JP2013108112A - End mill made of alloy steel - Google Patents

End mill made of alloy steel Download PDF

Info

Publication number
JP2013108112A
JP2013108112A JP2011252225A JP2011252225A JP2013108112A JP 2013108112 A JP2013108112 A JP 2013108112A JP 2011252225 A JP2011252225 A JP 2011252225A JP 2011252225 A JP2011252225 A JP 2011252225A JP 2013108112 A JP2013108112 A JP 2013108112A
Authority
JP
Japan
Prior art keywords
steel
alloy steel
end mill
alloy
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011252225A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
博史 渡邊
Koichi Matsumura
宏一 松村
Ryo Katashima
亮 片島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011252225A priority Critical patent/JP2013108112A/en
Publication of JP2013108112A publication Critical patent/JP2013108112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an end mill made of an alloy steel and a surface-coated end mill made of the alloy steel, which exhibit excellent wear resistance over a long-term use.SOLUTION: In the end mill made of the alloy steel and the surface-coated end mill made of the alloy steel, a tool base body is composed of an alloy steel having a high-temperature tempering softening resistance and including, by mass, 2.0-3.0% of C, 3.0-6.0% of Si, 9.0-15.0% of Cr, 10.0-12.0% in total of one or both of W and Mo, 2.0-3.0% of V, 3.0-4.0% of Co, and the balance Fe with inevitable impurities.

Description

この発明は、長期の使用にわたってすぐれた耐摩耗性を発揮するエンドミルに関し、特に、高速切削加工時に、刃先が焼戻し温度以上の高温に晒された場合でも優れた高温焼戻し軟化抵抗性を備える合金鋼で工具基体を構成することにより、刃先の硬度低下が防止され、高温下で優れた切削性を発揮する合金鋼製エンドミルおよび工具基体表面に硬質被覆層を蒸着形成した表面被覆合金鋼製エンドミルに関する。   TECHNICAL FIELD The present invention relates to an end mill that exhibits excellent wear resistance over a long period of use, and in particular, an alloy steel having excellent high-temperature temper softening resistance even when the cutting edge is exposed to a temperature higher than the tempering temperature during high-speed cutting. The present invention relates to an alloy steel end mill that prevents deterioration in the hardness of the cutting edge and exhibits excellent machinability at high temperatures, and a surface coated alloy steel end mill in which a hard coating layer is formed by vapor deposition on the surface of the tool base. .

切削工具用の材料としては、合金鋼(JIS SKH、SKD等)、超硬合金、サーメット、cBN、ダイヤモンド等が知られているが、切削工具用合金鋼のなかでは、耐摩耗性と靭性に優れることから高速度工具鋼(JIS SKH)が多用されている。
高速度工具鋼は、C,Cr,W,Mo,V,Co等の合金元素を多量に添加し、特に高温での硬さや耐摩耗性を高めた工具鋼であるが、大別して、溶製により製造する高速度工具鋼と粉末冶金法により製造する粉末高速度工具鋼(粉末ハイスともいう)の2種類がある。
溶製法による場合には、通常の製法により製造し得るものの、粗大炭化物の偏析等による材料の均質化が問題となりやすく、一方、粉末冶金法による場合は、製造工程が複雑でコスト高になるという欠点はあるものの、溶製法により製造が困難である材質をも製造可能とするとともに、均一組織を形成することができるという利点がある。
Alloy steels (JIS SKH, SKD, etc.), cemented carbide, cermet, cBN, diamond, etc. are known as materials for cutting tools. However, among the alloy steels for cutting tools, they have high wear resistance and toughness. High speed tool steel (JIS SKH) is frequently used because of its superiority.
High-speed tool steel is a tool steel to which a large amount of alloying elements such as C, Cr, W, Mo, V, Co, etc. are added to improve hardness and wear resistance especially at high temperatures. There are two types of high-speed tool steel manufactured by the method and powder high-speed tool steel (also referred to as powder high speed) manufactured by the powder metallurgy method.
In the case of the melting method, although it can be manufactured by a normal manufacturing method, the homogenization of the material due to segregation of coarse carbides tends to be a problem, while in the case of the powder metallurgy method, the manufacturing process is complicated and expensive. Although there are drawbacks, there is an advantage that even a material that is difficult to manufacture by a melting method can be manufactured and a uniform structure can be formed.

溶製法による高速度工具鋼については、例えば、特許文献1〜5に記載されており、特許文献1によれば、鋼中成分として微量の希土類元素を含有させ、また、共晶炭化物の形態制御を行うことにより、耐衝撃性と切削性能を高めることが知られている。
また、特許文献2によれば、鋼中にVC炭化物を形成することにより耐摩耗性を向上させるとともに、VC炭化物の晶出形態を微細かつ均一化することで靭性を高めることが知られている。
また、特許文献3によれば、鋼中の合金成分およびその含有量を調整することにより、熱間加工性、靭性、耐衝撃性、疲労強度を向上させることが知られている。
また、特許文献4によれば、鋼中の合金成分、特に、C、Si、Cr、Mo,Wの含有量を調整し、C:1.05〜2.00%、Si:0.3〜2.0%(好ましくは、Si:0.3〜1.0%)、Cr:3.0〜5.0%とした上で、0.4≦2Mo/(W+2Mo)×Si≦1.0の関係を満足させることにより、焼戻し硬さが高く、靭性、耐摩耗性を向上させることが知られている。
また、特許文献5によれば、鋼中に高硬度の微細炭化物を形成することにより耐摩耗性、耐熱性、耐焼付き性の向上を図り、さらに、鋳造組織を微細化することにより工具切刃の耐チッピング性の向上を図ることが知られている。
The high-speed tool steel by the melting method is described in, for example, Patent Documents 1 to 5. According to Patent Document 1, a trace amount of rare earth elements is contained as a component in the steel, and the shape control of the eutectic carbide is performed. It is known to improve impact resistance and cutting performance by performing.
Further, according to Patent Document 2, it is known to improve wear resistance by forming VC carbide in steel and to improve toughness by making the crystallization form of VC carbide fine and uniform. .
Further, according to Patent Document 3, it is known that hot workability, toughness, impact resistance, and fatigue strength are improved by adjusting alloy components and their contents in steel.
Moreover, according to Patent Document 4, the content of alloy components in steel, particularly C, Si, Cr, Mo, W, is adjusted, and C: 1.05 to 2.00%, Si: 0.3 to 2.0% (preferably Si: 0.3-1.0%), Cr: 3.0-5.0%, 0.4 ≦ 2Mo / (W + 2Mo) × Si ≦ 1.0 It is known that tempering hardness is high and toughness and wear resistance are improved by satisfying the above relationship.
Further, according to Patent Document 5, the wear resistance, heat resistance, and seizure resistance are improved by forming fine carbides with high hardness in the steel, and further, the tool cutting edge is obtained by refining the cast structure. It is known to improve chipping resistance.

