JP2013125927A - Thermoelectric conversion element and thermoelectric conversion element module - Google Patents

Thermoelectric conversion element and thermoelectric conversion element module Download PDF

Info

Publication number
JP2013125927A
JP2013125927A JP2011275388A JP2011275388A JP2013125927A JP 2013125927 A JP2013125927 A JP 2013125927A JP 2011275388 A JP2011275388 A JP 2011275388A JP 2011275388 A JP2011275388 A JP 2011275388A JP 2013125927 A JP2013125927 A JP 2013125927A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
type thermoelectric
heat
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011275388A
Other languages
Japanese (ja)
Inventor
Takaaki Higashida
隆亮 東田
Yoshihisa Oido
良久 大井戸
Takashi Kubo
隆志 久保
Kaori Toyoda
かおり 豊田
Satoshi Maejima
聡 前嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011275388A priority Critical patent/JP2013125927A/en
Publication of JP2013125927A publication Critical patent/JP2013125927A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element and thermoelectric conversion element module, in which high output and securing of reliability can be easily achieved.SOLUTION: In a thermoelectric conversion element module, a p-type thermoelectric conversion element and an n-type thermoelectric conversion element are arranged, the p-type thermoelectric conversion element comprising a p-type thermoelectric conversion material and having a hollow structure inside thereof, and the n-type thermoelectric conversion element comprising an n-type thermoelectric conversion material and having a hollow structure inside thereof. The p-type thermoelectric conversion element and the n-type thermoelectric conversion element are electrically connected, so that the high output and securing of reliability can be easily achieved.

Description

本発明は、熱電変換素子及び熱電変換素子モジュールに関するものである。   The present invention relates to a thermoelectric conversion element and a thermoelectric conversion element module.

熱電変換素子は、ペルチェ効果、或いはゼーベック効果を利用した素子が用いられる。熱電変換素子は、一般に、構造が簡単で、かつ取扱いが容易で安定な特性を維持できることから、近年、広範囲にわたる利用が注目されている。特に電子冷却素子としては、局所冷却および室温付近の精密な温度制御が可能であることから、オプトエレクトロニクス、半導体レーザなどの恒温化などに向けて広く研究が進められている。   As the thermoelectric conversion element, an element utilizing the Peltier effect or Seebeck effect is used. In general, thermoelectric conversion elements have attracted attention in a wide range in recent years because they have a simple structure, are easy to handle, and can maintain stable characteristics. In particular, as an electronic cooling element, since local cooling and precise temperature control near room temperature are possible, researches are being widely promoted toward optoelectronics, semiconductor lasers, and the like.

前述のような電子冷却素子、或いは、熱電発電に用いる熱電モジュールは、図4に示すように、p型素子5(p型半導体)とn型素子6(n型半導体)とを接合電極(金属電極)7を介して接合することでpn素子対を形成し、該pn素子対を複数個直列に配列して構成される。このとき、接合部を流れる電流の方向によって、一方の端部が発熱せしめられると共に他方の端部が冷却せしめられるように構成されている。   As shown in FIG. 4, the above-described thermoelectric module or thermoelectric module used for thermoelectric power generation has a p-type element 5 (p-type semiconductor) and an n-type element 6 (n-type semiconductor) joined to a bonding electrode (metal). An electrode) 7 is joined to form a pn element pair, and a plurality of the pn element pairs are arranged in series. At this time, one end is heated and the other end is cooled depending on the direction of current flowing through the joint.

熱電素子の材料としては、その利用温度域で、物質固有の定数であるゼーベック係数αと比抵抗ρと熱伝導率Kによって表わされる性能指数Z(=α2 /ρK)が大きな材料が用いられる。熱電変換素子として一般に用いられる結晶材は、Bi2Te3系材料であるが、これら結晶は著しい劈開性を有しており、インゴットから熱電素子を得るためのスライシング、ダイシング工程等を経ると、割れや欠けのために歩留りが極めて低くなるという問題が生じることが知られている。   As a material of the thermoelectric element, a material having a large figure of merit Z (= α2 / ρK) represented by a Seebeck coefficient α, a specific resistance ρ, and a thermal conductivity K, which are constants specific to the substance, is used in the temperature range of use. A crystal material generally used as a thermoelectric conversion element is a Bi2Te3-based material, but these crystals have a remarkable cleavage property, and cracking or chipping occurs after a slicing or dicing process for obtaining a thermoelectric element from an ingot. For this reason, it is known that the problem of a very low yield occurs.

