JP2013122228A - Front pipe shape of exhaust emission control device - Google Patents

Front pipe shape of exhaust emission control device Download PDF

Info

Publication number
JP2013122228A
JP2013122228A JP2011271756A JP2011271756A JP2013122228A JP 2013122228 A JP2013122228 A JP 2013122228A JP 2011271756 A JP2011271756 A JP 2011271756A JP 2011271756 A JP2011271756 A JP 2011271756A JP 2013122228 A JP2013122228 A JP 2013122228A
Authority
JP
Japan
Prior art keywords
exhaust gas
front pipe
exhaust
dpf
bent portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011271756A
Other languages
Japanese (ja)
Inventor
嘉則 ▲高▼橋
Yoshinori Takahashi
Hiroyuki Kaminaga
浩行 神長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2011271756A priority Critical patent/JP2013122228A/en
Publication of JP2013122228A publication Critical patent/JP2013122228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve durability of DPF and efficiency of NOx reduction control, by generating a swirling flow in exhaust gas in a front pipe and by uniformly distributing a wind of the exhaust gas over the entire upstream region of a DPF emission control device by the swirling flow.SOLUTION: A front pipe shape disposed at an upstream side of an exhaust emission control device 7 includes: a plurality of continuous bent parts 63, 64 formed at an upstream side of a front pipe; and a straight line part 65 continuous to the bent parts 63, 64, having a length equal to or longer than those of the bent parts 63, 64 so that the density of the exhaust gas swirling flow about an axial line of the front pipe becomes uniform.

Description

本発明は、車両に搭載されたエンジンの排ガス浄化装置の上流側に配置される排気管に関するものである。   The present invention relates to an exhaust pipe disposed on the upstream side of an exhaust gas purification device for an engine mounted on a vehicle.

自動車に搭載されるディーゼルエンジン(以後「エンジン」と称す)の排気系には、エンジンから排出される排ガスに含まれ、有害物質とされるディーゼル排気微粒子〔以後「PM(Particulate Matter)」と称す〕及びNOx(窒素酸化物)が含まれており、PMはディーゼルパティキュレートフィルタ〔以後「DPF(Diesel Particulate Filter)」と称す〕にて補足される。
DPF浄化装置には、上流側に排ガスに含まれているNOxを酸化触媒(以後「DOC」と称す)にてNOに酸化した後に、PMを濾過するDPFが一体で収納されている。
Diesel exhaust particles (hereinafter referred to as “PM (Particulate Matter)”) that are contained in the exhaust gas discharged from the engine and are harmful substances are contained in the exhaust system of diesel engines (hereinafter referred to as “engines”) mounted on automobiles. ] And NOx (nitrogen oxide) are contained, and PM is supplemented by a diesel particulate filter (hereinafter referred to as “DPF (Diesel Particulate Filter)”).
In the DPF purification device, a DPF that filters PM after oxidizing NOx contained in the exhaust gas into NO 2 by an oxidation catalyst (hereinafter referred to as “DOC”) is integrally stored on the upstream side.

図1で示すように、エンジン1の排気マニホールド8に近設されている排気ターボチャージャ2の排気タービン2bから排出される排ガスは、該排気タービン2bとDPF浄化装置7との間に配設される排気管4と、該排気管4に連続したフロントパイプとを介して、DPF浄化装置7に導出されている。
そして、エンジン1から排出された排ガスは、排気マニホールド、排気タービン2b、フロントパイプ6、DPF浄化装置7、NOx還元触媒装置を経て、車外に放出される装置が知られている。
As shown in FIG. 1, the exhaust gas discharged from the exhaust turbine 2 b of the exhaust turbocharger 2 provided close to the exhaust manifold 8 of the engine 1 is disposed between the exhaust turbine 2 b and the DPF purification device 7. The exhaust pipe 4 and a front pipe continuous with the exhaust pipe 4 are led to the DPF purification device 7.
A device is known in which exhaust gas discharged from the engine 1 is discharged outside the vehicle through an exhaust manifold, an exhaust turbine 2b, a front pipe 6, a DPF purification device 7, and a NOx reduction catalyst device.

そのような装置を搭載した技術が特開平8−319820号公報(特許文献1)に開示されている。
DPF浄化装置7のDPFに堆積したPMを電気ヒータや、バーナー等を用いずに酸化除去する方法が開示されている。
A technique in which such a device is mounted is disclosed in Japanese Patent Application Laid-Open No. 8-319820 (Patent Document 1).
A method is disclosed in which the PM deposited on the DPF of the DPF purification device 7 is oxidized and removed without using an electric heater, a burner or the like.

