でエストロゲン受容体(ER)非依存的に細胞増殖抑制活性を発揮しうる、ポリヌクレオチド;
(d)配列番号:2、4又は6のアミノ酸配列をコードするポリヌクレオチド;
(e)配列番号:2、4又は6のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、及び/又は付加したアミノ酸配列をコードし、かつequol又はdaidzein存在下でエストロゲン受容体(ER)非依存的に細胞増殖抑制活性を発揮しうる、ポリヌクレオチド;
(f)配列番号:2、4又は6のアミノ酸配列と高い配列同一性を有するアミノ酸配列をコードし、かつかつequol又はdaidzein存在下でエストロゲン受容体(ER)非依存的に細胞増殖抑制活性を発揮しうる、ポリヌクレオチド。
In the present invention, the Papd5 gene or its product is used in connection with the estrogen receptor (ER) -independent action of isoflavones.
In the present invention, “Papd5 gene” refers to a polynucleotide comprising a nucleotide sequence represented by SEQ ID NO: 1, 3 or 5 in the sequence listing or a nucleotide sequence complementary thereto, unless otherwise specified, SEQ ID NO: : Refers to a polynucleotide encoding an amino acid sequence of 2, 4, or 6, or a homologue thereof. Specifically, it is one of the following (a), (b), (c), (d), (e), (f), or (g).
(A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 3, or 5 or a complementary nucleotide sequence thereof;
(B) Hybridization with a polynucleotide comprising a sequence complementary to the polynucleotide of (a) under stringent conditions, and cell growth inhibitory activity independent of estrogen receptor (ER) in the presence of equol or daidzein A polynucleotide capable of exerting:
(C) a polynucleotide having high sequence identity with the polynucleotide of (a) and capable of exhibiting cytostatic activity in an estrogen receptor (ER) independent manner in the presence of equol or daidzein;
(D) a polynucleotide encoding the amino acid sequence of SEQ ID NO: 2, 4, or 6;
(E) encoding an amino acid sequence in which one or more amino acids are substituted, deleted, inserted and / or added in the amino acid sequence of SEQ ID NO: 2, 4 or 6, and in the presence of equol or daidzein (estrogen receptor) ER) a polynucleotide that can exert cytostatic activity in a non-dependent manner;
(F) It encodes an amino acid sequence having high sequence identity with the amino acid sequence of SEQ ID NO: 2, 4 or 6, and exhibits cytostatic activity independent of estrogen receptor (ER) in the presence of equol or daidzein A polynucleotide.

本明細書の配列表には、配列番号:1として、ヒトのPapd5のmRNAのヌクレオチド配列、配列番号:2として、ヒトのPapd5タンパク質のアミノ酸配列を示した。また、配列番号:3として、マウスのPapd5のmRNAのヌクレオチド配列、配列番号:4として、マウスのPapd5タンパク質のアミノ酸配列、配列番号:5として、ラットのPapd5のmRNAのヌクレオチド配列、配列番号:6として、ラットのPapd5タンパク質のアミノ酸配列を示した。   The sequence listing of the present specification shows the nucleotide sequence of human Papd5 mRNA as SEQ ID NO: 1, and the amino acid sequence of human Papd5 protein as SEQ ID NO: 2. Further, as SEQ ID NO: 3, the nucleotide sequence of mouse Papd5 mRNA, as SEQ ID NO: 4, the amino acid sequence of mouse Papd5 protein, as SEQ ID NO: 5, the nucleotide sequence of rat Papd5 mRNA, SEQ ID NO: 6 As shown, the amino acid sequence of rat Papd5 protein is shown.

Papd5遺伝子は、好ましくはヒト由来である。
本発明でPapd5遺伝子の「産物」というときは、特に記載した場合を除き、上述のPapd5遺伝子の、転写産物(mRNA)又は発現産物(タンパク質)をいう。
The Papd5 gene is preferably human.
In the present invention, the “product” of the Papd5 gene refers to the transcription product (mRNA) or expression product (protein) of the Papd5 gene described above, unless otherwise specified.

産物の一例は、配列番号:1、3又は5として表されたヌクレオチド配列(ただし、tはuに置換できる。)からなるmRNA又はそのホモログである。具体的には、下記(a')、(b')、(c')、(d)、(e)、(f)又は(g)のいずれかである。
(a')配列番号:1、3若しくは5のヌクレオチド配列からなる、ポリヌクレオチド;
(b')(a')のポリヌクレオチドと相補的な配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつequol又はdaidzein存在下でエストロゲン受容体(ER)非依存的に細胞増殖抑制活性を発揮しうる、ポリヌクレオチド;
(c')(a')のポリヌクレオチドと高い配列同一性を有し、かつequol又はdaidzein存在下でエストロゲン受容体(ER)非依存的に細胞増殖抑制活性を発揮しうる、ポリヌクレオチド;
(d)配列番号:2、4又は6のアミノ酸配列をコードするポリヌクレオチド;
(e)配列番号:2、4又は6のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、及び/又は付加したアミノ酸配列をコードし、かつequol又はdaidzein存在下でエストロゲン受容体(ER)非依存的に細胞増殖抑制活性を発揮しうる、ポリヌクレオチド;
(f)配列番号:2、4又は6のアミノ酸配列と高い配列同一性を有するアミノ酸配列をコードし、かつかつequol又はdaidzein存在下でエストロゲン受容体(ER)非依存的に細胞増殖抑制活性を発揮しうる、ポリヌクレオチド。
An example of the product is an mRNA consisting of a nucleotide sequence represented by SEQ ID NO: 1, 3 or 5 (where t can be replaced by u) or a homologue thereof. Specifically, it is one of the following (a ′), (b ′), (c ′), (d), (e), (f), or (g).
(A ′) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 3, or 5;
(B ′) Hybridization with a polynucleotide comprising a sequence complementary to the polynucleotide of (a ′) under stringent conditions, and cell growth in the presence of equol or daidzein independent of estrogen receptor (ER) A polynucleotide capable of exerting inhibitory activity;
(C ′) a polynucleotide having high sequence identity with the polynucleotide of (a ′) and capable of exhibiting cytostatic activity in the presence of equol or daidzein independent of estrogen receptor (ER);
(D) a polynucleotide encoding the amino acid sequence of SEQ ID NO: 2, 4, or 6;
(E) encoding an amino acid sequence in which one or more amino acids are substituted, deleted, inserted and / or added in the amino acid sequence of SEQ ID NO: 2, 4 or 6, and in the presence of equol or daidzein (estrogen receptor) ER) a polynucleotide that can exert cytostatic activity in a non-dependent manner;
(F) It encodes an amino acid sequence having high sequence identity with the amino acid sequence of SEQ ID NO: 2, 4 or 6, and exhibits cytostatic activity independent of estrogen receptor (ER) in the presence of equol or daidzein A polynucleotide.

産物の他の例は、2、4又は6のアミノ酸配列をからなるタンパク質又はそのホモログである。具体的には、下記(d')、(e')、(f')又は(g')のいずれかである。
(d')配列番号:2、4又は6のアミノ酸配列からなるタンパク質;
(e')配列番号:2、4又は6のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、及び/又は付加したアミノ酸配列からなり、かつequol又はdaidzein存在下でエストロゲン受容体(ER)非依存的に細胞増殖抑制活性を発揮しうる、タンパク質;
(f')配列番号:2、4又は6のアミノ酸配列と高い同一性を有するアミノ酸配列からなり、かつかつequol又はdaidzein存在下でエストロゲン受容体(ER)非依存的に細胞増殖抑制活性を発揮しうる、タンパク質。
Another example of a product is a protein consisting of 2, 4 or 6 amino acid sequences or a homologue thereof. Specifically, it is one of the following (d ′), (e ′), (f ′), or (g ′).
(D ′) a protein consisting of the amino acid sequence of SEQ ID NO: 2, 4 or 6;
(E ′) an amino acid sequence in which one or more amino acids are substituted, deleted, inserted and / or added in the amino acid sequence of SEQ ID NO: 2, 4 or 6, and in the presence of equol or daidzein, an estrogen receptor ( ER) a protein capable of exerting cytostatic activity in an independent manner;
(F ') It consists of an amino acid sequence having high identity with the amino acid sequence of SEQ ID NO: 2, 4 or 6, and exhibits cytostatic activity in an estrogen receptor (ER) independent manner in the presence of equol or daidzein. Uru, protein.

本発明でいう「ストリンジェントな条件」とは、特別な場合を除き、6M尿素、0.4% SDS、0.5×SSCの条件又はこれと同等のハイブリダイゼーション条件を指し、さらに必要に応じ、本発明には、よりストリンジェンシーの高い条件、例えば、6M尿素、0.4% SDS、0.1×SSC又はこれと同等のハイブリダイゼーション条件を適用してもよい。それぞれの条件において、温度は約40℃以上とすることができ、よりストリンジェンシーの高い条件が必要であれば、例えば約50℃、さらに約65℃としてもよい。   The “stringent conditions” as used in the present invention refers to the conditions of 6M urea, 0.4% SDS, 0.5 × SSC or a hybridization condition equivalent thereto, unless otherwise specified. May be applied under conditions of higher stringency, for example, 6M urea, 0.4% SDS, 0.1 × SSC or equivalent hybridization conditions. Under each condition, the temperature can be about 40 ° C. or higher, and if higher stringency conditions are required, for example, about 50 ° C. or about 65 ° C. may be used.

また、本発明で「1若しくは複数のアミノ酸が置換、欠失、挿入、及び/又は付加された」というときの置換等されるアミノ酸の個数は、そのアミノ酸配列からなるタンパク質又はそれをコードするポリヌクレオチドが所望の機能を有する限り特に限定されないが、1〜9個又は1〜4個程度である。そのようなアミノ酸配列に係るポリヌクレオチドを調製するための手段には、例えば、site-directed mutagenesis法(Kramer W & Fritz H-J: Methods Enzymol 154: 350、 1987)がある。   In the present invention, the number of amino acids to be substituted when “one or more amino acids are substituted, deleted, inserted, and / or added” is the number of amino acids to be replaced or the protein encoding the protein. Although it does not specifically limit as long as a nucleotide has a desired function, It is about 1-9 pieces or 1-4 pieces. Means for preparing a polynucleotide according to such an amino acid sequence include, for example, the site-directed mutagenesis method (Kramer W & Fritz HJ: Methods Enzymol 154: 350, 1987).

