JP2013124978A - Pipe insertion type ultrasonic flaw detector - Google Patents

Pipe insertion type ultrasonic flaw detector Download PDF

Info

Publication number
JP2013124978A
JP2013124978A JP2011274926A JP2011274926A JP2013124978A JP 2013124978 A JP2013124978 A JP 2013124978A JP 2011274926 A JP2011274926 A JP 2011274926A JP 2011274926 A JP2011274926 A JP 2011274926A JP 2013124978 A JP2013124978 A JP 2013124978A
Authority
JP
Japan
Prior art keywords
probe
pipe
flaw detector
ultrasonic flaw
probe tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011274926A
Other languages
Japanese (ja)
Other versions
JP5791485B2 (en
Inventor
Mikiyasu Urata
幹康 浦田
Masaaki Torii
正明 取違
Kiyotaka Aoki
清隆 青木
Masatsugu Shimizu
正嗣 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011274926A priority Critical patent/JP5791485B2/en
Publication of JP2013124978A publication Critical patent/JP2013124978A/en
Application granted granted Critical
Publication of JP5791485B2 publication Critical patent/JP5791485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pipe insertion type ultrasonic flaw detector having high versatility for detecting a defect of a pipe with high accuracy and measuring the size of the defect with high accuracy regardless of the specifications (inner diameter and thickness of the pipe) of the pipe of an inspection object.SOLUTION: A pipe insertion type ultrasonic flaw detector 10 has a probe tube 20 having a shaft line extending in an insertion direction to a pipe 12 of an inspection object, a transmitting probe 38 supported by the probe tube 20 to emit an ultrasonic wave obliquely to a radial direction of the pipe 12 toward an inner circumferential surface of the pipe 12, a receiving probe 40 supported by the probe tube 20 separately from the transmitting probe 38 in the shaft line direction of the probe tube 20 to receive a reflection wave and a diffraction wave of the ultrasonic wave emitted by the transmitting probe 38, and an arrangement adjustment mechanism 100 for adjusting the arrangement of the transmitting probe 38 and the receiving probe 40 in the probe tube 20.

Description

本発明は、配管に挿入されて、管壁に発生した亀裂を探傷する配管挿入型の超音波探傷装置に関する。   The present invention relates to a pipe insertion type ultrasonic flaw detector that is inserted into a pipe and detects a crack generated in a pipe wall.

ボイラ用熱交換器の配管には、その内部を高温高圧の蒸気が流れるため、ブラケット等が溶接された部分の近傍に熱疲労による亀裂が発生し易い。配管に発生した亀裂を検知する手段の1つとして、TOFD(Time of Flight Diffraction)法を用いた超音波探傷装置が知られている。
この種の超音波探傷装置として、特許文献1が開示する配管用超音波探傷装置は、配管内に挿入される探触子チューブを有し、探触子チューブには、送信用探触子及び受信用探触子が固定されている。具体的には、送信用探触子及び受信用探触子は、配管への挿入方向にて相互に離間し、それぞれ、配管の径方向に対して傾斜した状態で固定されている。送信用探触子は、配管の内周面に向けて斜めに超音波を出射し、受信用探触子は、超音波の反射波及び回折波を受信する。
Since high-temperature and high-pressure steam flows through the pipe of the heat exchanger for boiler, cracks due to thermal fatigue are likely to occur near the portion where the bracket or the like is welded. As one of means for detecting a crack generated in a pipe, an ultrasonic flaw detector using a TOFD (Time of Flight Diffraction) method is known.
As this type of ultrasonic flaw detector, an ultrasonic flaw detector for piping disclosed in Patent Document 1 has a probe tube inserted into the pipe, and the probe tube includes a transmission probe and The receiving probe is fixed. Specifically, the transmitting probe and the receiving probe are separated from each other in the direction of insertion into the pipe, and are fixed in a state of being inclined with respect to the radial direction of the pipe. The transmitting probe emits ultrasonic waves obliquely toward the inner peripheral surface of the pipe, and the receiving probe receives ultrasonic reflected waves and diffracted waves.

この配管用超音波探傷装置によれば、亀裂からの回折波を受信することによって、亀裂を高精度にて検出することができるとともに、亀裂の両端からの回折波の受信時刻の差によって、亀裂の大きさを高精度にて検出することができる。そして、この配管用超音波探傷装置によれば、配管の外側に送信用探触子及び受信用探触子を設置する場合に比べて、配管の外面の磨き加工が不要であり、作業能率が高くなる。   According to this pipe ultrasonic flaw detector, the crack can be detected with high accuracy by receiving the diffracted wave from the crack, and the crack is detected by the difference in the reception time of the diffracted wave from both ends of the crack. Can be detected with high accuracy. And, according to the ultrasonic flaw detector for piping, it is not necessary to polish the outer surface of the piping compared to the case where the transmitting probe and the receiving probe are installed outside the piping, and the work efficiency is improved. Get higher.

特開2003−130855号公報JP 2003-130855 A

ところで、検査対象の配管には様々な径のものがある。このため現状では、配管の径に応じて、複数の配管用超音波探傷装置を準備する必要があった。   By the way, there are pipes of various diameters to be inspected. Therefore, at present, it is necessary to prepare a plurality of ultrasonic flaw detectors for piping according to the diameter of the piping.

本発明は、上記した事情に鑑みてなされ、その目的とするところは、検査対象の配管の仕様(配管の内径や厚さ)にかかわらずに、配管の管壁に発生した欠陥を高精度にて検出するとともに欠陥の大きさを高精度にて測定する、汎用性の高い配管挿入型超音波探傷装置を提供することにある。   The present invention has been made in view of the above-described circumstances, and the object of the present invention is to accurately detect defects generated on the pipe wall of the pipe regardless of the specifications of the pipe to be inspected (inner diameter and thickness of the pipe). It is another object of the present invention to provide a highly versatile pipe insertion type ultrasonic flaw detection apparatus that detects a defect and measures the size of a defect with high accuracy.

上記目的を解決するために、本発明は、検査対象の配管への挿入方向に延びる軸線を有する探触子チューブと、前記探触子チューブによって支持され、前記配管の内周面に向けて前記配管の径方向に対し斜めに超音波を出射する送信用探触子と、前記探触子チューブの軸線方向にて前記送信用探触子から離間して前記探触子チューブによって支持され、前記送信用探触子が出射した超音波の反射波及び回折波を受信する受信用探触子と、前記探触子チューブにおける前記送信用探触子及び前記受信用探触子の配置を調整する配置調整機構とを備えることを特徴とする。   In order to solve the above-described object, the present invention provides a probe tube having an axis extending in a direction of insertion into a pipe to be inspected, supported by the probe tube, and toward the inner peripheral surface of the pipe. A transmission probe that emits ultrasonic waves obliquely with respect to the radial direction of the pipe, and is supported by the probe tube apart from the transmission probe in the axial direction of the probe tube; The receiving probe that receives the reflected and diffracted waves of the ultrasonic wave emitted from the transmitting probe, and the arrangement of the transmitting probe and the receiving probe in the probe tube are adjusted. And an arrangement adjusting mechanism.

