JP2013107822A - Method for generating gaseous hydrogen and material for generating gaseous hydrogen - Google Patents

Method for generating gaseous hydrogen and material for generating gaseous hydrogen Download PDF

Info

Publication number
JP2013107822A
JP2013107822A JP2013015529A JP2013015529A JP2013107822A JP 2013107822 A JP2013107822 A JP 2013107822A JP 2013015529 A JP2013015529 A JP 2013015529A JP 2013015529 A JP2013015529 A JP 2013015529A JP 2013107822 A JP2013107822 A JP 2013107822A
Authority
JP
Japan
Prior art keywords
water
hydrogen gas
aluminum alloy
gaseous hydrogen
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013015529A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagata
浩 永田
Yoshinori Aragaki
良憲 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2013015529A priority Critical patent/JP2013107822A/en
Publication of JP2013107822A publication Critical patent/JP2013107822A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for generating gaseous hydrogen and a material for generating gaseous hydrogen, by means of which a large amount of gaseous hydrogen can be generated.SOLUTION: In the method for generating gaseous hydrogen, a flaky aluminum alloy A containing at least one of Sn and Bi in the range of 0.5 to 20 wt.% while the remainder being aluminum and inevitable impurities, is used as the material for generating gaseous hydrogen, and is made to react with water or saline. The aluminum alloy is prepared by a strip casting method including a step to cool the melt of the raw material alloy by bringing it into contact with a rotating water-cooled roller 7, wherein the peripheral velocity of the water-cooled roller is set to be in the range of 1 to 20 m/sec.

Description

本発明は、水素ガス発生方法及びこの水素ガス発生方法に用いられる水素ガス生成材に関する。   The present invention relates to a hydrogen gas generation method and a hydrogen gas generation material used in the hydrogen gas generation method.

近年、PCや携帯電話などの機器の普及に伴い、その電源として水素ガスを用いた燃料電池が注目されている。水素ガスを発生させる方法として、アルミニウム粉末と、これよりイオン化傾向の小さい金属粉末とを混合した粉末を用い、この粉末に水を供給し、水とアルミニウムとを反応させることが例えば特許文献1で知られている。   In recent years, with the spread of devices such as PCs and mobile phones, fuel cells using hydrogen gas as a power source have attracted attention. As a method for generating hydrogen gas, for example, Patent Document 1 discloses that a powder obtained by mixing an aluminum powder and a metal powder having a smaller ionization tendency is used, water is supplied to the powder, and water is reacted with aluminum. Are known.

また、常温で安定的に水素を生成させることができる水素ガス生成材として、アルミニウム粉末と酸化カルシウム粉末とを含み、当該アルミニウム粉末の配合比を85重量%以下としたものが特許文献2で知られている。この場合、アルミニウム粉末としては、粒度分布が50〜150μmの範囲のものが使用される。   Patent Document 2 discloses that a hydrogen gas generating material capable of stably generating hydrogen at room temperature includes aluminum powder and calcium oxide powder, and the mixing ratio of the aluminum powder is 85 wt% or less. It has been. In this case, aluminum powder having a particle size distribution in the range of 50 to 150 μm is used.

然し、上記特許文献1及び特許文献2記載のように、水素ガス生成材が粉末状であると、常温空気中でのその取扱いが面倒であるという問題がある。また、燃料電池の発電効率は、燃料たる水素に対する効率であることから、その効率を高めるには、水素ガス生成材から発生する水素ガスの量を多くできるようにすることが望まれる。   However, as described in Patent Document 1 and Patent Document 2, when the hydrogen gas generating material is in the form of powder, there is a problem that handling in room temperature air is troublesome. Further, since the power generation efficiency of the fuel cell is the efficiency with respect to hydrogen as a fuel, it is desired to increase the amount of hydrogen gas generated from the hydrogen gas generating material in order to increase the efficiency.

特開2002−104801号公報JP 2002-104801 A 特開2004−231466号公報JP 2004-231466 A

本発明は、上記点に鑑み、多量の水素ガスを発生させることができる水素ガス発生方法及び水素ガス生成材を提供することをその課題とする。   In view of the above points, an object of the present invention is to provide a hydrogen gas generating method and a hydrogen gas generating material capable of generating a large amount of hydrogen gas.

