JP2013106595A - Micro device and bioassay system - Google Patents

Micro device and bioassay system Download PDF

Info

Publication number
JP2013106595A
JP2013106595A JP2011256517A JP2011256517A JP2013106595A JP 2013106595 A JP2013106595 A JP 2013106595A JP 2011256517 A JP2011256517 A JP 2011256517A JP 2011256517 A JP2011256517 A JP 2011256517A JP 2013106595 A JP2013106595 A JP 2013106595A
Authority
JP
Japan
Prior art keywords
flow path
medium
chamber
culture
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011256517A
Other languages
Japanese (ja)
Other versions
JP5892589B2 (en
Inventor
Hidekatsu Tazawa
英克 田澤
Manabu Tokeshi
学 渡慶次
Ritsuko Kaneko
律子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microchemical Technology
Toyo University
Original Assignee
Institute of Microchemical Technology
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microchemical Technology, Toyo University filed Critical Institute of Microchemical Technology
Priority to JP2011256517A priority Critical patent/JP5892589B2/en
Publication of JP2013106595A publication Critical patent/JP2013106595A/en
Application granted granted Critical
Publication of JP5892589B2 publication Critical patent/JP5892589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a micro device and bioassay system capable of preventing the flow of air bubbles or contaminants and preventing an abrupt flow rate change when passing a chemical to a culture part in a cell culture using a microchip.SOLUTION: The micro device includes a flow path switching valve for connecting one of either a flow path for supplying a medium or a flow path for supplying a sample and a chamber for trapping the air bubbles and contaminants in the medium using a difference in specific gravity from the medium when communicating with the flow path for supplying a medium and filling the medium inside the chamber.

Description

本発明は、創薬やバイオテクノロジーの研究に使われ、特に細胞を培養しその機能や応答を評価する際に用いられる、マイクロデバイス及びバイオアッセイシステムに関する。   The present invention relates to a microdevice and a bioassay system used for drug discovery and biotechnology research, and particularly used for culturing cells and evaluating their functions and responses.

従来より、細胞の機能や応答を評価する場合には、細胞は主に培地を入れたウェルもしくはシャーレ内にて培養され、実験に用いられている。しかし、個別細胞の評価や細胞の応答を経時的に評価する場合には、少ない試料で、かつ灌流系で実験が行えることが望まれていた。   Conventionally, when evaluating the function and response of a cell, the cell is mainly cultured in a well or petri dish containing a medium and used for experiments. However, when evaluating individual cells and cell responses over time, it has been desired that experiments can be performed with a small number of samples and in a perfusion system.

このような背景より、近年、微細加工技術を応用した細胞培養用のデバイスの開発が進んでいる。これらはマイクロチップと呼称され、いくつかの研究成果が報告されている(例えば、非特許文献1,2参照)。   Against this background, in recent years, development of devices for cell culture applying microfabrication technology is progressing. These are called microchips, and some research results have been reported (for example, see Non-Patent Documents 1 and 2).

これらのデバイスは、ガラス、シリコンウェハー、PDMSもしくはその他樹脂基板内に作製されたマイクロ流路内で各種実験を行うものである。サンプルや試薬および廃液の微量化が可能であるとともに、反応部の比界面積が大きいため、細胞の応答を効率よく行うことが可能である。また、培養部もしくは流路下部に測定器を設置することにより、リアルタイムでの評価を可能としている。   These devices are used for various experiments in glass, silicon wafers, PDMS or other microchannels fabricated in a resin substrate. Samples, reagents, and waste liquids can be reduced in volume, and the specific interface area of the reaction part is large, so that the cells can respond efficiently. In addition, real-time evaluation is possible by installing a measuring instrument in the culture part or in the lower part of the flow path.

ネーチャー(NATURE)第l442巻(2006)pp403-11NATURE Vol.l442 (2006) pp403-11 ジャーナル オブ クロマトグラフィー エー(Journal of Chromatography A), 第1111(2)巻, pp233-237 (2006).Journal of Chromatography A, 1111 (2), pp 233-237 (2006).

マイクロチップに設けられた流路は微細であるため、気泡や夾雑物の除去手段を設けたり、培地や薬液の急な流量変化を防止する手段を設けることは困難であった。そのため、マイクロチップを用いた細胞培養において培地などの薬液を培養部に通液する際に、培養部に気泡や夾雑物が流入したり、溶液交換やデバイスを移動させる時に流量が急に変化することがあった。この場合、細胞のなかでも特に接着性細胞は培養部内に混入する気泡や流速の急激な変化の影響を受け易いため、接着能力の弱い細胞においては、デバイス内に保持することが困難であった。   Since the flow path provided in the microchip is fine, it has been difficult to provide a means for removing bubbles and foreign substances and a means for preventing a sudden change in the flow rate of the culture medium or chemical solution. For this reason, when a chemical solution such as a medium is passed through the culture part in cell culture using a microchip, the flow rate changes suddenly when air bubbles or impurities flow into the culture part, or when the solution is exchanged or the device is moved. There was a thing. In this case, adherent cells are particularly susceptible to air bubbles mixed in the culture part and sudden changes in flow rate, and it was difficult to maintain in the device for cells with weak adhesion ability. .

