JP2013120890A - Electromagnetic induction non-contact power transmission coil and electromagnetic induction non-contact power transmission apparatus - Google Patents

Electromagnetic induction non-contact power transmission coil and electromagnetic induction non-contact power transmission apparatus Download PDF

Info

Publication number
JP2013120890A
JP2013120890A JP2011268958A JP2011268958A JP2013120890A JP 2013120890 A JP2013120890 A JP 2013120890A JP 2011268958 A JP2011268958 A JP 2011268958A JP 2011268958 A JP2011268958 A JP 2011268958A JP 2013120890 A JP2013120890 A JP 2013120890A
Authority
JP
Japan
Prior art keywords
coil
power transmission
power
electromagnetic induction
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011268958A
Other languages
Japanese (ja)
Inventor
Yuta Nakagawa
雄太 中川
Shingo Tanaka
信吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2011268958A priority Critical patent/JP2013120890A/en
Publication of JP2013120890A publication Critical patent/JP2013120890A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic induction non-contact power transmission coil and an electromagnetic induction non-contact power transmission apparatus capable of suppressing a leakage electromagnetic field without using a magnetic material, a metal shield, or the like.SOLUTION: In the electromagnetic induction non-contact power transmission coil including a pair of transmission side coil and a reception side coil where a conductor is wound spirally on the same plane, and transmitting power to the reception side coil by electromagnetic induction by feeding a current to the transmission side coil, two sets of transmission coil (51 and 53, 52 and 54) are provided. Two transmission side coils (51, 52) in the two sets of transmission coil (51 and 53, 52 and 54) are arranged at intervals so that respective conductors are flush with each other, and the currents flow reversely through the conductors.

Description

本発明は、電磁誘導方式非接触電力伝送コイル及び電磁誘導方式非接触電力伝送装置に関するものである。   The present invention relates to an electromagnetic induction type non-contact power transmission coil and an electromagnetic induction type non-contact power transmission device.

電磁誘導方式の非接触電力伝送は、送電側コイル及び受電側コイルからなる伝送コイルを備え、送電側コイルに電流を流すことで周囲の磁束が変化し、磁束変化の影響を受けた受電側コイルに誘導電流が流れ、電力が伝送される原理である。そのため、送信する電力量が大きくなるにつれて磁束変化も大きくなることから、伝送コイルから漏洩する電磁界が周囲の機器や人体に悪影響を及ぼすおそれがある。漏洩電磁界を抑制する方法の一つとしては、磁性体や金属シールド等を使用することがある。   Electromagnetic induction type non-contact power transmission is equipped with a transmission coil consisting of a power transmission side coil and a power reception side coil, and the current flux is changed by passing current through the power transmission side coil. This is the principle that induced current flows through the power and power is transmitted. For this reason, since the change in magnetic flux increases as the amount of power to be transmitted increases, the electromagnetic field leaking from the transmission coil may adversely affect surrounding devices and the human body. One method for suppressing the leakage electromagnetic field is to use a magnetic material or a metal shield.

特開2010−093180号公報JP 2010-093180 A

しかし、この方法では周囲への影響を抑えることは可能だが、コスト増加や伝送システム全体の重量が増加してしまうデメリットがある。   However, this method can suppress the influence on the surroundings, but has a disadvantage that the cost increases and the weight of the entire transmission system increases.

そこで、本発明は、磁性体や金属シールド等を使用せずに、漏洩電磁界を抑制することができる電磁誘導方式非接触電力伝送コイル及び電磁誘導方式非接触電力伝送装置を提供することを課題とする。   Accordingly, the present invention provides an electromagnetic induction type non-contact power transmission coil and an electromagnetic induction type non-contact power transmission device that can suppress a leakage electromagnetic field without using a magnetic material, a metal shield, or the like. And

上述した課題を解決するための請求項1記載の発明は、導体が同一平面上で渦巻き状に巻かれた一対の送電側コイル及び受電側コイルを有する伝送コイルを備え、前記送電側コイルに電流を流すことによる電磁誘導で受電側コイルに電力伝送を行う電磁誘導方式非接触電力伝送コイルであって、二組の前記伝送コイル(51及び53と、52及び54)を備え、前記二組の前記伝送コイル(51及び53と、52及び54)における二つの前記送電側コイル(51、52)は、それぞれの前記導体が同一平面になるように、互いに間隔を空けて配置され、前記導体を流れる電流が互いに逆回りに流れるように構成されていることを特徴とする。   The invention according to claim 1 for solving the above-described problem includes a transmission coil having a pair of power transmission side coils and a power reception side coil in which a conductor is spirally wound on the same plane, and a current is supplied to the power transmission side coil. An electromagnetic induction type non-contact power transmission coil that transmits power to the power receiving side coil by electromagnetic induction by flowing a current, comprising two sets of the transmission coils (51 and 53, 52 and 54), The two power transmission side coils (51, 52) in the transmission coils (51, 53, 52, 54) are spaced apart from each other so that the respective conductors are in the same plane, The present invention is characterized in that the flowing currents flow in opposite directions.

上述した課題を解決するための請求項2記載の発明は、請求項1記載の電磁誘導方式非接触電力伝送コイルにおいて、前記二つの送電側コイル(51、52)は、それぞれ、前記導体が互いに逆回りの渦巻き形状に形成されていることを特徴とする。   According to a second aspect of the present invention for solving the above-described problem, in the electromagnetic induction type non-contact power transmission coil according to the first aspect, the two power transmission side coils (51, 52) are respectively connected to each other. It is characterized by being formed in a reverse spiral shape.