これを解決するために、所望の組成を有するように材料粉末を混合し、加熱溶融せしめる加熱工程と、菱面体構造(六方晶構造)を有する熱電半導体材料の固溶インゴットを形成する凝固工程と、固溶体インゴットを粉砕して固溶体粉末を形成する粉砕工程と、固溶体粉末の粒径を均一化する整粒工程と、粒径の均一となった固溶体粉末を加圧焼結せしめる焼結工程とを有する。更に、この粉末焼結体を熱間で塑性変形させて展延することで、粉末焼結組織の結晶粒が性能指数の優れた結晶方位に配向せしめる熱間すえこみ鍛造工程と、を経て、熱電変換モジュールを作製する方法が試みられている(例えば、特許文献1参照)。   In order to solve this, a heating process in which material powders are mixed so as to have a desired composition and heated and melted, and a solidification process in which a solid solution ingot of a thermoelectric semiconductor material having a rhombohedral structure (hexagonal structure) is formed. Pulverizing a solid solution ingot to form a solid solution powder, a sizing process for making the particle size of the solid solution powder uniform, and a sintering process for pressure-sintering the solid solution powder having a uniform particle size Have. Furthermore, through a hot upset forging step in which the powder sintered structure is stretched by plastically deforming it hot, and the crystal grains of the powder sintered structure are oriented in a crystal orientation with an excellent figure of merit, A method of producing a thermoelectric conversion module has been attempted (for example, see Patent Document 1).

また、従来の熱電変換モジュールの製造方法として、合金インゴットを製造する工程と、合金インゴットを酸素濃度が100ppm以下の真空または不活性ガスの雰囲気で粉砕して、平均粉末粒径が0.1μm以上1μm未満である原料粉末とする粉砕工程と、その原料粉末に圧力を加えながら抵抗加熱により焼結する焼結工程と、を経た製造工程が知られている。この焼結工程がパルス状の電流を流し、そのジュール熱により焼結し、100Kg/cm2以上1000Kg/cm2以下の圧力を焼結中に原料粉末に加えることにより、結晶粒径が微細で加工性に優れた熱電変換材料の製造方法が提案されている(例えば、特許文献2参照)。 Further, as a conventional method for producing a thermoelectric conversion module, an alloy ingot is produced, and the alloy ingot is pulverized in a vacuum or inert gas atmosphere having an oxygen concentration of 100 ppm or less, so that the average powder particle size is 0.1 μm or more. 2. Description of the Related Art A manufacturing process is known that includes a pulverization process for forming a raw material powder of less than 1 μm and a sintering process for sintering by resistance heating while applying pressure to the raw material powder. The sintering step is flowing pulsed current, the sintered by Joule heat, by adding to the raw material powder pressure of 100 Kg / cm 2 or more 1000 Kg / cm 2 or less during sintering, a grain size is fine A method for producing a thermoelectric conversion material excellent in workability has been proposed (see, for example, Patent Document 2).

これらの工程を経て形成された熱電変換素子は、セラミックスからなる支持基板と、該支持基板上に配列された複数の熱電変換素子と、前記支持基板に形成され前記熱電変換素子間を電気的に接続する複数の配線導体とを具備する熱電変換モジュールに組み立てられ、実用に供される(例えば特許文献3参照)。   The thermoelectric conversion elements formed through these steps are electrically connected between a support substrate made of ceramics, a plurality of thermoelectric conversion elements arranged on the support substrate, and the thermoelectric conversion elements formed on the support substrate. It is assembled into a thermoelectric conversion module having a plurality of wiring conductors to be connected and is put into practical use (see, for example, Patent Document 3).