本発明においてヌクレオチドに関し、同一性が「高い」というときは、少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上の配列の同一性を指す。また、本発明においてアミノ酸配列に関し、同一性をいうときは、少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上の配列の同一性を指す。ヌクレオチド配列又はアミノ酸配列の同一性は、カーリン及びアルチュールによるアルゴリズムBLAST(Proc. Natl. Acad. Sci. USA 87:2264-2268、 1990、Proc Natl Acad Sci USA 90: 5873、 1993)を用いて決定できる。BLASTのアルゴリズムに基づいたBLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul SF、 et al: J Mol Biol 215: 403、 1990)。BLASTNを用いて塩基配列を解析する場合は、パラメーターは、例えばscore=100、wordlength=12とする。また、BLASTXを用いてアミノ酸配列を解析する場合は、パラメーターは、例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合は、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である(http://www.ncbi.nlm.nih.gov/)。   In the present invention, regarding nucleotides, when “identity” is “high”, it means at least 80% or more, preferably 90% or more, more preferably 95% or more sequence identity. In the present invention, when referring to amino acid sequences, identity refers to sequence identity of at least 80% or more, preferably 90% or more, more preferably 95% or more. Nucleotide or amino acid sequence identity is determined using the algorithm BLAST (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990, Proc Natl Acad Sci USA 90: 5873, 1993) by Carlin and Arthur. it can. Programs called BLASTN and BLASTX based on the BLAST algorithm have been developed (Altschul SF, et al: J Mol Biol 215: 403, 1990). When analyzing a base sequence using BLASTN, parameters are set to, for example, score = 100 and wordlength = 12. In addition, when an amino acid sequence is analyzed using BLASTX, the parameters are, for example, score = 50 and wordlength = 3. When using BLAST and Gapped BLAST programs, the default parameters of each program are used. Specific methods of these analysis methods are known (http://www.ncbi.nlm.nih.gov/).

本発明で「ポリヌクレオチド」というときは、特に記載した場合を除き、DNAであってもRNAであってもよい。一本鎖又は二本鎖であり得る。
本発明者らの検討によると、抗がん作用を示す機能性食品因子、equol、genistein、daidzein, エピガロカテキンガレート(EGCG)のうち、GenisteinとEGCGはequolと同様にHeLa細胞の増殖を抑制したが、その作用はPapd5発現低下の影響を受けなかった。一方、daidzeinの細胞増殖抑制作用はequolと同様に、Papd5の発現を低下させた細胞では阻害された(実施例及び図6)。
In the present invention, “polynucleotide” may be DNA or RNA unless otherwise specified. It can be single-stranded or double-stranded.
According to our study, Genistein and EGCG, like equol, inhibit the proliferation of HeLa cells among functional food factors that exhibit anticancer effects, equol, genistein, daidzein, and epigallocatechin gallate (EGCG). However, the effect was not affected by the decrease in Papd5 expression. On the other hand, the cell growth inhibitory action of daidzein was inhibited in the cells in which the expression of Papd5 was reduced, like equol (Example and FIG. 6).

本発明に関与するイソフラボン類を下記に示す。   The isoflavones involved in the present invention are shown below.

本発明者らの検討によると、ヒト子宮頸がん細胞株HeLa及びヒト前立腺がん細胞株PC-3は、equolによって増殖が抑制され、ERアンタゴニストであるICI182,780(ICI)で処理した場合においてもその作用は阻害されなかった。このことから、これらのがん細胞株に対してequolはER非依存的な作用機序により、細胞増殖抑制活性を示すといえる(図1)。   According to the study by the present inventors, when the human cervical cancer cell line HeLa and the human prostate cancer cell line PC-3 are inhibited by equol and treated with ER antagonist ICI182,780 (ICI) The action was not inhibited. From this, it can be said that equol exhibits cytostatic activity against these cancer cell lines by an action mechanism independent of ER (FIG. 1).

「エストロゲン受容体(ER)」は、エストロゲン(エストロン(E1)、エストラジオール(E2)及びエストリオール(E3))と結合能を有し、ステロイド受容体スーパーファミリーに属する分子の一つであって、卵胞ホルモン受容体とも呼ばれる。2つのアイソフォームERα(NR3A1、595アミノ酸残基)及びERβ(NR3A2、530残基)が存在する。エストロゲンは生殖機能の形成及び細胞の増殖を促進する働きを有する。   “Estrogen Receptor (ER)” is one of the molecules belonging to the steroid receptor superfamily having binding ability to estrogen (estrone (E1), estradiol (E2) and estriol (E3)), Also called follicular hormone receptor. There are two isoforms ERα (NR3A1, 595 amino acid residues) and ERβ (NR3A2, 530 residues). Estrogens have the function of promoting the formation of reproductive functions and cell proliferation.

本発明で「ER非依存性」又は「ER非依存的(に)」というときは、特に記載した場合を除き、ERに依拠せずに対象に作用することを指す。ある物質の作用が「ER非依存性」であるか否かは、当業者であれば、適宜判断することができる。例えば、ERのアンタゴニストの存在により、発揮されるべき効果が影響を受けないか又は影響を受けたとしても無視できる(例えば、存在しない場合の効果と比較して、±30%の範囲内の効果を発揮する。)ことを指標に、判断することができる。より詳細な条件は、本願明細書の実施例の記載を参考にすることができる。   In the present invention, “ER-independent” or “ER-independent” means acting on a subject without depending on ER, unless otherwise specified. Whether or not the action of a substance is “ER-independent” can be appropriately determined by those skilled in the art. For example, due to the presence of an antagonist of ER, the effect to be exerted is unaffected or can be neglected (eg, effects within ± 30% compared to the effect in the absence) Can be judged using the index of For more detailed conditions, reference can be made to the description of the examples in the present specification.

本発明で、equol又はdaidzeinのER非依存的な作用により改善する疾患又は状態というときは、特に記載した場合を除き、がん、特に子宮頸がん、子宮体がん、前立線がん;胃がん、メラノーマ、膵臓がん(前掲非特許文献7);胸腺の肥大又は萎縮(前掲非特許文献8);アレルギー(前掲非特許文献9)、血管狭窄又は弛緩(前掲非特許文献10)を含む。好ましくはがんである。体がんの発生経路にはエストロゲン依存性と非依存性のものがあり、前者は類内膜腺がん、後者は漿液性腺がんが代表的なものである。   In the present invention, when it is referred to as a disease or condition improved by ER-independent action of equol or daidzein, unless otherwise specified, cancer, in particular cervical cancer, endometrial cancer, prostate cancer Gastric cancer, melanoma, pancreatic cancer (supra non-patent document 7); thymic hypertrophy or atrophy (previously non-patent document 8); allergy (supra non-patent document 9); Including. Preferably it is cancer. There are two types of pathogenesis of body cancer, estrogen-dependent and independent, with the former being representative of endometrioid adenocarcinoma and the latter being serous adenocarcinomas.

本発明により、Papd5遺伝子又はその産物を用いることを特徴とする、イコール(equol)又はダイゼイン(daidzein)のエストロゲン受容体(ER)非依存的な作用により改善する疾患又は状態の処置のための、物質のスクリーニング方法が提供される。スクリーニング方法は、例えば、以下の工程を含む:
1)対象となる物質を、Papd5遺伝子を発現させた細胞に供与する工程;
2)該物質が細胞増殖に影響を与えるか否かを確認する工程。
For the treatment of diseases or conditions ameliorated by the estrogen receptor (ER) independent action of equol or daidzein, characterized by using the Papd5 gene or product thereof according to the present invention, Methods of screening for substances are provided. The screening method includes, for example, the following steps:
1) A step of supplying a target substance to a cell in which the Papd5 gene is expressed;
2) A step of confirming whether or not the substance affects cell proliferation.

本発明に基づき、Papd5遺伝子又はその産物は、equol又はdaidzeinのエストロゲン受容体(ER)非依存的な作用により改善する疾患又は状態の処置のためのバイオマーカーとして使用することができる。また、Papd5遺伝子の変異の有無、又は転写若しくは発現の量は、equol又はdaidzeinのエストロゲン受容体(ER)非依存的な作用により改善する疾患又は状態の処置が必要な対象を検出するためのデータとして使用することができる。Papd5遺伝子又はその一部、Papd5遺伝子の産物又はその一部、Papd5遺伝子又はその産物に対する抗体を搭載したマイクロアレイやチップは、上述の方法において主要なツールとして用いることができる。本発明はまた、equol又はdaidzeinのエストロゲン受容体(ER)非依存的な作用により改善する疾患又は状態の診断キット、検査用チップ、Papd5に対する抗体(Papd5タンパク質を大腸菌で発現させた組み換えタンパク質又はPapd5のアミノ酸配列情報から抗原性の高いPapd5に由来するペプチドで免疫することでPapd5特異的抗体を得ることができる。)、それを利用したイムノクロマトグラフィー、ELISAキット、DNAマイクロアレイ、プロテインアレイ等も提供する。   In accordance with the present invention, the Papd5 gene or product thereof can be used as a biomarker for the treatment of diseases or conditions that are ameliorated by the estrogen receptor (ER) independent action of equol or daidzein. In addition, the presence or absence of mutations in the Papd5 gene, or the amount of transcription or expression is data for detecting a subject in need of treatment for a disease or condition that is improved by an estrogen receptor (ER) -independent action of equol or daidzein. Can be used as A microarray or chip on which a Papd5 gene or a part thereof, a product or part of a Papd5 gene, an antibody against the Papd5 gene or a product thereof is mounted can be used as a main tool in the above-described method. The present invention also provides a diagnostic kit, test chip, antibody against Papd5 (recombinant protein or Papd5 expressing Papd5 protein in Escherichia coli), which is improved by an estrogen receptor (ER) -independent action of equol or daidzein. From the amino acid sequence information, it is possible to obtain a Papd5-specific antibody by immunizing with a highly antigenic peptide derived from Papd5.), Also provides immunochromatography, ELISA kit, DNA microarray, protein array, etc. .

本発明により、Papd5遺伝子の変異の有無、又は転写若しくは発現の量を指標として、対象者の個性に応じ、equol又はdaidzeinのER非依存的な作用により改善する疾患又は状態の処置のための医薬品の投与計画、又は食品の摂取計画を設計することができる。例えば、Papd5の発現が高い対象は、抗がん剤カンプトテシンの効果が低下する(前掲非特許文献14)が、むしろequol又はdaidzeinのER非依存的な作用が期待できると思われる。また、本発明により、ER非依存性の対象におけるequol又はdaidzeinによる細胞増殖抑制作用が期待できる。   According to the present invention, a drug for treatment of a disease or condition that is improved by the ER-independent action of equol or daidzein according to the individuality of the subject, using the presence or absence of Papd5 gene mutation or the amount of transcription or expression as an index Administration plans or food intake plans can be designed. For example, in a subject with high expression of Papd5, the effect of the anticancer drug camptothecin is reduced (Non-Patent Document 14), but it seems that ER-independent action of equol or daidzein can be expected. In addition, according to the present invention, cell growth inhibitory action by equol or daidzein in ER-independent subjects can be expected.