粉末冶金法による粉末高速度工具鋼(粉末ハイス)については、例えば、特許文献6,7に記載されており、特許文献6によれば、1.5%を超え2.6%以下のC、6%を超え13%以下のCrをそれぞれ含有させ、Siを1.0%以下とし、かつ、鋼中の(W+2Mo)量及び(C−Ceq)の値を規制するとともに、Nb/Vの値を規制することにより、靭性、耐食性を有し、かつ、高温焼戻し軟化抵抗性を高めた粉末高速度工具鋼を得ることができるとされている。
また、特許文献7によれば、鋼中の合金成分相互の含有量を、一定の関係を満足するように調整することによって、耐摩耗性および靭性を向上させ得るとされている。
About the powder high-speed tool steel (powder high speed) by the powder metallurgy method, for example, it is described in Patent Documents 6 and 7, and according to Patent Document 6, C is more than 1.5% and 2.6% or less. More than 6% and less than 13% Cr are contained, Si is 1.0% or less, and the (W + 2Mo) amount and (C-Ceq) value in the steel are regulated, and the value of Nb / V It is said that a powder high-speed tool steel having toughness and corrosion resistance and enhanced resistance to high-temperature tempering softening can be obtained by regulating the above.
According to Patent Document 7, it is said that the wear resistance and toughness can be improved by adjusting the contents of the alloy components in the steel so as to satisfy a certain relationship.

特開平1−165748号公報JP-A-1-165748 特開平7−228946号公報JP-A-7-228946 特開平8−100239号公報Japanese Patent Application Laid-Open No. 8-100239 特開2000−144333号公報JP 2000-144333 A 特許第2573951号明細書Japanese Patent No. 2573951 特開平5−171373号公報JP-A-5-171373 特開2001−294986号公報JP 2001-294986 A

近年の切削技術の進展はめざましく、加えて切削加工における省力化、省エネ化、低コスト化さらに効率化等の要求も強く、これに伴い、ドライ条件での高速切削加工、高能率切削加工も求められているが、上記従来の合金鋼から作製された合金鋼製エンドミルを用い、ドライ高速切削を行ったような場合には、切刃が切削加工時の高熱にさらされるため、合金鋼が高温焼戻し軟化を起こして硬度低下を生じ、その結果、クレータ摩耗等を発生しやすくなり、工具寿命が短くなるという問題があった。   Recent progress in cutting technology is remarkable, and in addition, there are strong demands for labor saving, energy saving, cost reduction, and efficiency in cutting, and accordingly, high-speed cutting and high-efficiency cutting under dry conditions are also required. However, when dry high-speed cutting is performed using an alloy steel end mill made from the above-mentioned conventional alloy steel, the cutting blade is exposed to high heat during the cutting process, so the alloy steel has a high temperature. There has been a problem that temper softening is caused to cause a decrease in hardness, and as a result, crater wear or the like is likely to occur, and the tool life is shortened.

そこで、本発明者等は、高熱発生を伴うドライ高速切削を行ったような場合にも、高温焼戻し軟化を生じず、硬度低下の少ない合金鋼製エンドミル、表面被覆合金鋼製エンドミルを提供すべく、鋭意研究を行った結果、次のような知見を得たのである。   Accordingly, the present inventors are to provide an alloy steel end mill and a surface-coated alloy steel end mill that do not cause high-temperature temper softening and have low hardness reduction even when dry high-speed cutting accompanied by high heat generation is performed. As a result of earnest research, the following findings were obtained.

従来の合金鋼、特に、高速度工具鋼においては、通常その合金成分として、C,Si,Mn,Cr,W,Mo,V,Co等が含有されているが、その合金成分のうちのSiについては、主として脱酸剤としての作用を期待して添加されており、硬さを向上させる作用もあるが、Si含有量が多くなりすぎると、高速度工具鋼の靭性を劣化させることになる(例えば、前記特許文献4参照)ので、靭性に悪影響を与えないという観点から通常は多くても2%以下の範囲内で添加されていた。   Conventional alloy steels, particularly high-speed tool steels, usually contain C, Si, Mn, Cr, W, Mo, V, Co, etc. as their alloy components. Of these alloy components, Si Is added mainly in anticipation of the action as a deoxidizer, and also has the effect of improving hardness, but if the Si content is too high, the toughness of the high-speed tool steel will be deteriorated. (For example, refer to Patent Document 4) Therefore, from the viewpoint of not adversely affecting the toughness, it was usually added within a range of at most 2%.