本発明の配管挿入型超音波探傷装置によれば、配置調整機構によって、探触子チューブにおける前記送信用探触子及び前記受信用探触子の配置を調整可能である。このため、この配管挿入型超音波探傷装置は、配管の仕様の変更、例えば配管の内径の大きさや配管の厚みの変更にかかわらずに、欠陥を高精度にて検出し、且つ、欠陥の大きさを高精度にて測定することができ、汎用性が高い。   According to the pipe insertion type ultrasonic flaw detection apparatus of the present invention, the arrangement of the transmitting probe and the receiving probe in the probe tube can be adjusted by the arrangement adjusting mechanism. For this reason, this pipe insertion type ultrasonic flaw detector detects a defect with high accuracy regardless of a change in the specification of the pipe, for example, a change in the inner diameter of the pipe or a change in the thickness of the pipe. Can be measured with high accuracy and is highly versatile.

好ましい構成として、前記配置調整機構は、前記軸線方向にて前記送信用探触子と前記受信用探触子の間の間隔を調整する間隔調整部、及び、前記軸線方向に対する前記送信用探触子及び前記受信用探触子の傾斜角度を調整する角度調整部のうち一方又は両方を有する。
この好ましい構成によれば、配置調整機構が間隔調整部及び角度調整部のうち一方又は両方を有するので、配管の仕様の変更、例えば配管の内径の大きさや配管の厚みの変更にかかわらずに、欠陥を高精度にて検出し、且つ、欠陥の大きさを高精度にて測定することができる。
As a preferred configuration, the arrangement adjusting mechanism includes an interval adjusting unit that adjusts an interval between the transmitting probe and the receiving probe in the axial direction, and the transmitting probe in the axial direction. One or both of an angle adjusting unit that adjusts an inclination angle of the probe and the receiving probe.
According to this preferred configuration, since the arrangement adjustment mechanism has one or both of the interval adjustment unit and the angle adjustment unit, regardless of the change in the specification of the pipe, for example, the change in the size of the inner diameter of the pipe or the thickness of the pipe, Defects can be detected with high accuracy, and the size of the defects can be measured with high accuracy.

また、好ましい構成として、前記配置調整機構は、前記送信用探触子及び前記受信用探触子の各々が固定されるブラケットを含み、前記ブラケットは、前記軸線と直交する回転軸を中心として回転可能である。
この好ましい構成によれば、簡単な構成にて、配置調整機構が角度調整をすることができ、内径の異なる配管や、厚さの異なる配管に対しても発信方向および受信方向を調整できる。
Further, as a preferred configuration, the arrangement adjusting mechanism includes a bracket to which each of the transmission probe and the reception probe is fixed, and the bracket rotates about a rotation axis orthogonal to the axis. Is possible.
According to this preferable configuration, the arrangement adjusting mechanism can adjust the angle with a simple configuration, and the transmission direction and the reception direction can be adjusted even for pipes having different inner diameters and pipes having different thicknesses.

また、好ましい構成として、前記ブラケットのうち少なくとも一方は、前記探触子チューブ内を前記軸線方向に沿って移動可能である。
この好ましい構成によれば、簡単な構成にて、配置調整機構が間隔調整をすることができ、角度調整だけでなく送信用探触子と受信用探触子との間隔も調整できるので、内径の異なる配管や、厚さの異なる配管に対しても発信方向および受信方向をさらに容易に最適な状態に調整できる。
As a preferred configuration, at least one of the brackets is movable along the axial direction in the probe tube.
According to this preferred configuration, the arrangement adjustment mechanism can adjust the interval with a simple configuration, and not only the angle adjustment but also the interval between the transmitting probe and the receiving probe can be adjusted. The transmission direction and the reception direction can be more easily adjusted to the optimum state even for pipes having different thicknesses and pipes having different thicknesses.

また、好ましい構成として、配管挿入型超音波探傷装置は、前記探触子チューブによって支持され、前記配管の内周面に向けて前記配管の径方向にて超音波を出射し、且つ、自身が出射した前記超音波の反射波を受信する、垂直送受信用探触子を更に備える。
この好ましい構成によれば、配管の肉厚が変化する部位を的確に検出することができる。肉厚が変化する部位は、応力が集中し易く、欠陥が生じ易いため、配管の肉厚が変化する部位を検査対象とすることで、効率的に検査を行うことができる。
Further, as a preferred configuration, the pipe insertion type ultrasonic flaw detector is supported by the probe tube, emits ultrasonic waves in the radial direction of the pipe toward the inner peripheral surface of the pipe, and A vertical transmission / reception probe for receiving the reflected wave of the emitted ultrasonic wave is further provided.
According to this preferable configuration, it is possible to accurately detect a portion where the thickness of the pipe changes. Since the portion where the wall thickness changes is likely to cause stress concentration and a defect is likely to occur, the inspection can be efficiently performed by setting the portion where the wall thickness of the pipe changes as an inspection target.

また、好ましい構成として、配管挿入型超音波探傷装置は、前記探触子チューブに設けられ、前記配管内での前記探触子チューブの偏心を防止する径方向に延びるブラシを更に備える。
この好ましい構成によれば、探触子チューブを配管内で回転させながら探傷試験を行った場合でも、送信用探触子及び受信用探触子と、配管の内周面及び外周面との間の距離が変化せず、周方向に渡って均一な精度で、欠陥の検出及び大きさの測定を行うことができる。
As a preferred configuration, the pipe insertion type ultrasonic flaw detector further includes a brush that is provided in the probe tube and extends in a radial direction to prevent eccentricity of the probe tube in the pipe.
According to this preferred configuration, even when a flaw detection test is performed while the probe tube is rotated in the pipe, the gap between the transmitter probe and the receiver probe and the inner and outer peripheral surfaces of the pipe is reduced. Thus, it is possible to detect the defect and measure the size with uniform accuracy in the circumferential direction.