<実験材料及び実験方法>
1.各種がん細胞に対するequolの細胞増殖抑制活性とER依存性
細胞数の測定に使用したヒト子宮頸がん細胞株HeLaは、10%ウシ胎児血清(FCS)(BIOLOGICAL)添加DMEM培地で、ヒト前立線がん細胞株PC-3は10%FCS添加RPMI1640培地で、37℃、水蒸気飽和した5%CO2条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したDMEM培地は、dH2O 1LあたりダルベッコMEM培地(コスモ・バイオ株式会社、東京)13.38g、HEPES(和光純薬工業株式会社、大阪)5.958g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社、東京)0.5 vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社、東京)0.1 vial、NaHCO3(nacalai tesque、京都)3.7gを懸濁した後、0.22μmフィルターで滅菌した。RPMI-1640培地は、dH2O 1LあたりRPMI-1640培地(日水製薬,東京)10.4g、2-[4-(2-hydroxyethyl)-1-piperazinyl]ethane sulfonic acid(HEPES)2.38g、ペニシリン100U/mL、ストレプトマイシン100mg/L、NaHCO3(和光純薬工業,大阪)2.0gを懸濁し、炭酸ガスを吹き込んでpHを6.8〜7.4に調整後、0.22μmフィルターで濾過滅菌した。そして、ウシ胎児血清(FCS)を10%添加し、細胞培養に使用した。細胞の継代の際は、PBSで洗浄した後、トリプシン溶液で細胞をはがした。PBSはdH2O 1LあたりNaCl(nacalai tesque、京都)8.0g、KCl(nacalai tesque、京都)0.2g、Na2HPO4(和光純薬工業株式会社、大阪)1.15g、KH2PO4(nacalai tesque、京都)0.2gを懸濁し、オートクレーブ滅菌した。トリプシン溶液は、100mLPBSあたりEDTA・2Na(和光純薬工業株式会社、大阪)0.05g、トリプシン(nacalai tesque、京都)0.02gを懸濁し、フィルター滅菌した。また、細胞の継代、維持には、5mL又は10mL接着dish(nuncTM、東京)を使用した。Equol(フナコシ)、Daidzein(フナコシ)、Genistein(フナコシ)は、100mMになるようにDMSO(nacalai tesque、京都)に溶解し、4℃で保存しておいた。ICI182,780(invitrogen)は10mMになるようにDMSOに溶解し、-80℃で保存しておいた。細胞数の測定は、各細胞を2x104cells/mLに調整して24穴プレート(nuncTM、東京)に播種し、10%FCS含有培地で24時間前培養した。その後、1μMになるようICI182,780を添加した2%FCS含有培地に置換し30分間処理し、各濃度になるようにequolを添加した。72時間培養した後、セルカウンターにて細胞数を計測した。実験結果の統計処理にはStudent's t検定を用いた。
<Experimental materials and experimental methods>
1. The human cervical cancer cell line HeLa used for the measurement of equol's cytostatic activity and various ER-dependent cell counts against various cancer cells is DMEM medium supplemented with 10% fetal bovine serum (FCS) (BIOLOGICAL). The vertical cancer cell line PC-3 was subcultured and maintained in RPMI1640 medium supplemented with 10% FCS under conditions of 37 ° C. and 5% CO 2 with water vapor saturation. Cells were maintained in culture in the logarithmic growth phase. The DMEM medium used for the culture was Dulbecco's MEM medium (Cosmo Bio Inc., Tokyo) 13.38 g, 5.958 g of HEPES (Wako Pure Chemical Industries, Ltd., Osaka), 200,000 units of penicillin G for injection per 1 L of dH 2 O. (Meiji Seika Co., Ltd., Tokyo) 0.5 vial, streptomycin sulfate for injection 1 g (Meiji Seika Co., Ltd., Tokyo) 0.1 vial, NaHCO 3 (nacalai tesque, Kyoto) 3.7 g were suspended and then sterilized with a 0.22 μm filter. RPMI-1640 medium is 10.4 g of RPMI-1640 medium (Nissui Pharmaceutical, Tokyo) per 1 L of dH 2 O, 2.38 g of 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethane sulfonic acid (HEPES), penicillin 100 U / mL, streptomycin 100 mg / L, 2.0 g of NaHCO 3 (Wako Pure Chemical Industries, Osaka) were suspended, and the pH was adjusted to 6.8 to 7.4 by blowing carbon dioxide, and then sterilized by filtration through a 0.22 μm filter. Then, 10% of fetal calf serum (FCS) was added and used for cell culture. When the cells were passaged, the cells were washed with PBS and then detached with a trypsin solution. PBS is 8.0 g of NaCl (nacalai tesque, Kyoto) per liter of dH 2 O, 0.2 g of KCl (nacalai tesque, Kyoto), Na 2 HPO 4 (Wako Pure Chemical Industries, Ltd., Osaka) 1.15 g, KH 2 PO4 (nacalai tesque , Kyoto) 0.2 g was suspended and autoclaved. The trypsin solution was obtained by suspending 0.05 g EDTA · 2Na (Wako Pure Chemical Industries, Ltd., Osaka) and 0.02 g trypsin (nacalai tesque, Kyoto) per 100 mL PBS, and sterilizing the filter. In addition, 5 mL or 10 mL adhesive dishes (nunc , Tokyo) were used for cell passage and maintenance. Equol (Funakoshi), Daidzein (Funakoshi), and Genistein (Funakoshi) were dissolved in DMSO (nacalai tesque, Kyoto) to a concentration of 100 mM and stored at 4 ° C. ICI182,780 (invitrogen) was dissolved in DMSO to a concentration of 10 mM and stored at −80 ° C. For the measurement of the number of cells, each cell was adjusted to 2 × 10 4 cells / mL, seeded in a 24-well plate (nunc , Tokyo), and pre-cultured in a medium containing 10% FCS for 24 hours. Thereafter, the medium was replaced with a medium containing 2% FCS supplemented with ICI182,780 to 1 μM, treated for 30 minutes, and equol was added to each concentration. After culturing for 72 hours, the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.

2.マウスメラノーマ細胞株B16に対するequolの細胞増殖抑制活性
細胞数及び細胞生存率の測定に使用したマウスメラノーマ細胞株B16(American Type Culture Collection)は、5%FCS添加DMEM培地で37℃、水蒸気飽和した5%CO2条件下で継代、維持した。細胞は対数増殖期で培養維持した。細胞数及び細胞生存率の測定は、マウスメラノーマ細胞株B16を2x104cells/mLに調整して24穴プレートに播種し、5%FCS含有DMEM培地で24時間前培養した。その後、終濃度0,1,5,10,25,50μMのequolを含む2%FCS含有DMEM培地で72時間又は、24,48,72,96時間培養後、細胞数をセルカウンターにより計測した。実験結果の統計処理にはStudent's t検定を用いた。
2. The cell growth inhibitory activity of equol against mouse melanoma cell line B16The mouse melanoma cell line B16 (American Type Culture Collection) used for the measurement of cell number and cell viability was 37 ° C in DMEM medium supplemented with 5% FCS, It was subcultured and maintained under steam saturated 5% CO 2 conditions. Cells were maintained in culture in the logarithmic growth phase. For the measurement of cell number and cell viability, mouse melanoma cell line B16 was adjusted to 2 × 10 4 cells / mL, seeded in a 24-well plate, and pre-cultured in DMEM medium containing 5% FCS for 24 hours. Thereafter, after culturing in 2% FCS-containing DMEM medium containing equol having a final concentration of 0, 1, 5, 10, 25, 50 μM for 72 hours or 24, 48, 72, 96 hours, the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.

3.B16細胞のequol感受性に及ぼすICIの影響
細胞数の測定は、B16細胞を2x104cells/mLに調整して24穴プレートに播種し、5%FCS含有DMEM培地で24時間前培養した。終濃度1μMのICI182,780を含む2%FCS含有DMEM培地で30分間処理した後、終濃度0,1,5,10,25μMのequolを添加した。72時間培養した後、細胞数をセルカウンターにより計測した。実験結果の統計処理にはStudent's t検定を用いた。
3. Effect of ICI on equol sensitivity of B16 cells To measure the number of cells, B16 cells were adjusted to 2 × 10 4 cells / mL, seeded in 24-well plates, and pre-cultured in DMEM medium containing 5% FCS for 24 hours. After treatment with 2% FCS-containing DMEM medium containing ICI 182,780 at a final concentration of 1 μM for 30 minutes, equol at a final concentration of 0, 1, 5, 10, 25 μM was added. After culturing for 72 hours, the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.

4.equol感知遺伝子の同定
EcoPack2-293及びAmphoPack-293パッケージング細胞(Clontech)を2x105cells/mLに調整して5mL dishに播種し、10%FCS含有DMEM培地で培養した。翌日、Mouse Embryo cDNAライブラリーML8000BB(Clontech,Mountain View, CA)を制限酵素EcoRI、Sph Iで断片化し、pLPCX改変レトロウイルスベクターに導入したFGS library(MFL-ESP)(1.0μg/μL)3μL、pVSV-G vector(タカラバイオ株式会社、滋賀)(1.0μg/μL)3μL、FuGENE 6 Transfection Reagent(Roche、東京)6μLで混合し、それぞれのパッケージング細胞に導入した。翌日、パッケージング細胞の培養上清をフィルター(0.22μm)に通し、ポリブレン(Hexadimethrine bromide)(SIGMA-ALDRICH、東京)を終濃度8μg/mLになるように添加した後、前日1x104cells/mLに調整して5mL dishに播種し、5%FCS含有DMEM培地で培養しておいたB16細胞にふりかけ、培養上清中のウイルスを感染させた。パッケージング細胞には新しい10%FCS含有DMEM培地を添加し、培養を継続した。この操作を12時間ごとに計4回行った。感染の終了したB16細胞を1x104cells/mLに調整して、96穴プレート(nuncTM、東京)に播種し、2%FCS含有DMEM培地で24時間回復培養を行った。回復培養後、1%FCS含有DMEM培地で、80μMのequol含有培地で培養し、equol耐性B16細胞を獲得した。
Four. Identification of equol-sensing genes
EcoPack2-293 and AmphoPack-293 packaging cells (Clontech) were adjusted to 2 × 10 5 cells / mL, seeded in a 5 mL dish, and cultured in DMEM medium containing 10% FCS. The next day, Mouse Embryo cDNA library ML8000BB (Clontech, Mountain View, CA) was fragmented with restriction enzymes EcoRI and Sph I, and introduced into pLPCX-modified retroviral vector FGS library (MFL-ESP) (1.0 μg / μL) 3 μL, pVSV-G vector (Takara Bio Inc., Shiga) (1.0 μg / μL) 3 μL and FuGENE 6 Transfection Reagent (Roche, Tokyo) 6 μL were mixed and introduced into each packaging cell. The next day, the culture supernatant of the packaging cells was passed through a filter (0.22 μm), and after adding polybrene (Hexadimethrine bromide) (SIGMA-ALDRICH, Tokyo) to a final concentration of 8 μg / mL, the previous day 1 × 10 4 cells / mL And seeded in a 5 mL dish and sprinkled on B16 cells cultured in DMEM medium containing 5% FCS to infect the virus in the culture supernatant. To the packaging cells, a fresh 10% FCS-containing DMEM medium was added, and the culture was continued. This operation was performed four times every 12 hours. The infected B16 cells were adjusted to 1 × 10 4 cells / mL, seeded in a 96-well plate (nunc , Tokyo), and subjected to recovery culture in a DMEM medium containing 2% FCS for 24 hours. After recovery culture, the cells were cultured in a DMEM medium containing 1% FCS in a medium containing 80 μM equol to obtain equol-resistant B16 cells.