特開平8−319820号公報JP-A-8-31820

しかし、特許文献1に開示される技術は、排ガス温度が低いエンジンの軽負荷運転時においても、DPF74に堆積したPM酸化除去するものであり、フロントパイプ内を流れる排ガスの偏流によって、DPF浄化装置7の酸化触媒72の上流側前面全域に排ガスが均等に配風されるようにした技術は開示されておらず、排ガスの偏流によって酸化触媒72および、DPF74を通過する排ガスは偏った流れをして、DPF74のPM堆積量が不均一になる。
従って、DPF74に溜まったPMを軽油等で燃焼させると、DOCは偏流で流れの多い箇所は軽油が多く流れてしまうため、設定温度より高温となり、DOC劣化が進行し、堆積量の多い部分も高熱になり、DPF74(フィルタ)の劣化進行が早まると共に、HCのスリップ以外に浄化率低下などが考えられる。
However, the technique disclosed in Patent Document 1 removes PM oxidation accumulated in the DPF 74 even during a light load operation of an engine having a low exhaust gas temperature, and the DPF purification device 7 is caused by the drift of the exhaust gas flowing in the front pipe. No technology is disclosed in which exhaust gas is evenly distributed over the entire upstream front surface of the oxidation catalyst 72, and the exhaust gas passing through the oxidation catalyst 72 and the DPF 74 flows unevenly due to the drift of the exhaust gas. , The amount of PM deposited on the DPF 74 becomes non-uniform.
Therefore, when the PM accumulated in the DPF 74 is burned with light oil or the like, the portion where the DOC is drifted and flows a lot will flow a lot of light oil. It becomes high heat, the deterioration progress of the DPF 74 (filter) is accelerated, and reduction of the purification rate other than the HC slip is considered.

上記の課題を解決するために、本発明においては、フロントパイプ内の排ガスに旋回流を生起させ、該旋回流によって、排ガスがDPF浄化装置の上流側全域に均等に配風されるようにして、DPFの耐久性と、NOxの還元浄化効率の向上を図ることを目的とする。   In order to solve the above problems, in the present invention, a swirl flow is generated in the exhaust gas in the front pipe, and the swirl flow causes the exhaust gas to be evenly distributed over the entire upstream side of the DPF purification device. The object is to improve the durability of DPF and the reduction and purification efficiency of NOx.

上記の課題を解決するために本発明においては、エンジンと排ガス浄化装置とを連結して、前記エンジン側の排気管と、該排気管に連続して前記排ガス浄化装置に連結し、内部に排ガス通路が形成されたフロントパイプ形状であって、前記フロントパイプの前記排ガス通路の上流側に形成された複数の連続した屈曲部と、
該屈曲部の下流側に前記屈曲部の長さと同じか、それよりも長くした直線部を備え、
前記屈曲部にて排ガス旋回流を生成し、前記直線部にて前記フロントパイプの軸線を中心とした排ガス旋回流の密度均一化を図ることを特徴とする。
In order to solve the above-mentioned problems, in the present invention, an engine and an exhaust gas purification device are connected, the exhaust pipe on the engine side is connected to the exhaust gas purification device in succession to the exhaust pipe, and the exhaust gas is internally contained. A plurality of continuous bent portions formed on the upstream side of the exhaust gas passage of the front pipe, the front pipe shape having a passage formed;
Provided with a straight line portion that is the same as or longer than the length of the bent portion on the downstream side of the bent portion,
An exhaust gas swirling flow is generated at the bent portion, and the exhaust gas swirling flow density is made uniform around the axis of the front pipe at the straight portion.

かかる発明によれば、フロントパイプの上流側の屈曲部において、屈曲の内側と外側の流れの変化(速度)と、速度変化に伴うガス密度の変化により、排ガスに旋回流を生起させ、それを連続させることにより、旋回流を強くし、直線部において旋回流の排ガス密度を均一化させることにより、排ガスが排ガス浄化装置のフィルタ前面に均一にあたるようにすることができる。   According to this invention, at the bent portion on the upstream side of the front pipe, the swirl flow is generated in the exhaust gas by the change (velocity) of the flow inside and outside the bend and the change in gas density accompanying the change in velocity, and the continuous flow is generated. As a result, the swirl flow is strengthened, and the exhaust gas density of the swirl flow is made uniform in the straight portion, so that the exhaust gas can uniformly strike the front surface of the filter of the exhaust gas purification device.

また、本発明において好ましくは、前記複数の屈曲部は略S字状に形成されるとよい。   In the present invention, it is preferable that the plurality of bent portions are formed in a substantially S shape.

このような構造にすることにより、複数の屈曲部を略S字状に形成することで、一段目の屈曲と、それに続く二段目の屈曲とが屈曲方向が逆になるので、一段目の外側を流れた排ガス流は旋回して、二段目においても外側を流れるので、旋回が加速され、直線部における旋回流の排ガス密度均一化がさらに促進される。   By adopting such a structure, by forming a plurality of bent portions in a substantially S shape, the bending direction is reversed between the first-stage bending and the subsequent second-stage bending. The exhaust gas flow that flows outside swirls and flows outside even in the second stage, so that the swirl is accelerated and the exhaust gas density of the swirl flow in the straight portion is further promoted.