特開平11−261119号公報JP-A-11-261119 特開2003−298122号公報JP 2003-298122 A 特開2011−009405号公報JP 2011-009405 A

しかしながら、上記従来の構成では、熱電変換素子の内部の熱伝導が大きいため、温度差を確保することが困難であり、該素子の内部の熱伝導を低下させるために、密度を低下させたり、粒界を大きくしたりする。すると振動などによるワレや欠けが発生し、信頼性を低下させることになる。その結果、取り出し電力が大きく出来ないという課題を有していた。   However, in the above conventional configuration, since the heat conduction inside the thermoelectric conversion element is large, it is difficult to ensure a temperature difference, in order to reduce the heat conduction inside the element, to reduce the density, Increase grain boundaries. Then, cracks or chipping due to vibration or the like occurs, and reliability is lowered. As a result, there has been a problem that the extraction power cannot be increased.

本発明は、前述の従来の課題を解決するものであり、高出力が容易で信頼性の高い、熱電変換素子及び熱電変換素子モジュールを提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a thermoelectric conversion element and a thermoelectric conversion element module that can easily achieve high output and high reliability.

上記目的を達成するために、本発明の熱電変換素子モジュールは、p型の熱電変換材料で構成され、内部に中空構造を有するp型熱電変換素子と、n型の熱電変換材料で構成され、内部に中空構造を有するn型熱電変換素子とが配置され、前記p型及びn型熱電変換素子とが電気的に接続されてなることで容易に温度差を形成でき、出力が高く信頼性の高い熱電変換素子モジュールを実現することが出来る。   In order to achieve the above object, the thermoelectric conversion element module of the present invention is composed of a p-type thermoelectric conversion material, a p-type thermoelectric conversion element having a hollow structure therein, and an n-type thermoelectric conversion material, An n-type thermoelectric conversion element having a hollow structure is disposed therein, and the p-type and n-type thermoelectric conversion elements are electrically connected to each other, so that a temperature difference can be easily formed, and the output is high and reliable. A high thermoelectric conversion element module can be realized.

上記本構成によって、起電力の高い熱電変換素子と高出力が容易な製造方法を実現することができる。   With the present configuration, it is possible to realize a thermoelectric conversion element with high electromotive force and a manufacturing method with easy high output.

以上のように、本発明の熱電変換素子及び熱電変換素子モジュールによれば、高出力が容易で信頼性の高い熱電変換モジュールを製造することができる。   As described above, according to the thermoelectric conversion element and the thermoelectric conversion element module of the present invention, it is possible to manufacture a thermoelectric conversion module that is easy to achieve high output and high in reliability.

本発明の実施の形態に係る熱電変換素子の断面を示す図The figure which shows the cross section of the thermoelectric conversion element which concerns on embodiment of this invention 本発明の実施の形態に係る熱電変換素子の製造装置を示す図The figure which shows the manufacturing apparatus of the thermoelectric conversion element which concerns on embodiment of this invention 本発明の実施の形態に係る熱電変換素子モジュールの概略を示す図The figure which shows the outline of the thermoelectric conversion element module which concerns on embodiment of this invention 従来の熱電変換モジュールを示す模式図Schematic diagram showing a conventional thermoelectric conversion module

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態における熱電変換素子100であり、図1(a)は側面図、図1(b)は断面図になる。   FIG. 1 shows a thermoelectric conversion element 100 according to an embodiment of the present invention. FIG. 1 (a) is a side view and FIG. 1 (b) is a cross-sectional view.

同図において、101は熱電変換材料、102は耐熱性絶縁材料であり、熱電変換材料101と耐熱性絶縁材料102とは密着した状態で構成され、熱電変換材料の中央部には中空部103が存在している。   In the figure, 101 is a thermoelectric conversion material, 102 is a heat-resistant insulating material, and the thermoelectric conversion material 101 and the heat-resistant insulating material 102 are in close contact with each other. A hollow portion 103 is formed at the center of the thermoelectric conversion material. Existing.

図1の熱電変換素子100を作製する工程について、図2を参照して説明する。   A process of manufacturing the thermoelectric conversion element 100 of FIG. 1 will be described with reference to FIG.