本発明によれば、検査対象の配管の仕様、例えば配管の内径の大きさや配管の厚みの変更にかかわらずに、配管の欠陥を高精度にて検出するとともに欠陥の大きさを高精度にて測定する、汎用性の高い配管挿入型超音波探傷装置が提供される。   According to the present invention, regardless of changes in the specifications of the pipe to be inspected, for example, the inner diameter of the pipe or the thickness of the pipe, the pipe defect is detected with high accuracy and the size of the defect is detected with high accuracy. A highly versatile pipe insertion type ultrasonic flaw detector for measurement is provided.

本発明の一実施形態に係る超音波探傷装置を、検査対象の配管の一部とともに概略的に示す斜視図である。1 is a perspective view schematically showing an ultrasonic flaw detector according to an embodiment of the present invention together with a part of piping to be inspected. 配管の断面とともに、配管に挿入された図1の超音波探傷装置を概略的に示す図である。It is a figure which shows roughly the ultrasonic flaw detector of FIG. 1 inserted in piping with the cross section of piping. 図1の超音波探傷装置の一部を断面にして拡大して示す図である。FIG. 2 is an enlarged view showing a part of the ultrasonic flaw detector of FIG. 1 in cross section. 図1の超音波探傷装置の送信用探触子又は受信用探触子とともに探触子ホルダを分解して概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing an exploded probe holder together with a transmission probe or a reception probe of the ultrasonic flaw detector of FIG. 1. 図1の超音波探傷装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the ultrasonic flaw detector of FIG. 図1の超音波探傷装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the ultrasonic flaw detector of FIG. 図1の超音波探傷装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the ultrasonic flaw detector of FIG.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention to that unless otherwise specified.

図1は、一実施形態の超音波探傷装置10の外観を、検査対象の配管12の一部とともに概略的に示す斜視図である。超音波探傷装置10は配管挿入型であり、配管12の内部に挿入される。
配管12は、例えば火力ボイラ用の熱交換器を構成する吊り下げ管である。配管12には、ブラケット14を介して、再熱器を構成する配管(RH管)16,16が固定されている。より詳しくは、ブラケット14は、吊り下げ管12及びRH管16,16に溶接されており、ブラケット14と吊り下げ管12及びRH管16,16の間はビード18を介してそれぞれ接続されている。
FIG. 1 is a perspective view schematically showing an appearance of an ultrasonic flaw detector 10 according to an embodiment together with a part of a pipe 12 to be inspected. The ultrasonic flaw detector 10 is a pipe insertion type and is inserted into the pipe 12.
The pipe 12 is a hanging pipe constituting a heat exchanger for a thermal power boiler, for example. Pipes (RH pipes) 16 and 16 constituting a reheater are fixed to the pipe 12 via a bracket 14. More specifically, the bracket 14 is welded to the suspension pipe 12 and the RH pipes 16 and 16, and the bracket 14 and the suspension pipe 12 and the RH pipes 16 and 16 are connected to each other via a bead 18. .

図2は、配管12の断面とともに、配管12内に挿入された超音波探傷装置10を概略的に示す図である。なお、超音波探傷装置10を用いて探傷試験を行う場合には、配管12内は水で満たされる。   FIG. 2 is a diagram schematically showing the ultrasonic flaw detector 10 inserted into the pipe 12 together with a cross section of the pipe 12. In addition, when performing a flaw detection test using the ultrasonic flaw detection apparatus 10, the inside of the pipe 12 is filled with water.

超音波探傷装置10は、例えば金属製の探触子チューブ20を有する。探触子チューブ20は、略円筒形状の本体部22、及び、本体部22の両端に同軸にて一体に連なる円筒形状の端部24,24を有する。端部24,24には、複数の環状のブラシ26が取り付けられている。
ブラシ26は、それぞれ端部24,24の径方向に延びる繊維からなる。ブラシ26の外径は本体部22の外径よりも大きく、ブラシ26の先端は配管12の内周面に摺接する。ブラシ26は調芯機能を有し、ブラシ26によって、探触子チューブ20が配管12の径方向中心に配置される。
The ultrasonic flaw detector 10 has a probe tube 20 made of metal, for example. The probe tube 20 has a substantially cylindrical main body portion 22 and cylindrical end portions 24, 24 that are coaxially and integrally connected to both ends of the main body portion 22. A plurality of annular brushes 26 are attached to the end portions 24, 24.
The brush 26 is made of fibers extending in the radial direction of the end portions 24 and 24, respectively. The outer diameter of the brush 26 is larger than the outer diameter of the main body 22, and the tip of the brush 26 is in sliding contact with the inner peripheral surface of the pipe 12. The brush 26 has a centering function, and the probe tube 20 is arranged at the center in the radial direction of the pipe 12 by the brush 26.

探触子チューブ20の一方の端部24には、同軸にてロッド28の基端が取り付けられ、ロッド28の先端にはボール30が取り付けられている。ロッド28及びボール30は、超音波探傷装置10を配管12に挿入するときにガイドとして機能する。
探触子チューブ20の他方の端部24には、同軸にて中空のアウタシャフト32が相対回転可能に接続されるとともに、アウタシャフト32の内側を通じて中空のインナシャフト34が一体に回転可能に接続されている。インナシャフト34は、配管12の外部に設置された駆動装置によって回転させられ、インナシャフト34の回転に伴い、探触子チューブ20が配管12に対して回転させられる。配管12の軸線方向での探触子チューブ20の位置は、アウタシャフト32及びインナシャフト34の繰り出し量によって調整可能である。
A proximal end of a rod 28 is coaxially attached to one end 24 of the probe tube 20, and a ball 30 is attached to the distal end of the rod 28. The rod 28 and the ball 30 function as a guide when the ultrasonic flaw detector 10 is inserted into the pipe 12.
A hollow outer shaft 32 is coaxially connected to the other end 24 of the probe tube 20 so as to be relatively rotatable, and a hollow inner shaft 34 is rotatably connected integrally through the inner side of the outer shaft 32. Has been. The inner shaft 34 is rotated by a driving device installed outside the pipe 12, and the probe tube 20 is rotated with respect to the pipe 12 as the inner shaft 34 rotates. The position of the probe tube 20 in the axial direction of the pipe 12 can be adjusted by the feed amount of the outer shaft 32 and the inner shaft 34.

探触子チューブ20の本体部22の内部には、垂直送受信用探触子36、送信用探触子38及び受信用探触子40が配置されている。図示しないけれども、垂直送受信用探触子36、送信用探触子38及び受信用探触子40は、インナシャフト34内を延びる電気配線を通じて外部の制御装置と電気的に接続されており、制御装置からの命令に基づいて各々の機能を発揮する。   Inside the main body portion 22 of the probe tube 20, a vertical transmission / reception probe 36, a transmission probe 38 and a reception probe 40 are arranged. Although not shown, the vertical transmission / reception probe 36, the transmission probe 38, and the reception probe 40 are electrically connected to an external control device through electric wiring extending in the inner shaft 34, and are controlled. Each function is performed based on a command from the device.