また、本発明において好ましくは、前記複数の屈曲部は、前記軸線が三次元に変化した形状に形成するとよい。   In the present invention, it is preferable that the plurality of bent portions be formed in a shape in which the axis changes three-dimensionally.

このような構造にすることにより、複数の屈曲部を三次元に形成させることにより、屈曲部が増加するため、排ガスの旋回がさらに加速され、直線部における旋回流の排ガス密度均一化がさらに促進される。
また、搭載範囲が限定される車両においては屈曲部を三次元に形成することにより、Rを適宜大きくして、排ガスの流通抵抗が増すのを抑制すると共に、適度の旋回流を得るようにすることが可能となる。
By adopting such a structure, by forming a plurality of bent portions in three dimensions, the number of bent portions increases, so that the exhaust gas swirl is further accelerated, and the exhaust gas density of the swirling flow in the straight line portion is further promoted. Is done.
Further, in a vehicle in which the mounting range is limited, by forming the bent portion three-dimensionally, R is appropriately increased to suppress an increase in exhaust gas flow resistance and obtain an appropriate swirl flow. It becomes possible.

フロントパイプに、屈曲部による排ガスの旋回(パイプの軸線を中心とした)を発生させる複数の屈曲部と、旋回した排ガスの密度差を解消させる直線状の密度解消部排ガスの密度均一化部を設けることにより、排ガス浄化装置の要素部材[DOC(酸化触媒)と、DOCに続くDPF(PMフィルター)]前面に均等に配風されるようになるため、DPFに溜まったPMを軽油等で燃焼させても、PMの燃焼による高熱発生を抑制して、DPF(フィルタ)の耐久性向上を図ると共に、DOC触媒の局所的な熱劣化を防ぐことによるNO生成が多く行われ易く、後続のNOx還元触媒装置におけるNOx還元作用が促進され、排ガス浄化効果の向上が期待できる。 The front pipe is provided with a plurality of bent portions for generating exhaust gas swirling by the bent portion (centered on the axis of the pipe) and a linear density eliminating portion for eliminating the density difference between the swirled exhaust gases. As a result, air is evenly distributed on the front surface of the element member [DOC (oxidation catalyst) and DPF (PM filter) following DOC] of the exhaust gas purification device, so that PM accumulated in the DPF is burned with light oil or the like. However, the generation of high heat due to PM combustion is suppressed, the durability of the DPF (filter) is improved, and NO 2 is easily generated by preventing local thermal deterioration of the DOC catalyst. The NOx reduction action in the reduction catalyst device is promoted, and an improvement in exhaust gas purification effect can be expected.

本発明が実施される排気系統の概略全体構成図を示す。1 shows a schematic overall configuration diagram of an exhaust system in which the present invention is implemented. (A)は本発明の実施形態の平面斜視図、(B)は(A)の側面斜視図、(C)は(B)のA矢視図を示す。(A) is a top perspective view of an embodiment of the present invention, (B) is a side perspective view of (A), and (C) is a view taken in the direction of arrow A of (B). 本実施形態の屈曲部における排ガスの流れの説明図を示す。Explanatory drawing of the flow of the exhaust gas in the bending part of this embodiment is shown. (A)は本実施形態におけるフロントパイプ全体の排ガスの流れ変化図を示し、(B)は従来構造の排ガスの流れ変化図を示す。(A) shows the flow change figure of the exhaust gas of the whole front pipe in this embodiment, (B) shows the flow change figure of the exhaust gas of a conventional structure. (A)は本実施形態における排ガス分布図、(b)は従来構造における排ガス分布図をしめす。(A) is an exhaust gas distribution diagram in the present embodiment, and (b) is an exhaust gas distribution diagram in a conventional structure.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は本発明が実施される排気系統の概略全体構成図を示し、1はエンジンを示し、2は該エンジンの排気マニホールド8から排出される排ガスによって排気タービン2bを駆動し、該排気タービン2bと同軸的に連結したコンプレッサー2aを駆動して、エアクリーナ3からの吸気を圧縮するターボチャージャである。圧縮された吸気はインタークーラ6で冷却され、吸気管5を介してエンジン1に導入される。
一方、ターボチャージャ2の排気タービン2bを駆動した排ガスは、排気管4を介して、フロントパイプ6に導入され、該フロントパイプ6を介してDPF浄化装置7に流れ、該DPF浄化装置7の排ガス流路系下流側のNOx還元触媒装置9を経て、大気に開放される。
FIG. 1 shows a schematic overall configuration diagram of an exhaust system in which the present invention is implemented. 1 shows an engine, 2 drives an exhaust turbine 2b with exhaust gas discharged from an exhaust manifold 8 of the engine, and the exhaust turbine 2b. This is a turbocharger that compresses intake air from the air cleaner 3 by driving a compressor 2a that is coaxially connected to the compressor 2a. The compressed intake air is cooled by the intercooler 6 and introduced into the engine 1 via the intake pipe 5.
On the other hand, the exhaust gas that has driven the exhaust turbine 2 b of the turbocharger 2 is introduced into the front pipe 6 via the exhaust pipe 4 and flows to the DPF purification device 7 via the front pipe 6, and the exhaust gas flow path of the DPF purification device 7 The NOx reduction catalyst device 9 on the downstream side of the system is released to the atmosphere.