上記課題を解決するために、本発明の水素ガス発生方法は、水素ガス生成材を、Sn及びBiの少なくとも一方を0.5〜20重量%の範囲で含有し、残部がアルミニウム及び不回避的な不純物とである薄片状のアルミニウム合金とし、このアルミニウム合金を水または食塩水と反応させてなるものにおいて、前記アルミニウム合金は、原料合金の溶湯を回転する水冷ロールに接触させて冷却する工程を含むストリップキャスティング法により作製され、前記水冷ロールの周速度を1m/sec〜20m/secの範囲に設定したことを特徴とする。   In order to solve the above-described problems, the hydrogen gas generation method of the present invention includes a hydrogen gas generating material containing at least one of Sn and Bi in a range of 0.5 to 20% by weight, with the balance being aluminum and inevitable. The aluminum alloy is formed by reacting the aluminum alloy with water or a saline solution, and the aluminum alloy is cooled by bringing the molten raw material alloy into contact with a rotating water-cooled roll. The peripheral speed of the water-cooled roll is set in the range of 1 m / sec to 20 m / sec.

また、本発明の水素ガス生成材は、Sn及びBiの少なくとも一方を0.5〜20重量%の範囲で含有し、残部がアルミニウム及び不回避的な不純物とである薄片状のアルミニウム合金からなるものにおいて、前記アルミニウム合金は、1m/sec〜20m/secの範囲に設定された周速度で回転する水冷ロールに原料合金の溶湯を接触させて冷却する工程を含むストリップキャスティング法により作製されたものであることを特徴とする。   Moreover, the hydrogen gas generating material of the present invention comprises at least one of Sn and Bi in the range of 0.5 to 20% by weight, and is made of a flaky aluminum alloy with the balance being aluminum and inevitable impurities The aluminum alloy is produced by a strip casting method including a step of bringing a molten material alloy into contact with a water-cooled roll rotating at a peripheral speed set in a range of 1 m / sec to 20 m / sec and cooling it. It is characterized by being.

本発明によれば、所定の重量比でSn及びBiの少なくとも一方を含有し、周速度を1m/sec〜20m/secの範囲に設定した水冷ロールに原料合金の溶湯を接触させて冷却する工程を含むストリップキャスティング法により作製された薄片状のアルミニウム合金は活性であるため、このアルミニウム合金を水または食塩水と反応させるだけで、40ml/min以上の多量の水素ガスを発生させることが可能になる。なお、Sn及びBiの少なくとも一方が0.5〜20重量%の範囲に含まれないと、アルミニウム合金に対する水素ガスの発生率が十分高くならない。また、水冷ロールの周速度が1m/secより遅いか、または20m/secを超える場合には、アルミニウム合金に対する水素ガスの発生率が十分高くならない。   According to the present invention, the step of cooling the raw material alloy by bringing it into contact with a water-cooled roll containing at least one of Sn and Bi at a predetermined weight ratio and having a peripheral speed set in the range of 1 m / sec to 20 m / sec. Since the flaky aluminum alloy produced by the strip casting method containing is active, it is possible to generate a large amount of hydrogen gas of 40 ml / min or more simply by reacting the aluminum alloy with water or saline. Become. If at least one of Sn and Bi is not included in the range of 0.5 to 20% by weight, the generation rate of hydrogen gas with respect to the aluminum alloy is not sufficiently high. Further, when the peripheral speed of the water-cooled roll is slower than 1 m / sec or exceeds 20 m / sec, the generation rate of hydrogen gas with respect to the aluminum alloy is not sufficiently high.