Equol耐性細胞にTRIzol(登録商標) Reagent(invitogen、東京)1mLを添加し、室温で5分間放置した。次に、クロロホルム(nacalai tesque、京都)200μLを添加・撹拌し、室温で3分間放置後、4℃で15分間遠心(12000 x g)した。その後、上層を取り出し、2-プロパノール(nacalai tesque、京都)500μLを添加・撹拌し、室温で10分間放置後、4℃で10分間遠心(12000 x g)した。その後、上清を除去し、75%EtOH(nacalai tesque、京都)in DEPE水(DEPC(SIGMA-ALDRICH、東京)1mLをdH2O 1Lに溶かし、オートクレーブ滅菌したもの)を1mL添加・撹拌後、4℃で5分間遠心(12000 x g)した。その上清を完全に除去し、DEPC水を10から20μL入れて懸濁した。それに、株式会社ジーンネット(福岡)に合成を委託した(dT)20 primer(5'-TTT TTT TTT TTT TTT TTT TT-3',DEPC水で0.5μg/μLになるように調整したもの,以下のプライマーも全て株式会社ジーンネットに委託した。)を1.0μL添加し、70℃で10分間放置後、氷上で10分間放置した。その後、dNTP 2.0μL、M-MLV Reverse Transcriptase buffer 4.0μL、M-MLV Reverse Transcriptase(Promega、東京)0.1μL、RNase inhibitor(タカラバイオ株式会社、滋賀)0.1μL を添加して37℃で1時間放置後、5分間煮沸した。調製したcDNAは-20℃で保存した。 1 mL of TRIzol (registered trademark) Reagent (invitogen, Tokyo) was added to Equol resistant cells and left at room temperature for 5 minutes. Next, 200 μL of chloroform (nacalai tesque, Kyoto) was added and stirred, allowed to stand at room temperature for 3 minutes, and then centrifuged (12000 × g) at 4 ° C. for 15 minutes. Thereafter, the upper layer was taken out, 500 μL of 2-propanol (nacalai tesque, Kyoto) was added and stirred, allowed to stand at room temperature for 10 minutes, and then centrifuged (12000 × g) at 4 ° C. for 10 minutes. Thereafter, the supernatant was removed, 1 mL of 75% EtOH (nacalai tesque, Kyoto) in DEPE water (1 mL of DEPC (SIGMA-ALDRICH, Tokyo) dissolved in dH 2 O and autoclaved) was added and stirred, Centrifugation (12000 xg) was performed at 4 ° C for 5 minutes. The supernatant was completely removed, and 10 to 20 μL of DEPC water was added and suspended. In addition, (dT) 20 primer (5'-TTT TTT TTT TTT TTT TTT TT-3 ', adjusted to 0.5 μg / μL with DEPC water, entrusted to Genenet Co., Ltd. All primers were also commissioned to Genenet Co., Ltd.) 1.0 μL was added, allowed to stand at 70 ° C. for 10 minutes, and then allowed to stand on ice for 10 minutes. Then add dNTP 2.0μL, M-MLV Reverse Transcriptase buffer 4.0μL, M-MLV Reverse Transcriptase (Promega, Tokyo) 0.1μL, RNase inhibitor (Takara Bio Inc., Shiga) 0.1μL and let stand at 37 ° C for 1 hour Then boiled for 5 minutes. The prepared cDNA was stored at -20 ° C.

そのcDNAを鋳型として、pLPCX-SとpLPCX-Aのプライマーセット(5'-GAT CCG CTA GCG CTA CCG GAC TCA GAT-3')pLPCX-A(5'-CTT TCA TTC CCC CCT TTT TCT GGA GAC-3')(TE bufferで20μMになるように調整して使用した。以下のPCRに用いたプライマーも全て同様である。TE buffer(10mM Tris(nacalai tesque,京都)-HCl,1mM EDTA, pH8.0)を用いて、導入cDNA断片をPCRにより増幅した。PCR装置として、TGRADIENT(Biometra(登録商標, Germany) 又はPC320(ASTEC、福岡)を使用した。PCRは1サンプルあたり、プライマー(senseプライマーとantisenseプライマー)各0.5μLずつと、タカラバイオ株式会社(滋賀)より購入したdNTP mix 1μL、10 x buffer 1μL、Ex taq 0.1μLとdH2O 5.9μL、鋳型1μLを懸濁し、初期変性94℃で2分間、変性反応94℃で30秒間、アニーリング67.1℃で30秒間、伸長反応72℃で1分間行い、変性反応、アニーリング及び伸長反応を40サイクル行った。PCR後、1サンプルあたり、BPB溶液 1μLとSYBR(登録商標) Green I nucleic acid gel stein(Molecular probes(invitrogen)、東京)0.5μLを添加した。BPB溶液は0.25%Bromophenol blue(和光純薬工業株式会社、大阪)、30%グリセリン(nacalai tesque、京都)となるようにdH2Oに溶解した。SYBR(登録商標) Green I nucleic acid gel steinはdH2Oで1000倍希釈して用いた。 PLPCX-S and pLPCX-A primer set (5'-GAT CCG CTA GCG CTA CCG GAC TCA GAT-3 ') pLPCX-A (5'-CTT TCA TTC CCC CCT TTT TCT GGA GAC- 3 ′) (Used by adjusting to 20 μM with TE buffer. The same primers were used for the following PCR: TE buffer (10 mM Tris (nacalai tesque, Kyoto) -HCl, 1 mM EDTA, pH 8. 0) was used to amplify the introduced cDNA fragment by PCR, using TGRADIENT (Biometra (registered trademark ) , Germany) or PC320 (ASTEC, Fukuoka) as a PCR device. Suspend dNTP mix 1 μL, 10 x buffer 1 μL, Ex taq 0.1 μL and dH 2 O 5.9 μL, template 1 μL purchased from Takara Bio Inc. (Shiga) Denaturation reaction at 94 ° C for 30 seconds, annealing at 67.1 ° C for 30 seconds, extension reaction at 72 ° C for 1 minute, denaturation reaction, annealing and extension reaction for 40 cycles After PCR, 1 μL of BPB solution and 0.5 μL of SYBR (registered trademark) Green I nucleic acid gel stein (Molecular probes (invitrogen), Tokyo) were added per sample. Kojun Pharmaceutical Co., Ltd., Osaka), dissolved in dH 2 O to be 30% glycerin (nacalai tesque, Kyoto) SYBR (registered trademark) Green I nucleic acid gel stein was diluted 1000 times with dH 2 O. Using.

そのサンプルを用い、1.5%アガロースゲルで電気泳動を行った。アガロースゲルは、TAE bufferに1〜1.5%の濃度でAgarose S(和光純薬工業株式会社、大阪)を溶かして作成した。TAE bufferは1LあたりTris(nacalaitesque、京都)-HCl 242g、EDTA・2Na 37.2g、氷酢酸(nacalai tesque、京都)57.1mLをdH2Oに溶解してpH8.5に調整後、dH2Oで1Lにフィルアップし、オートクレーブ滅菌をし、50 x TAE bufferを作成し、dH2Oで50倍希釈して使用した。電気泳動槽はGelMate(TOYOBO、大阪)を使用した。電気泳動後、250μL EtBrを添加した500mL TAE bufferに15分間浸した。その後、ChemiImagerTM 5500(Alpha Innotech)を用いてDNAの検出を行った。その後、photoshopのヒストグラムからDNA量を数値化した。その結果確認できたpLPCX特異的なバンドをGENECLEAN II kit(フナコシ、東京)を用いてアガロースゲルより回収した。 The sample was used for electrophoresis on a 1.5% agarose gel. The agarose gel was prepared by dissolving Agarose S (Wako Pure Chemical Industries, Ltd., Osaka) at a concentration of 1 to 1.5% in TAE buffer. TAE buffer is Tris per 1L (nacalaitesque, Kyoto) -HCl 242g, EDTA · 2Na 37.2g , glacial acetic acid (Nacalai tesque, Kyoto) after adjusting 57.1mL to pH8.5 dissolved in dH 2 O, in dH 2 O Filled up to 1 L, sterilized by autoclave, prepared 50 × TAE buffer, diluted 50 times with dH 2 O and used. GelMate (TOYOBO, Osaka) was used for the electrophoresis tank. After electrophoresis, the cells were immersed in 500 mL TAE buffer supplemented with 250 μL EtBr for 15 minutes. Thereafter, DNA was detected using ChemiImager 5500 (Alpha Innotech). Then, the amount of DNA was digitized from the photoshop histogram. The pLPCX-specific band confirmed as a result was recovered from an agarose gel using GENECLEAN II kit (Funakoshi, Tokyo).

そのDNA断片をDNA Ligation Kit Ver.2.1(タカラバイオ株式会社、滋賀)を用いてpTargeTTMMammalian Expression Vector System(Promega、東京)にTAクローニングを行った。このvectorを、次のように大腸菌に形質転換した。大腸菌は、Escherichia coli JM109(タカラバイオ株式会社、滋賀)を使用した。-80℃で保管しておいたEscherichia coli JM109のグリセロールストックを、SOBに加え、OD600=0.6になるまで16℃で振とうした後、遠心して上清を捨て、TB(Transfer Buffer)に懸濁した。それを遠心して上清を捨て、DMSO添加TBに懸濁し、液体窒素中で保存しておいたものを用いた。SOBは、150mlあたりBacto Tryptone(和光純薬工業株式会社、大阪)を3.0g、Bacto Yeast Extract(和光純薬工業株式会社、大阪)を0.75g、NaClを0.078g、KClを0.027g、dH2Oを全量が148.5mlになるまで加えた。この溶液をオートクレーブ滅菌し室温まで冷ました後、これとは別にオートクレーブした2M Mg2+液(12.324gのMgSO4・7H2O(和光純薬工業株式会社、大阪)+10.165gのMgCl2・6H2O(nacalai tesque、京都)を水に混ぜて50mlにし、オートクレーブ滅菌した)を無菌的に1.5ml加えた。TBはTBは100mlあたりPIPES(和光純薬工業株式会社、大阪)を0.3g、CaCl2(和光純薬工業株式会社、大阪)を0.22g、KClを1.86gを90mlの水に混ぜた後、pHをKOH(nacalai tesque、京都)で6.7に合わせた。MnCl2・4H2O(和光純薬工業株式会社、大阪)を1.09g加えた後、全量を100mlに合わせ、フィルター滅菌(0.22μm)してから4℃にて保存した。 The DNA fragment was TA cloned into pTargeT Mammalian Expression Vector System (Promega, Tokyo) using DNA Ligation Kit Ver.2.1 (Takara Bio Inc., Shiga). This vector was transformed into E. coli as follows. Escherichia coli JM109 (Takara Bio Inc., Shiga) was used for E. coli. Add the glycerol stock of Escherichia coli JM109 stored at -80 ° C to SOB, shake at 16 ° C until OD 600 = 0.6, centrifuge, discard the supernatant, and suspend in TB (Transfer Buffer). It became cloudy. It was centrifuged and the supernatant was discarded. The supernatant was suspended in DMSO-added TB and stored in liquid nitrogen. SOB is 3.0g of Bacto Tryptone (Wako Pure Chemical Industries, Osaka), 0.75g of Bacto Yeast Extract (Wako Pure Chemical Industries, Osaka) per 150ml, 0.078g of NaCl, 0.027g of KCl, dH 2 O was added until the total volume was 148.5 ml. This solution was autoclaved, cooled to room temperature, and then autoclaved 2M Mg 2+ solution (12.324g MgSO 4 · 7H 2 O (Wako Pure Chemical Industries, Ltd., Osaka) + 10.165g MgCl 2 · 6H 2 O (nacalai tesque, Kyoto) was mixed with water to make 50 ml, and sterilized by autoclaving) 1.5 ml aseptically. TB is 0.3 g of PIPES (Wako Pure Chemical Industries, Osaka) per 100 ml of TB, 0.22 g of CaCl 2 (Wako Pure Chemical Industries, Osaka), 1.86 g of KCl mixed in 90 ml of water, The pH was adjusted to 6.7 with KOH (nacalai tesque, Kyoto). After adding 1.09 g of MnCl 2 .4H 2 O (Wako Pure Chemical Industries, Ltd., Osaka), the total amount was adjusted to 100 ml, filter sterilized (0.22 μm), and stored at 4 ° C.