本発明者等は、C成分、Si成分及びCr成分の含有量と作用に着目し、これらの各成分の含有量を種々に変化させた場合の高温焼戻し軟化特性への影響を調査したところ、鋼中のSi成分の含有量を3.0〜6.0%と高くし、しかも、鋼中のC成分及びCr成分を同時に多量添加した場合には、合金鋼の高温焼戻し軟化特性が大きく改善され、高温に晒された場合でも硬度低下が抑制されることを見出したのである。
なお、ここでいう多量のSiとは、通常の合金鋼において、脱酸剤として添加される量をはるかに超える量をいい、例えば、先に挙げた特許文献1〜6の高速度工具鋼におけるSi含有量は、最大で2質量%であり(なお、特許文献4においては、2%を超える過度の添加は、偏析による靭性の低下を招くとしている)、最大3質量%のSiを含有し得るとしている特許文献7においても、Si含有量の好ましい上限値は1%(段落0022参照)とされており、本発明者等は3質量%以上のSiを添加すると同時にC及びCrの多量添加を行うことによって、従来技術からは予期し得ない程度に合金鋼の高温焼戻し軟化特性が大きく改善されることを見出したのであり、また、この合金鋼によって構成されたエンドミルはすぐれた切削性能を備えることを見出したのである。
The inventors focused on the content and action of the C component, Si component, and Cr component, and investigated the effect on the high-temperature temper softening characteristics when the content of each of these components was variously changed. When the content of the Si component in the steel is increased to 3.0 to 6.0% and a large amount of the C component and Cr component in the steel are added simultaneously, the high temperature temper softening property of the alloy steel is greatly improved. Thus, they have found that the decrease in hardness is suppressed even when exposed to high temperatures.
In addition, in this case, a large amount of Si refers to an amount far exceeding the amount added as a deoxidizer in ordinary alloy steel. For example, in the high-speed tool steels of Patent Documents 1 to 6 listed above. The Si content is 2% by mass at the maximum (in Patent Document 4, excessive addition exceeding 2% is said to cause a decrease in toughness due to segregation), and the content of Si is 3% by maximum. Also in Patent Document 7 to be obtained, the preferable upper limit value of the Si content is 1% (see paragraph 0022), and the present inventors added a large amount of C and Cr at the same time as adding 3% by mass or more of Si. It was found that the high temperature temper softening property of the alloy steel was greatly improved to an extent that could not be expected from the prior art, and the end mill made of this alloy steel had excellent cutting performance. It was found that with.

この発明は、上記の知見に基づいてなされたものであって、
「(1)質量%で、C:2.0〜3.0%、Si:3.0〜6.0%、Cr:9.0〜15.0%、WおよびMoのうちの1種または2種の合計:10.0〜12.0%、V:2.0〜3.0%、Co:3.0〜4.0%、残部はFeおよび不可避不純物からなる高温焼戻し軟化抵抗性を備える合金鋼で構成したことを特徴とする合金鋼製エンドミル。
(2) 前記(1)記載の高温焼戻し軟化抵抗性を備える合金鋼を基体とし、該基体表面に硬質被覆層を蒸着形成したことを特徴とする表面被覆合金鋼製エンドミル。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) by mass%, C: 2.0 to 3.0%, Si: 3.0 to 6.0%, Cr: 9.0 to 15.0%, one of W and Mo, or Total of two types: 10.0 to 12.0%, V: 2.0 to 3.0%, Co: 3.0 to 4.0%, the balance being high temperature temper softening resistance composed of Fe and inevitable impurities An alloy steel end mill characterized by comprising alloy steel.
(2) An end mill made of surface-coated alloy steel, characterized in that the alloy steel having high-temperature temper softening resistance described in (1) is used as a base, and a hard coating layer is formed by vapor deposition on the surface of the base. "
It has the characteristics.

この発明について、以下に詳細に説明する。
まず、この発明の合金鋼製エンドミルを構成する合金鋼の合金成分組成範囲についての数値限定理由は次の通りである。
The present invention will be described in detail below.
First, the reasons for limiting the numerical values for the alloy component composition range of the alloy steel constituting the alloy steel end mill of the present invention are as follows.

C:2.0〜3.0質量%(以下においては、質量%を単に%で示す)
Cは、焼入れ状態でその一部がマトリックスに固溶してマトリックスを強化し、また、一部は、W,Mo,Cr,Vと結合して炭化物を形成し、合金鋼の硬さと耐摩耗性を向上させる。
C含有量が2.0%未満では、硬さと耐摩耗性向上を期待できないばかりか、後述するSiとの相互作用によって、高温焼戻し軟化特性の改善を図ることができない。また、C含有量が3.0%を超えると、硬くなり過ぎて靭性劣化が生じるようになり、また、不均一なミクロ組織の形成により材質の均質性が担保できなくなることから、C含有量は2.0〜3.0%と定めた。
C: 2.0-3.0 mass% (in the following, mass% is simply indicated by%)
Part of C is hardened and solidifies in the matrix to strengthen the matrix, and part of it combines with W, Mo, Cr, and V to form carbides, and the hardness and wear resistance of the alloy steel. Improve sexiness.
If the C content is less than 2.0%, not only the hardness and wear resistance can be expected to be improved, but also the high temperature temper softening property cannot be improved by the interaction with Si described later. Further, if the C content exceeds 3.0%, it becomes too hard and deterioration of toughness occurs, and the uniformity of the material cannot be ensured due to the formation of a non-uniform microstructure. Was determined to be 2.0 to 3.0%.

Si:3.0〜6.0%
通常の合金鋼の場合と同様に、Siは脱酸剤としての作用を有する。
さらに、この発明においては、合金鋼の高温焼戻し軟化特性の改善を図る上で、上記Cおよび後記するCrとともに重要な合金成分である。
Si含有量が3.0%未満では軟化特性の向上に寄与がみられず、一方、Si含有量が6.0%を超えると靭性が大幅に低下するため、Si含有量は3.0〜6.0%と定めた。
Si: 3.0-6.0%
As in the case of ordinary alloy steel, Si acts as a deoxidizer.
Furthermore, in the present invention, in order to improve the high temperature temper softening property of the alloy steel, it is an important alloy component together with the C and Cr described later.
If the Si content is less than 3.0%, no contribution is seen in improving the softening properties. On the other hand, if the Si content exceeds 6.0%, the toughness is significantly reduced. Set to 6.0%.

