JP2013123792A - 半導体装置の製造方法及び研削装置 - Google Patents

半導体装置の製造方法及び研削装置 Download PDF

Info

Publication number
JP2013123792A
JP2013123792A JP2011275837A JP2011275837A JP2013123792A JP 2013123792 A JP2013123792 A JP 2013123792A JP 2011275837 A JP2011275837 A JP 2011275837A JP 2011275837 A JP2011275837 A JP 2011275837A JP 2013123792 A JP2013123792 A JP 2013123792A
Authority
JP
Japan
Prior art keywords
grinding
grindstone
abrasive grains
circumference
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011275837A
Other languages
English (en)
Inventor
Kanae Nakagawa
香苗 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011275837A priority Critical patent/JP2013123792A/ja
Publication of JP2013123792A publication Critical patent/JP2013123792A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】 砥石の目詰まりを除去し、効率的な研削加工を行う。
【解決手段】 複数の砥粒を含み、砥粒の間に空隙が形成されている砥石を用いて、樹脂を含む対象物の表層部を研削する。研削する期間中に、砥石の表面のうち対象物に接触していない領域に、酸化性ガスが触れている状態で紫外線を照射することにより、活性酸素を生成する。
【選択図】 図4

Description

本発明は、支持基板上に絶縁性樹脂層と配線層とを形成する半導体装置の製造方法、及びその製造に用いられる研削装置に関する。
半導体装置のさらなる小型化及び高集積化の要請が高まっている。その要請に伴って、多層配線化が必要になりつつあり、多層配線化のために高度な平坦化技術が求められている。この平坦化技術は、主にシリコンウエハに代表される半導体基板に適用される。さらに、近年注目されているシリコンインパッケージ(SiP)への多層配線薄膜の適用が有望視されている。
従来、シリコンウエハ上に形成された絶縁層や配線層を平坦化する技術として、主に化学機械研磨(CMP)が用いられてきた。CMPを用いれば、精緻な平坦化を実現することが可能である。ところが、加工装置が高価であり、スループットも低いため、半導体装置の製造コストの低減を図ることが困難である。
CMPに代わる平坦化技術として、ダイヤモンドやキュービックボロンナイトライド(cBN)等の超硬材料を用いたバイトによる切削加工が知られている。この加工方法では、一定の切り込み厚さで強制的に除去加工を行うことにより、平坦化が実現される。切削加工により樹脂と金属のような複合材料を加工する場合には、バイトの磨耗や磨滅が大きく、バイトを高頻度に交換しなければならない。
ダイヤモンドやcBN等の超硬材料からなる数μm〜数十μmの粒径の砥粒を接着剤で固着した砥石や研磨紙を用い、負荷を与えて被研削物を除去する研削研磨では、研削を行うことにより、磨滅、磨耗した砥粒が脱落して新しい砥粒が露出する。このため、表面粗さの小さい平坦面を安定して製造可能な手法として、配線の平坦化に適用され始めている。
特開2011−165690
インターポーザやウエハレベルパッケージの製造に、研削加工技術が適用されている。この研削加工では、まず、基板上に形成した金属製のビアポストを樹脂材料で封止する。その後、ビアポストと樹脂材料とを同時に研削除去し、樹脂表面に、ビアポストを露出させる。研削加工は、遊離砥粒を用いたCMP等の研磨と比較して、コスト及び加工時間の点で優れている。
研削加工においては、砥粒を結合剤によって密に充填した砥石が用いられるため、研削屑の逃げる空間が少なく、目詰まりが生じやすい。研削加工の対象には、シリコンやガラス等のように、靱性が低く、硬くて脆い脆性材料が適している。樹脂等の弾性材料や、金属等の延性材料は、研削加工の対象として適していない。樹脂等の柔らかく粘性を有する材料による目詰まりは除去しにくく、通常の水洗等による砥面洗浄では除去できない。高圧水洗すると、砥石自体が破壊されてしまう危険性もある。