大腸菌の培養は、アンピシリン含有液体LB培地又はアンピシリン含有LBプレートを用いた。アンピシリン含有液体LB培地は、1LにつきBacto Tryptone 10g、Bacto Yeast Extract 5g、NaCl 10gをdH2Oで1Lにフィルアップして、pHを7.0にし、オートクレーブ滅菌した。そして使用前に、150mg/mlのアンピシリンを1000倍希釈で添加して使用した。LBプレートは200mlにつきBacto Tryptone 2g、Bacto Yeast Extract 1g、NaCl 2g、Bacto Agar(和光純薬工業株式会社、大阪)5g加え、dH2Oで200mlにフィルアップしてオートクレーブ滅菌した。オートクレーブ後、60℃に冷ましてから150mg/mlのアンピシリンを200μl加え、10ml dish(Falcon 1029)(日本ベクトン・ディッキンソン株式会社、東京)に10mlずつ分注した。アンピシリンはアンピシリンナトリウム(和光純薬工業株式会社、大阪)を150mg/mlになるようにdH2Oで溶かし、フィルター滅菌(0.22μm)して-20℃で保存したものを使用した。形質転換は、vectorをEscherichia coli JM109の懸濁液100μLに混和し、氷中に30分間放置した。その後、42℃で30秒間放置した後、氷中に戻し、1から3分間冷却した。これに、0.9mLのSOCを加え、37℃で1時間回復培養を行った。SOCは100mlあたり100mLのSOBに1mL の2Mグルコース溶液(18.016gを水に混ぜて50mlにしてオートクレーブしたもの)を加え、分注して室温あるいは4℃で保存したものを使用した。それを、室温で5分間遠心(1000 x g)して、上清900μLを取り除いた。 E. coli was cultured using ampicillin-containing liquid LB medium or ampicillin-containing LB plates. Ampicillin-containing liquid LB medium was filled with 1 g of Bacto Tryptone 10 g, Bacto Yeast Extract 5 g, and NaCl 10 g to 1 L with dH 2 O to a pH of 7.0, and autoclaved. Before use, 150 mg / ml ampicillin was added at a 1000-fold dilution. The LB plate was added with 2 g of Bacto Tryptone, 1 g of Bacto Yeast Extract, 2 g of NaCl, and 5 g of Bacto Agar (Wako Pure Chemical Industries, Ltd., Osaka) per 200 ml, filled up to 200 ml with dH2O and sterilized by autoclave. After autoclaving and cooling to 60 ° C., 200 μl of 150 mg / ml ampicillin was added, and 10 ml each was dispensed into a 10 ml dish (Falcon 1029) (Nippon Becton Dickinson Co., Ltd., Tokyo). Ampicillin used was ampicillin sodium (Wako Pure Chemical Industries, Ltd., Osaka) dissolved in dH 2 O to 150 mg / ml, filter sterilized (0.22 μm) and stored at −20 ° C. For transformation, the vector was mixed with 100 μL of a suspension of Escherichia coli JM109 and left on ice for 30 minutes. Thereafter, it was left at 42 ° C. for 30 seconds, then returned to ice and cooled for 1 to 3 minutes. 0.9 mL of SOC was added thereto, and recovery culture was performed at 37 ° C. for 1 hour. The SOC was 100 mL SOB per 100 ml, 1 mL of 2M glucose solution (18.016 g mixed with water and autoclaved to 50 ml), dispensed, and stored at room temperature or 4 ° C. It was centrifuged (1000 xg) for 5 minutes at room temperature to remove 900 μL of supernatant.

その大腸菌をアンピシリン含有LBプレートに塗布し37℃で1晩培養後、立ち上がってきたコロニーを、青白判定のため、x-gal及びIPTGを塗布したアンピシリン含有LBプレートに塗布した。このプレートは、アンピシリン含有LBプレートに、20mg/ml X-gal 25μLと0.1M IPTG 25μLを塗布して使用した。20mg/ml X-galは、100mgのX-galを5 mlのN-N-dimethyl-formamide(和光純薬工業株式会社、大阪)に溶解し、-20℃で保存した。0.1M IPTGは、1gのIPTG(和光純薬工業株式会社、大阪)を4.2mlのdH2Oに溶解し、-20℃で保存した。37℃で1晩培養後、立ち上がってきた白コロニーを鋳型に1サンプルあたり、pLPCX-SとpLPCX-Aのプライマーセット各0.5μLずつと2.5mM dNTP mix 1μL、Fermentas UABより購入した25mM MgCl2 1μL、10 x buffer with (NH4)2SO4 1μL、Taq DNA Polymerase(Recombinant)0.1μLとdH2O 4.9μL、鋳型適量を懸濁した。PCRは、初期変性94℃で2分間、変性反応94℃で30秒間、アニーリング67.1 ℃で30秒間、伸長反応72℃で2分間行い、変性反応、アニーリング及び伸長反応を30サイクル行った。PCR後、各サンプルに、BPBを1μL添加し、1.5%アガロースゲルで電気泳動を行った。 The Escherichia coli was applied to an ampicillin-containing LB plate and cultured at 37 ° C. overnight, and the colonies that had risen were applied to an ampicillin-containing LB plate coated with x-gal and IPTG for blue-white determination. The plate was used by applying 25 μL of 20 mg / ml X-gal and 25 μL of 0.1M IPTG to an LB plate containing ampicillin. For 20 mg / ml X-gal, 100 mg of X-gal was dissolved in 5 ml of NN-dimethyl-formamide (Wako Pure Chemical Industries, Ltd., Osaka) and stored at −20 ° C. For 0.1M IPTG, 1 g of IPTG (Wako Pure Chemical Industries, Ltd., Osaka) was dissolved in 4.2 ml of dH 2 O and stored at −20 ° C. After overnight culture at 37 ° C, a white colony that has risen as a template, 0.5 μL each of primer set of pLPCX-S and pLPCX-A, 2.5 mM dNTP mix 1 μL, 25 mM MgCl 2 purchased from Fermentas UAB 1 × L of 10 × buffer with (NH 4 ) 2 SO 4 , 0.1 μL of Taq DNA Polymerase (Recombinant) and 4.9 μL of dH 2 O were suspended in appropriate amounts. PCR was performed at an initial denaturation of 94 ° C. for 2 minutes, a denaturation reaction at 94 ° C. for 30 seconds, an annealing at 67.1 ° C. for 30 seconds, an extension reaction at 72 ° C. for 2 minutes, and a denaturation reaction, annealing and extension reaction were performed for 30 cycles. After PCR, 1 μL of BPB was added to each sample, and electrophoresis was performed on a 1.5% agarose gel.

インサートが確認できたクローンからLaboPassTM Mini(LaboPass)によりプラスミドDNAを回収し、TE bufferに懸濁した。回収したプラスミドDNAを鋳型として、シークエンス用の伸長反応を行った。反応は、Big Dye Terminatorサイクルシークエンシングプロトコールに従い、BigDye Terminator v3.1Cycle Sequencing Kitを用いて反応させた。反応液は、buffer 3.5μL、プライマー3.2pmol、鋳型適量、BigDye Terminator v3.1Cycle Sequencing Kit(プレミックス)1.0μLを混和し、dH2Oにて20μLとした。反応は、初期変性96℃で1分間、変性反応96℃で10秒間、アニーリング50℃で5秒間、伸長反応60℃で4分間行い、変性反応、アニーリング及び伸長反応を25サイクル行った。プライマーにはT7,LacZ(T7:5'-CTA ATA CGA CTC ACT ATA GGG C-3', LacZ:5'-AGA TAT GAC CAT GAT TAC GCC-3') (TE bufferで1.0pmol/μLになるように調整して使用した。)を用いた。その後、ABI3130xl DNAシークエンサーにより塩基配列を決定した。その塩基配列情報からequol耐性原因遺伝子を特定した。 Plasmid DNA was recovered from the clones in which the insert was confirmed using LaboPass Mini (LaboPass) and suspended in TE buffer. Using the recovered plasmid DNA as a template, an extension reaction for sequencing was performed. The reaction was performed using the BigDye Terminator v3.1Cycle Sequencing Kit according to the Big Dye Terminator cycle sequencing protocol. The reaction solution was mixed with 3.5 μL of buffer, 3.2 pmol of primer, appropriate amount of template, 1.0 μL of BigDye Terminator v3.1Cycle Sequencing Kit (premix), and adjusted to 20 μL with dH 2 O. The reaction was performed at initial denaturation 96 ° C. for 1 minute, denaturation reaction 96 ° C. for 10 seconds, annealing 50 ° C. for 5 seconds, extension reaction 60 ° C. for 4 minutes, and denaturation reaction, annealing, and extension reaction were performed 25 cycles. T7, LacZ (T7: 5'-CTA ATA CGA CTC ACT ATA GGG C-3 ', LacZ: 5'-AGA TAT GAC CAT GAT TAC GCC-3') (1.0 pmol / μL with TE buffer) It was used after being adjusted as described above). Thereafter, the base sequence was determined with an ABI3130xl DNA sequencer. The equol resistance causative gene was identified from the nucleotide sequence information.