上述した課題を解決するための請求項3記載の発明は、送電側コイル及び受電側コイルを有する伝送コイルを備え、前記送電側コイルに電流を流すことによる電磁誘導で受電側コイルに電力伝送を行う電磁誘導方式非接触電力伝送装置であって、前記伝送コイルは、請求項1または2記載の電磁誘導方式非接触電力伝送コイルであることを特徴とする。   The invention according to claim 3 for solving the above-described problem includes a transmission coil having a power transmission side coil and a power reception side coil, and transmits power to the power reception side coil by electromagnetic induction caused by flowing a current through the power transmission side coil. An electromagnetic induction type non-contact power transmission device to perform, wherein the transmission coil is an electromagnetic induction type non-contact power transmission coil according to claim 1 or 2.

なお、上述の課題を解決するための手段の説明におけるかっこ書きの参照符号は、以下の、発明を実施するための形態の説明における構成要素の参照符号に対応しているが、これらは、特許請求の範囲の解釈を限定するものではない。   Note that the reference numerals in parentheses in the description of the means for solving the above-described problems correspond to the reference numerals of the constituent elements in the description of the mode for carrying out the invention below. It is not intended to limit the interpretation of the claims.

請求項1記載の発明によれば、二組の前記伝送コイルを備え、二組の伝送コイルにおける二つの送電側コイルは、それぞれの導体が同一平面になるように、互いに間隔を空けて配置され、導体を流れる電流が互いに逆回りに流れるように構成されているので、周囲への不要な電磁界の発生を磁性体や金属シールド等を使用せずに軽減することができる。   According to the first aspect of the present invention, two sets of the transmission coils are provided, and the two power transmission side coils in the two sets of transmission coils are spaced apart from each other so that the respective conductors are in the same plane. Since the currents flowing through the conductors are configured to flow in opposite directions, generation of unnecessary electromagnetic fields in the surroundings can be reduced without using a magnetic material or a metal shield.

請求項2記載の発明によれば、二つの送電側コイルは、それぞれ、導体が互いに逆回りの渦巻き形状に形成されているので、各導体に互いに逆回りの電流が流れることにより、周囲への不要な電磁界の発生を磁性体や金属シールド等を使用せずに軽減することができる。   According to the second aspect of the present invention, since the two power transmission side coils are each formed in a spiral shape in which the conductors are opposite to each other, currents that are opposite to each other flow in the respective conductors. Generation of unnecessary electromagnetic fields can be reduced without using a magnetic material or a metal shield.

請求項3記載の発明によれば、送電側コイル及び受電側コイルを有する伝送コイルを備え、送電側コイルに電流を流すことによる電磁誘導で受電側コイルに電力伝送を行う電磁誘導方式非接触電力伝送装置であって、伝送コイルは、請求項1から3のいずれか1項に記載の電磁誘導方式非接触電力伝送コイルであるので、周囲への不要な電磁界の発生を磁性体や金属シールド等を使用せずに軽減することができる。   According to the third aspect of the present invention, the electromagnetic induction type non-contact power includes the transmission coil having the power transmission side coil and the power reception side coil, and transmits power to the power reception side coil by electromagnetic induction by passing a current through the power transmission side coil. A transmission device, wherein the transmission coil is the electromagnetic induction type non-contact power transmission coil according to any one of claims 1 to 3, so that generation of an unnecessary electromagnetic field around the magnetic material or metal shield It can be reduced without using etc.

、本発明及び従来方式の電磁誘導方式非接触電力伝送コイルを示し、(A)は本発明の一実施形態の構成図、(B)従来方式の構成図である。The present invention and a conventional electromagnetic induction type non-contact power transmission coil are shown, (A) is a configuration diagram of an embodiment of the present invention, (B) is a configuration diagram of a conventional system. 本発明の電磁誘導方式非接触電力伝送コイルにおける電流の向きと磁束の方向を説明する図であり、(A)は概略平面図、(B)は概略正面図である。It is a figure explaining the direction of the electric current in the electromagnetic induction system non-contact electric power transmission coil of this invention, and the direction of magnetic flux, (A) is a schematic plan view, (B) is a schematic front view. 遠方界(電界)の電界強度特性を可視化した立体グラフに示し、(A)は本発明の伝送コイルの特性図、(B)は従来方式の伝送コイルの特性図である。It is shown in the solid graph which visualized the electric field strength characteristic of a far field (electric field), (A) is a characteristic figure of the transmission coil of this invention, (B) is a characteristic figure of the transmission coil of a conventional system. 図5で示す極座標系で表される遠方界の、円周角(x軸からはじまるz軸回りの角度)φ=90°の時、原点からの距離rかつz軸からの角度θ=−180〜+180までの範囲での電界強度(dBV/m)の数値をプロットした本発明及び従来方式の伝送コイルの電界強度特性グラフである。When the circumference angle of the far field represented by the polar coordinate system shown in FIG. 5 (angle around the z-axis starting from the x-axis) φ = 90 °, the distance r from the origin and the angle θ from the z-axis = −180 It is the electric field strength characteristic graph of the transmission coil of this invention which plotted the numerical value of the electric field strength (dBV / m) in the range to-+ 180. 極座標系を示す図である。It is a figure which shows a polar coordinate system. 図7で示すデカルト座標系で表される近傍界の、yz断面でz=0のとき近傍磁界の磁界強度(dBA/m)の数値をプロットした本発明及び従来方式の伝送コイルの磁界強度特性図である。Magnetic field strength characteristics of the transmission coil of the present invention and the conventional method in which the numerical value of the magnetic field strength (dBA / m) of the near magnetic field is plotted when z = 0 in the yz section in the near field represented by the Cartesian coordinate system shown in FIG. FIG. デカルト座標系を示す図である。It is a figure which shows a Cartesian coordinate system. 送電側コイルと受電側コイル間で非接触伝送を行った際の伝送周波数の変化に対する伝送特性を示すグラフである。It is a graph which shows the transmission characteristic with respect to the change of the transmission frequency at the time of performing non-contact transmission between the power transmission side coil and the power receiving side coil. 本発明に係る電磁誘導方式非接触電力伝送装置の一実施形態の構成を示す説明図である。It is explanatory drawing which shows the structure of one Embodiment of the electromagnetic induction type non-contact electric power transmission apparatus which concerns on this invention. 本発明に係る電磁誘導方式非接触電力伝送装置の一実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of one Embodiment of the electromagnetic induction type non-contact electric power transmission apparatus which concerns on this invention.