Cr:9.0〜15.0%
Crは、鋼の焼入れ性を確保するとともに、熱処理時の耐酸化性を高め、またSiと同時に大量添加すると軟化特性向上に寄与するために9.0%以上のCrの含有を必要とし、一方、Cr含有量が15.0%を超えると、Cr炭化物が偏析し加工性が劣化するだけでなく靭性が大幅に低下するため、Cr添加量は、9.0〜15.0%と定めた。
Cr: 9.0 to 15.0%
Cr secures the hardenability of the steel and enhances the oxidation resistance during heat treatment, and if it is added in a large amount simultaneously with Si, it needs to contain 9.0% or more of Cr in order to contribute to the improvement of the softening properties. When the Cr content exceeds 15.0%, Cr carbide segregates and the workability deteriorates, and the toughness significantly decreases. Therefore, the Cr addition amount is set to 9.0 to 15.0%. .

本発明者等は、合金鋼の合金成分である上記のC,Si,Crの含有量と、焼戻し温度、高温硬さの関連について詳細な調査を行った。
図1に、各種の鋼についての、焼戻し温度(℃)による高温硬さ変化(軟化割合(HRC硬さ))の一例を示す。
図1において、鋼中のC、SiおよびCrの各含有量は、次のとおりである。
本発明鋼1−A: 2.1%C,4.0%Si,9.1%Cr、
かつ、C+Si+Cr=15.2%
本発明鋼2−A: 2.5%C,4.0%Si,12.0%Cr、
かつ、C+Si+Cr=18.5%
比較鋼11−A: 2.1%C、4.0%Si、3.8%Cr、
比較鋼12−A: 2.5%C、4.0%Si、4.1%Cr、
比較鋼15−A: 1.0%C,0.2%Si,4.0%Cr、
ここで、上記比較鋼15は、C,Si,Cr含有量のいずれもが、本発明の組成範囲を外れる従来鋼であり、また、比較鋼11,12は、C含有量およびSi含有量は本発明の範囲内であるが、Cr含有量が本発明の範囲外のものである。
図1において、600℃の焼戻し温度における硬さ(H600)を基準とし、焼戻し温度T(℃)(但し、T≧600)における硬さをHとした場合の、焼戻し温度による硬さ低下の度合い示す指標である軟化割合(但し、軟化割合(%)=(H−H600)×100/H600)をみると、Si含有量の多い比較鋼11、比較鋼12は、比較鋼15に比しすぐれた軟化抵抗性を有するが、SiとともにCrを同時に多量添加した本発明鋼1、本発明鋼2は、比較鋼15ばかりか、比較鋼11、比較鋼12に対しても一段と優れた焼き戻し軟化抵抗性を有することが分かる。
The present inventors conducted a detailed investigation on the relationship between the contents of the above-mentioned C, Si, Cr, which are alloy components of alloy steel, the tempering temperature, and the high temperature hardness.
In FIG. 1, an example of the high temperature hardness change (softening ratio (HRC hardness)) by tempering temperature (degreeC) about various steel is shown.
In FIG. 1, the contents of C, Si and Cr in the steel are as follows.
Invention steel 1-A: 2.1% C, 4.0% Si, 9.1% Cr,
And C + Si + Cr = 15.2%
Invention steel 2-A: 2.5% C, 4.0% Si, 12.0% Cr,
And C + Si + Cr = 18.5%
Comparative Steel 11-A: 2.1% C, 4.0% Si, 3.8% Cr,
Comparative steel 12-A: 2.5% C, 4.0% Si, 4.1% Cr,
Comparative steel 15-A: 1.0% C, 0.2% Si, 4.0% Cr,
Here, the comparative steel 15 is a conventional steel whose C, Si, and Cr contents are out of the composition range of the present invention, and the comparative steels 11 and 12 have a C content and a Si content of Although within the scope of the present invention, the Cr content is outside the scope of the present invention.
In Figure 1, a reference hardness at tempering temperature of 600 ° C. The (H 600), tempering temperature T (° C.) (where, T ≧ 600) when the hardness at was H T, decreases the hardness due to tempering temperature When the softening ratio (however, softening ratio (%) = (H T −H 600 ) × 100 / H 600 ), which is an index indicating the degree of the steel, comparative steel 11 and comparative steel 12 having a large Si content are comparative steels. The present invention steel 1 and the present invention steel 2 having a softening resistance superior to that of 15 but simultaneously added with a large amount of Cr together with Si are not only the comparative steel 15 but also the comparative steel 11 and the comparative steel 12. It can be seen that it has excellent temper softening resistance.

本発明で高温焼戻し軟化抵抗性が向上する理由は未だ十分に解明されているとはいえないが、おそらく、600〜700℃の温度範囲では、鋼中に多量に含有されているSiがセメンタイト形成を抑制するとともに、セメンタイトに固溶したCrが連続的に炭化物を形成することでセメンタイトの凝集・粗大化を遅らせ、焼戻し時の母相の軟化が遅れると考えられる。
加えてSi、Crを同時添加することで母相中にSiとCrの金属間化合物が形成され、焼戻し二次硬化ピークが高温側に移動し、焼戻し時の軟化開始点が高温側になると考えられる。
これらの効果により高温焼戻し軟化抵抗が大幅に向上していると推測される。
The reason why the high-temperature tempering softening resistance is improved in the present invention has not yet been fully elucidated. However, in a temperature range of 600 to 700 ° C., Si contained in a large amount in the steel forms cementite. It is considered that Cr dissolved in cementite continuously forms carbides, thereby delaying cementite aggregation and coarsening and delaying softening of the matrix during tempering.
In addition, the simultaneous addition of Si and Cr forms an intermetallic compound of Si and Cr in the matrix, and the tempering secondary hardening peak moves to the high temperature side, and the softening start point during tempering is on the high temperature side. It is done.
It is presumed that the high temperature temper softening resistance is greatly improved by these effects.