砥石に目詰まりが発生すると、加工面における研削焼け、粗さの増大等の変質、ビアポスト露出面の金属引きずりの増大等が発生しやすくなる。「金属引きずり」とは、研削された表面上において金属材料が横方向に延びる現象をいう。さらに、目詰まりが生じると、砥石に与える負荷の増大によって砥石破壊の危険性も高まる。従って、目詰まりが発生すると、ドレッシングを行うことが必要である。
ドレッシングは、スループットの低下、砥石あたりの加工可能枚数の減少をもたらす。以下に説明する実施例では、砥石の目詰まりを除去し、効率的な研削加工を行うことが課題となる。
本発明の一観点によると、
複数の砥粒を含み、砥粒の間に空隙が形成されている砥石を用いて、樹脂を含む対象物の表層部を研削する工程と、
前記研削する期間中に、前記砥石の表面のうち前記対象物に接触していない領域に、酸化性ガスが触れている状態で紫外線を照射することにより、活性酸素を生成する工程と
を有する半導体装置の製造方法が提供される。
本発明の他の観点によると、
対象物を保持するステージと、
前記ステージに対向し、砥石が固定されたホイールと、
前記ホイールに固定されている前記砥石の一部分に、酸化性ガスを供給するとともに、前記砥石の表面に紫外線を照射する酸化装置と
を有する研削装置が提供される。
活性酸素により、砥石に付着した樹脂を除去することができる。これにより、砥石の目詰まりの発生を抑制することができる。
図1は、実施例による研削装置の概略図である。 図2は、ステージ、研削対象物、砥石、及び酸化装置の平面配置を示す図である。 図3A及び図3Bは、それぞれ図2の一点鎖線3A−3A、3B−3Bにおける断面図である。 図4Aは砥石の概略断面図であり、図4Bは目詰まりが生じた状態の砥石の概略断面図であり、図4Cは、目詰まりを除去した状態の砥石の概略断面図である。 図5Aは、従来の方法を適用したときの研削抵抗の時刻歴の一例を示すグラフであり、図5Bは、実施例の方法を適用したときの研削抵抗及び紫外線パワー密度の時刻歴の一例を示すグラフである。 図6A〜図6Cは、実施例による半導体装置の製造方法の製造途中段階における装置の断面図である。 図6D〜図6Fは、実施例による半導体装置の製造方法の製造途中段階における装置の断面図である。
図1に、実施例による研削装置の概略斜視図を示す。回転ステージ10の上に研削対象物15が載置され、固定されている。研削対象物15の固定には、例えば真空チャック等が用いられる。ステージ10の上方に、カップホイール20が配置されている。カップホイール20の側面の下側の端面に砥石22が固定されている。砥石22は、円周に沿った平面形状を有する。カップホイール20は、その上面に取り付けられた回転軸21により回転する。回転中心は、砥石22が沿う円周の中心と一致する。
さらに、カップホイール20は、研削対象物15の表面に平行な一次元方向に移動可能である。カップホイール20を回転させながら一次元方向に移動させることにより、研削対象物15の表面の全域を研削することができる。なお、カップホイール20を移動させる代わりに、ステージ10を移動させてもよい。
モータ30が、回転軸21を回転させる。パワーコントローラ31がモータ30を制御する。モータ30は、一定の回転速度になるように制御される。このため、モータ30の負荷が大きくなると、一定の回転速度を保つために、駆動電流(主軸負荷電流)が大きくなる。従って、駆動電流の変動を測定することにより、カップホイール20に加わっている負荷(回転抵抗)の変動を知ることができる。
円周に沿って配置された砥石22の一部分の近傍に、酸化装置40が配置されている。酸化装置40は、パワーコントローラ31によって制御され、砥石22に付着した樹脂等を酸化して除去する。カップホイール20が一次元方向に移動するとき、酸化装置40もそれに追随して移動する。
図2に、ステージ10、研削対象物15、砥石22、及び酸化装置40の平面的な位置関係を示す。円周に沿って配置された砥石22が、ステージ10及び研削対象物15と交差している。砥石22は、円周の全周に亘って連続的に配置してもよいし、断続的に配置してもよい。さらに、砥石22は、ステージ10と交差していない箇所において、酸化装置40と交差している。ステージ10の中心と、砥石22が沿う円周の中心とを結ぶ直線に平行な方向に、ステージ10または砥石22が移動する。
図2では、酸化装置40を1か所に配置したが、砥石22が沿う円周上の複数個所に配置してもよい。
図3Aに、図2の一点鎖線3A−3Aにおける断面図を示す。研削対象物15は、支持基板50、複数のビアポスト52、及び絶縁膜51を含む。複数のビアポスト52は、支持基板50の表面に分布している。絶縁膜51は、ビアポスト52及び支持基板50の表面を覆っている。