より詳しくは、垂直送受信用探触子36は、超音波の送信機能及び受信機能を有し、探触子チューブ20の径方向、則ち、配管12の径方向にて超音波を出射し、超音波の反射波を受信する。なお、垂直送受信用探触子36は、探触子チューブ20に対し相対変位不能に固定されている。   More specifically, the vertical transmission / reception probe 36 has an ultrasonic transmission function and a reception function, and emits ultrasonic waves in the radial direction of the probe tube 20, that is, in the radial direction of the pipe 12. Receives reflected ultrasonic waves. The vertical transmission / reception probe 36 is fixed to the probe tube 20 so as not to be relatively displaced.

送信用探触子38は、超音波の送信機能を有し、配管12の内周面に向けて超音波を出射する。受信用探触子40は、超音波の受信機能を有し、送信用探触子38が出射した超音波の反射波及び回折波を受信する。つまり、超音波探傷装置10は、TOFD(Time of Flight Diffraction)法を採用しており、制御装置は、超音波の反射波及び回折波の受信時刻の差に基づいて、亀裂等の欠陥を検出するとともに欠陥の大きさを検出する。   The transmission probe 38 has an ultrasonic transmission function, and emits ultrasonic waves toward the inner peripheral surface of the pipe 12. The reception probe 40 has an ultrasonic wave reception function, and receives the reflected and diffracted waves of the ultrasonic wave emitted from the transmission probe 38. That is, the ultrasonic flaw detection apparatus 10 employs the TOFD (Time of Flight Diffraction) method, and the control apparatus detects a defect such as a crack based on the difference in the reception time of the reflected wave of the ultrasonic wave and the diffracted wave. At the same time, the size of the defect is detected.

〔配置調整機構〕
送信用探触子38及び受信用探触子40の各々は、探触子チューブ20によって支持されている。そして、超音波探傷装置10は、探触子チューブ20における送信用探触子38及び受信用探触子40の配置を調整する配置調整機構100を有する。好ましい構成として、この配置調整機構100は、配管12への挿入方向、則ち、探触子チューブ20の軸線方向での送信用探触子38と受信用探触子40の間の間隔を調整する間隔調整部、及び、探触子チューブ20の軸線方向に対する、送信用探触子38及び受信用探触子40の各々の傾斜角度を調整する傾斜角調整部を有する。
[Placement adjustment mechanism]
Each of the transmission probe 38 and the reception probe 40 is supported by the probe tube 20. The ultrasonic flaw detector 10 includes an arrangement adjustment mechanism 100 that adjusts the arrangement of the transmission probe 38 and the reception probe 40 in the probe tube 20. As a preferred configuration, the arrangement adjusting mechanism 100 adjusts the distance between the transmitting probe 38 and the receiving probe 40 in the insertion direction into the pipe 12, that is, in the axial direction of the probe tube 20. And an inclination angle adjusting unit that adjusts the inclination angle of each of the transmission probe 38 and the reception probe 40 with respect to the axial direction of the probe tube 20.

図3は、配置調整機構を説明するための図であり、探触子チューブ20の本体部22の断面とともに、送信用探触子38及び受信用探触子40を示している。送信用探触子38及び受信用探触子40は、それぞれ探触子ホルダ42に固定され、探触子ホルダ42を介して探触子チューブ20によって支持されている。なお、図3において、探触子ホルダ42については断面が示されているが、垂直送受信用探触子36、送信用探触子38及び受信用探触子40については、断面ではなく正面が示されている。   FIG. 3 is a view for explaining the arrangement adjusting mechanism, and shows a transmitting probe 38 and a receiving probe 40 together with a cross section of the main body portion 22 of the probe tube 20. The transmitting probe 38 and the receiving probe 40 are respectively fixed to a probe holder 42 and supported by the probe tube 20 via the probe holder 42. In FIG. 3, the probe holder 42 is shown in cross section, but the vertical transmission / reception probe 36, transmission probe 38, and reception probe 40 are not in cross section but in front. It is shown.

〔探触子ホルダ〕
図4は送信用探触子38とともに、分解された探触子ホルダ42を示す概略的な斜視図である。
探触子ホルダ42は、例えば金属製のブラケット44を有し、ブラケット44は端壁46、及び、端壁46の端縁に一体に連なる側壁48,48を有する。ブラケット44は、平面でみてコの字形状又は角張ったU字形状を有し、側壁48,48の間に送信用探触子38が相対変位不能に挟持されている。そして、送信用探触子38の超音波の出射面50は、端壁46とは反対側を向いている。
(Probe holder)
FIG. 4 is a schematic perspective view showing the probe holder 42 disassembled together with the transmission probe 38.
The probe holder 42 includes, for example, a metal bracket 44, and the bracket 44 includes an end wall 46 and side walls 48 that are integrally connected to an end edge of the end wall 46. The bracket 44 has a U shape or an angular U shape when seen in a plan view, and the transmitting probe 38 is sandwiched between the side walls 48 and 48 so as not to be relatively displaced. The ultrasonic wave emission surface 50 of the transmission probe 38 faces the side opposite to the end wall 46.

一方の側壁48の外面からは、回転軸52が一体且つ垂直に延びている。回転軸52の基端側は、円柱形状の円柱部54によって構成され、先端側は角柱形状の角柱部56によって構成されている。円柱部54には、ガイド部材58が相対回転可能に嵌合される。ガイド部材58は、直方体形状のガイド部60、及び、ガイド部60と一体の円盤部62からなる。円盤部62には、送信用探触子38の傾斜角度を確認するための目盛りが設けられている。   A rotating shaft 52 extends integrally and vertically from the outer surface of one side wall 48. The proximal end side of the rotation shaft 52 is constituted by a cylindrical column portion 54, and the distal end side is constituted by a prismatic prism portion 56. A guide member 58 is fitted to the cylindrical portion 54 so as to be relatively rotatable. The guide member 58 includes a rectangular parallelepiped guide part 60 and a disk part 62 integrated with the guide part 60. The disk portion 62 is provided with a scale for confirming the inclination angle of the transmission probe 38.