DPF浄化装置7は、排ガス流路系上流側に排ガス中のNOxをNOに変換する第1DOC触媒(酸化触媒)、その下流側に排ガス中に含まれているディーゼル排気微粒子〔以後「PM(Particulate Matter)」と称す〕を捕捉するディーゼルパティキュレートフィルタ〔以後「DPF(Diesel Particulate Filter)」と称す〕が内蔵されている。
また、NOx還元触媒装置9には、第1DOC触媒によってNOに変換され、還元剤である尿素水(SCR)と混合して、窒素Nと、水H0に還元するSCR触媒91と、SCR触媒91の排ガス流路系下流側に配設され、該SCR触媒91でスリップしたNH3(アンモニア)を酸化する第2DOC触媒が内蔵されている。
The DPF purification device 7 includes a first DOC catalyst (oxidation catalyst) for converting NOx in the exhaust gas into NO 2 on the upstream side of the exhaust gas passage system, and diesel exhaust particulates [hereinafter referred to as “PM ( A diesel particulate filter (hereinafter referred to as “DPF (Diesel Particulate Filter)”) that captures “Particulate Matter” ”is incorporated.
Further, the NOx reduction catalyst device 9 includes an SCR catalyst 91 that is converted into NO 2 by the first DOC catalyst, mixed with urea water (SCR) as a reducing agent, and reduced to nitrogen N 2 and water H 2 0. A second DOC catalyst that oxidizes NH3 (ammonia) slipped by the SCR catalyst 91 is provided on the downstream side of the exhaust gas flow path system of the SCR catalyst 91.

図2は本発明のフロントパイプ6の形状を示すものである。
図2(A)は平面斜視図を示したもので,(B)はその側面斜視図、(C)は(B)のZ矢視図を示したものである。
61はターボチャージャ2の排気タービン2b側からの排ガスが排気管4を介して導入される導入口であり、内部が排ガス通路となっている。
図面上、フロントパイプ6は導入口61から下方に延在し、U字状(円弧状)で且つ三次元に屈曲R1(図3参照)を有した第1屈曲部63と、該第1屈曲部63に連続して、第1屈曲部63とは反対方向に屈曲(S字状)して、DPF浄化装置7の軸線に自らの軸線が滑らかに連続するように形成された屈曲R2(図3参照)を有した第2屈曲部64と、DPF浄化装置7の軸線と同一に配設された直線部65とで構成されている。
直線部65の長さL2は第1、第2屈曲部63,64の長さL1と略同じか又は長く形成されている。
また、第1屈曲部は屈曲半径が小さくなっている。R1と、R2は同じである必要はない。これは、車両への搭載を考慮して、形成するとよい。Rが小さいと排ガスの旋回流は強くなるが、流通抵抗が増す。一方、Rが大きいと旋回流が弱くなるが、流通抵抗は減少する。
従って、搭載範囲が限定される車両においては屈曲部を三次元に形成することにより、Rを適宜大きくして、排ガスの流通抵抗が増すのを抑制すると共に、適度の旋回流を得るようにすることが可能となる。
FIG. 2 shows the shape of the front pipe 6 of the present invention.
2A is a plan perspective view, FIG. 2B is a side perspective view thereof, and FIG. 2C is a Z arrow view of FIG.
Reference numeral 61 denotes an introduction port through which exhaust gas from the exhaust turbine 2b side of the turbocharger 2 is introduced via the exhaust pipe 4, and the inside is an exhaust gas passage.
In the drawing, the front pipe 6 extends downward from the introduction port 61, has a U-shaped (arc-shaped) and a three-dimensionally bent R1 (see FIG. 3), and the first bent portion 63 Bend R2 (FIG. 3) formed in such a manner as to be bent in the direction opposite to the first bent portion 63 (S-shape) continuously to the axis of the DPF purification device 7 and to be smoothly continuous with its own axis. A second bent portion 64 having a reference) and a straight portion 65 disposed in the same manner as the axis of the DPF purification device 7.
The straight portion 65 has a length L2 that is substantially the same as or longer than the length L1 of the first and second bent portions 63 and 64.
Further, the first bend has a small bend radius. R1 and R2 need not be the same. This may be formed in consideration of mounting on the vehicle. When R is small, the swirl flow of exhaust gas becomes strong, but the flow resistance increases. On the other hand, when R is large, the swirl flow becomes weak, but the flow resistance decreases.
Therefore, in a vehicle in which the mounting range is limited, by forming the bent portion three-dimensionally, R is appropriately increased to suppress an increase in exhaust gas flow resistance and to obtain an appropriate swirling flow. It becomes possible.