カップホイール20は、円形の底板20Aと、底板20Aの縁に連続する側壁20Bとを含む。側壁20Bの端面に砥石22が固定されている。カップホイール20は、砥石22が固定されている端面が下方を向く姿勢で配置されている。カップホルダ20を自転させながら図3Aの左方に移動させることにより、砥石22によって、絶縁膜51及びビアポスト52の表層部分が研削される。
図3Bに、図2の一点鎖線3B−3Bにおける断面図を示す。酸化装置40の箱41の上面に開口42が形成されている。カップホイール20の側壁20Bの下端、及び砥石22が、開口42を通って箱41内に挿入されている。カップホール20が静止した状態では、円周方向に関して砥石22の一部分のみが箱41内に収容される。カップホイール20が自転すると、砥石22の全域が箱41内を通過することになる。
酸化ガス供給装置44から箱41内に酸化ガスが供給される。酸化ガスとして、例えばO、O、OとOとの混合ガス、空気とOとの混合ガス等が用いられる。Oは、空気または酸素ガスに高電界を印可することによって発生させることができる。紫外線照射装置45が、箱41内に挿入されている砥石22に紫外線を照射する。紫外線照射装置45には、例えば低圧水銀ランプ、エキシマランプ等が用いられる。低圧水銀ランプから放射される紫外線の主波長は、185nm及び254nmである。キセノンエキシマランプから放射される紫外線の主波長は172nmである。酸化ガスの供給量及び紫外線のパワーが、パワーコントローラ31(図1)により制御される。
図4Aに、砥石22の拡大断面図を示す。砥石22は、結合剤26で相互に固定された複数の砥粒25を含む。砥粒25には、例えばダイヤモンドやcBN等の超硬材料が用いられる。砥石25の内部には、複数の空洞27が形成されている。研削対象物に接触する表面には、砥粒25が露出している。シリコンやガラス等の脆性材料を研削する場合には、研削によって磨耗または磨滅した砥粒25が結着剤26から脱落し、新しい砥粒25が露出する。このため、複数の研削対象物を、連続して研削することが可能である。
図4Bに、樹脂等の粘性を有する材料の研削を連続して行った後の砥石22の断面を示す。研削された樹脂の研削屑28によって砥石22の目詰まりが発生する。目詰まりが発生すると、砥石22と研削対象物15(図1)との間の摩擦が大きくなり、研削焼け、表面粗さの増大、金属引きずりの増大等が発生しやすくなる。
Cuからなる導電ポストをエポキシ樹脂で埋め込んだ研削対象物を、表面から30μmの深さまで研削して導電ポストを露出させる研削を行ったとき、目詰まりが発生しなければ、砥石22は10〜50μm程度磨耗する。砥粒25の粒径が5〜20μmである場合、上述の研削によって、1〜5層分の砥粒25が脱落することになる。すなわち、研削によって磨耗した砥粒25が脱落し、新しい砥粒25が露出することにより、所望の加工精度及び加工効率が維持される。砥石22に研削屑28が付着すると、砥粒25の脱落と、新しい砥粒の露出というサイクルが阻害する。
図4Cに示すように、砥石22に、酸化ガス中で紫外線を照射することにより、研削屑28を酸化して砥石22から除去することができる。図2に示したように、研削対象物15と交差している領域で、砥石22が研削対象物15を研削した後、酸化装置40と交差している領域で、砥石22に付着した研削屑28が除去される。研削屑28が除去された領域の砥石22が、再度研削対象物15と交差することにより、研削を行う。このため、砥石22への目詰まりの蓄積を抑制することができる。
研削屑28の酸化は、紫外線照射によって生成された活性酸素によって進行する。低圧水銀ランプを用いた場合の活性酸素の生成プロセスを以下に示す。
+hν(185nm)→O(3P)+O(3P)
+O(3P)+M→O
+hν(254nm)→O+O(1D)
キセノンエキシマランプを用いた場合の活性酸素の生成プロセスを以下に示す。
O2+hν(172nm)→O(1D)+O(3P)
上記化学反応式において、hνは紫外線を表し、Mは生成直後の振動オゾンを緩和する酸素または窒素等の分子を表し、O(3P)は基底状態の酸素原子を表し、O(1D)は一重項酸素原子(活性酸素)を表す。
オゾンの自己分解では、基底状態の酸素原子O(3P)は生成されるが、活性酸素O(1D)は生成されない。活性酸素を生成するために、砥石22の周囲の酸素またはオゾンに紫外線を照射することが好ましい。砥石22に付着した樹脂等の研削屑28は、活性酸素によって酸化され、最終的にCO、HO、O、N等の分子にまで分解される。
次に、図5A及び図5Bを参照して、酸化装置40(図1)の制御方法について説明する。
図5Aに、酸化装置40を動作させない場合の研削抵抗の時刻歴の一例を示す。横軸は経過時間を表し、縦軸は研削抵抗を表す。研削抵抗の変動は、モータ30の主軸負荷電流の変動として現れる。このため、図5Aの縦軸は、モータ30の駆動電流と読み替えてもよい。
