JP2013122847A - Method for manufacturing oxide superconducting wiring material - Google Patents

Method for manufacturing oxide superconducting wiring material Download PDF

Info

Publication number
JP2013122847A
JP2013122847A JP2011270543A JP2011270543A JP2013122847A JP 2013122847 A JP2013122847 A JP 2013122847A JP 2011270543 A JP2011270543 A JP 2011270543A JP 2011270543 A JP2011270543 A JP 2011270543A JP 2013122847 A JP2013122847 A JP 2013122847A
Authority
JP
Japan
Prior art keywords
oxide superconducting
film
thin film
heat treatment
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011270543A
Other languages
Japanese (ja)
Other versions
JP5740795B2 (en
Inventor
Takahiro Honda
貴裕 本田
Genki Honda
元気 本田
Tatsuoki Nagaishi
竜起 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011270543A priority Critical patent/JP5740795B2/en
Publication of JP2013122847A publication Critical patent/JP2013122847A/en
Application granted granted Critical
Publication of JP5740795B2 publication Critical patent/JP5740795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an oxide superconducting thin film wiring material according to FF-MOD method by which a thick oxide superconducting thin film having sufficiently high Ic can be obtained with stability.SOLUTION: In the method for manufacturing an oxide superconducting wiring material, a liquid solution of an organic metal compound containing no fluorine is used to form an oxide superconducting thin film on a metal substrate according to MOD method, thereby manufacturing the oxide superconducting wiring material. The method comprises: a coating film-preparing step where a coating film is prepared by coating the metal substrate with the organic metal compound liquid solution, followed by drying; a preliminary baking heat treatment step where a preliminarily baked film is prepared by heating the coating film to thermally decompose the organic metal compound, thereby removing an organic component; and a primary baking heat treatment step where an oxide superconducting thin film is prepared by heating and crystallizing the preliminarily baked film. In the method, chlorine of 2 ppm or more to less than 2000 ppm to a total metal ion mass is added to the organic metal compound liquid solution. The primary baking heat treatment is performed after having prepared the preliminarily baked film with a thickness of 0.5 μm or larger.

Description

本発明は、酸化物超電導線材の製造方法に関し、詳しくは、塗布熱分解法により、超電導特性が優れた酸化物超電導薄膜を作製して、酸化物超電導線材を製造する酸化物超電導線材の製造方法に関する。   The present invention relates to a method for manufacturing an oxide superconducting wire, and more specifically, an oxide superconducting wire manufacturing method by manufacturing an oxide superconducting thin film having excellent superconducting properties by a coating pyrolysis method. About.

近年、酸化物超電導薄膜を用いた超電導線材(酸化物超電導線材)の一層の普及のため、臨界電流値Icをより高めた酸化物超電導薄膜の製造に関する研究が盛んに行われている。   In recent years, in order to further spread superconducting wires (oxide superconducting wires) using oxide superconducting thin films, researches on the production of oxide superconducting thin films with higher critical current values Ic have been actively conducted.

このような酸化物超電導線材の製造方法の1つに、塗布熱分解法(Metal Organic Deposition、略称:MOD法)と言われる方法がある(特許文献1)。この方法は、Y(イットリウム)、Gd(ガドリニウム)、Ho(ホルミウム)などのRE(希土類元素)およびBa(バリウム)、Cu(銅)の各有機金属化合物を溶媒に溶解して製造された原料溶液(MOD溶液)を配向基板に塗布して塗布膜を形成した後、例えば500℃付近で仮焼熱処理して有機金属化合物を熱分解させ、さらに高温(例えば800℃付近)で本焼熱処理することにより結晶化を行い、REBaCu7−X(RE123)で表される酸化物超電導体からなる酸化物超電導薄膜を製造するものであり、主に真空中で製造される気相法(蒸着法、スパッタ法、パルスレーザ蒸着法など)に比較して製造設備が簡単で済み、また大面積や複雑な形状への対応が容易であるなどの特徴を有している。 One method for producing such an oxide superconducting wire is a so-called coating pyrolysis method (Metal Organic Deposition, abbreviated as MOD method) (Patent Document 1). This method is a raw material produced by dissolving RE (rare earth elements) such as Y (yttrium), Gd (gadolinium), Ho (holmium), and organic metal compounds such as Ba (barium) and Cu (copper) in a solvent. After applying the solution (MOD solution) to the alignment substrate to form a coating film, the organometallic compound is thermally decomposed by, for example, calcining heat treatment at around 500 ° C., and then heat-treating at high temperature (eg, around 800 ° C.). Is produced, and an oxide superconducting thin film made of an oxide superconductor represented by REBa 2 Cu 3 O 7-X (RE123) is produced. Compared with (evaporation method, sputtering method, pulsed laser deposition method, etc.), the manufacturing facilities are simple, and it is easy to deal with large areas and complex shapes.