5.Papd5の発現をノックダウンさせたHeLa細胞の構築
Papd5をノックダウンさせたヒト子宮頸がん細胞株HeLaの構築は以下の様に行った。Papd5の発現をノックダウンするためのベクター(shPapd5-RNA)は、ターゲット配列として5'-GCCACATATAGAGATTGGATA-3を持つpLKO.1-puro vector(SIGMA-ALDRICH、東京)を使用した。遺伝子導入方法は、HeLa細胞を2 x 104cells/mLで播種し24時間後、vectorを2μg、Fugene6を6μLそれぞれDMEMで全量200μLになるように混合し、細胞に添加した。遺伝子が導入された細胞の選択方法は、細胞にベクターを添加して48時間後に細胞を回収し、96穴プレートに播種し、puromycin(invivogen)によるセレクションを行った。生存し、増殖してきた細胞を用い、次のようにPapd5のノックダウンの確認を行った。用いた試薬は、equolの抗がん作用関連遺伝子の同定の際に調整したものを用いた。細胞にTRIzol(登録商標)Reagent 1mLを添加し、室温で5分間放置した。次に、クロロホルム200μLを添加・撹拌し、室温で3分間放置後、4℃で15分間遠心(12000 x g)した。その後、上層を取り出し、2-プロパノール500μLを添加・撹拌し、室温で10分間放置後、4℃で10分間遠心(12000 x g)した。その後、上清を除去し、75% EtOH in DEPE水1mLを添加・撹拌後、4℃で5分間遠心(12000x g)した。その上清を完全に除去し、DEPC水を10から20μL入れて懸濁した。そこに、(dT)20を0.5μLとRamdom 6 mers(5'-NNN NNN-3'、DEPC水で0.5μg/μLになるように調整したもの)を0.5μL、5 x PrimeScript Buffer(for Real time)2μL、PrimesScript RT Enzyme Mix I 0.5μL(いずれもタカラバイオ)を添加し、37℃で15分間逆転写反応を行った。85℃で5秒間処理した後、-4℃で保存した。Real Time PCRは、Papd5を増幅するプライマー、Papd5-F、Papd5-R(5'-CACAAAGTCGCAGATGAGGA-3',5'-TGGACTGTGTGGCAGAAGAG-3'を10mMになるようにTE bufferで希釈したもの)を用いた。調整したcDNA2μL、各プライマー1μL、SYBR Premix Ex Taq II(2x,SYBR PrimerScript RT-PCR Kit II)12.5μLを混合し、Thermal Cycler Dice Real Time Systemにセットし反応を行った。PCR条件は、初期変性が95℃10秒、その後95℃5秒、60℃20秒で行った。また同様にして、内部標準物質としてGAPDH発現量をこれまでと同様の方法で検討した。
Five. Construction of HeLa cells knocked down expression of Papd5
Construction of human cervical cancer cell line HeLa in which Papd5 was knocked down was performed as follows. As a vector (shPapd5-RNA) for knocking down the expression of Papd5, a pLKO.1-puro vector (SIGMA-ALDRICH, Tokyo) having 5′-GCCACATATAGAGATTGGATA-3 as a target sequence was used. In the gene transfer method, HeLa cells were seeded at 2 × 10 4 cells / mL, 24 hours later, 2 μg of vector and 6 μL of Fugene 6 were mixed with DMEM to a total volume of 200 μL and added to the cells. As a method for selecting a cell into which a gene was introduced, a vector was added to the cell, and the cell was collected 48 hours later, seeded in a 96-well plate, and selected with puromycin (invivogen). Using the surviving and proliferating cells, knockdown of Papd5 was confirmed as follows. The reagents used were those prepared at the time of identification of equol's anticancer activity-related gene. 1 mL of TRIzol® Reagent was added to the cells and left at room temperature for 5 minutes. Next, 200 μL of chloroform was added and stirred, allowed to stand at room temperature for 3 minutes, and then centrifuged (12000 × g) at 4 ° C. for 15 minutes. Thereafter, the upper layer was taken out, 500 μL of 2-propanol was added and stirred, allowed to stand at room temperature for 10 minutes, and then centrifuged (12000 × g) at 4 ° C. for 10 minutes. Thereafter, the supernatant was removed, 1 mL of 75% EtOH in DEPE water was added and stirred, and then centrifuged (12000 × g) at 4 ° C. for 5 minutes. The supernatant was completely removed, and 10 to 20 μL of DEPC water was added and suspended. (DT) 20 0.5 μL and Ramdom 6 mers (5′-NNN NNN-3 ′, adjusted to 0.5 μg / μL with DEPC water) 0.5 μL, 5 x PrimeScript Buffer (for Real time) 2 μL, PrimesScript RT Enzyme Mix I 0.5 μL (both Takara Bio) were added, and a reverse transcription reaction was performed at 37 ° C. for 15 minutes. After treating at 85 ° C for 5 seconds, it was stored at -4 ° C. Real Time PCR used Papd5-amplifying primers, Papd5-F, Papd5-R (5'-CACAAAGTCGCAGATGAGGA-3 ', 5'-TGGACTGTGTGGCAGAAGAG-3' diluted with TE buffer to 10 mM) . 2 μL of the prepared cDNA, 1 μL of each primer, and 12.5 μL of SYBR Premix Ex Taq II (2 ×, SYBR PrimerScript RT-PCR Kit II) were mixed and set in the Thermal Cycler Dice Real Time System for reaction. PCR conditions were initial denaturation at 95 ° C. for 10 seconds, then 95 ° C. for 5 seconds and 60 ° C. for 20 seconds. Similarly, the expression level of GAPDH as an internal standard was examined in the same manner as before.

6.HeLa細胞のequol感受性に対するPapd5の関与
5で作成したPapd5-shRNA導入HeLa細胞は、10%FCS含有のDMEM培地でWildTypeのHeLa細胞と同様の方法で継代、維持した。
6. Involvement of Papd5 in equol sensitivity of HeLa cells
The Papd5-shRNA-introduced HeLa cells prepared in 5 were passaged and maintained in a DMEM medium containing 10% FCS in the same manner as WildType HeLa cells.

細胞数の測定は、このHeLa細胞を2 x 104cells/mLにて24穴プレートに播種し、10% FCS含有DMEM培地にて24時間前培養した。その後、終濃度1,5,10,25μMのequolを含む10% FCS含有DMEM培地に置換して72時間培養し、セルカウンターにて細胞数を計測した。実験結果の統計処理にはStudent's t検定を用いた。 For the measurement of the number of cells, the HeLa cells were seeded in a 24-well plate at 2 × 10 4 cells / mL and pre-cultured in DMEM medium containing 10% FCS for 24 hours. Thereafter, the cells were replaced with 10% FCS-containing DMEM medium containing equol having a final concentration of 1,5,10,25 μM, cultured for 72 hours, and the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.

7.Papd5の発現をノックダウンさせたB16細胞の構築
Papd5をノックダウンさせたB16細胞の構築は以下の様に行った。Papd5の発現をノックダウンするためのベクター(shPapd5-RNA)は、ターゲット配列として5'-CTGACGAGGATTCCGTGAAAG-3'を持つpLKO.1-puro vector(SIGMA-ALDRICH、東京)を使用した。遺伝子導入方法は、B16細胞を2 x 104cells/mLで播種し24時間後、vectorを2μg、Fugene6を6μLそれぞれDMEMで全量200μLになるように混合し、細胞に添加した。遺伝子が導入された細胞の選択方法は、細胞にベクターを添加して48時間後に細胞を回収し、96穴プレートに播種し、puromycin(invivogen)によるセレクションを行った。生存し、増殖してきた細胞を用い、次のようにPapd5のノックダウンの確認を行った。用いた試薬は、equolの抗がん作用関連遺伝子の同定の際に調整したものを用いた。細胞にTRIzol(登録商標)Reagent 1mLを添加し、室温で5分間放置した。次に、クロロホルム200μLを添加・撹拌し、室温で3 分間放置後、4℃で15分間遠心(12000 x g)した。その後、上層を取り出し、2-プロパノール500μLを添加・撹拌し、室温で10分間放置後、4℃で10分間遠心(12000 x g)した。その後、上清を除去し、75% EtOH in DEPE水1mLを添加・撹拌後、4℃で5分間遠心(12000 x g)した。その上清を完全に除去し、DEPC水を10から20μL入れて懸濁した。そこに、(dT)20を0.5μLとRamdom 6 mers(5'-NNN NNN-3'、DEPC水で0.5μg/μLになるように調整したもの)を0.5μL、5x PrimeScript Buffer(for Real time)2μL、PrimesScript RT Enzyme Mix I 0.5μL(いずれもタカラバイオ)を添加し、37℃で15分間逆転写反応を行った。85℃で5秒間処理した後、-4℃で保存した。RT-PCRは、Papd5を増幅するプライマー、Papd5-F、Papd5-R(5'-GGAGGTAGTGAGCAGGATCG-3',5'-ATCCTCGTCAGCGACTTTGT-3'を10mMになるようにTE bufferで希釈したもの)を用いた。調整したcDNA 1μL、各プライマー0.5μL、2.5mM dNTP mix 1μL、25mM MgCl2 1μL、10 x buffer with(NH4)2SO41μL、Taq DNA Polymerase(Fermentas)0.1μL、dH2O 4.9μLを用いてPCRに供した。PCRは、初期変性94℃で2分間、変性反応94℃で1分間、アニーリング60℃で1分間、伸長反応72℃で1分間行い、変性反応、アニーリング及び伸長反応を35サイクル行った。また同様にして、内部標準物質としてβ-Actin発現量を、これまでと同様の方法で検討した。PCR後BPBを1μL添加し、EtBr Solution(和光純薬株式会社)を10000倍希釈で添加した1.5%アガロースゲルで電気泳動を行った。
7. Construction of B16 cells with knockdown of Papd5 expression
Construction of B16 cells in which Papd5 was knocked down was performed as follows. As a vector (shPapd5-RNA) for knocking down the expression of Papd5, a pLKO.1-puro vector (SIGMA-ALDRICH, Tokyo) having 5′-CTGACGAGGATTCCGTGAAAG-3 ′ as a target sequence was used. In the gene transfer method, B16 cells were seeded at 2 × 10 4 cells / mL, 24 hours later, 2 μg of vector and 6 μL of Fugene 6 were mixed with DMEM to a total volume of 200 μL and added to the cells. As a method for selecting a cell into which a gene was introduced, a vector was added to the cell, and the cell was collected 48 hours later, seeded in a 96-well plate, and selected with puromycin (invivogen). Using the surviving and proliferating cells, knockdown of Papd5 was confirmed as follows. The reagents used were those prepared at the time of identification of equol's anticancer activity-related gene. 1 mL of TRIzol® Reagent was added to the cells and left at room temperature for 5 minutes. Next, 200 μL of chloroform was added and stirred, allowed to stand at room temperature for 3 minutes, and then centrifuged (12000 × g) at 4 ° C. for 15 minutes. Thereafter, the upper layer was taken out, 500 μL of 2-propanol was added and stirred, allowed to stand at room temperature for 10 minutes, and then centrifuged (12000 × g) at 4 ° C. for 10 minutes. Thereafter, the supernatant was removed, 1 mL of 75% EtOH in DEPE water was added and stirred, and then centrifuged (12000 × g) at 4 ° C. for 5 minutes. The supernatant was completely removed, and 10 to 20 μL of DEPC water was added and suspended. There, 0.5 μL of (dT) 20 and 0.5 μL of Ramdom 6 mers (5′-NNN NNN-3 ′, adjusted to 0.5 μg / μL with DEPC water), 5 × PrimeScript Buffer (for Real time ) 2 μL and PrimesScript RT Enzyme Mix I 0.5 μL (both Takara Bio) were added, and a reverse transcription reaction was performed at 37 ° C. for 15 minutes. After treating at 85 ° C for 5 seconds, it was stored at -4 ° C. RT-PCR used Papd5-amplified primers, Papd5-F, Papd5-R (5'-GGAGGTAGTGAGCAGGATCG-3 ', 5'-ATCCTCGTCAGCGACTTTGT-3' diluted with TE buffer to 10 mM) . Using 1 μL of prepared cDNA, 0.5 μL of each primer, 2.5 μm dNTP mix 1 μL, 25 mM MgCl 2 1 μL, 10 x buffer with (NH 4 ) 2 SO 4 1 μL, Taq DNA Polymerase (Fermentas) 0.1 μL, dH 2 O 4.9 μL And subjected to PCR. PCR was performed at an initial denaturation of 94 ° C. for 2 minutes, a denaturation reaction at 94 ° C. for 1 minute, an annealing at 60 ° C. for 1 minute, an extension reaction at 72 ° C. for 1 minute, and a denaturation reaction, annealing, and extension reaction were performed for 35 cycles. Similarly, the expression level of β-Actin as an internal standard was examined in the same manner as before. After PCR, 1 μL of BPB was added, and electrophoresis was performed on a 1.5% agarose gel to which EtBr Solution (Wako Pure Chemical Industries, Ltd.) was added at a 10,000-fold dilution.