WおよびMoのうちの1種または2種の合計:10.0〜12.0%
Wは、MC型やM6C型の炭化物を形成すると共に、その一部がマトリックス中に固溶し、耐摩耗性、高温焼戻し軟化抵抗性を向上させるが、Wの含有量が過剰になると、炭化物の粗大化を招き、靭性も低下する。
また、Moは、Wと同様に、MC型やM6C型の炭化物を形成して耐摩耗性、高温焼戻し軟化抵抗性を高めるとともに、靭性を向上させるが、Moの含有量が過剰になると、結晶粒が粗大化し脆弱になるとともに、熱処理時に脱炭を生じやすくなる。
したがって、耐摩耗性、高温焼戻し軟化抵抗性を向上させるためには、WおよびMoのうちの1種または2種の合計は10.0%以上必要であるが、その合計量が12.0%を超えると、炭化物の粗大化、結晶粒の粗大化による靭性の低下等が生じるようになるので、WおよびMoのうちの1種または2種の含有量は、10.0〜12.0%と定めた。
Total of one or two of W and Mo: 10.0 to 12.0%
W forms MC-type and M 6 C-type carbides, and some of them dissolve in the matrix, improving wear resistance and high-temperature tempering softening resistance. However, if the W content is excessive, , Leading to coarsening of carbides and toughness.
Mo, like W, forms MC-type and M 6 C-type carbides to improve wear resistance and high-temperature temper softening resistance and improve toughness, but when the Mo content becomes excessive The crystal grains become coarse and brittle, and decarburization is likely to occur during heat treatment.
Therefore, in order to improve wear resistance and high temperature temper softening resistance, the total of one or two of W and Mo needs to be 10.0% or more, but the total amount is 12.0%. If it exceeds 1, the carbides become coarse, the toughness is lowered due to the coarsening of crystal grains, etc., so the content of one or two of W and Mo is 10.0 to 12.0% It was determined.

V:2.0〜3.0%
Vは、強力な炭化物形成元素で、Cと結合することによってMC型の微細な炭化物を形成し、耐摩耗性の向上に効果がある。また、Vは、結晶粒の微細化作用を有し、結晶粒の粗大化による靭性の低下を防止するとともに、高温焼戻し軟化抵抗性を高める。このような効果を発揮させるためには、2.0%以上含有させる必要があるが、過剰に含有されると研削性を害するのでその上限は3.0%に定めた。
V: 2.0-3.0%
V is a strong carbide-forming element, and when combined with C, forms fine MC-type carbides, and is effective in improving wear resistance. Further, V has a crystal grain refining action, prevents a decrease in toughness due to crystal grain coarsening, and increases high-temperature temper softening resistance. In order to exert such an effect, it is necessary to contain 2.0% or more, but if it is contained excessively, grindability is impaired, so the upper limit was set to 3.0%.

Co:3.0〜4.0%
Coは、それ自体は炭化物を形成しないが、マトリックスに固溶することによって、耐熱性、耐摩耗性、高温焼戻し軟化抵抗性を高める。これらの効果を得るためには、3.0%以上の含有が必要であるが、過剰に含有されると、炭化物の偏析を助長したり脱炭を促進することから、その上限は4.0%と定めた。
Co: 3.0-4.0%
Co itself does not form carbides, but increases heat resistance, wear resistance, and high temperature temper softening resistance by dissolving in a matrix. In order to obtain these effects, a content of 3.0% or more is necessary. However, if excessively contained, the segregation of carbides is promoted or decarburization is promoted, so the upper limit is 4.0. %.

Mn:
本発明では、Siを多量に含有し、これが脱酸剤として作用することから、Si同様に脱酸剤として作用するMnの添加は必ずしも必要でないが、Mnには焼入れ性向上作用もあるので、1.0%以下の範囲内で添加することができる。
Mn:
In the present invention, since it contains a large amount of Si and this acts as a deoxidizer, it is not always necessary to add Mn which acts as a deoxidizer in the same manner as Si, but Mn also has a hardenability improving effect, It can be added within a range of 1.0% or less.

上記のとおり、本発明の合金鋼は、質量%で、C:2.0〜3.0%、Si:3.0〜6.0%、Cr:9.0〜15.0%、WおよびMoのうちの1種または2種の合計:10.0〜12.0%、V:2.0〜3.0%、Co:3.0〜4.0%、残部はFeからなるが、前記のとおり、1.0%以下のMnを含有することが許容されるとともに、不可避不純物として、本発明の合金鋼の高温焼戻し軟化抵抗性に影響を与えない範囲内でのP,S,N,Ni,Nb,Cu,As,Sb等の含有が許容される。   As described above, the alloy steel of the present invention is, in mass%, C: 2.0 to 3.0%, Si: 3.0 to 6.0%, Cr: 9.0 to 15.0%, W and Total of one or two of Mo: 10.0 to 12.0%, V: 2.0 to 3.0%, Co: 3.0 to 4.0%, the balance is Fe, As described above, it is allowed to contain 1.0% or less of Mn, and as an inevitable impurity, P, S, N within a range that does not affect the high temperature temper softening resistance of the alloy steel of the present invention. , Ni, Nb, Cu, As, Sb and the like are allowed.

また、本発明の合金鋼の高温焼戻し軟化抵抗性を実験により定量化したところ、600〜700℃における軟化割合(%)を、
軟化割合(%)=(H−H600)×100/H600
で表した場合、本発明の合金鋼では、上記軟化割合(%)は0〜−15%の範囲内であることを確認した。
ここで、軟化割合(%)とは、600℃の焼戻し温度における硬さ(H600)を基準とし、焼戻し温度T(℃)(但し、600≦T≦700)における硬さをHとした場合の、焼戻し温度による硬さ低下の度合い示す指標である。
Moreover, when the high temperature temper softening resistance of the alloy steel of the present invention was quantified by experiment, the softening ratio (%) at 600 to 700 ° C.
Softening ratio (%) = (H T −H 600 ) × 100 / H 600
In the alloy steel of the present invention, it was confirmed that the softening ratio (%) was in the range of 0 to -15%.
Here, the softening percentage, as a reference hardness at tempering temperature of 600 ° C. The (H 600), tempering temperature T (° C.) (where, 600 ≦ T ≦ 700) The hardness at was H T This is an index indicating the degree of hardness reduction due to tempering temperature.