本発明の方法で用いられるSC装置の模式点断面図。The schematic point sectional drawing of the SC apparatus used with the method of this invention. 実施例1において、Biを添加してアルミニウム合金を作製し、市水との反応における水素発生量を示す表。The table | surface which shows the amount of hydrogen generation in reaction with city water by adding Bi in Example 1 and producing an aluminum alloy. 実施例1において、Snを添加してアルミニウム合金を作製し、市水との反応における水素発生量を示す表。The table | surface which shows the amount of hydrogen generation in reaction with a city water in Example 1, producing Sn alloy by adding Sn. 実施例1において、Biを添加してアルミニウム合金を作製し、食塩水との反応における水素発生量を示す表。The table | surface which shows the hydrogen generation amount in reaction with salt solution in Example 1, producing Bi alloy by adding Bi.

図1は、本発明の水素ガス生成材を製作することに用いられるストリップキャスティング(以下、「SC」という)装置である。SC装置は、公知の構造を有するものであり、真空雰囲気の形成が可能な溶解室1を有する。この場合、ArやNなどの不活性ガスを導入するガス導入手段2を接続し、所定圧力まで真空排気した後、不活性ガス雰囲気で溶解を行うようにしてもよい。溶解室1の内部には高周波溶解炉を用いたるつぼ3が設けられている。 FIG. 1 is a strip casting (hereinafter referred to as “SC”) apparatus used for producing the hydrogen gas generating material of the present invention. The SC apparatus has a known structure and has a melting chamber 1 capable of forming a vacuum atmosphere. In this case, gas introducing means 2 for introducing an inert gas such as Ar or N 2 may be connected, and after evacuation to a predetermined pressure, dissolution may be performed in an inert gas atmosphere. A crucible 3 using a high-frequency melting furnace is provided inside the melting chamber 1.

また、溶解室1には、処理室4が連結されている。処理室4には、るつぼ3で溶解した溶湯が、溶解室2及び処理室4間に亘って設けた樋5及びタンディッシュ6を介して導かれる回転自在な2個の水冷ロール7と、水冷ロール7の下側に近接配置された公知の構造の粉砕機8とが設けられている。また、処理室4の下側には、回収ボックス9が配置され、粉砕機8で粉砕されて落下する薄片を回収できるようになっている。そして、所定時間だけ冷却した後、当該回収ボックス9が処理室4から取り出すことができる。   A processing chamber 4 is connected to the melting chamber 1. In the processing chamber 4, the molten metal melted in the crucible 3 is guided by two rotatable water-cooling rolls 7 that are guided through a trough 5 and a tundish 6 provided between the melting chamber 2 and the processing chamber 4, A pulverizer 8 having a known structure is provided below the roll 7 in a close proximity. A recovery box 9 is disposed below the processing chamber 4 so that the flakes crushed by the pulverizer 8 and falling can be collected. Then, after cooling for a predetermined time, the collection box 9 can be taken out from the processing chamber 4.

次に、図1に示すSC装置を用いて本実施の形態の薄片状のアルミニウム合金の作製について説明する。るつぼ3に原料合金を充填する。原料合金は、Sn及びBiの少なくとも一方を0.5〜20重量%の範囲で含有し、残部がアルミニウム及び不回避的な不純物とからなるものであり、所定の組成比でるつぼ3に充填される。Sn及びBiの少なくとも一方が0.5〜20重量%の範囲に含まれないと、アルミニウム合金に対する水素ガスの発生率が十分高くならない。   Next, the production of the flaky aluminum alloy of the present embodiment will be described using the SC apparatus shown in FIG. The crucible 3 is filled with a raw material alloy. The raw material alloy contains at least one of Sn and Bi in the range of 0.5 to 20% by weight, and the balance is made of aluminum and unavoidable impurities, and is filled in the crucible 3 at a predetermined composition ratio. The If at least one of Sn and Bi is not included in the range of 0.5 to 20% by weight, the generation rate of hydrogen gas with respect to the aluminum alloy is not sufficiently high.