回転軸52はガイド部材58を貫通しており、角柱部56には、円柱形状の回転ノブ64が相対回転不能に嵌合されている。回転ノブ64は、図示しない螺子等の抜け止め手段によって角柱部56に固定されており、回転ノブ64によってガイド部材58の抜けも防止される。   The rotation shaft 52 passes through the guide member 58, and a cylindrical rotation knob 64 is fitted to the prism portion 56 so as not to be relatively rotatable. The rotary knob 64 is fixed to the prism portion 56 by a retaining means such as a screw (not shown), and the guide member 58 is prevented from coming off by the rotary knob 64.

他方の側壁48の外面からは、円筒部66が一体且つ垂直に延びている。円筒部66は、回転軸52と同軸上に配置され、内周面に雌螺子が設けられている。円筒部66には、螺子68が螺子込まれる。
なお、受信用探触子40のための探触子ホルダ42は、送信用探触子38のための探触子ホルダ42と同じ構成を有しており、従って、図4は、受信用探触子40とともに、分解された探触子ホルダ42を示す概略的な斜視図でもある。そして、受信用探触子40の超音波の入射面70は、送信用探触子38の場合と同様に、端壁46とは反対側を向いている。
A cylindrical portion 66 extends integrally and vertically from the outer surface of the other side wall 48. The cylindrical portion 66 is disposed coaxially with the rotation shaft 52 and has an internal thread on the inner peripheral surface. A screw 68 is screwed into the cylindrical portion 66.
Note that the probe holder 42 for the receiving probe 40 has the same configuration as the probe holder 42 for the transmitting probe 38, and therefore FIG. It is also a schematic perspective view showing the probe holder 42 disassembled together with the contact 40. Then, the ultrasonic incident surface 70 of the receiving probe 40 faces the side opposite to the end wall 46 as in the case of the transmitting probe 38.

ここで再び図3を参照すると、探触子チューブ20の本体部22には、ブラケット44を収容する格納室72が形成されている。格納室72の側壁74,74の各々は、探触子チューブ20の軸線方向に延び、平坦な内面及び外面を有する。側壁74,74の内面の間にブラケット44が挟持されている。
側壁74には、探触子チューブ20の軸線方向に延びるガイド溝76が形成され、一方のガイド溝76には、ガイド部材58のガイド部60がスライド可能に嵌合され、他方のガイド溝76には、円筒部66がスライド可能に嵌合されている。
Here, referring again to FIG. 3, a storage chamber 72 for accommodating the bracket 44 is formed in the main body portion 22 of the probe tube 20. Each of the side walls 74 and 74 of the storage chamber 72 extends in the axial direction of the probe tube 20 and has a flat inner surface and an outer surface. A bracket 44 is sandwiched between the inner surfaces of the side walls 74 and 74.
A guide groove 76 extending in the axial direction of the probe tube 20 is formed on the side wall 74, and the guide portion 60 of the guide member 58 is slidably fitted in one guide groove 76, and the other guide groove 76 is fitted. The cylindrical portion 66 is slidably fitted in the case.

従って、螺子68を緩めた状態では、探触子ホルダ42は、探触子チューブ20の軸線方向に沿って移動可能であるとともに、該軸線方向と直交する回転軸52を中心として回転可能である。
一方、円筒部66に螺子68が螺子込まれると、ガイド部材58の円盤部62及び螺子68の頭部が側壁74,74の外面に密着し、探触子ホルダ42の位置及び傾斜角度が決定される。つまり、螺子68は探触子ホルダ42の固定手段を構成している。
Therefore, in a state where the screw 68 is loosened, the probe holder 42 can move along the axial direction of the probe tube 20 and can rotate about the rotation axis 52 orthogonal to the axial direction. .
On the other hand, when the screw 68 is screwed into the cylindrical portion 66, the disk portion 62 of the guide member 58 and the head of the screw 68 are brought into close contact with the outer surfaces of the side walls 74, 74, and the position and the inclination angle of the probe holder 42 are determined. Is done. That is, the screw 68 constitutes a fixing means for the probe holder 42.

以下、上述した配管挿入型の超音波探傷装置10の動作について説明する。
図5は、超音波探傷装置10の動作を説明するための図であり、垂直送受信用探触子36は、配管12の内周面に向けて超音波を出射し、そして、配管12の内周面及び外周面にて反射された反射波を受信する。制御装置は、反射波の受信時刻に基づいて、配管12の肉厚を検出する。
ビード18が形成されている領域では、配管12の肉厚が見かけ上厚くなるので、超音波探傷装置10は、垂直送受信用探触子36を用いることにより、ビード18の位置を検出することができる。
The operation of the above-described pipe insertion type ultrasonic flaw detector 10 will be described below.
FIG. 5 is a diagram for explaining the operation of the ultrasonic flaw detector 10. The vertical transmission / reception probe 36 emits ultrasonic waves toward the inner peripheral surface of the pipe 12, and A reflected wave reflected on the peripheral surface and the outer peripheral surface is received. The control device detects the thickness of the pipe 12 based on the reception time of the reflected wave.
In the region where the bead 18 is formed, the thickness of the pipe 12 is apparently increased. Therefore, the ultrasonic flaw detector 10 can detect the position of the bead 18 by using the vertical transmission / reception probe 36. it can.

一方、送信用探触子38は、配置調整機構を用いて予め設定された傾斜角度にて傾斜しており、配管12の内周面に向けて出射角度θ1にて出射面50から超音波を出射する。ただし、出射する超音波には、出射角度θ1を中心としてある程度の広がりがある。
そして、受信用探触子40は、配置調整機構を用いて、送信用探触子38から回転軸52間にて距離Dだけ離間しており、且つ、予め設定された傾斜角度にて傾斜している。受信用探触子40は、入射角度θ2にて、超音波の反射波及び回折波が入射面70に入射する。ただし、入射する超音波についても、入射角度θ2を中心として、ある程度の広がりがある。
On the other hand, the transmission probe 38 is inclined at a preset inclination angle by using the arrangement adjusting mechanism, and ultrasonic waves are emitted from the emission surface 50 toward the inner peripheral surface of the pipe 12 at the emission angle θ1. Exit. However, the emitted ultrasonic wave has a certain extent around the emission angle θ1.
Then, the receiving probe 40 is separated by a distance D from the transmitting probe 38 to the rotating shaft 52 by using the arrangement adjusting mechanism, and is inclined at a preset inclination angle. ing. In the receiving probe 40, an ultrasonic reflected wave and a diffracted wave are incident on the incident surface 70 at an incident angle θ2. However, the incident ultrasonic waves also have a certain extent around the incident angle θ2.