図3は本発明の本実施形態におけるフロントパイプ6の内部を流れる排ガスの屈曲部における流れの説明図を示す。
尚、図は説明用のため、二次元に表わしてある。
また、屈曲部は、フロントパイプ6の径が大きいため、第1屈曲部のR部と、第2屈曲部のR部とを完全に連続させることは工作上コストが高くなるので、若干の直線部が介存するが連続として扱う。
但し、若干の直線部とは屈曲部において旋回流を生起させる排ガス密度の均一化が進まない程度の長さであって、屈曲部の内側半径Rより短い長さとする。
FIG. 3 is an explanatory view of the flow in the bent portion of the exhaust gas flowing inside the front pipe 6 in the present embodiment of the present invention.
The figure is shown two-dimensionally for explanation.
Further, since the bent portion has a large diameter of the front pipe 6, it is expensive to make the R portion of the first bent portion and the R portion of the second bent portion completely continuous. Is treated as continuous.
However, the slight straight portion is a length that does not allow the exhaust gas density to uniformize the swirling flow at the bent portion, and is shorter than the inner radius R of the bent portion.

フロントパイプ6は排ガスが導入される入口61と、入口61に連続した円弧状の第1屈曲部63、該第1屈曲部63に連続して略S字状に屈曲した円弧状の第2屈曲部64、該第2屈曲部64に滑らかに連続した直線部65が形成されている。
第1屈曲部63において、便宜上、屈曲部の外側を流れる排ガス流を第1流線66a、軸線部分を流れる排ガス流を第2流線66b、屈曲部の内側を流れる排ガス流を第3流線66cとする。
The front pipe 6 includes an inlet 61 through which exhaust gas is introduced, an arc-shaped first bent portion 63 that is continuous with the inlet 61, and an arc-shaped second bent portion that is continuously bent into an approximately S shape with the first bent portion 63. 64, a straight line portion 65 smoothly connected to the second bent portion 64 is formed.
In the first bent portion 63, for convenience, the exhaust gas flow flowing outside the bent portion is the first streamline 66a, the exhaust gas flow flowing through the axial portion is the second streamline 66b, and the exhaust gas flow flowing inside the bent portion is the third streamline. 66c.

ターボチャージャ2の排気タービン2bから排出された排ガスは入口61からフロントパイプ6に導入されると、第1屈曲部63に到達する。
第1屈曲部63の終了地点P1において、屈曲部の外側を流れる第1流線66aは、内側を流れる第3流線66c及び、第2流線66bより流れが速く、且つ排ガス密度(圧力)が入口61を流れる時点より低くなっている。
ところが、第3流線は流れる距離が短くなっている分、第1流線66a及び、第2流線66bより流れが遅くなり、第1流線66a及び、第2流線66bより排ガス密度(圧力)が高くなっている。
この現象は、排ガスの流れ速度が変化してくる第1屈曲部63の途中から現れ、P1点付近では排ガス密度(圧力)の高い方から低い方に流れ、第2流線66bを中心に旋回を始める。
When the exhaust gas discharged from the exhaust turbine 2 b of the turbocharger 2 is introduced into the front pipe 6 from the inlet 61, it reaches the first bent portion 63.
At the end point P1 of the first bent part 63, the first stream line 66a flowing outside the bent part flows faster than the third stream line 66c and second stream line 66b flowing inside, and the exhaust gas density (pressure). Is lower than the time when it flows through the inlet 61.
However, since the third streamline has a shorter flow distance, the flow is slower than the first streamline 66a and the second streamline 66b, and the exhaust gas density (from the first streamline 66a and the second streamline 66b ( The pressure is high.
This phenomenon appears in the middle of the first bent portion 63 where the flow rate of the exhaust gas changes, flows from the higher exhaust gas density (pressure) to the lower one near the point P1, and turns around the second streamline 66b. Begin.

該第2流線66bを中心に旋回が始まると、第1流線66aは第1屈曲部63の内側に旋回し、第3流線66cは外側に旋回する。
S字状に屈曲したフロントパイプ6の第2屈曲部64は、第1屈曲部63に対して反対側に屈曲している。
従って、該旋回した排ガスは次の第2屈曲部64において、第1流線66aは外側を流れ、第3流線66cは内側を流れる状態になる。
そのため、第1流線66aは更に加速され、第3流線66cは第1流線66aに対して、更に、速度差が大きくなり、旋回力は増加する。
When turning starts around the second streamline 66b, the first streamline 66a turns inside the first bent portion 63, and the third streamline 66c turns outside.
The second bent portion 64 of the front pipe 6 bent in an S shape is bent to the opposite side with respect to the first bent portion 63.
Therefore, the swirled exhaust gas is in a state where the first stream line 66a flows outside and the third stream line 66c flows inside the second bent portion 64.
Therefore, the first streamline 66a is further accelerated, and the third streamline 66c further increases in speed difference with respect to the first streamline 66a, and the turning force increases.