8.B16細胞のequol感受性に対するPapd5の関与
7で作成したPapd5-shRNA導入B16細胞は、5%FCS含有のDMEM培地でWild TypeのB16細胞と同様の方法で継代、維持した。
8. Involvement of Papd5 in equol sensitivity of B16 cells
The Papd5-shRNA-introduced B16 cells prepared in 7 were passaged and maintained in a DMEM medium containing 5% FCS in the same manner as Wild Type B16 cells.

細胞数の測定は、このB16細胞を2 x 104cells/mLにて24穴プレートに播種し、5%FCS含有DMEM培地にて24時間前培養した。その後、終濃度10μMのequolを含む2%FCS含有DMEM培地に置換して72時間培養し、セルカウンターにて細胞数を計測した。実験結果の統計処理にはStudent's t検定を用いた。 For the measurement of the number of cells, the B16 cells were seeded in a 24-well plate at 2 × 10 4 cells / mL and pre-cultured in a DMEM medium containing 5% FCS for 24 hours. Thereafter, the medium was replaced with 2% FCS-containing DMEM medium containing equol having a final concentration of 10 μM and cultured for 72 hours, and the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.

9.食品成分の細胞増殖抑制作用に及ぼすPapd5の関与
用いたEGCG(テアビゴ)は、超純水で5mMとなるように溶解し、4℃で保存しておいた。
細胞数の測定は、このHeLa細胞を2x104cells/mLにて24穴プレートに播種し、10%FCS含有DMEM培地にて24時間前培養した。その後、終濃度1,5,10,20μMの各サンプルを含む2%FCS含有DMEM培地に置換して72時間培養し、セルカウンターにて細胞数を計測した。実験結果の統計処理にはStudent's t検定を用いた。
9. The EGCG (Teavigo) used for the involvement of Papd5 on the cell growth inhibitory action of food ingredients was dissolved in ultrapure water to 5 mM and stored at 4 ° C.
For the measurement of the number of cells, the HeLa cells were seeded in a 24-well plate at 2 × 10 4 cells / mL and pre-cultured in DMEM medium containing 10% FCS for 24 hours. Thereafter, the cells were replaced with 2% FCS-containing DMEM medium containing each sample having a final concentration of 1, 5, 10, 20 μM, and cultured for 72 hours, and the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.

<結果>
1.各種がん細胞に対するequolの細胞増殖抑制活性とそのER依存性
ヒト子宮頸がん細胞株HeLa及びヒト前立腺がん細胞株PC-3をそれぞれ2 x 104 cells/mLで24穴プレートに播種し、ERアンタゴニストであるICI182,780(ICI)で処理した後、equolを添加して72時間培養し細胞数を計測した(図1)。その結果、これらのがん細胞株はequolによって増殖が抑制され、ICIで処理してもその作用は阻害されなかった。このことから、これらのがん細胞株に対してequolはER非依存的な作用機序により、細胞増殖抑制活性を示すことが示唆された(図1)。
<Result>
1. Cell growth inhibitory activity of equol against various cancer cells and its ER-dependent human cervical cancer cell line HeLa and human prostate cancer cell line PC-3 are seeded in 24-well plates at 2 x 10 4 cells / mL, respectively. After treatment with ER antagonist ICI182,780 (ICI), equol was added and cultured for 72 hours to count the number of cells (FIG. 1). As a result, the growth of these cancer cell lines was suppressed by equol, and even when treated with ICI, the action was not inhibited. This suggests that equol exhibits cytostatic activity against these cancer cell lines by an ER-independent mechanism of action (FIG. 1).

2.マウスメラノーマ細胞株B16に対するequolの細胞増殖抑制活性
Equolの抗がん作用が発現するために必須な遺伝子を同定するために、その遺伝子の働きを遺伝子断片の導入により阻害することでequol耐性となるがん細胞株をスクリーニングし、耐性細胞からその原因となった遺伝子断片を得る手法(genetic suppressor elements (GSE)法)を用いることにした。GSE法を用いるためにはequolによって増殖抑制や致死作用が誘導されるがん細胞株が必要である。マウスメラノーマ細胞株B16を2 x 104 cells/mLで24穴培養プレートに播種し、equolを添加した培地で72時間培養後、もしくは24時間毎に細胞数を測定した(図2)。その結果、本細胞株は、equolによって顕著にその増殖が抑制されたことから、GSE法の適応が可能ながん細胞株であることを見出した(図2)。
2. Cyol cytostatic activity of mouse melanoma cell line B16
In order to identify genes essential for the expression of Equol's anticancer activity, cancer cells that become equol resistant by inhibiting the function of the gene by introducing gene fragments are screened. We decided to use a method (genetic suppressor elements (GSE) method) to obtain the causative gene fragment. In order to use the GSE method, a cancer cell line in which growth suppression and lethal action are induced by equol is necessary. The mouse melanoma cell line B16 was seeded on a 24-well culture plate at 2 × 10 4 cells / mL and cultured for 72 hours in a medium supplemented with equol or the number of cells was measured every 24 hours (FIG. 2). As a result, this cell line was found to be a cancer cell line to which the GSE method can be applied because its growth was remarkably suppressed by equol (FIG. 2).

3.B16細胞に対するequolの細胞増殖抑制活性のER依存性
ICIで処理してもequolの細胞増殖抑制作用は阻害されないことから、equolのB16細胞における細胞増殖抑制作用にはERが関与しないことが示された(図3)。
3. ER dependence of equol's cytostatic activity on B16 cells
Treatment with ICI did not inhibit the cell growth inhibitory effect of equol, indicating that ER was not involved in the cell growth inhibitory effect of equol in B16 cells (FIG. 3).

4.Equol 耐性 B16 細胞から検出されたマウス胎児由来cDNA断片の由来遺伝子
マウス胚由来cDNAライブラリーを導入したB16細胞を、equol(80μM)含有培地で培養し、equol耐性となった細胞をスクリーニングした。これらequol耐性となった細胞から遺伝子断片を網羅的に回収し、その遺伝子配列を解析した結果、Pap associated domain containing 5(Papd5)に由来する遺伝子断片であることが明らかになった。
Four. Gene derived from mouse fetus-derived cDNA fragment detected from Equol-resistant B16 cells B16 cells into which a mouse embryo-derived cDNA library was introduced were cultured in a medium containing equol (80 μM), and cells that became equol-resistant were screened. As a result of comprehensive recovery of gene fragments from these equol-resistant cells and analysis of their gene sequences, it was revealed that they were gene fragments derived from Pap associated domain containing 5 (Papd5).

5.HeLa細胞のequol感受性に対するPapd5ノックダウンの影響
Papd5の発現をRNA干渉法を用いて特異的にノックダウンさせるため、Papd5特異的shRNA発現ベクター(Papd5-shRNA)とそのコントロールベクター(scramble-shRNA)をそれぞれ恒常的に発現導入させたヒト子宮頸がん細胞株HeLaを作製した。その結果、Papd5の発現が低下したHeLa細胞を得ることができた(図4a)。
Five. Effect of Papd5 knockdown on equol sensitivity of HeLa cells
In order to specifically knock down the expression of Papd5 using RNA interference method, the human cervix into which Papd5-specific shRNA expression vector (Papd5-shRNA) and its control vector (scramble-shRNA) were introduced constantly The cancer cell line HeLa was prepared. As a result, HeLa cells with reduced Papd5 expression could be obtained (FIG. 4a).

Papd5-shRNA又はscramble-shRNAを導入したHeLa細胞を2 x 104cells/mLで24穴培養プレートに播種し、各濃度のequolを添加した培地で72時間培養し、細胞数を測定し、equolに対する感受性を検討した。その結果、scramble-shRNAを導入したHeLa細胞はequolによってその細胞増殖が抑制された。一方、Papd5-shRNAを導入しPapd5発現量を低下させたHeLa細胞では、equolに対する感受性が完全に消失していた(図4b)。 HeLa cells introduced with Papd5-shRNA or scramble-shRNA were seeded in a 24-well culture plate at 2 x 10 4 cells / mL, cultured for 72 hours in a medium supplemented with equol of each concentration, the number of cells was measured, and equol The sensitivity to was investigated. As a result, HeLa cells into which scramble-shRNA had been introduced were inhibited by equol. On the other hand, the sensitivity to equol completely disappeared in HeLa cells in which Papd5-shRNA was introduced to reduce the amount of Papd5 expression (FIG. 4b).

6.B16細胞のequol感受性に対するPapd5ノックダウンの影響
マウスメラノーマ細胞株B16のequol感受性におけるPapd5の関与を明らかにするため、Papd5特異的shRNA発現ベクター(Papd5-shRNA)とそのコントロールベクター(scramble-shRNA)をそれぞれ恒常的に発現導入させたマウスメラノーマ細胞株B16を作製した。その結果、Papd5の発現が低下したB16細胞を得ることができた(図5a)。
6. Effect of Papd5 knockdown on equol sensitivity of B16 cells To elucidate the involvement of Papd5 in the equol sensitivity of mouse melanoma cell line B16, we used Papd5-specific shRNA expression vector (Papd5-shRNA) and its control vector (scramble-shRNA). A mouse melanoma cell line B16 into which expression was constantly introduced was prepared. As a result, B16 cells with reduced Papd5 expression could be obtained (FIG. 5a).

Papd5-shRNA又はscramble-shRNAを導入したB16細胞を2 x 104cells/mLで24穴培養プレートに播種し、各濃度のequolを添加した培地で72時間培養し、細胞数を測定し、equolに対する感受性を検討した。その結果、scramble-shRNAを導入したB16細胞はequolによってその細胞増殖が抑制された。一方、Papd5-shRNAを導入しPapd5発現量を低下させたB16細胞では、equolに対する感受性が完全に消失していた(図5b)。 B16 cells transfected with Papd5-shRNA or scramble-shRNA were seeded in a 24-well culture plate at 2 x 10 4 cells / mL, cultured for 72 hours in a medium supplemented with equol of each concentration, the number of cells was measured, and equol The sensitivity to was investigated. As a result, B16 cells into which scramble-shRNA had been introduced were inhibited by equol. On the other hand, in B16 cells in which Papd5-shRNA was introduced and the expression level of Papd5 was reduced, the sensitivity to equol completely disappeared (FIG. 5b).

7.食品成分の細胞増殖抑制作用に対するPapd5の関与
抗がん作用を示す機能性食品因子(equol、genistein、daidzein、EGCG)のがん細胞増殖抑制作用におけるPapd5の関与を検討した。Papd5-shRNA又はScramble-shRNAを導入したHeLa細胞を各濃度の食品因子を添加した培地で72時間培養し、細胞数を測定した。GenisteinとEGCGはequolと同様にHeLa細胞の増殖を抑制したが、その作用はPapd5発現低下の影響を受けなかった。一方、daidzeinの細胞増殖抑制作用はequolと同様に、Papd5の発現を低下させた細胞では阻害された(図6)。
7. Involvement of Papd5 in the cell growth inhibitory action of food components The involvement of Papd5 in the cancer cell proliferation inhibitory action of functional food factors (equol, genistein, daidzein, EGCG) showing anticancer action was examined. HeLa cells into which Papd5-shRNA or Scramble-shRNA had been introduced were cultured for 72 hours in a medium supplemented with various concentrations of food factors, and the number of cells was measured. Genistein and EGCG, like equol, inhibited the growth of HeLa cells, but their effects were not affected by the decrease in Papd5 expression. On the other hand, the cell growth inhibitory action of daidzein was inhibited in cells with decreased expression of Papd5, as in equol (FIG. 6).