また、本発明では、合金鋼製エンドミルを基体とし、その表面に、AlとTiの複合窒化物層、AlとTiとSiの複合窒化物層、AlとCrの複合窒化物層等の当業者に既によく知られている硬質被覆層を蒸着形成することにより、表面被覆合金鋼製エンドミルとして利用することができる。
上記の硬質被覆層を蒸着形成した表面被覆合金鋼製エンドミルは、耐熱性、耐摩耗性が一段と向上し、高温切削条件下でさらに優れた切削性を発揮するものである。
Further, in the present invention, an alloy steel end mill is used as a base, and an Al / Ti composite nitride layer, an Al / Ti / Si composite nitride layer, an Al / Cr composite nitride layer, etc. are formed on the surface thereof. Can be used as an end mill made of surface-coated alloy steel by vapor deposition of a well-known hard coating layer.
The surface-coated alloy steel end mill on which the hard coating layer is deposited is further improved in heat resistance and wear resistance, and exhibits further excellent machinability under high-temperature cutting conditions.

本発明の合金鋼製エンドミル、表面被覆合金鋼製エンドミルは、特に、合金成分としてのCを2.0〜3.0%とした上で、Si添加量およびCr添加量を高め、Si含有量を3.0〜6.0%、Cr含有量を9.0〜15.0%としたことにより、600〜700℃の温度範囲で焼戻しを行った場合でもすぐれた高温焼戻し軟化抵抗性を示すことから、高温にさらされる高速切削条件下であっても、刃先の軟化(硬度低下)が生じることがないために、長期の使用に亘って、すぐれた切削性能を発揮することができる。   The alloy steel end mill and the surface-coated alloy steel end mill according to the present invention particularly increase the Si addition amount and the Cr addition amount with C as the alloy component being 2.0 to 3.0%, and the Si content. 3.0-6.0% and Cr content 9.0-15.0% show excellent high temperature temper softening resistance even when tempered in the temperature range of 600-700 ° C. Therefore, even under high-speed cutting conditions that are exposed to high temperatures, the cutting edge does not soften (decrease in hardness), so that excellent cutting performance can be exhibited over a long period of use.

本発明鋼および比較鋼に焼戻しを行った場合の、焼戻し温度(℃)と軟化割合(%)との関係を示すグラフである。It is a graph which shows the relationship between tempering temperature (degreeC) and a softening ratio (%) at the time of tempering this invention steel and comparative steel.

本発明を実施例により、以下に説明する。   The invention is illustrated below by means of examples.

窒素ガスアトマイズ法によって製造した所定の成分組成を有する粉末を、カプセルに充填・脱気後、温度1150℃×圧力100MPaにてHIP処理(熱間静水圧プレス処理)し、表1に示す成分組成を有する本発明の粉末合金鋼1〜10(以下、本発明鋼1〜10という)を作製した。
また、同様にして、本発明から外れる成分組成を有する比較例の粉末合金鋼11〜15(以下、比較例鋼11〜15という)を作製した。
同じく表1に、比較例鋼11〜15の成分組成を示す。
A powder having a predetermined component composition produced by a nitrogen gas atomization method is filled into a capsule and degassed, and then subjected to HIP treatment (hot isostatic pressing) at a temperature of 1150 ° C. and a pressure of 100 MPa to obtain the component composition shown in Table 1. The powder alloy steels 1 to 10 of the present invention (hereinafter referred to as the present invention steels 1 to 10) were produced.
Similarly, powder alloy steels 11 to 15 of comparative examples (hereinafter referred to as comparative example steels 11 to 15) having component compositions deviating from the present invention were produced.
Similarly, Table 1 shows component compositions of Comparative Example Steels 11 to 15.

上記本発明鋼1〜10について、表2に示す条件で熱処理を行い、本発明鋼1−A〜1−D,本発明鋼2−A〜2−D,本発明鋼3−A、3−B,本発明鋼4−A、4−B,本発明鋼5−A、5−B,本発明鋼6−A、6−B,本発明鋼7−A、7−B,本発明鋼8−A、8−B,本発明鋼9−A、9−B,本発明鋼10−A、10−Bを作製した。
同様に、比較例鋼11〜15についても、表3に示す条件で熱処理を行い、比較例鋼11−A〜11−D,比較例鋼12−A〜12−D,比較例鋼13−A、13−B,比較例鋼14−A、14−B,比較例鋼15−A、15−Bを作製した。
即ち、850〜950℃×60〜90分の条件でオーステナイト化処理を行った後、1130〜1180℃×30分間保持で焼入れし、その後、600〜700℃×1時間保持、戻し回数3回で焼戻しを行った。
About the said invention steel 1-10, it heat-processes on the conditions shown in Table 2, this invention steel 1-A to 1-D, this invention steel 2-A to 2-D, this invention steel 3-A, 3- B, Invention Steel 4-A, 4-B, Invention Steel 5-A, 5-B, Invention Steel 6-A, 6-B, Invention Steel 7-A, 7-B, Invention Steel 8 -A, 8-B, Invention steels 9-A, 9-B, Invention steels 10-A, 10-B were produced.
Similarly, it heat-processed on the conditions shown in Table 3 also about the comparative example steels 11-15, comparative example steel 11-A-11-D, comparative example steel 12-A-12-D, comparative example steel 13-A. 13-B, Comparative Example Steels 14-A and 14-B, and Comparative Example Steels 15-A and 15-B were produced.
That is, after performing austenitizing treatment under conditions of 850 to 950 ° C. × 60 to 90 minutes, quenching is performed by holding at 1130 to 1180 ° C. for 30 minutes, then holding at 600 to 700 ° C. for 1 hour, and the number of times of return is 3 times. Tempering was performed.