(電磁誘導式非接触電力伝送コイルの実施形態)
図1(A)は、本発明に係る電磁誘導方式非接触電力伝送コイルの一実施形態の構成図である。図1において、電磁誘導方式非接触電力伝送コイル50は、所定の間隔を空けて重ね合わせた、一対の送電側コイル(1次側コイル)51(52)及び受電側コイル(2次側コイル)53(54)を有する伝送コイルを二組備えている。送電側コイル51(52)は、導体が同一平面上で渦巻き状に巻かれた平面コイルであり、導体の一端部であるリード端子51a(52a)と他端部であるリード端子51b(52b)を有する。受電側コイル53(54)は、送電側コイルと同様に、導体が同一平面上で渦巻き状に巻かれた平面コイルであり、導体の一端部であるリード端子53a(54a)と他端部であるリード端子53b(54b)を有する。
(Embodiment of electromagnetic induction type non-contact power transmission coil)
FIG. 1A is a configuration diagram of an embodiment of an electromagnetic induction type non-contact power transmission coil according to the present invention. In FIG. 1, an electromagnetic induction type non-contact power transmission coil 50 includes a pair of a power transmission side coil (primary side coil) 51 (52) and a power reception side coil (secondary side coil) which are overlapped at a predetermined interval. Two sets of transmission coils having 53 (54) are provided. The power transmission side coil 51 (52) is a planar coil in which the conductor is spirally wound on the same plane, and the lead terminal 51a (52a) which is one end of the conductor and the lead terminal 51b (52b) which is the other end. Have Similarly to the power transmission side coil, the power reception side coil 53 (54) is a planar coil in which the conductor is spirally wound on the same plane, and the lead terminal 53a (54a) which is one end portion of the conductor and the other end portion. A certain lead terminal 53b (54b) is provided.

二組の伝送コイルは、二つの送電側コイル51及び52のそれぞれの導体が互いに同一平面となるように所定の間隔を空けて横に並べた並列配置され、二つの受電側コイル53及び54は、それぞれ、対応する送電側コイル51及び52に所定の間隔を空けて重ね合わされ、リード端子部分を除く全体(送電側コイル51、52及び受電側コイル53、54)が、樹脂パッケージングによる封印や樹脂筐体によるサンドイッチ固定等の固定手段(図示しない)で固定されている。電磁誘導方式非接触電力伝送コイル50を構成する各コイル51〜54は、例えば、60mm×100mmの同一寸法の角形平面コイル形状を有し、送電側コイル51及び52の並列配置の所定間隔は、例えば10mmとされる。   The two sets of transmission coils are arranged side by side in parallel with a predetermined interval so that the conductors of the two power transmission side coils 51 and 52 are in the same plane, and the two power reception side coils 53 and 54 are The power transmission side coils 51 and 52 are respectively superimposed on the corresponding power transmission side coils 51 and 52 at a predetermined interval, and the whole excluding the lead terminal portion (the power transmission side coils 51 and 52 and the power reception side coils 53 and 54) is sealed by resin packaging. It is fixed by fixing means (not shown) such as sandwich fixing by a resin casing. Each coil 51-54 which comprises the electromagnetic induction system non-contact electric power transmission coil 50 has the square planar coil shape of the same dimension of 60 mm x 100 mm, for example, The predetermined space | interval of the parallel arrangement of the power transmission side coils 51 and 52 is as follows. For example, it is 10 mm.

電磁誘導方式非接触電力伝送コイル50は、送電側伝送コイル51、52から受電側コイル53、54へ電磁誘導による電力伝送を行う際に、図2(A)における矢印で示すように、2つの送電側コイル51、52に流す電流の向きを互いに逆回り(例えば、送電側コイル51では右回り、送電側コイル52では左回り)にし、磁束の向きを図2(B)における矢印で示すように互いに逆に発生させる。すなわち、一方の送電側コイル(例えば、送電側コイル51)は、一端部(リード端子51a)から他端部(リード端子51b)へ右回りの渦巻き状に導体を巻いた角形平面コイル形状に形成されており、一端部(リード端子51a)から他端部(リード端子51b)に向かう方向に電流が流され、他方の送電側コイル(例えば、送電側コイル52)は、一端部(リード端子52a)から他端部(リード端子52b)へ左回りの渦巻き状に導体を巻いた角形平面コイル形状に形成されており、一端部(リード端子52a)から他端部(リード端子52b)に向かう方向に電流が流される。このように、送電側コイル51と送電側コイル52において、互いに逆回りの渦巻き形状に形成された導体を互いに逆回りに流れる電流によって、互いに逆向きに発生する磁束同士が打ち消し合い、それにより、周囲に発生する不要な電磁界の漏洩を軽減することができる。   When the electromagnetic induction type non-contact power transmission coil 50 performs power transmission by electromagnetic induction from the power transmission side transmission coils 51, 52 to the power reception side coils 53, 54, as shown by arrows in FIG. The directions of currents flowing through the power transmission side coils 51 and 52 are opposite to each other (for example, clockwise in the power transmission side coil 51 and counterclockwise in the power transmission side coil 52), and the direction of the magnetic flux is indicated by an arrow in FIG. Are generated opposite to each other. That is, one power transmission side coil (for example, the power transmission side coil 51) is formed in a square planar coil shape in which a conductor is wound in a clockwise spiral shape from one end (lead terminal 51a) to the other end (lead terminal 51b). Thus, a current flows in a direction from one end (lead terminal 51a) to the other end (lead terminal 51b), and the other power transmission side coil (for example, power transmission side coil 52) has one end (lead terminal 52a). ) From the other end (lead terminal 52b) to the other end (lead terminal 52b), and the other end (lead terminal 52b) is directed in the direction from the one end (lead terminal 52a) to the other end (lead terminal 52b). A current is passed through. In this way, in the power transmission side coil 51 and the power transmission side coil 52, the magnetic fluxes generated in the opposite directions are canceled by the currents flowing in the opposite directions through the conductors formed in the opposite spiral shapes, thereby, It is possible to reduce leakage of unnecessary electromagnetic fields generated around.