配管12に亀裂等の欠陥がある場合、配管12の内周面及び外周面で反射された反射波とともに、欠陥で回折された回折波が受信用探触子40に入射する。制御装置は、反射波及び回折波の受信時刻の差に基づいて、亀裂の検出及び検出した亀裂の大きさの定量を行うことができる。
ここで、配管12がボイラ用の吊り下げ管の場合、欠陥は、ビード18の端部近傍であって、配管12の外周面近傍に発生し易い。そこで、本実施形態では、送信用探触子38の超音波の出射軸80と受信用探触子40への超音波の入射軸82が、配管12の外周面近傍で一致するように、送信用探触子38及び受信用探触子40の回転軸52間の距離D、並びに、出射角度θ1及び入射角度θ2が設定されている。つまり、欠陥を重点的に検査したい領域にて、出射軸80と入射軸82が一致している。
When the pipe 12 has a defect such as a crack, the diffracted wave diffracted by the defect enters the receiving probe 40 together with the reflected wave reflected by the inner and outer peripheral surfaces of the pipe 12. The control device can detect a crack and quantify the size of the detected crack based on the difference between the reception times of the reflected wave and the diffracted wave.
Here, when the pipe 12 is a suspension pipe for a boiler, the defect is likely to occur near the end of the bead 18 and in the vicinity of the outer peripheral surface of the pipe 12. Therefore, in the present embodiment, the transmission axis 38 of the transmitting probe 38 and the incident axis 82 of the ultrasonic wave to the receiving probe 40 are matched so as to coincide in the vicinity of the outer peripheral surface of the pipe 12. A distance D between the rotation shafts 52 of the trust probe 38 and the receiving probe 40, and an emission angle θ1 and an incident angle θ2 are set. That is, the emission axis 80 and the incident axis 82 coincide with each other in a region where it is desired to inspect defects mainly.

図6も超音波探傷装置10の動作を説明するための図であるが、図5の場合に比べて、配管12の内径の違いにより、配管12の内周面と送信用探触子38及び受信用探触子40の回転軸52までの距離Lが短くなっている。距離Lが短くなったことを考慮して、図6の場合では、距離Dが縮小されている。   FIG. 6 is also a diagram for explaining the operation of the ultrasonic flaw detector 10, but compared to the case of FIG. 5, the inner peripheral surface of the pipe 12, the transmitting probe 38, and the like due to the difference in the inner diameter of the pipe 12. The distance L to the rotating shaft 52 of the receiving probe 40 is shortened. In consideration of the fact that the distance L is shortened, the distance D is reduced in the case of FIG.

図7も超音波探傷装置10の動作を説明するための図であるが、図5の場合に比べて、出射角度θ1及び入射角度θ2が増大され、これに合わせて、距離Dも増大されている。図7の配置によれば、図5の配置と比べて、配管12における超音波の伝搬方向を変化させることができ、図5の配置では検出が困難であった亀裂も検出される可能性がある。   FIG. 7 is also a diagram for explaining the operation of the ultrasonic flaw detector 10. Compared with the case of FIG. 5, the emission angle θ1 and the incident angle θ2 are increased, and the distance D is increased accordingly. Yes. According to the arrangement of FIG. 7, the ultrasonic wave propagation direction in the pipe 12 can be changed compared to the arrangement of FIG. 5, and there is a possibility that cracks that are difficult to detect with the arrangement of FIG. 5 are also detected. is there.

以上説明したように、一実施形態の超音波探傷装置10によれば、配置調整機構100によって、探触子チューブ20における送信用探触子38及び受信用探触子40の配置を調整可能である。このため、この超音波探傷装置10は、配管12の仕様、則ち、内径、外径及び材質にかかわらずに、欠陥を高精度にて検出し、且つ、欠陥の大きさを高精度にて測定することができ、汎用性が高い。   As described above, according to the ultrasonic flaw detector 10 of one embodiment, the arrangement of the transmitting probe 38 and the receiving probe 40 in the probe tube 20 can be adjusted by the arrangement adjusting mechanism 100. is there. For this reason, this ultrasonic flaw detector 10 can detect a defect with high accuracy regardless of the specifications of the pipe 12, that is, the inner diameter, outer diameter, and material, and can accurately determine the size of the defect. It can be measured and is highly versatile.

そして、好ましい構成として、配置調整機構100は、探触子チューブ20の軸線方向にて送信用探触子38と受信用探触子40の間隔を調整する間隔調整部、及び、探触子チューブ20の軸線方向に対する送信用探触子38及び受信用探触子40の傾斜角度を調整する角度調整部の両方を有する。この好ましい構成によれば、配管12の仕様にかかわらずに、欠陥を高精度にて検出し、且つ、欠陥の大きさを高精度にて測定することができる。   As a preferred configuration, the arrangement adjusting mechanism 100 includes an interval adjusting unit that adjusts the interval between the transmitting probe 38 and the receiving probe 40 in the axial direction of the probe tube 20, and the probe tube. It has both the angle adjustment part which adjusts the inclination angle of the probe 38 for transmission with respect to 20 axial directions, and the probe 40 for reception. According to this preferable configuration, it is possible to detect the defect with high accuracy and measure the size of the defect with high accuracy regardless of the specification of the pipe 12.

また、好ましい構成として、配置調整機構100は、送信用探触子38及び受信用探触子40の各々が固定されるブラケット44を含み、ブラケット44は、探触子チューブ20の軸線と直交する回転軸52を中心として回転可能である。この好ましい構成によれば、簡単な構成にて、配置調整機構100が角度調整機能を発揮する。   Further, as a preferable configuration, the arrangement adjusting mechanism 100 includes a bracket 44 to which each of the transmission probe 38 and the reception probe 40 is fixed, and the bracket 44 is orthogonal to the axis of the probe tube 20. The rotating shaft 52 can be rotated as a center. According to this preferable configuration, the arrangement adjustment mechanism 100 exhibits the angle adjustment function with a simple configuration.

また、好ましい構成として、送信用探触子38及び受信用探触子40がそれぞれ固定されるブラケット44は、探触子チューブ20内を軸線方向に沿って移動可能である。この好ましい構成によれば、簡単な構成にて、配置調整機構100が間隔調整機能を発揮する。   Further, as a preferred configuration, the bracket 44 to which the transmitting probe 38 and the receiving probe 40 are respectively fixed is movable in the probe tube 20 along the axial direction. According to this preferable configuration, the arrangement adjusting mechanism 100 exhibits the interval adjusting function with a simple configuration.