本発明は、マイクロチップを用いた細胞培養において薬液を培養部に通液する際に、気泡や夾雑物の流入を防止し、また急な流量変化を防止することができるマイクロデバイス及びバイオアッセイシステムを提供することを目的とする。   The present invention relates to a microdevice and a bioassay system capable of preventing inflow of bubbles and foreign substances and preventing a sudden change in flow rate when a drug solution is passed through a culture section in cell culture using a microchip. The purpose is to provide.

本発明の第1の特徴は、培地供給用流路及び試料・薬液供給用流路のいずれか一方を培養部につなぐ流路切り替えバルブと、培地供給用流路と連通し培地が内部に充填された際に培地との比重差を用いて培地中の気泡及び夾雑物をトラップするチャンバーとを有するマイクロデバイスを要旨とする。   The first feature of the present invention is that a flow path switching valve that connects one of the culture medium supply flow path and the sample / chemical solution supply flow path to the culture section, the medium supply flow path, and the culture medium are filled inside. A gist of the present invention is a microdevice having a chamber for trapping bubbles and contaminants in a culture medium using a difference in specific gravity with the culture medium.

本発明の第2の特徴は、マイクロ流路が表面に形成された基板を備える培養部と、培地供給用流路及び試料・薬液供給用流路のいずれか一方を培養部につなぐ流路切り替えバルブと、培地供給用流路と連通し培地が内部に充填された際に密度差により培地中の気泡及び夾雑物をトラップするチャンバーとを有するバイオアッセイシステムを要旨とする。   The second feature of the present invention is that the culture unit includes a substrate having a microchannel formed on the surface, and a channel switching that connects any one of a culture medium supply channel and a sample / chemical solution supply channel to the culture unit. The gist of the present invention is a bioassay system including a valve and a chamber that communicates with a medium supply channel and traps bubbles and contaminants in the medium due to a density difference when the medium is filled therein.

本発明によれば、マイクロチップを用いた細胞培養において薬液を培養部に通液する際に、気泡や夾雑物の流入を防止し、また溶液交換やデバイス移動時に急な流量変化を防止することができるマイクロデバイス及びバイオアッセイシステムが提供される。   According to the present invention, when a chemical solution is passed through a culture unit in cell culture using a microchip, bubbles and contaminants are prevented from flowing in, and a sudden flow rate change is prevented during solution exchange or device movement. Microdevices and bioassay systems are provided.

実施形態に係るマイクロデバイスを備えるバイオアッセイシステムの概略図である。It is a schematic diagram of a bioassay system provided with a microdevice concerning an embodiment. 実施形態に係るマイクロデバイスを備えるバイオアッセイシステムの斜視図である。It is a perspective view of a bioassay system provided with the microdevice concerning an embodiment. 実施形態に係る流路切り替えバルブの上面図である。It is a top view of the flow path switching valve according to the embodiment. 実施形態に係る流路切り替えバルブの切り欠き上面図である。It is a notch top view of the flow-path switching valve which concerns on embodiment. 実施形態に係る流路切り替えバルブの切り欠き上面図である。It is a notch top view of the flow-path switching valve which concerns on embodiment. 実施形態に係るチャンバーの断面図である。It is sectional drawing of the chamber which concerns on embodiment. 実施形態の変形例に係るマイクロデバイスを備えるバイオアッセイシステムの斜視図である。It is a perspective view of a bioassay system provided with the microdevice which concerns on the modification of embodiment. 実施形態の変形例に係るマイクロデバイスを備えるバイオアッセイシステムの斜視図である。It is a perspective view of a bioassay system provided with the microdevice which concerns on the modification of embodiment. 実施形態の変形例に係るチャンバーの断面図である。It is sectional drawing of the chamber which concerns on the modification of embodiment.