それぞれについて、焼入れ硬さ、600℃における硬さ(H600)、所定の焼戻し温度Tにおける硬さ(H)をロックウェル硬度計で測定(いずれも5点測定の平均値)することにより硬度を求め、その硬度値から
軟化割合(%)(=(H−H600)×100/H600
を算出した。
これらの値を、表2、表3に示す。
なお、本発明鋼1−A、本発明鋼2−A、比較例鋼11−A、比較例鋼12−A、比較例鋼15−Aについては、焼戻し温度と硬さの関係を、図1に示した。
For each, the hardness is measured by measuring the quenching hardness, the hardness at 600 ° C. (H 600 ), and the hardness at a predetermined tempering temperature T (H T ) with a Rockwell hardness meter (both are average values of five points). And the softening ratio (%) from the hardness value (= (H T −H 600 ) × 100 / H 600 )
Was calculated.
These values are shown in Tables 2 and 3.
In addition, about this invention steel 1-A, this invention steel 2-A, comparative example steel 11-A, comparative example steel 12-A, and comparative example steel 15-A, the relationship between tempering temperature and hardness is shown in FIG. It was shown to.

表2、表3および図1から明らかなように、600〜700℃という高温焼戻しが行われた場合でも、本発明鋼1〜10は、すぐれた焼戻し硬さ(HRCは50以上)を有するとともに、比較例鋼11〜15に比してすぐれた高温焼戻し軟化抵抗性を示し、例えば、焼戻し温度700℃における軟化割合(%)は最大でも−9%(本発明鋼2−D)であった。
これに対して、比較例鋼11〜15は、本発明鋼1〜10に比して、高温焼戻し軟化抵抗性が劣り、例えば、焼戻し温度700℃における軟化割合(%)は、−18%(比較例鋼12−D),−27%(比較例鋼13−B)であって、高温焼戻し軟化抵抗性が十分であるとは言えない。
As is apparent from Tables 2 and 3 and FIG. 1, even when high temperature tempering of 600 to 700 ° C. is performed, the steels 1 to 10 of the present invention have excellent tempering hardness (HRC is 50 or more). The high-temperature tempering softening resistance superior to that of Comparative Example Steels 11 to 15 was exhibited. For example, the softening ratio (%) at a tempering temperature of 700 ° C. was −9% at maximum (invention steel 2-D). .
On the other hand, the comparative example steels 11-15 are inferior in high temperature tempering softening resistance compared with this invention steel 1-10, for example, the softening ratio (%) in tempering temperature 700 degreeC is -18% ( Comparative Example Steel 12-D), −27% (Comparative Example Steel 13-B), which cannot be said to have sufficient high-temperature temper softening resistance.

次に、上記で作製した表1に示す成分組成の本発明鋼1〜10を素材として、機械加工にて、切刃部の直径×長さがそれぞれ10mm×25mmの寸法を有し、また、いずれもねじれ角45度の4枚刃スクエア形状をもった本発明合金鋼製エンドミル(以下、本発明エンドミルという)1〜10をそれぞれ製造した。
同様に、比較例鋼11〜15についても、比較例エンドミル11〜15を作製した。
Next, the present invention steels 1 to 10 having the composition shown in Table 1 prepared as described above are used as materials, and the diameter x length of the cutting edge portion has a size of 10 mm x 25 mm by machining, In each case, steel alloy end mills (hereinafter referred to as the present invention end mills) 1 to 10 having a four-blade square shape with a twist angle of 45 degrees were produced.
Similarly, comparative example end mills 11 to 15 were produced for comparative example steels 11 to 15.

ついで、上記本発明エンドミル1〜10および比較例エンドミル11〜15のそれぞれに対して、(Al0.6,Ti0.4)Nからなる層厚5μmの硬質被覆層をアークイオンプレーティングにより蒸着形成することにより、本発明合金鋼製エンドミル(本発明被覆エンドミルという)1〜10および比較例合金製エンドミル(比較例被覆エンドミルという)11〜15を作製した。 Next, a hard coating layer made of (Al 0.6 , Ti 0.4 ) N and having a thickness of 5 μm is deposited on each of the above-described end mills 1 to 10 and comparative example end mills 11 to 15 by arc ion plating. By forming, end mills made of the alloy steel of the present invention (referred to as a coated end mill of the present invention) 1 to 10 and end mills made of a comparative example alloy (referred to as a coated end mill of a comparative example) 11 to 15 were produced.

上記硬質被覆層を蒸着形成した本発明被覆エンドミル1〜10および比較例被覆エンドミル11〜15を用いて、次の条件で側面切削加工試験を行ない、切削性能を評価した。
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・S50Cの板材、
切削速度: 90 m/min.、
半径方向切込み量: 20.0 mm、
軸方向切込み量: 1.5 mm、
テーブル送り: 802 mm/分、
の条件での炭素鋼の乾式高速溝切削加工試験(通常の切削速度は60m/min.)。
上記の溝切削加工試験で、切刃部の外周刃の逃げ面摩耗幅が、使用寿命の目安とされる0.3mmに至るまでの切削溝長を測定した。
上記の結果を表4に示した。
Using the present coated end mills 1 to 10 and comparative example coated end mills 11 to 15 on which the hard coating layer was formed by vapor deposition, a side cutting test was performed under the following conditions to evaluate the cutting performance.
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / S50C plate material,
Cutting speed: 90 m / min. ,
Radial depth of cut: 20.0 mm,
Axial depth of cut: 1.5 mm,
Table feed: 802 mm / min,
Carbon steel dry-type high-speed grooving test (normal cutting speed is 60 m / min.).
In the above groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.3 mm, which is a guide for the service life.
The results are shown in Table 4.