まず、中空筒状に構成された耐熱性絶縁材料102を準備する。耐熱性絶縁材料102はガラス、特に耐熱ガラス(SiO2とB23を混合したホウケイ酸ガラスの一種で、熱膨張率は約3×10-6/K程度の材料)を使用した。耐熱ガラスで一般に知られるのは、コーニング社製のパイレックス(登録商標)ガラスがある。本実施の形態では、全長Lが150mm、内径d1と外径d2がそれぞれ、1.8mm、3mmである耐熱性絶縁材料102を使用した。 First, a heat-resistant insulating material 102 configured in a hollow cylindrical shape is prepared. The heat-resistant insulating material 102 was made of glass, particularly heat-resistant glass (a kind of borosilicate glass in which SiO 2 and B 2 O 3 are mixed and has a thermal expansion coefficient of about 3 × 10 −6 / K). A commonly known heat-resistant glass is Corning Pyrex (registered trademark) glass. In the present embodiment, the heat-resistant insulating material 102 having an overall length L of 150 mm and an inner diameter d1 and an outer diameter d2 of 1.8 mm and 3 mm, respectively, is used.

次に、耐熱性絶縁材料102の一端を配管を介して、減圧装置201に接続する。   Next, one end of the heat-resistant insulating material 102 is connected to the decompression device 201 through a pipe.

予め非酸化雰囲気に置換された融解炉202内の坩堝204を所定の温度まで加熱し、熱電変換材料101を溶融状態にする。熱電変換材料101は、コイル203から発せられる磁界の作用で誘導加熱され、外周部と内周部の温度差及び融液上下での温度差により対流が発生し、坩堝204内の融液は均質なものに攪拌されていることになる。   The crucible 204 in the melting furnace 202 that has been previously replaced with a non-oxidizing atmosphere is heated to a predetermined temperature, and the thermoelectric conversion material 101 is brought into a molten state. The thermoelectric conversion material 101 is induction-heated by the action of a magnetic field generated from the coil 203, and convection occurs due to the temperature difference between the outer peripheral part and the inner peripheral part and the temperature difference between the upper and lower parts of the melt, and the melt in the crucible 204 is homogeneous. It will be agitated.

更に、融解炉202の上部より挿入された耐熱性絶縁材料102を、所定の温度に保持された予備加熱領域205にて所定の時間保持する。その後、耐熱性絶縁材料102の一端を溶融した耐熱性絶縁材料102の入っている坩堝204へ浸漬し、減圧装置201によって負圧を発生させ耐熱性絶縁材料102の内部へ溶融した熱電変換材料101を導入する。本実施の形態では、熱電変換材料101は、Bi2Te3系材料としている。 Further, the heat-resistant insulating material 102 inserted from the upper part of the melting furnace 202 is held for a predetermined time in the preheating region 205 held at a predetermined temperature. Thereafter, one end of the heat-resistant insulating material 102 is immersed in a crucible 204 containing the molten heat-resistant insulating material 102, a negative pressure is generated by the decompression device 201, and the thermoelectric conversion material 101 is melted into the heat-resistant insulating material 102. Is introduced. In the present embodiment, the thermoelectric conversion material 101 is a Bi 2 Te 3 material.

耐熱性絶縁材料102内への熱電変換材料101の充填後、耐熱性絶縁材料102の予備加熱された温度に応じて熱電変換材料101が固化し、結晶状態を決定することになる。熱電変換材料101の固化は耐熱性絶縁材料102の温度によって決定するが、結晶構造によって、優先成長方向が耐熱性絶縁材料102の内壁面に垂直な方向となって形成されるように働く。しかしながら、溶融状態から冷却されつつ吸引されることによって、優先成長方向が冷却と吸引による流動の合成ベクトル方向に強制的に配向される。そのため、吸引速度と冷却速度を任意の状態で制御することで、結晶性にかかわる熱電変換特性を制御することが可能となる。   After the thermoelectric conversion material 101 is filled in the heat resistant insulating material 102, the thermoelectric conversion material 101 is solidified according to the preheated temperature of the heat resistant insulating material 102, and the crystal state is determined. The solidification of the thermoelectric conversion material 101 is determined by the temperature of the heat resistant insulating material 102, but works so that the preferential growth direction is a direction perpendicular to the inner wall surface of the heat resistant insulating material 102 depending on the crystal structure. However, by sucking while being cooled from the molten state, the preferential growth direction is forcibly oriented in the combined vector direction of the flow by cooling and suction. Therefore, it is possible to control thermoelectric conversion characteristics related to crystallinity by controlling the suction speed and the cooling speed in arbitrary states.