上記MOD法には、原料としてフッ素を含む有機酸塩を用いるTFA−MOD法(Metal Organic Deposition using TrifluoroAcetates)とフッ素を含まない有機金属化合物を用いるフッ素フリーMOD法(以下、「FF−MOD法」ともいう)とがある。   The MOD method includes a TFA-MOD method (Metal Organic Deposition using TrifluoroAcetates) using an organic acid salt containing fluorine as a raw material and a fluorine-free MOD method (hereinafter referred to as “FF-MOD method”) using an organometallic compound containing no fluorine. Also called).

一方、酸化物超電導薄膜は、例えば膜全体に亘りc軸配向しているなど、結晶配向性が揃っていなければ、超電導電流はスムースに流れず、Icは低くなる。このため、結晶化に際しては結晶を配向基板の配向性を受け継ぐエピタキシャル成長をさせる必要があり、基板から膜表面へ向けて結晶成長を進める必要がある。   On the other hand, if the oxide superconducting thin film does not have a uniform crystal orientation, for example, it is c-axis oriented over the entire film, the superconducting current does not flow smoothly and Ic decreases. For this reason, at the time of crystallization, it is necessary to perform epitaxial growth that inherits the orientation of the oriented substrate, and it is necessary to advance the crystal growth from the substrate toward the film surface.

TFA−MOD法を用いると、面内配向性に優れた酸化物超電導薄膜を得ることができる。しかし、この方法では、仮焼時にフッ化物であるBaF(フッ化バリウム)が生成され、このBaFが本焼時に分解して危険なフッ化水素ガスを発生する。このため、フッ化水素ガスを処理する装置、設備が必要となる。 When the TFA-MOD method is used, an oxide superconducting thin film excellent in in-plane orientation can be obtained. However, in this method, BaF 2 (barium fluoride), which is a fluoride, is generated during calcination, and this BaF 2 is decomposed during the main firing to generate dangerous hydrogen fluoride gas. For this reason, the apparatus and installation which process hydrogen fluoride gas are needed.

これに対して、FF−MOD法は、フッ化水素ガスのような危険なガスを発生することがないため、環境にやさしく、また処理設備が不要であるという利点を有している。   On the other hand, the FF-MOD method has an advantage that it does not generate a dangerous gas such as hydrogen fluoride gas, and therefore is environmentally friendly and does not require processing equipment.

特開2007−165153号公報JP 2007-165153 A

しかしながら、従来のFF−MOD法では、例えば厚さが500nm(0.5μm)以上の厚膜を作製する場合、充分に良好なIcを有する酸化物超電導薄膜が得られないという問題があった。   However, the conventional FF-MOD method has a problem that, for example, when a thick film having a thickness of 500 nm (0.5 μm) or more is produced, an oxide superconducting thin film having sufficiently good Ic cannot be obtained.

そこで、本発明は、FF−MOD法を用いた酸化物超電導薄膜線材の製造において、Icが充分に高い厚膜の酸化物超電導薄膜を安定して得ることが可能となる技術を提供することを課題とする。   Therefore, the present invention provides a technique capable of stably obtaining a thick oxide superconducting thin film having a sufficiently high Ic in the manufacture of an oxide superconducting thin film wire using the FF-MOD method. Let it be an issue.

本発明者は、FF−MOD法を用いて厚膜の酸化物超電導薄膜を製造した場合、何故Icが高い酸化物超電導薄膜を安定して得ることができないかについて鋭意検討を行った。その結果、厚膜化した場合には、結晶化に際してc軸配向が阻害されて、表面部分が多結晶化し、その結果高いIcが得られないことが分かった。   The present inventor has intensively studied why an oxide superconducting thin film having a high Ic cannot be stably obtained when a thick oxide superconducting thin film is manufactured using the FF-MOD method. As a result, it was found that when the film was thickened, the c-axis orientation was inhibited during crystallization, and the surface portion was polycrystallized, and as a result, high Ic could not be obtained.