次いで、るつぼ3に充填した原料合金を真空雰囲気または不活性ガス雰囲気にて高周波溶解し、樋5及びタンディッシュ6を介して、所定の周速度で回転する公知の構造の二つの水冷ロール7の間に溶湯を流し込み、水冷ロール7による冷却で凝固させて、厚さ30μm〜3mm程度の板材片A1を得る。水冷ロール7による冷却の際に、水冷ロール7の周速度を制御することによって、0.5m/sec〜20m/secの範囲の速度で冷却する。この冷却する速度が0.5m/secより遅い速度であるか、または20m/secを超えた速度である場合には、アルミニウム合金に対する水素ガスの発生率が十分高くならない。   Next, the raw material alloy filled in the crucible 3 is melted at a high frequency in a vacuum atmosphere or an inert gas atmosphere, and the two water-cooled rolls 7 having a known structure rotating at a predetermined peripheral speed through the basket 5 and the tundish 6. The molten metal is poured in between and solidified by cooling with the water-cooled roll 7 to obtain a plate material piece A1 having a thickness of about 30 μm to 3 mm. During the cooling by the water-cooled roll 7, the peripheral speed of the water-cooled roll 7 is controlled to cool at a speed in the range of 0.5 m / sec to 20 m / sec. If the cooling speed is slower than 0.5 m / sec or exceeds 20 m / sec, the generation rate of hydrogen gas for the aluminum alloy is not sufficiently high.

最後に、当該板状片A1を粉砕機8に導き、細かく破砕して厚さ30μm〜3mm程度の薄片状とする。この場合、得ようするアルミニウム合金の厚さや形状によっては、粉砕機8による粉砕を省略することができる。その後、薄片状のアルミニウム合金Aを回収ボックス9にて回収する。そして、所定時間冷却した処理室4から取り出す。   Finally, the plate-like piece A1 is guided to the pulverizer 8 and finely crushed into a thin piece having a thickness of about 30 μm to 3 mm. In this case, pulverization by the pulverizer 8 can be omitted depending on the thickness and shape of the aluminum alloy to be obtained. Thereafter, the flaky aluminum alloy A is collected in the collection box 9. And it takes out from the processing chamber 4 cooled for the predetermined time.

このように本実施の形態においては、水素ガス生成材たるアルミニウム合金Aが、所定の重量比でSn及びBiの少なくとも一方を含有する薄片状のものであるため、常温空気中で安定となり、その取扱いが容易となる。その際、SC法を用いることで、アルミニウム合金中でのSn及びBiの少なくとも一方の分散性が向上し、SnやBiが原子状で分散して存在するようになる。その結果、常温空気中での安定性が一層向上する。   As described above, in the present embodiment, the aluminum alloy A, which is a hydrogen gas generating material, is in the form of a flake containing at least one of Sn and Bi at a predetermined weight ratio. Handling becomes easy. At that time, by using the SC method, the dispersibility of at least one of Sn and Bi in the aluminum alloy is improved, and Sn and Bi are dispersed in an atomic state. As a result, the stability in normal temperature air is further improved.

そして、このように作製した薄片状のアルミニウム合金Aは活性であるため、水または0.5〜5%の範囲の濃度の食塩水と反応させるだけで、40ml/min以上で連続して水素ガスを発生させることが可能になる。その結果、燃料電池に適用する場合に特に有用となる。   And since the flaky aluminum alloy A produced in this way is active, it can be continuously reacted at a rate of 40 ml / min or more by simply reacting with water or saline having a concentration in the range of 0.5 to 5%. Can be generated. As a result, it is particularly useful when applied to a fuel cell.

なお、本実施の形態においては、SC法を用いる場合について説明したが、これに限定されるものではなく、アルミニウム合金を得るのに、公知の遠心鋳造法により作製することもできる。   In the present embodiment, the case where the SC method is used has been described. However, the present invention is not limited to this. The aluminum alloy can also be produced by a known centrifugal casting method.