時刻tsにおいて研削が開始される。砥石22(図4A)に目詰まりが発生するに従って、研削抵抗が増加する。時刻teで研削が終了すると、研削抵抗が0になる。
図5Bに、実施例による研削方法を適用したときの研削抵抗と、砥石22(図3B)に照射される紫外線パワー密度との時刻歴の一例を示す。時刻tsにおいて研削が開始されると、研削抵抗が増加し始める。研削抵抗が、ある閾値を超えると、パワーコントローラ31が酸化装置40を制御し、酸化ガスの供給と紫外線の照射とを行う。これにより、砥石22に付着していた研削屑28(図4B)が除去される。
研削屑28が除去されて砥粒25が露出するため、研削抵抗が低下する。酸化ガスの供給と紫外線の照射とを行っても研削抵抗が低下しない場合には、砥石22に照射している紫外線のパワー密度を上昇させる。酸化ガスの供給と紫外線の照射とによって研削抵抗が低下したら、紫外線のパワー密度を低下させる。紫外線照射開始、紫外線のパワー密度の上昇及び低下等の契機となる研削抵抗の好適な閾値は、種々の評価実験を行うことにより決定することが可能である。また、紫外線のパワー密度の上昇及び低下の好適な刻み幅も、種々の評価実験を行うことにより決定することが可能である。紫外線のパワー密度の増減に加えて、酸化ガスの供給量を増減させてもよい。
図6A〜図6Fを参照して、実施例による半導体装置の製造方法について説明する。以下に説明する実施例では、ウエハレベルパッケージ(WLP)の再配線層を形成する工程に、上記研削方法が適用される。上記研削方法は、その他、インターポーザの層配層、支持基板上に複数の半導体チップを配した再構築ウエハの配線層等の形成にも適用することが可能である。
図6Aに示すように、MOSトランジスタ(図示せず)等が形成された半導体ウエハ60の上に、多層配線層61が形成されている。多層配線層60の表面に、複数の電極パッド62が形成されている。なお、図6Aでは、1つの電極パッド62のみを示している。多層配線層61の表面のうち電極パッド62が形成されていない領域が、保護膜63で覆われている。
半導体ウエハ60は、行列状に配置された複数のチップ領域を含む。電極パッド62は、各チップ領域の周辺部に配置(ペリフェラル配置)されている。例えば、電極パッド62はアルミニウム(Al)で形成され、保護膜63は窒化シリコンで形成される。
電極パッド62の上に、Cu等からなるビアポスト64を形成する。ビアポスト64の形成には、例えばセミアディティブ法を適用することができる。ビアポスト64の高さは、例えば20μmである。ビアポスト64を埋め込むように、保護膜63の上に絶縁膜65を、例えば塗布法により形成する。絶縁膜65には、例えばポリイミド樹脂、エポキシ樹脂、フェノール樹脂等が用いられる。絶縁膜65の厚さは、例えば20μm〜30μmである。
図6Bに示すように、絶縁膜65の表層部を砥石22で研削する。図6Cに、研削後の半導体ウエハ60から絶縁膜65までの積層構造の断面図を示す。ビアポスト64の上面が露出している。研削後の絶縁膜65の厚さは、例えば10μm〜15μmである。
図6Dに示すように、絶縁膜65の上に、Cu等の配線66を形成する。配線66の形成には、例えばセミアディティブ法が適用される。配線66はビアポスト64に接続されている。配線66の厚さは、例えば3μm〜10μmである。
図6Eに示すように、絶縁膜65及び配線66の上に、ビアポストと配線とを含む配線層70を形成する。配線層70は、単層の配線層で構成してもよいし、複数の配線層で構成してもよい。配線層70の最上層の表面に、パッド72を形成する。配線層70の上に、ソルダーレジスト層73を形成する。ソルダーレジスト層73の露光及び現像を行うことにより、パッド72に対応する位置に開口を形成する。開口を形成した後、加熱処理を行うことにより、ソルダーレジスト層73を硬化させる。硬化後のソルダーレジスト層73の厚さは、例えば10μm〜50μmである。
図6Fに示すように、ソルダーレジスト層73の開口内にバンプ75を形成する。バンプ75を形成した後、半導体ウエハ60をダイシングすることにより、チップごとに分割する。
上記実施例による方法で、実際に種々の試料の研削を行い、その効果を評価した。以下、評価例1〜3について説明する。
[評価例1]
評価例1では、図6Aに示した半導体ウエハ60として8インチウエハを用い、ビアポスト64の高さを30μmとし、絶縁膜65として、シリカフィラーを含有したエポキシ樹脂を用いた。エポキシ樹脂に対するシリカフィラーの重量比は20%である。絶縁膜65の厚さは50μmである。砥石22(図6B)として、ダイヤモンド砥粒を含む粒度#2000の砥石を用いた。砥石22は、カップホイール20(図1)の全周に亘って断続的に配置されている。