そして、このように、FF−MOD法を用いて厚膜化された酸化物超電導薄膜において、結晶化に際してc軸配向が阻害された原因が、仮焼熱処理時、MOD溶液中の有機金属化合物が熱分解されて、例えばCuO、CuOなどの酸化物が生成されたためであることが分かった。 Thus, in the oxide superconducting thin film thickened using the FF-MOD method, the cause of the inhibition of the c-axis orientation during crystallization is that the organometallic compound in the MOD solution is subjected to calcination heat treatment. It was found that this was due to thermal decomposition, and oxides such as Cu 2 O and CuO were produced.

即ち、これらの生成物の融点は、それぞれ、1235℃、1026℃であり、本焼熱処理温度約800℃より高いため、本焼熱処理による酸化物超電導体の結晶化に際しても融けることがなく、酸化物超電導体結晶のc軸配向を阻害することが分かった。   That is, the melting points of these products are 1235 ° C. and 1026 ° C., respectively, and are higher than the heat treatment temperature of about 800 ° C., so that they are not melted during the crystallization of the oxide superconductor by the heat treatment. It was found that the c-axis orientation of the physical superconductor crystal is inhibited.

そこで、本発明者は、これらの生成物の発生を抑制することができれば、c軸配向が阻害されず、Icが充分に高い酸化物超電導薄膜を安定して得ることができると考え、種々の実験を行った。そして、MOD溶液中に塩素を添加した場合、c軸配向が阻害されることなく酸化物超電導体の結晶化が行われることが分かった。   Therefore, the present inventor believes that if the generation of these products can be suppressed, the c-axis orientation is not inhibited, and an oxide superconducting thin film having a sufficiently high Ic can be stably obtained. The experiment was conducted. And when chlorine was added in the MOD solution, it turned out that crystallization of an oxide superconductor is performed, without inhibiting c-axis orientation.

即ち、塩素を添加したMOD溶液を用いた場合には、仮焼熱処理時、前記した各生成物に替えて、CuCl、CuClなどの塩化物が生成される。そして、これらの塩化物の融点は、それぞれ430℃、498℃であり、本焼熱処理温度約800℃よりも融点が低い。このため、これらの塩化物は、本焼熱処理による酸化物超電導体の結晶化に際しては融液となり、酸化物超電導体結晶のc軸配向を阻害しないことが分かった。 That is, when a MOD solution to which chlorine is added is used, chlorides such as CuCl and CuCl 2 are generated instead of the above-mentioned products during the calcining heat treatment. The melting points of these chlorides are 430 ° C. and 498 ° C., respectively, and the melting point is lower than the heat treatment temperature of about 800 ° C. For this reason, it was found that these chlorides became a melt upon crystallization of the oxide superconductor by the main annealing heat treatment and did not inhibit the c-axis orientation of the oxide superconductor crystal.

しかし、検討を進める中で、塩素の添加量が増加するに伴って、酸化物超電導体の多結晶化が抑制され、酸化物超電導薄膜の最表面が平滑化されるが、ある範囲を超えて添加量が多くなり過ぎると、棒状の塩素化合物が酸化物超電導薄膜の最表面に析出して、最表面の平滑化が阻害されることが分かった。また、最表面の多結晶化の抑制(平滑化)とIcの向上とは、必ずしも一致しないことが分かった。   However, as the amount of chlorine added increases as the study progresses, polycrystallization of the oxide superconductor is suppressed, and the outermost surface of the oxide superconductor thin film is smoothed. It was found that when the amount added was too large, rod-like chlorine compounds were deposited on the outermost surface of the oxide superconducting thin film, and the smoothing of the outermost surface was hindered. Further, it was found that the suppression (smoothing) of polycrystallization on the outermost surface and the improvement of Ic do not always coincide.

そこで、本発明者は、適切な塩素添加量について、さらに実験と検討を行い、その結果、MOD溶液の全金属イオン質量に対して2ppm以上2000ppm未満の塩素量が適切であることを見出した。   Therefore, the present inventor further conducted an experiment and examination on an appropriate chlorine addition amount, and as a result, found that a chlorine amount of 2 ppm or more and less than 2000 ppm was appropriate with respect to the total metal ion mass of the MOD solution.