(実施例1)
実施例1では、図1に示すSC装置を用いて、所定の組成(純度が99.9%のアルミニウムにSnまたはBiのいずれか一方を所定の重量比で添加したもの)をそれぞれ有する薄片状のアルミニウム合金たる試験片を作製することとした。水冷ロール7としては、直径600mm、ロール幅200mmのものを用い、水冷ロール7の周速度が所定値とそれぞれなるように水冷ロールの回転数を調節した(冷却速度を変化させた)。また、水冷ロール7への溶湯の供給量は、水冷ロール7の周速度で連続した0.05mm〜1mmのストリップが生成できるように、適宜調節することとした。
Example 1
In Example 1, using the SC apparatus shown in FIG. 1, flaky shapes each having a predetermined composition (aluminum having a purity of 99.9% and one of Sn or Bi added at a predetermined weight ratio) are used. A test piece which is an aluminum alloy was prepared. A water-cooled roll 7 having a diameter of 600 mm and a roll width of 200 mm was used, and the rotation speed of the water-cooled roll was adjusted so that the peripheral speed of the water-cooled roll 7 became a predetermined value (the cooling speed was changed). In addition, the amount of the molten metal supplied to the water-cooled roll 7 is appropriately adjusted so that a continuous strip of 0.05 mm to 1 mm can be generated at the peripheral speed of the water-cooled roll 7.

次いで、SnまたはBiの重量割合及び冷却速度を変化させて作製した各試料1gを容器に入れ、12gの水または食塩水を注ぎ、1時間の間に発生した水素を水上置換法で捕集し、水素発生量(ml/min)を求めた。   Next, 1 g of each sample prepared by changing the weight ratio of Sn or Bi and the cooling rate is put in a container, 12 g of water or saline is poured, and hydrogen generated during 1 hour is collected by the water replacement method. The hydrogen generation amount (ml / min) was determined.

(比較例1)
比較例1では、BM(ブックモールド)キャスティング法により鋳造した所定の組成をそれぞれ有するアルミニウム合金たるインゴットを0.2〜0.8mmの薄板状に圧延し、水素発生量を調査した。尚、実施例1及び比較例1において水との反応には市水(神奈川県茅ヶ崎市)を用い、その水に1%の食塩を添加した食塩水として使用した。
(Comparative Example 1)
In Comparative Example 1, ingots, which are aluminum alloys each having a predetermined composition cast by a BM (book mold) casting method, were rolled into a thin plate of 0.2 to 0.8 mm, and the amount of hydrogen generated was investigated. In Example 1 and Comparative Example 1, city water (Chigasaki City, Kanagawa Prefecture) was used for the reaction with water, and it was used as a salt solution in which 1% sodium chloride was added to the water.

図2乃至図4に、上記実施例1及び比較例1により作製したアルミニウム合金の水素発生量を示す。これによれば、比較例1では、市水との反応においてSnまたはBiの重量比(添加量)を適宜調節すれば、約30ml/min程度の水素発生量が得られていることが判る(図2及び図3参照)。また、Biを添加したアルミニウム合金と食塩水との反応においては若干水素発生量が増えていることが判る(図4参照)。   2 to 4 show the hydrogen generation amounts of the aluminum alloys produced according to Example 1 and Comparative Example 1 described above. According to this, in Comparative Example 1, it can be seen that if the weight ratio (addition amount) of Sn or Bi is appropriately adjusted in the reaction with city water, a hydrogen generation amount of about 30 ml / min is obtained ( 2 and 3). It can also be seen that the amount of hydrogen generated is slightly increased in the reaction between the aluminum alloy to which Bi is added and saline (see FIG. 4).

それに対し、実施例1では、SnまたはBiの重量比(添加量)を0.5〜20重量%の範囲にすると共に、水冷ロール7の周速度を1〜20m/secの範囲に設定すれば、市水との反応においては、40ml/min以上、条件によっては70ml/minの水素発生量が得られ、また、食塩水との反応においてはさらに水素発生量が増えていることが判る(図2乃至図4参照)。   On the other hand, in Example 1, while setting the weight ratio (addition amount) of Sn or Bi within the range of 0.5 to 20% by weight, the peripheral speed of the water-cooled roll 7 is set within the range of 1 to 20 m / sec. In the reaction with city water, a hydrogen generation amount of 40 ml / min or more and 70 ml / min depending on the conditions was obtained, and it was found that the hydrogen generation amount was further increased in the reaction with saline (Fig. 2 to 4).

1…溶解室、3…るつぼ、4…処理室、7…水冷ロール、8…粉砕機、9…回収ボックス、A…薄片状のアルミニウム合金。































DESCRIPTION OF SYMBOLS 1 ... Melting | dissolving chamber, 3 ... Crucible, 4 ... Processing chamber, 7 ... Water-cooled roll, 8 ... Crusher, 9 ... Collection box, A ... Flaky aluminum alloy.