本発明の伝送コイルの構成による効果の検証を電磁界シミュレーター(FEKO)を用いて行った。   The effect of the configuration of the transmission coil of the present invention was verified using an electromagnetic field simulator (FEKO).

本発明の伝送コイルと比較するために図1(B)に示した従来構造の伝送コイル60は、角形平面コイル形状に形成され、所定の間隔を空けて重ね合わせた構造を有する、一対の送電側コイル(1次側コイル)61及び受電側コイル(2次側コイル)62からなる。送電側コイル61は、リード端子61a及び61bを有し、受電側コイル62は、リード端子62a及び62bを有する。伝送コイル60は、全体が図示しない樹脂パッケージングによる封印、樹脂筐体によるサンドイッチ固定等の固定手段で固定されている。伝送コイル60は、図1(A)に示す本発明の伝送コイルと同一サイズになるように130mm×100mmの寸法になっている。   For comparison with the transmission coil of the present invention, the transmission coil 60 having the conventional structure shown in FIG. 1B is formed in a square planar coil shape and has a structure in which the transmission coils 60 are overlapped at a predetermined interval. It comprises a side coil (primary side coil) 61 and a power receiving side coil (secondary side coil) 62. The power transmission side coil 61 has lead terminals 61a and 61b, and the power reception side coil 62 has lead terminals 62a and 62b. The entire transmission coil 60 is fixed by fixing means such as sealing by resin packaging (not shown) and sandwich fixing by a resin casing. The transmission coil 60 has a size of 130 mm × 100 mm so as to be the same size as the transmission coil of the present invention shown in FIG.

上記従来構造の伝送コイルと本発明の伝送コイルの漏洩電磁界の違いを電磁界シミュレーター(FEKO)を用いて確認した。シミュレーション条件は、送電側コイル(1次側コイル)と受電側コイル(2次側コイル)間の電力伝送に使用する周波数は800kHz、直列接続した二組の送電側コイル(1次側コイル)51、52への印加電圧Vを、それぞれ1Vずつの合計2V、図1(B)の従来方式の1次側コイルには1.41V(電力を基準に条件をそろえるため、送電側コイル(1次側コイル)51、52、61の入力インピーダンス(R)は、全て50Ωであるので、本発明及び従来方式の1次側コイル共に、電力P=V2 /Rにより0.04Wの電力が入力されたことになる。)印加し、条件をそろえた。 The difference in leakage electromagnetic field between the transmission coil having the conventional structure and the transmission coil of the present invention was confirmed using an electromagnetic field simulator (FEKO). The simulation condition is that the frequency used for power transmission between the power transmission side coil (primary side coil) and the power reception side coil (secondary side coil) is 800 kHz, and two sets of power transmission side coils (primary side coils) 51 connected in series. , 52 is applied to the primary side coil of the conventional method of FIG. 1B (1.41 V) (the power transmission side coil (primary Since the input impedances (R) of the side coils 51, 52, 61 are all 50Ω, 0.04 W of power is input to the primary side coil of the present invention and the conventional method by power P = V 2 / R. Applied) and matched the conditions.

シミュレーション結果について、まず遠方界(電界)の電界強度を可視化した立体グラフを図3に示す。図3(A)及び(B)は、それぞれ、3次元座標系における本発明及び従来方式の伝送コイルにおける電界強度の立体グラフである。図3(B)に示す従来方式の伝送コイルでは、球状の最も外側の輪郭はおおよそ−60dBVの電界強度を示しており、図3(A)に示す本発明方式の伝送コイルでは、球状の最も外側の輪郭はおおよそ−110dBVの電界強度を示しており、図3(A)及び(B)を比べると、明らかに本発明のコイルの方が電界強度が小さくなっているのが分かる。   As for the simulation results, a solid graph in which the electric field strength of the far field (electric field) is first visualized is shown in FIG. 3A and 3B are three-dimensional graphs of the electric field strength in the transmission coil of the present invention and the conventional method in a three-dimensional coordinate system, respectively. In the transmission coil of the conventional system shown in FIG. 3B, the outermost contour of the sphere shows an electric field strength of approximately −60 dBV, and in the transmission coil of the present invention system shown in FIG. The outer contour shows an electric field strength of approximately −110 dBV, and it can be clearly seen that the electric field strength of the coil of the present invention is smaller when comparing FIGS. 3 (A) and 3 (B).

図4は、図5で示す極座標系で表される遠方界の、円周角(x軸からはじまるz軸回りの角度)φ=90°の時、原点からの距離rかつz軸からの角度θ=−180〜+180までの範囲での電界強度(dBV/m)の数値をプロットした電界強度特性グラフである。   FIG. 4 shows a distance r from the origin and an angle from the z axis when the circumference angle (angle around the z axis starting from the x axis) φ = 90 ° of the far field represented by the polar coordinate system shown in FIG. It is the electric field strength characteristic graph which plotted the numerical value of the electric field strength (dBV / m) in the range from θ = −180 to +180.