また、好ましい構成として、超音波探傷装置10は、探触子チューブ20によって支持され、配管12の内周面に向けて配管12の径方向にて超音波を出射し、且つ、自身が出射した超音波の反射波を受信する、垂直送受信用探触子36を更に備える。
この好ましい構成によれば、配管12の肉厚が変化する部位を的確に検出することができる。肉厚が変化する部位は、応力が集中し易く、欠陥が生じ易いため、配管12の肉厚が変化する部位を検査対象とすることで、効率的に検査を行うことができる。
Moreover, as a preferable configuration, the ultrasonic flaw detector 10 is supported by the probe tube 20, emits ultrasonic waves in the radial direction of the pipe 12 toward the inner peripheral surface of the pipe 12, and emits itself. It further includes a vertical transmission / reception probe 36 for receiving reflected ultrasonic waves.
According to this preferable configuration, it is possible to accurately detect a portion where the thickness of the pipe 12 changes. Since the portion where the thickness changes tends to cause stress concentration and defects are likely to occur, the inspection can be efficiently performed by setting the portion where the thickness of the pipe 12 changes as the inspection target.

また、好ましい構成として、超音波探傷装置10は、探触子チューブ20に設けられ、配管12内での探触子チューブ20の偏心を防止するブラシ26を更に備える。
この好ましい構成によれば、探触子チューブ20を配管12内で回転させながら、周方向全域に渡って検査を行った場合でも、送信用探触子38及び受信用探触子40と、配管12の内周面及び外周面との間の距離が変化せず、周方向に渡って均一な精度で、欠陥の検出及び大きさの測定を行うことができる。
In addition, as a preferable configuration, the ultrasonic flaw detector 10 further includes a brush 26 that is provided on the probe tube 20 and prevents eccentricity of the probe tube 20 in the pipe 12.
According to this preferred configuration, even when the inspection is performed over the entire circumferential direction while rotating the probe tube 20 in the pipe 12, the transmitting probe 38, the receiving probe 40, and the pipe The distance between the 12 inner peripheral surfaces and the outer peripheral surface does not change, and the detection of the defect and the measurement of the size can be performed with uniform accuracy in the circumferential direction.

本発明は、上述した一実施形態に限定されることはなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
例えば、超音波探傷装置10の配置調整機構100は、間隔調整部及び角度調整部の両方を有していたけれども、一方のみを有していてもよい。
また、超音波探傷装置10では、送信用探触子38及び受信用探触子40の両方が、探触子チューブ20の軸線方向にて移動可能であったけれども、片方のみ移動可能であればよい。
The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
For example, the arrangement adjustment mechanism 100 of the ultrasonic flaw detector 10 has both the interval adjustment unit and the angle adjustment unit, but may have only one of them.
In the ultrasonic flaw detector 10, both the transmitting probe 38 and the receiving probe 40 can be moved in the axial direction of the probe tube 20, but only one of them can be moved. Good.

更に、超音波探傷装置10では、垂直送受信用探触子36の位置は特に限定されず、送信用探触子38と受信用探触子40の間に配置されていてもよい。
最後に、超音波探傷装置10は、ボイラ用の配管の検査に好適であるが、他の用途の配管にも適用可能であるのは勿論である。
Further, in the ultrasonic flaw detector 10, the position of the vertical transmission / reception probe 36 is not particularly limited, and may be disposed between the transmission probe 38 and the reception probe 40.
Finally, the ultrasonic flaw detection apparatus 10 is suitable for inspection of piping for boilers, but of course can also be applied to piping for other uses.

10 超音波探傷装置
12 配管
14 ブラケット
16 配管
18 ビード
20 探触子チューブ
22 本体部
26 ブラシ
36 垂直送受信用探触子
38 送信用探触子
40 受信用探触子
42 探触子ホルダ
44 ブラケット
48 ブラケットの側壁
52 回転軸
64 回転ノブ
68 螺子
80 出射軸
82 入射軸
100 配置調整機構
θ1 出射角度
θ2 入射角度


DESCRIPTION OF SYMBOLS 10 Ultrasonic flaw detector 12 Piping 14 Bracket 16 Piping 18 Bead 20 Probe tube 22 Main body part 26 Brush 36 Vertical transmission / reception probe 38 Transmitting probe 40 Reception probe 42 Probe holder 44 Bracket 48 Bracket side wall 52 Rotating shaft 64 Rotating knob 68 Screw 80 Ejecting shaft 82 Incident shaft 100 Arrangement adjusting mechanism θ1 Emission angle θ2 Incident angle


Claims (6)

検査対象の配管への挿入方向に延びる軸線を有する探触子チューブと、
前記探触子チューブによって支持され、前記配管の内周面に向けて前記配管の径方向に対し斜めに超音波を出射する送信用探触子と、
前記探触子チューブの軸線方向にて前記送信用探触子から離間して前記探触子チューブによって支持され、前記送信用探触子が出射した超音波の反射波及び回折波を受信する受信用探触子と、
前記探触子チューブにおける前記送信用探触子及び前記受信用探触子の配置を調整する配置調整機構と
を備えることを特徴とする配管挿入型超音波探傷装置。
A probe tube having an axis extending in the direction of insertion into the pipe to be inspected;
A probe for transmission that is supported by the probe tube and emits ultrasonic waves obliquely with respect to the radial direction of the pipe toward the inner peripheral surface of the pipe;
Reception for receiving reflected and diffracted waves of ultrasonic waves emitted from the transmitting probe and supported by the probe tube apart from the transmitting probe in the axial direction of the probe tube For the probe,
A pipe insertion type ultrasonic flaw detector comprising: an arrangement adjusting mechanism that adjusts arrangement of the transmitting probe and the receiving probe in the probe tube.
前記配置調整機構は、前記軸線方向にて前記送信用探触子と前記受信用探触子の間の間隔を調整する間隔調整部、及び、前記軸線方向に対する前記送信用探触子及び前記受信用探触子の傾斜角度を調整する角度調整部のうち一方又は両方を有することを特徴とする請求項1記載の配管挿入型超音波探傷装置。   The arrangement adjusting mechanism includes an interval adjustment unit that adjusts an interval between the transmission probe and the reception probe in the axial direction, and the transmission probe and the reception in the axial direction. The pipe insertion type ultrasonic flaw detector according to claim 1, further comprising one or both of an angle adjusting unit for adjusting an inclination angle of the probe for use. 前記配置調整機構は、前記送信用探触子及び前記受信用探触子の各々が固定されるブラケットを含み、
前記ブラケットは、前記軸線と直交する回転軸を中心として回転可能である
ことを特徴とする請求項1又は2に記載の配管挿入型超音波探傷装置。
The arrangement adjusting mechanism includes a bracket to which each of the transmission probe and the reception probe is fixed,
The pipe insertion type ultrasonic flaw detector according to claim 1 or 2, wherein the bracket is rotatable about a rotation axis orthogonal to the axis.
前記ブラケットのうち少なくとも一方は、前記探触子チューブ内を前記軸線方向に沿って移動可能である、
ことを特徴とする請求項3に記載の配管挿入型超音波探傷装置。
At least one of the brackets is movable along the axial direction in the probe tube.
The pipe insertion type ultrasonic flaw detector according to claim 3.
前記探触子チューブによって支持され、前記配管の内周面に向けて前記配管の径方向にて超音波を出射し、且つ、自身が出射した前記超音波の反射波を受信する、垂直送受信用探触子を更に備えることを特徴とする請求項1乃至4の何れか一項に記載の配管挿入型超音波探傷装置。   For vertical transmission / reception, which is supported by the probe tube, emits ultrasonic waves in the radial direction of the pipe toward the inner peripheral surface of the pipe, and receives a reflected wave of the ultrasonic wave emitted by itself. The pipe insertion type ultrasonic flaw detector according to any one of claims 1 to 4, further comprising a probe. 前記探触子チューブに設けられ、前記配管内での前記探触子チューブの偏心を防止する径方向に延びるブラシを更に備えることを特徴とする請求項1乃至5の何れか一項に記載の配管挿入型超音波探傷装置。