そして、厚膜の酸化物超電導薄膜の形成に際しては、この塩素添加MOD溶液の塗布と仮焼熱処理により仮焼膜を形成し、その後本焼熱処理を施すことにより、最表面における多結晶化が充分に抑制されて、厚膜であっても、充分に高いIcの酸化物超電導薄膜を安定して得ることが可能となることが分かった。   Then, when forming a thick oxide superconducting thin film, a calcined film is formed by applying this chlorine-added MOD solution and calcining heat treatment, followed by a main calcining heat treatment, so that polycrystallization on the outermost surface is sufficient. It was found that a sufficiently high Ic oxide superconducting thin film can be stably obtained even with a thick film.

請求項1に記載の発明は、上記の知見に基づく発明であり、
金属基板上に、フッ素を含まない有機金属化合物の溶液を用いて、塗布熱分解法により、酸化物超電導薄膜を作製して、酸化物超電導線材を製造する酸化物超電導線材の製造方法であって、
前記有機金属化合物溶液を、前記金属基板上に塗布、乾燥して塗膜を作製する塗膜作製工程と、
前記塗膜を加熱して、前記有機金属化合物を熱分解して、有機成分を除去することにより、仮焼膜を作製する仮焼熱処理工程と、
前記仮焼膜を加熱して、結晶化させることにより、酸化物超電導薄膜を作製する本焼熱処理工程と
を備えており、
前記有機金属化合物の溶液には、全金属イオン質量に対して2ppm以上2000ppm未満の塩素が添加されている
ことを特徴とする酸化物超電導線材の製造方法である。
The invention according to claim 1 is an invention based on the above findings,
An oxide superconducting wire manufacturing method for manufacturing an oxide superconducting wire by producing an oxide superconducting thin film by a coating pyrolysis method using a solution of an organometallic compound not containing fluorine on a metal substrate. ,
The organic metal compound solution is applied onto the metal substrate and dried to prepare a coating film,
A calcining heat treatment step for producing a calcined film by heating the coating film, thermally decomposing the organometallic compound, and removing an organic component;
A heat treatment step of heating the calcined film to crystallize it to produce an oxide superconducting thin film,
In the organic metal compound solution, 2 ppm or more and less than 2000 ppm of chlorine is added to the total metal ion mass.

本請求項の発明において、希土類元素REとしては、イットリウム(Y)、プラセオジウム(Pr)、ネオジウム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリウム(Gd)、ホルミウム(Ho)、イッテルビウム(Yb)などを挙げることができ、具体的には、これらのアセチルアセトン金属錯体などが用いられる。また、Ba、Cuの有機化合物としても、アセチルアセトン金属錯体などが用いられる。   In the present invention, the rare earth element RE includes yttrium (Y), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), holmium (Ho), ytterbium ( Yb) and the like, and specifically, these acetylacetone metal complexes are used. Moreover, an acetylacetone metal complex etc. are used also as an organic compound of Ba and Cu.

RE、Ba、Cuの各有機金属化合物を溶かす溶媒としては、メタノール、エタノール、プロパノール、ブタノールなどの各種アルコールが、溶解度が高く高濃度溶液を作製しやすいという観点から好ましく用いられる。   As the solvent for dissolving the RE, Ba, and Cu organometallic compounds, various alcohols such as methanol, ethanol, propanol, and butanol are preferably used from the viewpoint of high solubility and easy preparation of a high concentration solution.

塩素を添加するためにMOD溶液に添加される物質としては、トリクロロ酢酸などの有機化合物、塩酸、塩化アンモニウムなどがあるが、熱処理時に塩素をMOD膜に残留させるという観点から、塩化アンモニウムが好ましく用いられる。なお、塩素としての添加量は、MOD溶液の全金属イオン質量に対して2ppm以上2000ppm未満と微量であるため、本焼時に塩化水素ガスが発生する恐れはない。   Substances added to the MOD solution to add chlorine include organic compounds such as trichloroacetic acid, hydrochloric acid, and ammonium chloride. Ammonium chloride is preferably used from the viewpoint of leaving chlorine in the MOD film during heat treatment. It is done. In addition, since the addition amount as chlorine is a very small amount of 2 ppm or more and less than 2000 ppm with respect to the total metal ion mass of the MOD solution, there is no fear that hydrogen chloride gas is generated during the main firing.

請求項2に記載の発明は、
前記塗膜作製工程と前記仮焼熱処理工程により、厚さ0.5μm以上の仮焼膜を作製した後本焼熱処理を行うことを特徴とする請求項1に記載の酸化物超電導線材の製造方法である。
The invention described in claim 2
2. The method for producing an oxide superconducting wire according to claim 1, wherein a calcining film having a thickness of 0.5 μm or more is produced by the coating film producing step and the calcining heat treatment step, and then a main baking heat treatment is performed. It is.