表4に示す結果から、本発明被覆エンドミル1〜10は切削加工時の高温にさらされても、切刃部の高温焼戻し軟化抵抗性が高いことから、軟化(硬度低下)によるクレーター摩耗の発生はなく、また、欠損等の異常損傷を生じることもなく、正常な摩耗形態をとり、切削長は90m以上であり、すぐれた切削性能を示した。
これに対して、比較例被覆エンドミル11〜15は、本発明被覆エンドミル1〜10に比べ軟化抵抗が低いことから、硬度低下によるクレーター摩耗等の異常摩耗が生じ、切削長も90m未満であって、短寿命であった。
From the results shown in Table 4, since the coated end mills 1 to 10 of the present invention have high resistance to high-temperature tempering softening at the cutting edge even when exposed to high temperatures during cutting, crater wear due to softening (decrease in hardness) occurs. In addition, without causing abnormal damage such as defects, it took a normal wear form, the cutting length was 90 m or more, and showed excellent cutting performance.
On the other hand, since the comparative example coated end mills 11 to 15 have lower softening resistance than the coated end mills 1 to 10 of the present invention, abnormal wear such as crater wear due to hardness reduction occurs, and the cutting length is less than 90 m. It was short life.

上記のとおり、本発明の合金鋼製エンドミル、表面被覆合金鋼製エンドミルは、すぐれた高温焼戻し軟化抵抗性を有し、刃先の硬度低下が防止される結果、高熱を発生する切削条件下で、すぐれた切削性能、耐摩耗性を発揮し、また、長寿命であることから、産業上の有益性が非常に大きいといえる。


As described above, the alloy steel end mill and the surface-coated alloy steel end mill of the present invention have excellent high-temperature temper softening resistance and prevent cutting of the hardness of the cutting edge, so that under cutting conditions that generate high heat, Since it exhibits excellent cutting performance and wear resistance, and has a long life, it can be said that the industrial benefits are very large.


Claims (2)

質量%で、C:2.0〜3.0%、Si:3.0〜6.0%、Cr:9.0〜15.0%、WおよびMoのうちの1種または2種の合計:10.0〜12.0%、V:2.0〜3.0%、Co:3.0〜4.0%、残部はFeおよび不可避不純物からなる高温焼戻し軟化抵抗性を備える合金鋼で構成したことを特徴とする合金鋼製エンドミル。   In mass%, C: 2.0 to 3.0%, Si: 3.0 to 6.0%, Cr: 9.0 to 15.0%, total of one or two of W and Mo : 10.0-12.0%, V: 2.0-3.0%, Co: 3.0-4.0%, the balance is an alloy steel comprising Fe and inevitable impurities and having high temperature temper softening resistance An alloy steel end mill characterized by comprising. 請求項1に記載の高温焼戻し軟化抵抗性を備える合金鋼を基体とし、該基体表面に硬質被覆層を蒸着形成したことを特徴とする表面被覆合金鋼製エンドミル。







































An end mill made of surface-coated alloy steel, characterized in that the alloy steel having high-temperature temper softening resistance according to claim 1 is used as a base, and a hard coating layer is formed by vapor deposition on the surface of the base.







































JP2011252225A 2011-11-18 2011-11-18 End mill made of alloy steel Pending JP2013108112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011252225A JP2013108112A (en) 2011-11-18 2011-11-18 End mill made of alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252225A JP2013108112A (en) 2011-11-18 2011-11-18 End mill made of alloy steel

Publications (1)

Publication Number Publication Date
JP2013108112A true JP2013108112A (en) 2013-06-06

Family

ID=48705180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252225A Pending JP2013108112A (en) 2011-11-18 2011-11-18 End mill made of alloy steel

Country Status (1)

Country Link
JP (1) JP2013108112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512595A (en) * 2016-03-16 2019-05-16 エラスティール エスエーエス Alloy steel and tools
CN114427017A (en) * 2022-01-26 2022-05-03 苏州志韧机械刀片有限公司 Heat treatment process of high-strength corrosion-resistant high-alloy cutter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512595A (en) * 2016-03-16 2019-05-16 エラスティール エスエーエス Alloy steel and tools
JP7026629B2 (en) 2016-03-16 2022-02-28 エラスティール エスエーエス Alloy steel and tools
CN114427017A (en) * 2022-01-26 2022-05-03 苏州志韧机械刀片有限公司 Heat treatment process of high-strength corrosion-resistant high-alloy cutter

Similar Documents

Publication Publication Date Title
JP6528610B2 (en) Mold steel and mold
US9597742B2 (en) Saw blade including a cutting element made by powder metallurgy
WO2012115025A1 (en) Manufacturing method for cold-working die
JP4403875B2 (en) Cold work tool steel
WO2014126086A1 (en) Metal powder, tool for hot working and method for manufacturing tool for hot working
JP2016017200A (en) Die steel and warm/hot-working die
WO2010045781A1 (en) High-alloyed cold die steel
JP2013108112A (en) End mill made of alloy steel
JP5720302B2 (en) Gear cutting tool
JP5510665B2 (en) Alloy steel with excellent high temperature temper softening resistance
JP2005336553A (en) Hot tool steel
JP6096040B2 (en) Powdered high-speed tool steel with excellent high-temperature tempering hardness
JP2012210671A (en) Drill made of alloy steel
JP5424120B2 (en) Alloy steel with excellent high temperature temper softening resistance
JP2018154884A (en) Cold tool steel
JPH0323617B2 (en)
JP6416624B2 (en) Method for cutting cold tool steel and method for producing cold mold material
JP2013036079A (en) Alloy steel end mill
JP2012210670A (en) Drill made of alloy steel
JP2011225958A (en) Alloy steel end mill
JP3566162B2 (en) Hot tool steel with excellent weldability
JP2013213253A (en) Alloy steel with high temperature toughness, high temperature hardness, and high temperature tempering softening resistance, and end mill using the alloy steel as tool body
JP2011224759A (en) Drill made from alloy steel
TWI647318B (en) Steel for cold working tool
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same