6. The brush according to claim 1, further comprising a brush that is provided on the probe tube and extends in a radial direction to prevent eccentricity of the probe tube in the pipe. Pipe insertion type ultrasonic flaw detector.

JP2011274926A 2011-12-15 2011-12-15 Pipe insertion type ultrasonic flaw detector Active JP5791485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011274926A JP5791485B2 (en) 2011-12-15 2011-12-15 Pipe insertion type ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011274926A JP5791485B2 (en) 2011-12-15 2011-12-15 Pipe insertion type ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JP2013124978A true JP2013124978A (en) 2013-06-24
JP5791485B2 JP5791485B2 (en) 2015-10-07

Family

ID=48776299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011274926A Active JP5791485B2 (en) 2011-12-15 2011-12-15 Pipe insertion type ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP5791485B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513954B (en) * 2013-07-02 2015-12-21 Mitsubishi Materials Corp Method of measuring thickness of boiler tube
JP2016014644A (en) * 2014-07-03 2016-01-28 東京理学検査株式会社 Ultrasonic probe, surface inspection device, and surface inspection method
CN106198755A (en) * 2016-08-31 2016-12-07 北京主导时代科技有限公司 A kind of hollow axle detection device
JP2017075866A (en) * 2015-10-15 2017-04-20 東京理学検査株式会社 Measuring apparatus and measuring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203359U (en) * 1985-06-12 1986-12-20
JPS6439548A (en) * 1987-08-05 1989-02-09 Fuji Electric Co Ltd Ultrasonic flaw detector
JP2000221023A (en) * 1999-01-29 2000-08-11 Non-Destructive Inspection Co Ltd Wall inspection method for liquid storing structure
JP2003130855A (en) * 2001-10-23 2003-05-08 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detecting method for pipe arrangement and device for the same
JP2005134192A (en) * 2003-10-29 2005-05-26 Mitsubishi Chemicals Corp Method for measuring thickness of layer attached to inner surface of tubular body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203359U (en) * 1985-06-12 1986-12-20
JPS6439548A (en) * 1987-08-05 1989-02-09 Fuji Electric Co Ltd Ultrasonic flaw detector
JP2000221023A (en) * 1999-01-29 2000-08-11 Non-Destructive Inspection Co Ltd Wall inspection method for liquid storing structure
JP2003130855A (en) * 2001-10-23 2003-05-08 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detecting method for pipe arrangement and device for the same
JP2005134192A (en) * 2003-10-29 2005-05-26 Mitsubishi Chemicals Corp Method for measuring thickness of layer attached to inner surface of tubular body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513954B (en) * 2013-07-02 2015-12-21 Mitsubishi Materials Corp Method of measuring thickness of boiler tube
JP2016014644A (en) * 2014-07-03 2016-01-28 東京理学検査株式会社 Ultrasonic probe, surface inspection device, and surface inspection method
JP2017075866A (en) * 2015-10-15 2017-04-20 東京理学検査株式会社 Measuring apparatus and measuring method
CN106198755A (en) * 2016-08-31 2016-12-07 北京主导时代科技有限公司 A kind of hollow axle detection device
CN106198755B (en) * 2016-08-31 2023-05-19 北京主导时代科技有限公司 Hollow shaft detection device

Also Published As

Publication number Publication date
JP5791485B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
CA2667806C (en) Ultrasonic inspection probe carrier system for performing nondestructive testing
JP6236224B2 (en) Tube inspection device and method
JP5931551B2 (en) Ultrasonic flaw detector, ultrasonic sensor support device, and ultrasonic flaw detector method
JP5791485B2 (en) Pipe insertion type ultrasonic flaw detector
JP2007187593A (en) Inspection device for piping and inspection method for piping
JP6039599B2 (en) Tube ultrasonic inspection equipment
CN104749257A (en) Ultrasonic wave angle adjustment device in water immersion ultrasonic testing
JP6498071B2 (en) Pipe welded flaw detection apparatus and method
CN203732507U (en) Ultrasonic angle adjustment device for water immersion method ultrasonic testing
CN104749245A (en) Water-immersion ultrasonic detection method for small-pipe-diameter and large-wall-thickness pipeline equipment
JP2017198663A (en) Ultrasonic flaw detecting device, and ultrasonic flaw detecting method
KR100961791B1 (en) Inspection system of a header stub tube welded part in a thermal plant boiler
JP7050420B2 (en) Piping inspection method using piping inspection sensor, piping inspection device, and piping inspection sensor
KR101787904B1 (en) Wedge for detecting using ultrasonic and apparatus for detecting using ultrasonic including the wedge
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
KR20230055242A (en) Inspection apparatus for pressure vessel
JP6782277B2 (en) Piping inspection equipment
CN103217485B (en) A kind of measurement test block of angle probe ultrasonic field sound pressure distribution
JP2994852B2 (en) Ultrasonic probe for boiler tube flaw detection
WO2012137551A1 (en) Pipe treatment device and pipe treatment method
JP2003130855A (en) Ultrasonic flaw detecting method for pipe arrangement and device for the same
KR20210050336A (en) Inspection apparatus for pressure vessel
CN112997047B (en) Ultrasonic probe and method for measuring thickness of pipe to be inspected using same
JP5960032B2 (en) Tube outer and inner surface inspection equipment
JP2014085199A (en) Ultrasonic inspection method and ultrasonic inspection device of outer surface crack in thick tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150804

R151 Written notification of patent or utility model registration

Ref document number: 5791485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151