カップホイール20の直径は400mmであり、砥石22の半径方向の幅は5mmである。カップホイール20の回転数は1000rpm、進み速度は40mm〜60mm/分、加工深さは25μmとした。カップホイール20の送り速度(下降速度、すなわち研削速度)は、10μm/分とした。
酸化装置40(図3B)を動作させることなく研削加工を行ったところ、5枚目の試料の研削中に研削抵抗が上昇し始め、10枚目の試料の研削中に研削抵抗が急激に上昇した。10枚目の試料の加工表面には、摩擦による研削焼けが生じていた。
次に、酸化装置40を動作させて研削を行った。紫外線照射装置45(図3B)として、パワー密度10〜40mW/cmを確保することができる低圧水銀ランプを用いた。酸化ガスとしてOを用い、その流量を1〜10slmとした。この酸化条件で、エポキシ樹脂のエッチング速度を測定したところ、約0.05μm/分であった。
研削開始前の酸化ガスの流量を1slmとし、研削抵抗が上昇し始めた時点で10slmまで増加させた。研削開始時は紫外線を照射せず、研削抵抗が上昇し始めた時点で、紫外線の照射を開始した。モータ30(図1)の主軸負荷電流が1A増加するごとに、紫外線のパワー密度を10mW/cm刻みで上昇させた。逆に、主軸負荷電流が1A減少するごとに、紫外線のパワー密度を10mW/cm刻みで低下させた。
上述の条件で研削を行ったところ、50枚以上連続して研削加工を行うことができた。5枚目の試料の加工が完了した後、紫外線のパワー密度が10〜30mW/cmの間で変動した。紫外線の照射を開始した後は、モータ30の主軸負荷電流の大きさはほぼ一定であった。加工が終了した時点で、パワーコントローラ31が、紫外線照射及び酸化ガスの供給を停止させる。
[評価例2]
評価例2では、絶縁膜65として、無機フィラーを含有していないエポキシ樹脂を用いた。その他の条件は、評価例1の条件と同一である。
酸化装置40(図3B)を動作させることなく加工を行ったところ、2枚目の試料の研削中に研削抵抗が上昇し始め、4枚目の試料の研削中に研削抵抗が急激に上昇した。4枚目の試料の加工表面には、摩擦による研削焼けが生じていた。絶縁膜65にフィラーが含有されていないため、評価例1に比べて砥石22の目詰まりが発生しやすいことがわかる。
次に、酸化装置40を動作させて研削を行った。紫外線照射装置45(図3B)として、パワー密度40mW/cmを確保することができる低圧水銀ランプを用いた。酸化ガスとしてOを用い、その流量を10slmとした。この酸化条件で、エポキシ樹脂のエッチング速度を測定したところ、約0.5〜0.6μm/分であった。評価例1に比べて目詰まりが生じやすいことが判明していたため、研削開始前から、酸化ガスの流量を10slmとし、紫外線のパワー密度を40mW/cmとした。
上述の条件で研削を行ったところ、50枚以上連続して研削加工を行うことができた。モータ30の主軸負荷電流は、評価例1の場合に比べてやや大きな値であった。
[評価例3]
評価例3では、ビアポスト64(図6A)の高さを10μmとし、絶縁膜65として、フィラーを含有していないポリイミド樹脂を用いた。研削前の絶縁膜65の厚さは15μmとした。紫外線照射装置45(図3B)として、パワー密度20mW/cmを確保することができるエキシマランプを用いた。酸化ガスとしてOを用い、その流量を1〜10slmとした。この条件でポリイミド樹脂のエッチング速度を測定したところ、0.5μm/分であった。
酸化装置40(図3B)を動作させることなく加工を行ったところ、5枚目の試料の研削中に研削抵抗が上昇し始め、7枚目の試料の研削中に研削抵抗が急激に上昇した。7枚目の試料の加工表面には、摩擦による研削焼けが生じていた。
次に、酸化装置40を動作させて研削を行った。研削開始前から、酸化ガスの流量を10slmとし、紫外線のパワー密度を20mW/cmとした。その結果、50枚以上連続して研削加工を行うことができた。
上述の評価例1〜3の評価結果からわかるように、酸化装置40(図3B)を用いて、砥石22に付着した研削屑28(図4B)を除去しながら研削を行うことにより、砥石22のドレッシングを行うことなく研削できる研削対象物の枚数を増加させることができる。これにより、スループットを高め、加工コストの低減を図ることができる。
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
10 ステージ
15 対象物
20 カップホイール
21 回転軸
22 砥石
25 砥粒
26 結合剤
27 空洞
28 研削屑
30 モータ
31 パワーコントローラ
40 酸化装置
41 箱
42 開口
43 排気口
44 酸化ガス供給装置
45 紫外線照射装置
50 下地基板
51 絶縁膜
52 ビアポスト
60 半導体ウエハ
61 多層配線層
62 電極パッド
63 保護膜
64 導電ポスト
65 絶縁膜
66 配線
72 パッド
73 絶縁膜
75 バンプ