塩素が適切な量添加されたMOD溶液を用いて厚さ0.5μm以上の仮焼膜を作製することにより、Icが充分に高い厚膜の酸化物超電導薄膜を安定して得ることができる。   By producing a calcined film having a thickness of 0.5 μm or more using a MOD solution to which an appropriate amount of chlorine is added, a thick oxide superconducting thin film having a sufficiently high Ic can be stably obtained.

請求項3に記載の発明は、
前記酸化物超電導薄膜が、REBaCu7−xの薄膜であることを特徴とする請求項1または請求項2に記載の酸化物超電導線材の製造方法である。
The invention according to claim 3
3. The method for producing an oxide superconducting wire according to claim 1, wherein the oxide superconducting thin film is a REBa 2 Cu 3 O 7-x thin film.

REBaCu7−x(RE123)薄膜は、高いIcを有する酸化物超電導薄膜であるため、本発明における効果を顕著に発揮させることができる。 Since the REBa 2 Cu 3 O 7-x (RE123) thin film is an oxide superconducting thin film having a high Ic, the effect of the present invention can be remarkably exhibited.

本発明によれば、FF−MOD法を用いた酸化物超電導薄膜線材の製造において、Icが充分に高い厚膜の酸化物超電導薄膜を安定して得ることが可能となる技術を提供することができる。   According to the present invention, it is possible to provide a technique capable of stably obtaining a thick oxide superconducting thin film having a sufficiently high Ic in the manufacture of an oxide superconducting thin film wire using the FF-MOD method. it can.

本発明の一実施例および比較例のY123酸化物超電導薄膜の表面のSEM写真である。It is a SEM photograph of the surface of the Y123 oxide superconducting thin film of one example of the present invention, and a comparative example.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

以下の実施例においては、塩化アンモニウムを添加したMOD溶液を用いて仮焼膜を2回積層した2層構造の仮焼膜を作製した後、本焼熱処理して、Y123(YBaCu7−x)酸化物超電導薄膜を作製した。 In the following examples, a calcined film having a two-layer structure in which a calcined film is laminated twice using an MOD solution to which ammonium chloride is added is prepared, followed by a main-firing heat treatment to obtain Y123 (YBa 2 Cu 3 O 7-x ) An oxide superconducting thin film was prepared.

[1]酸化物超電導線材の作製
[A.実施例1〜3]
1.仮焼膜の形成
(1)MOD溶液の作製
イ.アセチルアセトン金属錯体溶液の調製
Y、Ba、Cuの各アセチルアセトン金属錯体を、Y:Ba:Cuのモル比が1:2:3となるように調製して、メタノールに溶解し、金属錯体溶液を調製した。
[1] Production of oxide superconducting wire [A. Examples 1 to 3]
1. Formation of calcined film (1) Preparation of MOD solution a. Preparation of acetylacetone metal complex solution Each acetylacetone metal complex of Y, Ba and Cu was prepared so that the molar ratio of Y: Ba: Cu was 1: 2: 3, and dissolved in methanol to prepare a metal complex solution. did.

ロ.塩素の添加
調製したアセチルアセトン金属錯体溶液に、1mol/Lの塩化アンモニウムを、MOD溶液の全金属イオン質量に対して、2ppm(実施例1)、20ppm(実施例2)、200ppm(実施例3)の塩素量となるように添加して、3種類のMOD溶液を作製した。
B. Addition of chlorine 1 mol / L of ammonium chloride was added to the prepared acetylacetone metal complex solution at 2 ppm (Example 1), 20 ppm (Example 2), and 200 ppm (Example 3) based on the total metal ion mass of the MOD solution. Three kinds of MOD solutions were prepared by adding so that the amount of chlorine became the same.

(2)仮焼熱処理
作製した3種類の薄塗MOD溶液をそれぞれCeO/YSZ/Y/Ni合金の配向基板上に塗布・乾燥後、大気雰囲気の下で、500℃まで1〜15℃/分の昇温速度で昇温後、1.5時間保持後炉冷し、厚さ300nmの仮焼膜を作製した。
(2) Calcining heat treatment Each of the prepared thin coating MOD solutions was applied to a CeO 2 / YSZ / Y 2 O 3 / Ni alloy alignment substrate, dried, and then heated to 500 ° C. in an air atmosphere. The temperature was raised at a rate of 15 ° C./min, held for 1.5 hours, and then cooled in the furnace to prepare a calcined film having a thickness of 300 nm.