第2屈曲部64を通過した排ガスは、該第2屈曲部64と滑らかに接続された直線部65に導入される。
直線部65に導入された排ガスは、該直線部65内を直線部65の軸線に沿って慣性力によって旋回しながらDPF浄化装置7側に流れる。
そして、屈曲部で旋回力を与えられた排ガスは、直線部65内で旋回しながら排ガス密度を均一化して、DPF浄化装置7側に導出される。
DPF浄化装置7の排ガス導入部である拡径部71で排ガスは旋回しながら拡散して、DOC触媒の前面に略均一(排ガス密度および、速度)に接触するようになる。
また、直線部65の長さL2は屈曲部(第1屈曲部63+第2屈曲部64)の長さL1より長くしてある。
これは、屈曲部で流速及び密度(ガス圧)を変化させて、旋回流を生起させた排ガスを、DPF浄化装置7に到達する前に均一化させるために必要な長さとなっている。
排ガスの密度(圧力)を均一化させるには、少なくとも排ガスの密度差を生起させるのに要した直線長さが必要と判断した。
短い場合には、不均一な状態でDPF浄化装置7に到達している。
The exhaust gas that has passed through the second bent portion 64 is introduced into a straight portion 65 that is smoothly connected to the second bent portion 64.
The exhaust gas introduced into the straight portion 65 flows toward the DPF purification device 7 while turning inside the straight portion 65 along the axis of the straight portion 65 by the inertial force.
Then, the exhaust gas given the turning force at the bent portion is made uniform in the exhaust gas density while turning in the straight portion 65 and is led out to the DPF purification device 7 side.
The exhaust gas diffuses while swirling in the enlarged diameter portion 71 that is the exhaust gas introduction portion of the DPF purification device 7 and comes into contact with the front surface of the DOC catalyst substantially uniformly (exhaust gas density and speed).
Further, the length L2 of the straight portion 65 is longer than the length L1 of the bent portion (first bent portion 63 + second bent portion 64).
This is the length necessary to make the exhaust gas that has caused the swirl flow uniformed before reaching the DPF purification device 7 by changing the flow velocity and density (gas pressure) at the bent portion.
In order to make the density (pressure) of the exhaust gas uniform, it was determined that at least the linear length required to cause the density difference of the exhaust gas was necessary.
If it is short, it reaches the DPF purification device 7 in a non-uniform state.

これらの結果を図4及び、図5に基づいて説明する。
図4(A)は、本実施形態の、フロントパイプ6内における、排ガスの流れを流線で示したもので、直線部65において、排ガスは当該部内で旋回し、排ガスの密度均一化が進み、拡径部71において旋回流が拡大しながらDPF浄化装置7側に導出している。
図4(B)は、フロントパイプの排ガス流路系上流側に一箇所の屈曲部を設けたものであるが、旋回流が弱いため、直線部における旋回が不十分となり、排ガスの密度均一化が十分に進まず、拡径部71aにおいて渦巻状の流れが発生して、DPF浄化装置7側への導出が不均一になっていることが判明した。
These results will be described with reference to FIG. 4 and FIG.
FIG. 4 (A) shows the flow of exhaust gas in the front pipe 6 of the present embodiment as a streamline. In the straight portion 65, the exhaust gas swirls within the portion, and the density uniformity of the exhaust gas proceeds, The swirling flow is led out to the DPF purification device 7 side while being enlarged in the enlarged diameter portion 71.
In FIG. 4B, a bent portion is provided on the upstream side of the exhaust gas flow path system of the front pipe. However, since the swirl flow is weak, the swirl at the straight portion becomes insufficient, and the exhaust gas density is made uniform. It turned out that it did not advance sufficiently but a spiral flow occurred in the enlarged diameter portion 71a, and the derivation to the DPF purification device 7 side became uneven.