Claims (2)

水素ガス生成材を、Sn及びBiの少なくとも一方を0.5〜20重量%の範囲で含有し、残部がアルミニウム及び不回避的な不純物とである薄片状のアルミニウム合金とし、このアルミニウム合金を水または食塩水と反応させてなる水素ガス発生方法において、
前記アルミニウム合金は、原料合金の溶湯を回転する水冷ロールに接触させて冷却する工程を含むストリップキャスティング法により作製され、前記水冷ロールの周速度を1m/sec〜20m/secの範囲に設定したことを特徴とする水素ガス発生方法。
The hydrogen gas generating material is a flaky aluminum alloy containing at least one of Sn and Bi in the range of 0.5 to 20% by weight and the balance being aluminum and unavoidable impurities. Alternatively, in a method for generating hydrogen gas by reacting with a saline solution,
The aluminum alloy was manufactured by a strip casting method including a step of bringing a molten raw material alloy into contact with a rotating water-cooled roll and cooling it, and the peripheral speed of the water-cooled roll was set in the range of 1 m / sec to 20 m / sec. A method for generating hydrogen gas.
Sn及びBiの少なくとも一方を0.5〜20重量%の範囲で含有し、残部がアルミニウム及び不回避的な不純物とである薄片状のアルミニウム合金からなる水素ガス生成材において、
前記アルミニウム合金は、1m/sec〜20m/secの範囲に設定された周速度で回転する水冷ロールに原料合金の溶湯を接触させて冷却する工程を含むストリップキャスティング法により作製されたものであることを特徴とする水素ガス生成材。
In a hydrogen gas generating material comprising a flaky aluminum alloy containing at least one of Sn and Bi in the range of 0.5 to 20% by weight and the balance being aluminum and unavoidable impurities,
The aluminum alloy is produced by a strip casting method including a step of bringing a molten material alloy into contact with a water-cooled roll rotating at a peripheral speed set in a range of 1 m / sec to 20 m / sec and cooling it. A hydrogen gas generating material characterized by
JP2013015529A 2013-01-30 2013-01-30 Method for generating gaseous hydrogen and material for generating gaseous hydrogen Pending JP2013107822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013015529A JP2013107822A (en) 2013-01-30 2013-01-30 Method for generating gaseous hydrogen and material for generating gaseous hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015529A JP2013107822A (en) 2013-01-30 2013-01-30 Method for generating gaseous hydrogen and material for generating gaseous hydrogen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007317152A Division JP2009137803A (en) 2007-12-07 2007-12-07 Hydrogen gas-producing material and method for generating hydrogen gas using the same

Publications (1)

Publication Number Publication Date
JP2013107822A true JP2013107822A (en) 2013-06-06

Family

ID=48704988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015529A Pending JP2013107822A (en) 2013-01-30 2013-01-30 Method for generating gaseous hydrogen and material for generating gaseous hydrogen

Country Status (1)