図4における、図1(A)に示す構成の本発明の伝送コイルの電界強度特性Aと、図1(B)に示す構成の従来方式の伝送コイルの電界強度特性Bとの比較により、本発明の伝送コイルを用いることにより、従来方式の伝送コイルより最大で約50dBの電界を抑制できていることが分かった。   In FIG. 4, a comparison is made between the electric field strength characteristic A of the transmission coil of the present invention having the configuration shown in FIG. 1A and the electric field strength characteristic B of the conventional transmission coil having the configuration shown in FIG. It was found that by using the transmission coil of the invention, an electric field of about 50 dB at maximum could be suppressed as compared with the conventional transmission coil.

図6は、図7で示すデカルト座標系で表される近傍界の、yz断面でz=0のとき近傍磁界の磁界強度(dBA/m)の数値をプロットした磁界強度特性図である。図6における、図1(A)に示す構成の本発明の伝送コイルの電界強度特性Aと、図1(B)に示す構成の従来方式の伝送コイルの電界強度特性Bとの比較により、本発明の伝送コイルを用いることにより、従来方式の伝送コイルより最大で約50dBの周囲への漏電磁界を軽減することができていることが分かった。   FIG. 6 is a magnetic field strength characteristic diagram plotting numerical values of the magnetic field strength (dBA / m) of the near magnetic field when z = 0 in the yz section of the near field represented by the Cartesian coordinate system shown in FIG. FIG. 6 compares the electric field strength characteristic A of the transmission coil of the present invention having the configuration shown in FIG. 1A with the electric field strength characteristic B of the conventional transmission coil having the configuration shown in FIG. It has been found that by using the transmission coil of the invention, the leakage magnetic field to the periphery of about 50 dB at the maximum can be reduced as compared with the transmission coil of the conventional system.

図8は、送電側コイル51、52と受電側コイル53、54間で電磁誘導による非接触電力伝送を行った際の伝送周波数の変化に対する伝送特性(伝送効率特性A及び反射特性B)への影響の調査結果を示す。シミュレーションを行った伝送周波数800kHzにおいて、伝送率が98%、反射特性についてもほぼ0%に近い良好な結果を示し、送電側コイル51、52と受電側コイル間で非接触給電を行うことによる伝送特性への悪影響(効率の低下、反射の増大)はほとんど表れなかった。   FIG. 8 illustrates transmission characteristics (transmission efficiency characteristics A and reflection characteristics B) with respect to changes in transmission frequency when non-contact power transmission is performed between the power transmission coils 51 and 52 and the power reception coils 53 and 54 by electromagnetic induction. The impact survey results are shown. At a transmission frequency of 800 kHz in which the simulation was performed, the transmission rate was 98%, and the reflection characteristics showed a good result close to 0%, and transmission by performing non-contact power feeding between the power transmission side coils 51 and 52 and the power reception side coil. There was almost no adverse effect on properties (decrease in efficiency, increase in reflection).

以上説明したように、本発明の電磁誘導方式非接触電力伝送コイルによれば、2つの送電側コイル51、52を並列配置し、2つの送電側コイル51、52で発生する磁界の方向が互いに逆向きになるように構成することで、互いの磁束が打ち消し合い、周囲への不要な電磁界の発生を、従来のような磁性体や金属シールド等を使用せずに軽減することができる。   As described above, according to the electromagnetic induction type non-contact power transmission coil of the present invention, the two power transmission side coils 51 and 52 are arranged in parallel, and the directions of the magnetic fields generated by the two power transmission side coils 51 and 52 are mutually different. By constituting in the opposite direction, the magnetic fluxes cancel each other, and generation of unnecessary electromagnetic fields around the surroundings can be reduced without using a conventional magnetic body, metal shield, or the like.

なお、上述の実施形態に係る電磁誘導方式非接触電力伝送コイルでは、一対の送電側コイル及び受電側コイルを有する、二組の伝送コイルの全体が、リード端子を除いて固定手段で覆われているが、変形例として、並列配置された2つの送電側コイル51、52のみを、リード端子を除いて樹脂パッケージング等の固定手段で覆われたものとしても良い。この場合、対応する二つの受電側コイル53、54は、同様に樹脂パッケージング等の固定手段で覆われた別体とされる。   In the electromagnetic induction type non-contact power transmission coil according to the above-described embodiment, the entire two sets of transmission coils having a pair of power transmission side coil and power reception side coil are covered with fixing means except for the lead terminals. However, as a modification, only the two power transmission side coils 51 and 52 arranged in parallel may be covered with fixing means such as resin packaging except for the lead terminals. In this case, the corresponding two power receiving side coils 53 and 54 are separately separated by a fixing means such as resin packaging.

また、送電側コイル及び受電側コイルは角形平面コイル形状とされているが、これに限らず、円形平面コイル形状等の他の形状とすることもできる。   Moreover, although the power transmission side coil and the power receiving side coil are formed in a rectangular planar coil shape, the shape is not limited to this, and may be other shapes such as a circular planar coil shape.

また、送電側コイルと受電側コイルは同一寸法とされているが、異なる寸法でも良く、例えば受電側コイルを小さくしても良い。   Moreover, although the power transmission side coil and the power reception side coil are made into the same dimension, a different dimension may be sufficient, for example, you may make a power reception side coil small.

(非接触電力伝送装置の実施形態)
次に、上述した本発明の電磁誘導方式非接触電力伝送コイルを用いた、本発明に係る非接触電力伝送装置の一実施形態について、図9及び図10を参照して説明する。
(Embodiment of non-contact power transmission device)
Next, an embodiment of the non-contact power transmission apparatus according to the present invention using the above-described electromagnetic induction type non-contact power transmission coil of the present invention will be described with reference to FIG. 9 and FIG.