吸い上げられた熱電変換材料101は、耐熱性絶縁材料102の中心部に近いほど高温となり、流動が抑制されないから、吸い上げる速度を早くすると中心部は空洞となり、中空状の熱電変換素子を形成することができる。   Since the sucked thermoelectric conversion material 101 becomes higher as it gets closer to the center of the heat-resistant insulating material 102 and the flow is not suppressed, if the suction speed is increased, the center becomes a cavity, and a hollow thermoelectric conversion element is formed. Can do.

図3はこれらの熱電変換素子を用いて作成した熱電変換モジュールの概略図である。   FIG. 3 is a schematic view of a thermoelectric conversion module created using these thermoelectric conversion elements.

図3に示される空隙部401が熱の移動を制限する空間部となり、空隙部401が温度差を形成する上下面に対して熱流束を制限する機能をもつため、熱電変換材料101の熱伝導を制限せずに熱流束を抑制することができ、結果的に出力を上昇させることが出来るようになる。このため、熱電変換材料101は強度を損なうことなく、信頼性を確保できることになる。   The gap 401 shown in FIG. 3 becomes a space that restricts the movement of heat, and the gap 401 has a function of restricting the heat flux with respect to the upper and lower surfaces that form a temperature difference. The heat flux can be suppressed without restricting the output, and as a result, the output can be increased. For this reason, the thermoelectric conversion material 101 can ensure reliability, without impairing intensity | strength.

以上のような、熱電変換素子及び熱電変換素子モジュールの構造により、温度差を容易に確保することができると共に、振動などの外力によって熱電変換素子を損なうことなく信頼性を向上させることが可能な、熱電変換素子モジュール構造を実現することができる。   With the structure of the thermoelectric conversion element and the thermoelectric conversion element module as described above, a temperature difference can be easily secured, and reliability can be improved without damaging the thermoelectric conversion element due to external force such as vibration. The thermoelectric conversion element module structure can be realized.

本発明によれば、高出力が可能となり、信頼性の高い素子特性を有する熱電変換素子及び熱電変換素子モジュールを得ることが可能になる。従って、本発明は、種々の技術分野で、熱を直接電気に変換することが必要になる場合に広く適用することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, high output becomes possible and it becomes possible to obtain the thermoelectric conversion element and thermoelectric conversion element module which have a reliable element characteristic. Therefore, the present invention can be widely applied in various technical fields when it is necessary to directly convert heat into electricity.

100 熱電変換素子
101 熱電変換材料
102 耐熱性絶縁材料
103 中空部
DESCRIPTION OF SYMBOLS 100 Thermoelectric conversion element 101 Thermoelectric conversion material 102 Heat resistant insulating material 103 Hollow part

Claims (5)