上記のMOD溶液を用いて、仮焼膜を積層し、総膜厚が600nmの仮焼膜を作製した。   Using the above MOD solution, calcined films were stacked to prepare a calcined film having a total film thickness of 600 nm.

2.本焼熱処理
次に、作製した仮焼膜をアルゴン/酸素混合ガス(酸素濃度:100ppm、CO濃度1ppm以下)雰囲気の下、10〜33℃/分の昇温速度で800℃まで昇温させ90分間保持した。その後、酸素濃度100%雰囲気の下で炉冷し、膜厚が550nm(厚膜)のY123酸化物超電導薄膜を形成した。
2. Next, the calcined film thus prepared is heated to 800 ° C. at a temperature rising rate of 10 to 33 ° C./min in an argon / oxygen mixed gas (oxygen concentration: 100 ppm, CO 2 concentration: 1 ppm or less) atmosphere. Hold for 90 minutes. Thereafter, the furnace was cooled in an atmosphere having an oxygen concentration of 100% to form a Y123 oxide superconducting thin film having a thickness of 550 nm (thick film).

3.酸化物超電導線材の作製
所定の方法を用いて酸化物超電導薄膜の表面にAg安定化層を形成して、実施例1〜3のY123酸化物超電導線材を作製した。
3. Production of Oxide Superconducting Wire An Ag stabilizing layer was formed on the surface of the oxide superconducting thin film using a predetermined method, and Y123 oxide superconducting wires of Examples 1 to 3 were produced.

[B.比較例1〜3]
MOD溶液の作製において、塩化アンモニウムの添加量を、MOD溶液の全金属イオン質量に対して、それぞれ2ppb(比較例1)、20ppb(比較例2)、200ppb(比較例3)の塩素量となるようにしたこと以外は、上記実施例と同様にして、比較例1〜3のY123酸化物超電導線材を作製した。
[B. Comparative Examples 1 to 3]
In the preparation of the MOD solution, the amount of ammonium chloride added is 2 ppb (Comparative Example 1), 20 ppb (Comparative Example 2), and 200 ppb (Comparative Example 3), respectively, with respect to the total metal ion mass of the MOD solution. Except for the above, Y123 oxide superconducting wires of Comparative Examples 1 to 3 were produced in the same manner as in the above Example.

[C.比較例4]
MOD溶液の作製において、塩化アンモニウムの添加量を、MOD溶液の全金属イオン質量に対して2000ppmの塩素量となるようにし、仮焼膜を厚さ300nmの1層としたこと以外は、上記実施例と同様にして、比較例4のY123酸化物超電導線材を作製した。
[C. Comparative Example 4]
In the preparation of the MOD solution, the above procedure was performed except that the amount of ammonium chloride added was 2,000 ppm of chlorine with respect to the total metal ion mass of the MOD solution, and the calcined film was a single layer having a thickness of 300 nm. The Y123 oxide superconducting wire of Comparative Example 4 was produced in the same manner as the example.

[2]酸化物超電導線材の評価
(1)Y123酸化物超電導薄膜の表面状態の観察
実施例1〜3、比較例1〜4の各Y123酸化物超電導薄膜の表面をSEMで観察した。観察結果を図1に示す。
[2] Evaluation of oxide superconducting wire (1) Observation of surface state of Y123 oxide superconducting thin film The surface of each Y123 oxide superconducting thin film of Examples 1-3 and Comparative Examples 1-4 was observed by SEM. The observation results are shown in FIG.

図1から、MOD溶液に塩化アンモニウムを2〜200ppm添加した実施例1〜3の場合は、塩化アンモニウム添加量が増加するにつれ、平滑な膜の形成が進んでいくことが分かった。   From FIG. 1, it was found that in Examples 1 to 3 in which 2 to 200 ppm of ammonium chloride was added to the MOD solution, the formation of a smooth film progressed as the amount of ammonium chloride added increased.