図5(A)は本実施形態における、DPF浄化装置7側へ流出した排ガスの分布を示すものであり、同一エンジン、同一負荷及び、同一回転数にて実施したものである。色の濃い方が排ガスの流量が多いことを示している。
その結果、円形状のDOC触媒中心部と外周部のgエリアが薄く他エリアより排ガス流通量が少ない。
eエリアは略円形の帯状に分布しており、gエリアより排ガス流通量が多く、排ガスが旋回して、密度の変化の修正が成されていることが伺える。
dエリアはeエリアより若干排ガス流通量が多くなっている。
しかし、排ガスは、円形状のDOC触媒前面に略三段階ぐらいに分布しており、排ガス流量(密度)が略均一化されている。
FIG. 5A shows the distribution of the exhaust gas flowing out to the DPF purification device 7 side in the present embodiment, which is implemented with the same engine, the same load, and the same rotation speed. The darker the color, the higher the exhaust gas flow rate.
As a result, the central area of the circular DOC catalyst and the g area of the outer periphery are thin, and the exhaust gas flow rate is smaller than in other areas.
It can be seen that the e area is distributed in a substantially circular belt shape, and the exhaust gas circulation amount is larger than that in the g area, and the exhaust gas swirls to correct the change in density.
The d area has a slightly larger amount of exhaust gas flow than the e area.
However, the exhaust gas is distributed in approximately three stages on the front surface of the circular DOC catalyst, and the exhaust gas flow rate (density) is substantially uniform.

一方、図5(B)は、従来形状を示すもので、フロントパイプの排ガス流路系上流側に一箇所の屈曲部を設けたものにおいては、排ガス流通量が六段階に分布しており、排ガス流量(密度)の多い順からaエリア、bエリア、cエリア、fエリア、hエリア、iエリアとなっている。hエリア及び、iエリアは他のエリアに比べて、排ガス流量が少ない事が判る。
排ガスは図5(B)において、上側に集中した内容になっており、この配置姿勢でそのままDOCに流れると、内部では局所的に高温となることで触媒の熱劣化が進行し、DPF74に流れると、DPF74のjエリア相当部が、PM燃焼時に高温となり、DPF74の耐久性を劣化させる原因になる。
On the other hand, FIG. 5B shows a conventional shape, and in the case where one bent portion is provided on the upstream side of the exhaust gas flow path system of the front pipe, the exhaust gas circulation amount is distributed in six stages. The areas are a area, b area, c area, f area, h area, and i area in descending order of flow rate (density). It can be seen that the h area and the i area have a lower exhaust gas flow rate than the other areas.
In FIG. 5 (B), the exhaust gas is concentrated on the upper side, and if it flows to the DOC as it is in this arrangement posture, the catalyst is thermally deteriorated due to local high temperature inside and flows to the DPF 74. And the j area equivalent part of DPF74 becomes high temperature at the time of PM combustion, and causes the durability of DPF74 to deteriorate.

このように構成することにより、フロントパイプの上流側の屈曲部において、屈曲の内側と外側の流れの変化(速度)と、速度変化に伴うガス密度の変化により、排ガスに旋回流を生起させ、それを連続させることにより、旋回流を強くし、直線部において旋回流の排ガス密度を均一化させることにより、排ガスが排ガス浄化装置のフィルタ前面に均一にあたるようにすることができる。
また、複数の屈曲部を略S字状に形成することで、一段目の屈曲と、それに続く二段目の屈曲とが屈曲方向が逆になるので、一段目の外側を流れた排ガス流は旋回して、二段目においても外側を流れるので、旋回が加速され、直線部における旋回流の排ガス密度均一化がさらに促進される。
さらに、排ガスが略均一な状態で第1酸化触媒を通過するので、排ガス中のNOxが第1DOC触媒によるNO生成が行われ易く、後工程のNOx還元触媒91での還元作用が促進されることで、排気ガス浄化効率の向上が期待できる。
With this configuration, a swirl flow is generated in the exhaust gas by a change (velocity) of the flow inside and outside the bend in the bent portion on the upstream side of the front pipe and a change in gas density accompanying the change in velocity. By making the swirl flow continuous, the swirl flow is strengthened, and the exhaust gas density of the swirl flow is made uniform in the straight portion, so that the exhaust gas can uniformly strike the front surface of the filter of the exhaust gas purification device.
In addition, by forming a plurality of bent portions in a substantially S shape, the bending direction of the first-stage bending and the subsequent second-stage bending are reversed, so the exhaust gas flow that flows outside the first stage is Since it turns and flows outside even in the second stage, the turn is accelerated, and the exhaust gas density of the swirl flow in the straight portion is further promoted.
Furthermore, since the exhaust gas passes through the first oxidation catalyst in a substantially uniform state, easily NOx in the exhaust gas NO 2 generated according 1DOC catalyst is performed, the reduction effect of the NOx reduction catalyst 91 in a subsequent step is facilitated Thus, an improvement in exhaust gas purification efficiency can be expected.

車両に搭載されたエンジンの排ガス浄化装置の上流側に配置される排気管に採用して、排気浄化装置の耐久性と、その効果の促進に利用できる。   It can be used for exhaust pipes arranged on the upstream side of exhaust gas purification devices for engines mounted on vehicles, and can be used to promote the durability of the exhaust purification device and its effects.