Claims (5)

  1. 複数の砥粒を含み、砥粒の間に空隙が形成されている砥石を用いて、樹脂を含む対象物の表層部を研削する工程と、
    前記研削する期間中に、前記砥石の表面のうち前記対象物に接触していない領域に、酸化性ガスが触れている状態で紫外線を照射することにより、活性酸素を生成する工程と
    を有する半導体装置の製造方法。
  2. 前記砥石は、複数の砥粒が結合剤で相互に固定された構造を有する請求項1に記載の半導体装置の製造方法。
  3. 前記砥石は、回転するホイールに、円周に沿って固定されており、前記研削する工程において、前記円周の中心を回転中心として前記ホイールを回転させながら、前記対象物の表層部を研削し、
    前記紫外線を照射することにより活性酸素を生成する工程において、前記円周のうち前記対象物と重なっていない部分の少なくとも一部に、前記紫外線を照射する請求項1乃至2のいずれか1項に記載の半導体装置の製造方法。
  4. 対象物を保持するステージと、
    前記ステージに対向し、砥石が固定されたホイールと、
    前記ホイールに固定されている前記砥石の一部分に、酸化性ガスを供給するとともに、前記砥石の表面に紫外線を照射する酸化装置と
    を有する研削装置。
  5. 前記砥石は、前記ホイールに、円周に沿って固定されており、
    前記ホイールを、前記円周の中心を回転中心として回転させる回転機構を、さらに有し、
    前記酸化装置は、前記円周の一部分に対応する領域に配置されている請求項4に記載の研削装置。
JP2011275837A 2011-12-16 2011-12-16 半導体装置の製造方法及び研削装置 Pending JP2013123792A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011275837A JP2013123792A (ja) 2011-12-16 2011-12-16 半導体装置の製造方法及び研削装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275837A JP2013123792A (ja) 2011-12-16 2011-12-16 半導体装置の製造方法及び研削装置