図9は、本発明に係る電磁誘導方式非接触電力伝送装置の一実施形態の構成を示す説明図である。なお、この実施形態では、送電側コイルと受電側コイルが、それぞれ、別体になっている電磁誘導方式非接触電力伝送コイルを使用した場合について説明する。   FIG. 9 is an explanatory diagram showing a configuration of an embodiment of the electromagnetic induction type non-contact power transmission apparatus according to the present invention. In this embodiment, a case will be described in which a power transmission side coil and a power reception side coil each use a separate electromagnetic induction type non-contact power transmission coil.

同図に示すように、本実施形態に係る電磁誘導方式非接触電力伝送装置10は、電気自動車5に設けられる受電装置12と、電気自動車5の外部に設けられ、受電装置12に交流電力を供給する給電装置11と、を備えており、給電装置11より出力される交流電力を非接触(ワイヤレス)で受電装置12に送信する。給電装置11は、電力送信用の通信コイル24を備えており、該通信コイル24に交流電力が供給されると、この交流電力は、受電装置12に設けられている電力受信用の通信コイル31に伝達される。   As shown in the figure, the electromagnetic induction type non-contact power transmission device 10 according to the present embodiment is provided outside the electric vehicle 5 with the power receiving device 12 provided in the electric vehicle 5 and supplies AC power to the power receiving device 12. Power supply device 11 to be supplied, and AC power output from power supply device 11 is transmitted to power reception device 12 in a non-contact (wireless) manner. The power feeding device 11 includes a communication coil 24 for power transmission. When AC power is supplied to the communication coil 24, the AC power is supplied to the power reception communication coil 31 provided in the power receiving device 12. Is transmitted to.

電気自動車5に設けられる受電装置12は、充電時に電気自動車5を給電装置11の所定位置に置いたときに、電力送信用の通信コイル24と接近する電力受信用の通信コイル31と、整流器33と、を備えている。更に、直流電力が充電されるバッテリ35と、該バッテリ35の電圧を降圧してサブバッテリ41に供給するDC/DCコンバータ42と、バッテリ35の出力電力を交流電力に変換するインバータ43と、該インバータ43より出力される交流電力により駆動するモータ44を備えている。   The power receiving device 12 provided in the electric vehicle 5 includes a power receiving communication coil 31 that approaches the power transmitting communication coil 24 and a rectifier 33 when the electric vehicle 5 is placed at a predetermined position of the power feeding device 11 during charging. And. Furthermore, a battery 35 charged with DC power, a DC / DC converter 42 that steps down the voltage of the battery 35 and supplies it to the sub-battery 41, an inverter 43 that converts output power of the battery 35 into AC power, A motor 44 driven by AC power output from the inverter 43 is provided.

図10は、本発明の実施形態に係る電磁誘導方式非接触電力伝送装置10のブロック図であり、給電装置11、及び電気自動車5に搭載される受電装置12を備えている。   FIG. 10 is a block diagram of the electromagnetic induction type non-contact power transmission device 10 according to the embodiment of the present invention, and includes a power feeding device 11 and a power receiving device 12 mounted on the electric vehicle 5.

給電装置11は、電力伝送用のキャリア信号を出力するキャリア発振器21と、該キャリア発振器21より出力されるキャリア信号(即ち、交流電力)を増幅する電力増幅器23、及び電力増幅器23で増幅された交流電力を出力する通信コイル24を備えている。通信コイル24として、上述した送電側コイル51、52を直列接続して用いている。すなわち、送電側コイル51のリード端子51b及び送電側コイル52のリード端子52aを接続し、送電側コイル51のリード端子51a及び送電側コイル52のリード端子52bを、それぞれ、電力増幅器23の一方及び他方の出力端子に接続する。   The power supply apparatus 11 is amplified by a carrier oscillator 21 that outputs a carrier signal for power transmission, a power amplifier 23 that amplifies the carrier signal (that is, AC power) output from the carrier oscillator 21, and the power amplifier 23. A communication coil 24 that outputs AC power is provided. As the communication coil 24, the above-described power transmission side coils 51 and 52 are connected in series. That is, the lead terminal 51b of the power transmission side coil 51 and the lead terminal 52a of the power transmission side coil 52 are connected, and the lead terminal 51a of the power transmission side coil 51 and the lead terminal 52b of the power transmission side coil 52 are connected to one of the power amplifiers 23 and Connect to the other output terminal.

キャリア発振器21は、電力伝送用の交流信号として例えば周波数800[kHz]の交流電力を出力する。   The carrier oscillator 21 outputs, for example, AC power having a frequency of 800 [kHz] as an AC signal for power transmission.

電力増幅器23は、キャリア発信器21より出力された交流電力を増幅する。そして、増幅した交流電力を通信コイル24(送電側コイル51、52)に出力する。通信コイル24(送電側コイル51、52)は、受電装置12に設けられる通信コイル31にワイヤレスで交流電力を伝送する。   The power amplifier 23 amplifies the AC power output from the carrier transmitter 21. The amplified AC power is output to the communication coil 24 (power transmission side coils 51 and 52). The communication coil 24 (power transmission side coils 51 and 52) wirelessly transmits AC power to the communication coil 31 provided in the power receiving device 12.