中空状の耐熱性絶縁材の内壁にp型の熱電変換材料が配置され、内部に中空構造を有するp型熱電変換素子と、
中空状の耐熱性絶縁材の内壁にn型の熱電変換材料が配置され、内部に中空構造を有するn型熱電変換素子と、が設けられ、
前記p型熱電変換素子及びn型熱電変換素子が電気的に接続されてなること、
を特徴とする熱電変換素子モジュール。
A p-type thermoelectric conversion element in which a p-type thermoelectric conversion material is disposed on the inner wall of the hollow heat-resistant insulating material, and has a hollow structure inside;
An n-type thermoelectric conversion material is disposed on the inner wall of the hollow heat-resistant insulating material, and an n-type thermoelectric conversion element having a hollow structure inside is provided.
The p-type thermoelectric conversion element and the n-type thermoelectric conversion element are electrically connected;
A thermoelectric conversion element module.
前記p型熱電変換素子および前記n型熱電変換素子がそれぞれ複数配置されることで、各々、p型熱電変換素子群及びn型熱電変換素子群をなし、
前記p型熱電変換素子群と前記n型熱電変換素子群とが配列されてなる、
請求項1記載の熱電変換素子モジュール。
By arranging a plurality of the p-type thermoelectric conversion elements and the n-type thermoelectric conversion elements, respectively, p-type thermoelectric conversion element group and n-type thermoelectric conversion element group,
The p-type thermoelectric conversion element group and the n-type thermoelectric conversion element group are arranged.
The thermoelectric conversion element module according to claim 1.
前記p型熱電変換素子群と前記n型熱電変換素子群とは交互に配置されてなる、
請求項2記載の熱電変換素子モジュール。
The p-type thermoelectric conversion element group and the n-type thermoelectric conversion element group are alternately arranged.
The thermoelectric conversion element module according to claim 2.
前記p型熱電変換素子群と前記n型熱電変換素子群とは隣接して配置されてなる、
請求項1〜3の何れか一項に記載の熱電変換素子モジュール。
The p-type thermoelectric conversion element group and the n-type thermoelectric conversion element group are arranged adjacent to each other.
The thermoelectric conversion element module as described in any one of Claims 1-3.
中空状の耐熱性絶縁材の内壁にp型又はn型の熱電変換材料が配置され、かつ、内部に中空構造を有すること、
を特徴とする熱電変換素子。
A p-type or n-type thermoelectric conversion material is disposed on the inner wall of the hollow heat-resistant insulating material, and has a hollow structure inside;
The thermoelectric conversion element characterized by this.
JP2011275388A 2011-12-16 2011-12-16 Thermoelectric conversion element and thermoelectric conversion element module Pending JP2013125927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011275388A JP2013125927A (en) 2011-12-16 2011-12-16 Thermoelectric conversion element and thermoelectric conversion element module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275388A JP2013125927A (en) 2011-12-16 2011-12-16 Thermoelectric conversion element and thermoelectric conversion element module

Publications (1)

Publication Number Publication Date
JP2013125927A true JP2013125927A (en) 2013-06-24

Family

ID=48776988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275388A Pending JP2013125927A (en) 2011-12-16 2011-12-16 Thermoelectric conversion element and thermoelectric conversion element module

Country Status (1)

Country Link
JP (1) JP2013125927A (en)

Similar Documents

Publication Publication Date Title
JP5413868B2 (en) Thermoelectric conversion element module
CN104508846B (en) Thermo-electric conversion module
KR20110052225A (en) Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module comprising same
KR102097659B1 (en) METHOD FOR MANUFACTURING Bi-Sb-Te BASED THERMOELECTRIC MATERIAL WITH CONTROLLED GRAIN SIZE AND THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
KR20170128204A (en) Nano-structured porous thermoelectric generators
JP5235038B2 (en) Thermoelectric conversion device manufacturing apparatus and manufacturing method
CN105702847B (en) A kind of method of raising BiTeSe base N-type semiconductor pyroelectric material performances
CN108198934B (en) Composite thermoelectric material and preparation method thereof
JP5373225B2 (en) Method for manufacturing thermoelectric conversion element module
KR101959448B1 (en) Thermoelectric materials, thermoelectric device and method for manufacturing the same
JP5662490B2 (en) Thermoelectric converter
JP2013125927A (en) Thermoelectric conversion element and thermoelectric conversion element module
KR20200124224A (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and manufacturing method of thermoelectric conversion material
JP2013012571A (en) Thermoelectric conversion module and manufacturing method thereof
KR102562659B1 (en) Method for manufacturing of Bi-Sb-Te thermoelectric materials having a maximum efficiency temperature of 200 degrees or more
JP5650770B2 (en) Thermoelectric conversion module
JP2013251387A (en) Thermoelectric material and production method therefor
KR101810649B1 (en) Fabrication method of graphene composite powders
JP2019145661A (en) Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
JP5974289B2 (en) Thermoelectric conversion element and thermoelectric conversion module
KR102336650B1 (en) Composite thermoelectric material and method for preparing the same
JP2005159019A (en) Thermoelectric module
JP7079082B2 (en) Thermoelectric conversion elements, thermoelectric conversion modules, and moving objects
JP7056934B2 (en) Thermoelectric materials and thermoelectric modules
JP2006108203A (en) Method of manufacturing thermoelectric element