これに対して、塩化アンモニウムの添加量が2ppbである比較例1、20ppbである比較例2、並びに200ppbである比較例3の場合は、塩素の添加効果が充分ではないため、平滑な膜が形成されておらず、一方、2000ppmである比較例4では、塩素添加量が過剰なため、表面の凹凸が大きく棒状の塩素化合物が析出している。   On the other hand, in Comparative Example 1 in which the amount of ammonium chloride added is 2 ppb, Comparative Example 2 in which 20 ppb is added, and Comparative Example 3 in which 200 ppb is added, since the effect of adding chlorine is not sufficient, a smooth film is formed. On the other hand, in Comparative Example 4 where the concentration was 2000 ppm, the amount of added chlorine was excessive, so that the surface unevenness was large and a rod-shaped chlorine compound was deposited.

(2)Icの測定
実施例1〜3および比較例1〜4について、誘導法を用いて77.3KにおけるIcを測定した。測定結果を表1に示す。
(2) Measurement of Ic For Examples 1 to 3 and Comparative Examples 1 to 4, Ic at 77.3 K was measured using an induction method. The measurement results are shown in Table 1.

表1より、実施例1〜3で作製されたY123酸化物超電導薄膜のIcは、塩素の添加量が適切でない比較例1〜2に比べてIcが高いことが分かる。加えて、塩素添加量とIcの傾向を考えると、塩素添加量2ppmを頂点とする山型になっている。   From Table 1, it can be seen that Ic of the Y123 oxide superconducting thin film produced in Examples 1 to 3 is higher than that of Comparative Examples 1 and 2 in which the addition amount of chlorine is not appropriate. In addition, considering the tendency of the chlorine addition amount and Ic, it has a mountain shape with the peak of the chlorine addition amount of 2 ppm.

以上の結果より、充分に高いIcを得るためには、塩素の添加量を2ppm以上2000ppm未満にする必要があり、2ppm程度が特に好ましいことが分かる。   From the above results, it can be seen that in order to obtain sufficiently high Ic, the amount of chlorine added must be 2 ppm or more and less than 2000 ppm, and about 2 ppm is particularly preferable.

以上のように、本発明によれば、厚膜化してもc軸配向が阻害されることがなく、厚膜化することにより、充分に高いIcを有する酸化物超電導薄膜が基板上に形成された酸化物超電導線材を提供することができる。   As described above, according to the present invention, the c-axis orientation is not hindered even when the film thickness is increased, and an oxide superconducting thin film having a sufficiently high Ic is formed on the substrate by increasing the film thickness. An oxide superconducting wire can be provided.

以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

Claims (3)

金属基板上に、フッ素を含まない有機金属化合物の溶液を用いて、塗布熱分解法により、酸化物超電導薄膜を作製して、酸化物超電導線材を製造する酸化物超電導線材の製造方法であって、
前記有機金属化合物溶液を、前記金属基板上に塗布、乾燥して塗膜を作製する塗膜作製工程と、
前記塗膜を加熱して、前記有機金属化合物を熱分解して、有機成分を除去することにより、仮焼膜を作製する仮焼熱処理工程と、
前記仮焼膜を加熱して、結晶化させることにより、酸化物超電導薄膜を作製する本焼熱処理工程と
を備えており、
前記有機金属化合物の溶液には、全金属イオン質量に対して2ppm以上2000ppm未満の塩素が添加されている
ことを特徴とする酸化物超電導線材の製造方法。
An oxide superconducting wire manufacturing method for manufacturing an oxide superconducting wire by producing an oxide superconducting thin film by a coating pyrolysis method using a solution of an organometallic compound not containing fluorine on a metal substrate. ,
The organic metal compound solution is applied onto the metal substrate and dried to prepare a coating film,
A calcining heat treatment step for producing a calcined film by heating the coating film, thermally decomposing the organometallic compound, and removing an organic component;
A heat treatment step of heating the calcined film to crystallize it to produce an oxide superconducting thin film,
2. The method for producing an oxide superconducting wire, wherein the organometallic compound solution contains 2 ppm or more and less than 2000 ppm of chlorine based on the total metal ion mass.
前記塗膜作製工程と前記仮焼熱処理工程により、厚さ0.5μm以上の仮焼膜を作製した後本焼熱処理を行うことを特徴とする請求項1に記載の酸化物超電導線材の製造方法。   2. The method for producing an oxide superconducting wire according to claim 1, wherein a calcining film having a thickness of 0.5 μm or more is produced by the coating film producing step and the calcining heat treatment step, and then a main baking heat treatment is performed. . 前記酸化物超電導薄膜が、REBaCu7−xの薄膜であることを特徴とする請求項1または請求項2に記載の酸化物超電導線材の製造方法。 The method for producing an oxide superconducting wire according to claim 1 or 2, wherein the oxide superconducting thin film is a thin film of REBa 2 Cu 3 O 7-x .
JP2011270543A 2011-12-09 2011-12-09 Manufacturing method of oxide superconducting wire Active JP5740795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011270543A JP5740795B2 (en) 2011-12-09 2011-12-09 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270543A JP5740795B2 (en) 2011-12-09 2011-12-09 Manufacturing method of oxide superconducting wire