また、受電装置12は、電力送信用の通信コイル24(送電側コイル51、52)より送信される交流電力を受信する電力受信用の通信コイル31と、この通信コイル31で受信された交流電力を整流して、直流電圧を生成する整流器33と、を備える。また、車両駆動用のモータ44(図9参照)に電力を供給するバッテリ35を備え、該バッテリ35は、整流器33より出力される直流電力により充電される。通信コイル31として、上述した伝送コイルの受電側コイル53、54を直列接続して用いている。すなわち、受電側コイル53のリード端子53b及び受電側コイル54のリード端子54aを接続し、受電側コイル53のリード端子53a及び受電側コイル54のリード端子54bを、それぞれ、整流器33の一方及び他方の入力端子に接続する。   The power receiving device 12 includes a power receiving communication coil 31 that receives AC power transmitted from the power transmitting communication coil 24 (power transmission side coils 51 and 52), and AC power received by the communication coil 31. And a rectifier 33 that generates a DC voltage. Further, a battery 35 that supplies electric power to a vehicle driving motor 44 (see FIG. 9) is provided, and the battery 35 is charged with DC power output from the rectifier 33. As the communication coil 31, the above-described power receiving coils 53 and 54 of the transmission coil are connected in series. That is, the lead terminal 53b of the power receiving side coil 53 and the lead terminal 54a of the power receiving side coil 54 are connected, and the lead terminal 53a of the power receiving side coil 53 and the lead terminal 54b of the power receiving side coil 54 are connected to one side and the other side of the rectifier 33, respectively. Connect to the input terminal.

次に、本発明の電磁誘導方式非接触電力伝送装置の動作について説明する。図9に示すように、電気自動車5が給電装置11の所定位置に置かれ、給電装置11に設けられる通信コイル24(送電側コイル51、52)と、電気自動車5の受電装置12に設けられる通信コイル31(受電側コイル53、54)が対向する位置となると、バッテリ35への充電を行うことができる。   Next, the operation of the electromagnetic induction type non-contact power transmission apparatus of the present invention will be described. As shown in FIG. 9, the electric vehicle 5 is placed at a predetermined position of the power feeding device 11, and is provided in the communication coil 24 (power transmission side coils 51 and 52) provided in the power feeding device 11 and the power receiving device 12 of the electric vehicle 5. The battery 35 can be charged when the communication coil 31 (the power receiving side coils 53, 54) is at a facing position.

充電が開始されると、図10に示すキャリア発振器21より、周波数800[kHz]の交流電力が出力される。   When charging is started, AC power having a frequency of 800 [kHz] is output from the carrier oscillator 21 shown in FIG.

そして、キャリア発信器21より出力された交流電力は、電力増幅器23にて増幅される。増幅された交流電力は、通信コイル24(送電側コイル51、52)、通信コイル31(受電側コイル53、54)を介して受電装置12に伝送されることになる。   Then, the AC power output from the carrier transmitter 21 is amplified by the power amplifier 23. The amplified AC power is transmitted to the power receiving device 12 via the communication coil 24 (power transmission side coils 51 and 52) and the communication coil 31 (power reception side coils 53 and 54).

受電装置12に伝送された交流電力は、通信コイル31(受電側コイル53、54)から整流器33に出力される。   The AC power transmitted to the power reception device 12 is output from the communication coil 31 (power reception side coils 53 and 54) to the rectifier 33.

そして、整流器33では、交流電力を整流して所定電圧の直流電力に変換し、この電力をバッテリ35に供給して、該バッテリ35を充電する。これにより、バッテリ35を充電することができる。   The rectifier 33 rectifies AC power and converts it into DC power of a predetermined voltage, supplies this power to the battery 35, and charges the battery 35. Thereby, the battery 35 can be charged.

以上説明したように、本発明の電磁誘導方式非接触電力伝送装置によれば、給電用の通信コイルとして本発明の電磁誘導方式非接触電力伝送コイルを用いることにより、周囲への漏洩電磁界の発生を軽減した電磁誘導方式非接触電力伝送装置を提供することができる。   As described above, according to the electromagnetic induction type non-contact power transmission device of the present invention, by using the electromagnetic induction type non-contact power transmission coil of the present invention as a communication coil for power feeding, the leakage electromagnetic field to the surroundings can be reduced. An electromagnetic induction type non-contact power transmission device with reduced generation can be provided.

以上の通り、本発明の実施形態について説明したが、本発明はこれに限らず、種々の変形、応用が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various deformation | transformation and application are possible.

例えば、上述の実施形態では、図2に示すように、送電側コイル51及び52は、各々の導体が互いに逆回りの渦巻き状に形成されているが、これに代えて、各々の導体が同じ方向に回る渦巻き状に形成し、かつ導体を流れる電流が互いに逆回りに流れるようにしてもよい。   For example, in the above-described embodiment, as shown in FIG. 2, each of the power transmission side coils 51 and 52 is formed in a spiral shape in which each conductor is opposite to each other, but instead, each conductor is the same. They may be formed in a spiral shape that rotates in the direction, and the currents flowing through the conductors may flow in opposite directions.

また、上述の実施形態では、送電側コイル(1次側コイル)と受電側コイル(2次側コイル)間の電力伝送に使用する周波数は800kHzとしているが、これに限らず、他の周波数でも同様に漏洩電磁界の軽減効果を得ることができる。   Moreover, in the above-mentioned embodiment, although the frequency used for the electric power transmission between a power transmission side coil (primary side coil) and a power receiving side coil (secondary side coil) is 800 kHz, it is not restricted to this, and other frequencies are also used. Similarly, the effect of reducing the leakage electromagnetic field can be obtained.