Publications (1)

Publication Number Publication Date
JP2013123792A true JP2013123792A (ja) 2013-06-24

Family

ID=48775362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275837A Pending JP2013123792A (ja) 2011-12-16 2011-12-16 半導体装置の製造方法及び研削装置

Country Status (1)

Country Link
JP (1) JP2013123792A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190021175A (ko) * 2017-08-22 2019-03-05 가부시기가이샤 디스코 연삭 장치
KR20190021162A (ko) * 2017-08-22 2019-03-05 가부시기가이샤 디스코 연삭 장치
JP2019042886A (ja) * 2017-09-05 2019-03-22 株式会社ディスコ 加工方法
TWI694896B (zh) * 2015-07-30 2020-06-01 日商迪思科股份有限公司 研磨裝置
CN112792669A (zh) * 2020-12-30 2021-05-14 浙江工业大学 一种氧化钛光催化剂辅助金属结合剂超硬砂轮在线修锐方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334762A (ja) * 2002-05-17 2003-11-25 Isel Co Ltd 砥石ならびに該砥石を用いた研削加工法および研削盤
JP2007027577A (ja) * 2005-07-20 2007-02-01 Disco Abrasive Syst Ltd 加工装置及び加工方法
JP2009297884A (ja) * 2008-06-17 2009-12-24 Fujitsu Ltd 半導体装置の製造方法並びに研削装置及び研削方法
JP2010076013A (ja) * 2008-09-24 2010-04-08 Fujifilm Corp 回転砥石の研磨方法および研磨装置、並びに研削砥石およびこれを用いた研削装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334762A (ja) * 2002-05-17 2003-11-25 Isel Co Ltd 砥石ならびに該砥石を用いた研削加工法および研削盤
JP2007027577A (ja) * 2005-07-20 2007-02-01 Disco Abrasive Syst Ltd 加工装置及び加工方法
JP2009297884A (ja) * 2008-06-17 2009-12-24 Fujitsu Ltd 半導体装置の製造方法並びに研削装置及び研削方法
JP2010076013A (ja) * 2008-09-24 2010-04-08 Fujifilm Corp 回転砥石の研磨方法および研磨装置、並びに研削砥石およびこれを用いた研削装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694896B (zh) * 2015-07-30 2020-06-01 日商迪思科股份有限公司 研磨裝置
KR20190021175A (ko) * 2017-08-22 2019-03-05 가부시기가이샤 디스코 연삭 장치
KR20190021162A (ko) * 2017-08-22 2019-03-05 가부시기가이샤 디스코 연삭 장치
JP2019038041A (ja) * 2017-08-22 2019-03-14 株式会社ディスコ 研削装置
US11383351B2 (en) * 2017-08-22 2022-07-12 Disco Corporation Grinding apparatus
KR102531221B1 (ko) 2017-08-22 2023-05-10 가부시기가이샤 디스코 연삭 장치
KR102555557B1 (ko) 2017-08-22 2023-07-13 가부시기가이샤 디스코 연삭 장치
JP2019042886A (ja) * 2017-09-05 2019-03-22 株式会社ディスコ 加工方法
TWI793147B (zh) * 2017-09-05 2023-02-21 日商迪思科股份有限公司 加工方法
CN112792669A (zh) * 2020-12-30 2021-05-14 浙江工业大学 一种氧化钛光催化剂辅助金属结合剂超硬砂轮在线修锐方法

Similar Documents

Publication Publication Date Title
TWI732999B (zh) 晶圓的加工方法
JP2013123792A (ja) 半導体装置の製造方法及び研削装置
US20080064187A1 (en) Production Method for Stacked Device
JP5755043B2 (ja) 半導体ウエーハの加工方法
JP6671167B2 (ja) 積層基板の加工方法
JP5959188B2 (ja) ウエーハの加工方法
JP2008060470A (ja) ウエーハの加工方法
JP5912311B2 (ja) 被加工物の研削方法
JP5885396B2 (ja) デバイスチップの製造方法
JP2009297884A (ja) 半導体装置の製造方法並びに研削装置及び研削方法
JP2005028550A (ja) 結晶方位を有するウエーハの研磨方法
JP4944569B2 (ja) ウエーハの研削方法
JP6814574B2 (ja) テープ貼着方法
JP2020123666A (ja) 被加工物の加工方法
JP5570298B2 (ja) ウエーハの加工方法
JP7313775B2 (ja) ウェーハの加工方法
JP6125357B2 (ja) ウエーハの加工方法
JP2017152611A (ja) パッケージ形成方法
JP2021002625A (ja) パッケージデバイスチップの製造方法
JP2011166058A (ja) 研削方法、電子デバイスの製造方法、及び研削装置
JP2024021601A (ja) 被加工物の研削方法
JP5000915B2 (ja) 樹脂被膜の被覆方法および被覆装置
JP6558541B2 (ja) ウエーハの加工方法
JP2019077018A (ja) 被加工物の加工方法
JP5489863B2 (ja) ウエーハの加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110