<考察>
Equolがヒト子宮頸がん細胞株HeLa、ヒト前立腺がん細胞株PC-3、マウスメラノーマ細胞株B16の細胞増殖を抑制することを見出した。さらに、これらの細胞増殖抑制活性にERが関与していないことが明らかとなった。EquolがER非依存的に増殖抑制作用を示すB16細胞からequolの細胞増殖抑制活性を担う遺伝子候補としてPapd5が同定されたことから、Papd5がER非依存性のequolの機能性発現に関与する遺伝子であることが考えられた。RNA干渉法を用いてB16細胞ならびにHeLa細胞におけるPapd5の発現を特異的に低下させると、equolの細胞増殖抑制活性に対する感受性が両がん細胞株から消失した。以上の結果から、Papd5がER非依存性のequolの機能性発現に必須の遺伝子であることが明らかとなった。また、equolの前駆体であるdaidzeinの抗がん作用においても、Papd5が必須の遺伝子であることが明らかになった。
<Discussion>
Equol was found to suppress cell growth of human cervical cancer cell line HeLa, human prostate cancer cell line PC-3, and mouse melanoma cell line B16. Furthermore, it was revealed that ER is not involved in these cell growth inhibitory activities. Papd5 was identified as a gene candidate responsible for equol's cytostatic activity from B16 cells, where Equol exhibits ER-independent growth-suppressing activity. Papd5 is a gene involved in functional expression of ER-independent equol. It was thought that. When the expression of Papd5 in B16 cells and HeLa cells was specifically reduced using RNA interference, the sensitivity of equol to cytostatic activity disappeared from both cancer cell lines. From the above results, it was revealed that Papd5 is an essential gene for functional expression of ER independent of equol. It was also revealed that Papd5 is an essential gene in the anticancer activity of daidzein, the precursor of equol.

Papd5に関する論文は1報のみで、詳細な機能については不明である。今回の発見は、Papd5を標的とした、全く新しいコンセプトに基づく抗がん剤の開発を可能にするとともに、Papd5の発現量を指標として、抗がん剤の効き方や適応性を診断するためのバイオマーカーとしての利用(診断薬)が期待できる。また、equolの効き方(適応者)を判断するバイオマーカーとしてPapd5を利用した、テーラーメード食品や代替医療剤の開発が期待できる。   There is only one paper on Papd5, and detailed functions are unknown. This discovery enables the development of anticancer drugs based on a completely new concept that targets Papd5, and diagnoses the effectiveness and adaptability of anticancer drugs using the expression level of Papd5 as an index. Use as a biomarker (diagnostic agent) can be expected. In addition, development of tailor-made foods and alternative medicines using Papd5 as a biomarker to determine how equol works (adapters) can be expected.

Claims (8)

Papd5遺伝子又はその産物を用いることを特徴とする、イコール又はダイゼインのエストロゲン受容体(ER)非依存的な作用により改善する疾患又は状態の処置のための、物質のスクリーニング方法。   A method for screening a substance for treatment of a disease or condition ameliorated by an estrogen receptor (ER) -independent action of equol or daidzein, comprising using the Papd5 gene or a product thereof. イコール又はダイゼインのER非依存的な作用により改善する疾患又は状態が、がんである、請求項1に記載の方法。   2. The method of claim 1, wherein the disease or condition ameliorated by ER-independent action of equol or daidzein is cancer. Papd5遺伝子又はその産物の、イコール又はダイゼインのエストロゲン受容体(ER)非依存的な作用により改善する疾患又は状態の処置のためのマーカーとしての使用。   Use of the Papd5 gene or product thereof as a marker for the treatment of a disease or condition ameliorated by the estrogen receptor (ER) independent action of equol or daidzein. イコール又はダイゼインのER非依存的な作用により改善する疾患又は状態が、がんである、請求項3に記載の使用。   4. Use according to claim 3, wherein the disease or condition ameliorated by ER-independent action of equol or daidzein is cancer. Papd5遺伝子の変異の有無、又は転写若しくは発現の量を決定する段階を含む、イコール又はダイゼインのエストロゲン受容体(ER)非依存的な作用により改善する疾患又は状態の処置が必要な細胞の検出方法。   A method for detecting a cell in need of treatment of a disease or condition ameliorated by an estrogen receptor (ER) -independent action of equol or daidzein, comprising determining the presence or absence of a mutation in Papd5 gene, or the amount of transcription or expression . イコール又はダイゼインのER非依存的な作用により改善する疾患又は状態が、がんである、請求項5に記載の方法。   6. The method of claim 5, wherein the disease or condition ameliorated by ER-independent action of equol or daidzein is cancer. Papd5遺伝子の変異の有無、又は転写若しくは発現の量を指標とした、イコール又はダイゼインのER非依存的な作用により改善する疾患又は状態の処置のための、医薬品若しくは食品の、又はその投与若しくは摂取計画の、設計方法。   Administration or ingestion of drugs or foods for the treatment of diseases or conditions ameliorated by the ER-independent action of equol or daidzein using the presence or absence of Papd5 gene mutation or the amount of transcription or expression as an index The design method of the plan. イコール又はダイゼインのER非依存的な作用により改善する疾患又は状態が、がんである、請求項7に記載の方法。   8. The method of claim 7, wherein the disease or condition ameliorated by ER-independent action of equol or daidzein is cancer.
JP2010048398A 2010-03-04 2010-03-04 Gene related to action of isoflavones Withdrawn JP2013126374A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010048398A JP2013126374A (en) 2010-03-04 2010-03-04 Gene related to action of isoflavones
PCT/JP2011/055057 WO2011108699A1 (en) 2010-03-04 2011-03-04 Gene related to the action of isoflavones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048398A JP2013126374A (en) 2010-03-04 2010-03-04 Gene related to action of isoflavones

Publications (1)

Publication Number Publication Date
JP2013126374A true JP2013126374A (en) 2013-06-27

Family

ID=44542344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048398A Withdrawn JP2013126374A (en) 2010-03-04 2010-03-04 Gene related to action of isoflavones

Country Status (2)

Country Link
JP (1) JP2013126374A (en)
WO (1) WO2011108699A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021535187A (en) * 2018-06-15 2021-12-16 ボード オブ レジェンツ, ザ ユニバーシティ オブ テキサス システムBoard Of Regents, The University Of Texas System Treatment and prevention method of melanoma using S-equol

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017066712A2 (en) * 2015-10-16 2017-04-20 The Children's Medical Center Corporation Modulators of telomere disease
WO2017066796A2 (en) * 2015-10-16 2017-04-20 The Children's Medical Center Corporation Modulators of telomere disease
ES2858597T3 (en) * 2015-10-29 2021-09-30 Yakult Honsha Kk Method to measure the ability to produce equol
MA45496A (en) * 2016-06-17 2019-04-24 Hoffmann La Roche NUCLEIC ACID MOLECULES FOR PADD5 OR PAD7 MRNA REDUCTION FOR TREATMENT OF HEPATITIS B INFECTION
CN111511914B (en) 2017-10-16 2023-11-17 豪夫迈·罗氏有限公司 Nucleic acid molecules that reduce PAPD5 and PAPD7 mRNA for the treatment of hepatitis B infection
US11090286B2 (en) 2018-06-15 2021-08-17 The Board Of Regents Of The University Of Texas System Methods of treating and preventing breast cancer with S-equol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021535187A (en) * 2018-06-15 2021-12-16 ボード オブ レジェンツ, ザ ユニバーシティ オブ テキサス システムBoard Of Regents, The University Of Texas System Treatment and prevention method of melanoma using S-equol

Also Published As

Publication number Publication date
WO2011108699A1 (en) 2011-09-09

Similar Documents

Publication Publication Date Title
Yang et al. Retracted: Long non‐coding RNA XIST promotes osteosarcoma progression by targeting YAP via miR‐195‐5p
JP2013126374A (en) Gene related to action of isoflavones
Cao et al. High glucose-induced circHIPK3 downregulation mediates endothelial cell injury
Dai et al. AHIF promotes glioblastoma progression and radioresistance via exosomes
Han et al. RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells
Köllisch et al. Various members of the Toll‐like receptor family contribute to the innate immune response of human epidermal keratinocytes
Zhao et al. Acetylcholinesterase, a key prognostic predictor for hepatocellular carcinoma, suppresses cell growth and induces chemosensitization
Obaid et al. LncRNA HOTAIR regulates glucose transporter Glut1 expression and glucose uptake in macrophages during inflammation
Kong et al. RUNX3-mediated up-regulation of miR-29b suppresses the proliferation and migration of gastric cancer cells by targeting KDM2A
Abdolvahabi et al. MicroRNA‐590‐3P suppresses cell survival and triggers breast cancer cell apoptosis via targeting sirtuin‐1 and deacetylation of p53
Ma et al. NLRX1 alleviates lipopolysaccharide-induced apoptosis and inflammation in chondrocytes by suppressing the activation of NF-κB signaling
Hou et al. MiR-27b promotes muscle development by inhibiting MDFI expression
Qiu et al. MiR-21 regulates proliferation and apoptosis of oral cancer cells through TNF-α.
Piastowska-Ciesielska et al. Effect of an angiotensin II type 1 receptor blocker on caveolin-1 expression in prostate cancer cells
Li et al. Hypoxia-induced miR-137 inhibition increased glioblastoma multiforme growth and chemoresistance through LRP6
Xu et al. TM4SF1 involves in miR-1-3p/miR-214-5p-mediated inhibition of the migration and proliferation in keloid by regulating AKT/ERK signaling
Li LncRNA metastasis‐associated lung adenocarcinoma transcript‐1 promotes osteogenic differentiation of bone marrow stem cells and inhibits osteoclastic differentiation of Mø in osteoporosis via the miR‐124‐3p/IGF2BP1/Wnt/β‐catenin axis
Zhang et al. The Nedd8‐activating enzyme inhibitor MLN 4924 (TAK‐924/Pevonedistat) induces apoptosis via c‐Myc‐Noxa axis in head and neck squamous cell carcinoma
Xiao et al. Rutin suppresses FNDC1 expression in bone marrow mesenchymal stem cells to inhibit postmenopausal osteoporosis
Chu et al. Grass carp ATG5 and ATG12 promote autophagy but down-regulate the transcriptional expression levels of IFN-I signaling pathway
Yamashita et al. Soy isoflavone metabolite equol inhibits cancer cell proliferation in a PAP associated domain containing 5-dependent and an estrogen receptor-independent manner
Wu et al. Long noncoding RNA eosinophil granule ontogeny transcript inhibits cell proliferation and migration and promotes cell apoptosis in human glioma
Dong et al. The expression of lncRNA XIST in hepatocellular carcinoma cells and its effect on biological function
Guifan et al. miR-1246 shuttling from fibroblasts promotes colorectal cancer cell migration.
Zhang et al. MiR-140-5p inhibits larynx carcinoma invasion and angiogenesis by targeting VEGF-A.

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702