50 伝送コイル(電磁誘導式非接触電力伝送コイル)
51、52 送電側コイル
53、54 受電側コイル
50 Transmission coil (electromagnetic induction type non-contact power transmission coil)
51, 52 Power transmission side coil 53, 54 Power reception side coil

Claims (3)

導体が同一平面上で渦巻き状に巻かれた一対の送電側コイル及び受電側コイルを有する伝送コイルを備え、前記送電側コイルに電流を流すことによる電磁誘導で受電側コイルに電力伝送を行う電磁誘導方式非接触電力伝送コイルであって、
二組の前記伝送コイルを備え、
前記二組の前記伝送コイルにおける二つの前記送電側コイルは、各々の前記導体が同一平面になるように、互いに間隔を空けて配置され、前記導体を流れる電流が互いに逆回りに流れるように構成されている
ことを特徴とする電磁誘導方式非接触電力伝送コイル。
An electromagnetic system comprising a transmission coil having a pair of power transmission side coil and power reception side coil in which a conductor is spirally wound on the same plane, and transmitting power to the power reception side coil by electromagnetic induction by passing a current through the power transmission side coil Inductive contactless power transmission coil,
Comprising two sets of said transmission coils;
The two power transmission side coils in the two sets of the transmission coils are arranged so as to be spaced apart from each other so that the conductors are in the same plane, and the currents flowing through the conductors flow in opposite directions to each other. An electromagnetic induction type non-contact power transmission coil, characterized in that
請求項1記載の電磁誘導方式非接触電力伝送コイルにおいて、
前記二つの送電側コイルは、各々の前記導体が互いに逆回りの渦巻き形状に形成されている
ことを特徴とする電磁誘導方式非接触電力伝送コイル。
In the electromagnetic induction type non-contact power transmission coil according to claim 1,
In the two power transmission side coils, each of the conductors is formed in a spiral shape opposite to each other. An electromagnetic induction type non-contact power transmission coil.
送電側コイル及び受電側コイルを有する伝送コイルを備え、前記送電側コイルに電流を流すことによる電磁誘導で受電側コイルに電力伝送を行う電磁誘導方式非接触電力伝送装置であって、
前記伝送コイルは、請求項1または2記載の電磁誘導方式非接触電力伝送コイルである
ことを特徴とする電磁誘導方式非接触電力伝送装置。
An electromagnetic induction type non-contact power transmission device comprising a transmission coil having a power transmission side coil and a power reception side coil, and performing power transmission to the power reception side coil by electromagnetic induction by passing a current through the power transmission side coil,
The electromagnetic induction type non-contact power transmission coil according to claim 1, wherein the transmission coil is an electromagnetic induction type non-contact power transmission coil.
JP2011268958A 2011-12-08 2011-12-08 Electromagnetic induction non-contact power transmission coil and electromagnetic induction non-contact power transmission apparatus Pending JP2013120890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011268958A JP2013120890A (en) 2011-12-08 2011-12-08 Electromagnetic induction non-contact power transmission coil and electromagnetic induction non-contact power transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011268958A JP2013120890A (en) 2011-12-08 2011-12-08 Electromagnetic induction non-contact power transmission coil and electromagnetic induction non-contact power transmission apparatus

Publications (1)

Publication Number Publication Date
JP2013120890A true JP2013120890A (en) 2013-06-17

Family

ID=48773384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011268958A Pending JP2013120890A (en) 2011-12-08 2011-12-08 Electromagnetic induction non-contact power transmission coil and electromagnetic induction non-contact power transmission apparatus

Country Status (1)

Country Link
JP (1) JP2013120890A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035935A (en) * 2013-08-09 2015-02-19 積水化学工業株式会社 Power supply system, power supply method and architecture member
JP2015130734A (en) * 2014-01-07 2015-07-16 昭和飛行機工業株式会社 non-contact power supply device
JP2017098415A (en) * 2015-11-25 2017-06-01 株式会社ダイフク Coil device and electric circuit
JP2017530562A (en) * 2014-09-11 2017-10-12 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Magnetic flux coupling structure with controlled magnetic flux cancellation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035935A (en) * 2013-08-09 2015-02-19 積水化学工業株式会社 Power supply system, power supply method and architecture member
JP2015130734A (en) * 2014-01-07 2015-07-16 昭和飛行機工業株式会社 non-contact power supply device
JP2017530562A (en) * 2014-09-11 2017-10-12 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Magnetic flux coupling structure with controlled magnetic flux cancellation
JP2017098415A (en) * 2015-11-25 2017-06-01 株式会社ダイフク Coil device and electric circuit

Similar Documents

Publication Publication Date Title
CN104682573B (en) Power transmission coil unit and Contactless power transmission device
US20200106304A1 (en) Wireless power transfer using multiple coil arrays
JP6281963B2 (en) Non-contact power transmission device and non-contact power transmission method
CN104681257A (en) Power feeding coil unit and wireless power transmission device
JP6142413B2 (en) Antenna coil unit
JP6028000B2 (en) Power transmission system
WO2015146889A1 (en) Power reception system
TW201421849A (en) Method for forming magnetic field space
JP2013120890A (en) Electromagnetic induction non-contact power transmission coil and electromagnetic induction non-contact power transmission apparatus
JP2015015852A (en) Coil antenna
JP5929418B2 (en) Method for manufacturing antenna coil
KR101222137B1 (en) Directional wireless power transmission apparatus using magnetic resonance induction
JP6040397B2 (en) Power transmission system
JP6162609B2 (en) Non-contact power feeding device
JP2014150698A (en) Wireless power supply system
JP2014197932A (en) Power transmission system
JP6085813B2 (en) Power transmission system
JP6085811B2 (en) Power transmission system
JP6040510B2 (en) Power transmission system
KR101369157B1 (en) Wireless power transfer apparatus by using magnetic induction
JP2017093141A (en) Non-contact power transmission device
JP6085812B2 (en) Power transmission system
JP2015089259A (en) Antenna coil unit
JP6085817B2 (en) Power transmission system
TW201511443A (en) Electromagnetic resonance wireless charging system and device