1 エンジン
2 ターボチャージャ
6 フロントパイプ
7 DPF浄化装置
8 エア圧力センサ(エア圧力検出手段)
9 NOx還元触媒装置
63 第1屈曲部(屈曲部)
64 第2屈曲部(屈曲部)
65 直線部
DESCRIPTION OF SYMBOLS 1 Engine 2 Turbocharger 6 Front pipe 7 DPF purification device 8 Air pressure sensor (air pressure detection means)
9 NOx reduction catalyst device 63 First bent portion (bent portion)
64 Second bent part (bent part)
65 Straight section

Claims (3)

エンジンと排ガス浄化装置とを連結して、前記エンジン側の排気管と、該排気管に連続して前記排ガス浄化装置に連結し、内部に排ガス通路が形成されたフロントパイプ形状であって、前記フロントパイプの前記排ガス通路の上流側に形成された複数の連続した屈曲部と、
該屈曲部の下流側に前記屈曲部の長さと同じか、それよりも長くした直線部を備え、
前記屈曲部にて排ガス旋回流を生成し、前記直線部にて前記フロントパイプの軸線を中心とした排ガス旋回流の密度均一化を図ることを特徴とする排ガス浄化装置のフロントパイプ構造。
An engine and an exhaust gas purification device are connected, an exhaust pipe on the engine side, and a front pipe shape connected to the exhaust gas purification device continuously to the exhaust pipe and having an exhaust gas passage formed therein, the front pipe A plurality of continuous bent portions formed on the upstream side of the exhaust gas passage;
Provided with a straight line portion that is the same as or longer than the length of the bent portion on the downstream side of the bent portion,
A front pipe structure of an exhaust gas purification apparatus, wherein an exhaust gas swirling flow is generated at the bent portion, and a density of the exhaust gas swirling flow is made uniform around the axis of the front pipe at the straight portion.
前記複数の屈曲部は略S字状に形成されていることを特徴とする請求項1記載の排ガス浄化装置のフロントパイプ構造。   The front pipe structure of an exhaust gas purification apparatus according to claim 1, wherein the plurality of bent portions are formed in a substantially S shape. 前記複数の屈曲部は、前記軸線が三次元に変化した形状に形成されていることを特徴とする請求項1または、2記載の排ガス浄化装置のフロントパイプ構造。   The front pipe structure of an exhaust gas purification apparatus according to claim 1 or 2, wherein the plurality of bent portions are formed in a shape in which the axis line is three-dimensionally changed.
JP2011271756A 2011-12-12 2011-12-12 Front pipe shape of exhaust emission control device Pending JP2013122228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011271756A JP2013122228A (en) 2011-12-12 2011-12-12 Front pipe shape of exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011271756A JP2013122228A (en) 2011-12-12 2011-12-12 Front pipe shape of exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2013122228A true JP2013122228A (en) 2013-06-20

Family

ID=48774319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271756A Pending JP2013122228A (en) 2011-12-12 2011-12-12 Front pipe shape of exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2013122228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128651A (en) * 2015-01-09 2016-07-14 株式会社三五 Exhaust pipe structure of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128651A (en) * 2015-01-09 2016-07-14 株式会社三五 Exhaust pipe structure of internal combustion engine

Similar Documents

Publication Publication Date Title
RU121371U1 (en) EXHAUST GAS SAMPLER (OPTIONS)
US7637099B2 (en) Fluid entrainment apparatus
US8341948B2 (en) Apparatus and method for cooling an exhaust gas
KR101223383B1 (en) Exhaust-gas secondary treatment preceding a turbocharger
JP5308176B2 (en) Exhaust purification device
JP4930796B2 (en) Exhaust gas purification device and exhaust pipe for diesel engine
JP4450257B2 (en) Exhaust purification device
CN103306784B (en) Exhaust after treatment system and method for exhaust aftertreatment
KR20080089605A (en) Particulate filter assembly
WO2006083750A2 (en) Regeneration control for diesel particulate filter for treating diesel engine exhaust
JP2012047109A (en) Exhaust gas purification apparatus
JP2011111945A (en) Exhaust emission control device
JP2010144569A (en) Selective reduction catalyst device
JP2016188579A (en) Exhaust emission control unit
JP5020185B2 (en) Exhaust purification device
US20100229539A1 (en) Hydrocarbon scr aftertreatment system
KR20140023696A (en) Post treatment exhaust contamination gas decreasing system in diesel engine
JP2013002337A (en) Exhaust gas postprocessing device
JP3549858B2 (en) Exhaust gas purification device
JP2008534835A (en) Exhaust device provided with exhaust treatment device and heat exchanger in exhaust return path
JP5737618B2 (en) Exhaust gas purification device for internal combustion engine
JP2013122228A (en) Front pipe shape of exhaust emission control device
JP2012067635A (en) Exhaust gas flow guide
JP2010031719A (en) Exhaust emission control device
JP7006138B2 (en) Post-processing equipment