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015086086A Division JP5892480B2 (en) 2015-04-20 2015-04-20 Raw material solution for oxide superconducting thin film production

Publications (2)

Publication Number Publication Date
JP2013122847A true JP2013122847A (en) 2013-06-20
JP5740795B2 JP5740795B2 (en) 2015-07-01

Family

ID=48774703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270543A Active JP5740795B2 (en) 2011-12-09 2011-12-09 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP5740795B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047100A (en) * 2012-08-31 2014-03-17 Toshiba Corp Method for manufacturing oxide superconductor
KR20190122683A (en) 2017-03-09 2019-10-30 스미토모 덴키 고교 가부시키가이샤 Method of manufacturing oxide superconducting thin film material, oxide superconducting thin film wire rod and oxide superconducting thin film
KR20240051943A (en) 2021-09-06 2024-04-22 스미토모 덴키 고교 가부시키가이샤 Raw material solution for producing oxide superconducting materials and method for producing oxide superconducting materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253764A (en) * 2010-06-03 2011-12-15 Sumitomo Electric Ind Ltd Material solution for manufacturing oxide superconductive thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253764A (en) * 2010-06-03 2011-12-15 Sumitomo Electric Ind Ltd Material solution for manufacturing oxide superconductive thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047100A (en) * 2012-08-31 2014-03-17 Toshiba Corp Method for manufacturing oxide superconductor
KR20190122683A (en) 2017-03-09 2019-10-30 스미토모 덴키 고교 가부시키가이샤 Method of manufacturing oxide superconducting thin film material, oxide superconducting thin film wire rod and oxide superconducting thin film
DE112017007199T5 (en) 2017-03-09 2019-12-05 Sumitomo Electric Industries, Ltd. A superconducting oxide thin film material, a superconducting oxide thin film wire, and a method of producing an oxide superconductor thin film
US11763965B2 (en) 2017-03-09 2023-09-19 Sumitomo Electric Industries, Ltd. Oxide superconducting thin film material, oxide superconducting thin film wire, and method for manufacturing oxide superconducting thin film
KR20240051943A (en) 2021-09-06 2024-04-22 스미토모 덴키 고교 가부시키가이샤 Raw material solution for producing oxide superconducting materials and method for producing oxide superconducting materials

Also Published As

Publication number Publication date
JP5740795B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5445982B2 (en) Rare earth superconducting film forming solution and method for producing the same
CN101506100A (en) Manufacturing method of tape-shaped re-base (123) superco.nductor
JP5421561B2 (en) Method for manufacturing oxide superconducting thin film
JP5740795B2 (en) Manufacturing method of oxide superconducting wire
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
JP5892480B2 (en) Raw material solution for oxide superconducting thin film production
JP5605750B2 (en) Raw material solution for oxide superconducting thin film production
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP2012064394A (en) Method for manufacturing oxide superconductive thin film
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP2010135134A (en) Manufacturing method for re123 superconductive thin-film wire rod, and re123 superconductive thin-film wire rod
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
JP5556410B2 (en) Method for manufacturing oxide superconducting thin film
JP2012174565A (en) Raw material solution for forming oxide superconductor
JP2012151018A (en) Method of manufacturing superconductive film, and calcination deposition and superconductive film available by the same
JP2012174564A (en) Oxide superconducting thin film and method for producing the same
JP2010123433A (en) Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod
JP2011159453A (en) Method of manufacturing oxide superconducting thin film
JP2012123998A (en) Oxide superconducting thin film wire rod and manufacturing method thereof
WO2013153651A1 (en) Oxide superconductor thin-film wiring material, and production method therefor
JP2011251863A (en) Material solution for producing oxide superconductive thin film
JP2013218799A (en) Oxide superconducting wire material and method for manufacturing the same
JP2012113860A (en) Superconducting oxide thin film wire rod, and method for manufacturing the same
JP2012003962A (en) Manufacturing method of oxide superconducting thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150412

R150 Certificate of patent or registration of utility model

Ref document number: 5740795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250