Country Link
JP (1) JP2013107822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226941A (en) * 2014-09-12 2014-12-24 沈阳中北真空技术有限公司 Vacuum melting and rapid hardening equipment with collecting tank and manufacturing methods of permanent magnetic alloy and permanent magnet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263946A (en) * 1986-05-12 1987-11-16 Mitsubishi Alum Co Ltd Aluminum alloy for hydrogen formation
JPS632801A (en) * 1986-06-21 1988-01-07 Ofic Co Gaseous hydrogen generating material
JPH1043886A (en) * 1996-07-31 1998-02-17 Ngk Spark Plug Co Ltd Manufacture of brazing filler metal
JP2003012301A (en) * 2001-06-28 2003-01-15 Ulvac Japan Ltd Composition for hydrogen gas generation, production method for hydrogen gas, production apparatus for hydrogen gas and generator
JP2006273609A (en) * 2005-03-28 2006-10-12 Hitachi Maxell Ltd Hydrogen generator and fuel cell using the same
JP2007157864A (en) * 2005-12-02 2007-06-21 Mitsubishi Electric Corp Alloy for rare-earth iron-boron based magnet, manufacturing method therefor and manufacturing device thereof
JP2007290888A (en) * 2006-04-24 2007-11-08 Hitachi Maxell Ltd Method for producing hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263946A (en) * 1986-05-12 1987-11-16 Mitsubishi Alum Co Ltd Aluminum alloy for hydrogen formation
JPS632801A (en) * 1986-06-21 1988-01-07 Ofic Co Gaseous hydrogen generating material
JPH1043886A (en) * 1996-07-31 1998-02-17 Ngk Spark Plug Co Ltd Manufacture of brazing filler metal
JP2003012301A (en) * 2001-06-28 2003-01-15 Ulvac Japan Ltd Composition for hydrogen gas generation, production method for hydrogen gas, production apparatus for hydrogen gas and generator
JP2006273609A (en) * 2005-03-28 2006-10-12 Hitachi Maxell Ltd Hydrogen generator and fuel cell using the same
JP2007157864A (en) * 2005-12-02 2007-06-21 Mitsubishi Electric Corp Alloy for rare-earth iron-boron based magnet, manufacturing method therefor and manufacturing device thereof
JP2007290888A (en) * 2006-04-24 2007-11-08 Hitachi Maxell Ltd Method for producing hydrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226941A (en) * 2014-09-12 2014-12-24 沈阳中北真空技术有限公司 Vacuum melting and rapid hardening equipment with collecting tank and manufacturing methods of permanent magnetic alloy and permanent magnet
CN104226941B (en) * 2014-09-12 2016-10-05 沈阳中北真空技术有限公司 With batch can vacuum melting rapid hardening equipment and permanent-magnet alloy and the manufacture method of permanent magnet

Similar Documents

Publication Publication Date Title
CN103502505B (en) Cu-Ga alloy sputtering targets and manufacture method thereof
EP2772327B1 (en) High-purity titanium ingots, manufacturing method therefor, and titanium sputtering target
CN103667837A (en) Nanometer TiF3 catalyzed high-volume hydrogen-storing alloy and preparation method thereof
JP2010132990A (en) Electron beam melting device for metal titanium and melting method using the same
JP5960282B2 (en) Cu-Ga alloy sputtering target and method for producing the same
JP3212133B2 (en) Rare earth metal-nickel based hydrogen storage alloy ingot and method for producing the same
JP5074762B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
Dong et al. Influence of Ti/C mass ratio on the microstructure of Al-Ti-C master alloy and refinement effect on pure aluminum
CN104480329A (en) Method for preparing metal alloy cast block
JP2013107822A (en) Method for generating gaseous hydrogen and material for generating gaseous hydrogen
CN103633339B (en) A kind of nano Ce O 2high power capacity RE-Mg-Ni base hydrogen-storing alloy of catalysis and preparation method thereof
CN103667836B (en) MoS 2high capacity hydrogen storage alloy of catalysis and preparation method thereof
CN104532037A (en) Production method of octonary aluminum alloy anode for aluminum-air batteries
JP2009137803A (en) Hydrogen gas-producing material and method for generating hydrogen gas using the same
JP6123949B2 (en) Method for producing corrosion-resistant titanium alloy containing Ru
JPWO2010018849A1 (en) Silicon purification method
JP2011070779A (en) Si alloy for lithium secondary battery negative electrode material
JP2013204081A (en) Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
CN104827044A (en) Cu50Zr40Ti10/Cu amorphous alloy flake-like composite powder and preparation process thereof
Tongsri et al. Characterization of Cu6Sn5 intermetallic powders produced by water atomization and powder heat treatment
JP2012012657A (en) METHOD OF MANUFACTURING Si-BASED MATERIAL
Zhang et al. Orientation of nanocrystals in rapidly solidified Al-based alloys and its correlation to the compound-forming tendency of alloys
JP7471946B2 (en) Manufacturing method of titanium ingot
WO2011099110A1 (en) Silicon vacuum melting method
Ye et al. Substitution effect on glass formation of NixCo60− xNb40 alloys

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331