以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。但し、図面は模式的なものであるので、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited to the following embodiments. Components having the same function or similar functions in the figures are given the same or similar reference numerals and description thereof is omitted. However, since the drawings are schematic, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

図1は、実施形態に係るマイクロデバイスを備えるバイオアッセイシステムの概略図である。バイオアッセイシステム1は、マイクロ流路21aが表面に形成された基板(マイクロチップ)21を備える培養部20と、マイクロ流路21aの一端と流路L2を介してつながるマイクロデバイス10Aとを有する。マイクロデバイス10Aは、培地供給用流路L3及び試料供給用流路L1のいずれか一方を培養部20につなぐ流路切り替えバルブ13と、培地供給用流路L3と連通し培地が内部に充填された際に、培地との比重差を用いて培地中の気泡及び夾雑物をトラップするチャンバー15とを有する。ここでは、バルブ13と、チャンバー15とは一体に形成されている。バイオアッセイシステム1は、さらにマイクロ流路の他端と廃液流路L4を介してつながる廃液回収部35と、試料供給用流路L1を介してマイクロデバイスにつながるシリンジ31と、培地供給用流路L3を介してマイクロデバイス10Aにつながるポンプ33とを有する。なお、本明細書及び特許請求の範囲において、「基板(マイクロチップ)」とは、平板状でないデバイス並びにミリメートル幅の流路構造を持つデバイスも含めて呼称することとする。   FIG. 1 is a schematic diagram of a bioassay system including a microdevice according to an embodiment. The bioassay system 1 includes a culture unit 20 including a substrate (microchip) 21 on which a microchannel 21a is formed, and a microdevice 10A connected to one end of the microchannel 21a via a channel L2. The microdevice 10A has a flow path switching valve 13 that connects either the culture medium supply flow path L3 or the sample supply flow path L1 to the culture unit 20, and the culture medium supply flow path L3. In this case, it has a chamber 15 for trapping bubbles and contaminants in the medium using the specific gravity difference with the medium. Here, the valve 13 and the chamber 15 are integrally formed. The bioassay system 1 further includes a waste liquid collecting unit 35 connected to the other end of the micro flow path via the waste liquid flow path L4, a syringe 31 connected to the micro device via the sample supply flow path L1, and a culture medium supply flow path. And a pump 33 connected to the microdevice 10A via L3. In the present specification and claims, the term “substrate (microchip)” includes devices that are not flat and devices that have a millimeter-width channel structure.

図2に示すように、基台60上に配置された培養部20は、基板21と、基板21上に配置されたマイクロ流路21aに対応する箇所に開口部が設けられたフレーム状の固定具23と、固定具23を基台60に取り付ける複数のネジ27a…27dとからなる。固定具23の淵には、マイクロ流路21aにつながる複数の液供給口29a、29b、…29hを供える。なお、マイクロ流路21aの経路パターンは、直線状に制限されることなく用途に応じて種々のパターンを用いることができる。   As shown in FIG. 2, the culture unit 20 disposed on the base 60 is fixed in a frame shape in which openings are provided at locations corresponding to the substrate 21 and the microchannels 21 a disposed on the substrate 21. It comprises a tool 23 and a plurality of screws 27a... 27d for attaching the fixing tool 23 to the base 60. A plurality of liquid supply ports 29a, 29b,... 29h connected to the microchannel 21a are provided on the cage of the fixture 23. In addition, the path | route pattern of the microchannel 21a is not restrict | limited to linear form, A various pattern can be used according to a use.

基板21の材質については、細胞培養に悪影響を与えるものでなければ特に制限はされず種々の材料を用いることができる。一般的にはガラス、シリコンウェハー、ポリジメチルシロキサン(PDMS)、ポリメチルメタクリレート(PMMA)、環状オレフィンポリマー、ポリスチレン等の樹脂を用いることができる。マイクロ流路21aの内径は細胞の大きさを考慮すると、直径1mm以下が好ましく、特に100〜500μmが望ましい。   The material of the substrate 21 is not particularly limited as long as it does not adversely affect the cell culture, and various materials can be used. In general, resins such as glass, silicon wafer, polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), cyclic olefin polymer, and polystyrene can be used. In consideration of the size of the cells, the inner diameter of the microchannel 21a is preferably 1 mm or less, and particularly preferably 100 to 500 μm.

図3の上面図に示すように、マイクロデバイス10Aは、本体11と、本体11の略中心部に一端13aがはめ込み式に取り付けられた流路切り替えバルブ13と、培地供給用流路L3上に本体11と一体に形成されたチャンバー15とからなる。マイクロデバイス10Aには、試料供給用流路L1、流路L2および培地供給用流路L3のそれぞれが嵌め込み式に取り付けられている。流路切り替えバルブ13の一端13aの内部にはL字状の流路が設けられている。そのため、図4の切り欠き上面図に示すように、流路切り替えバルブ13(仮想線)の長手方向軸が流路L2の長手方向軸と一致するように配置することで、試料供給用流路L1と流路L2がつながる。シリンジ31から細胞を流し込むと、マイクロデバイス10Aを介して培養部20へと流し込まれる。図5に示すように、一端13aを軸にして仮想線で示すように流路切り替えバルブ13を90度回転させて、流路切り替えバルブ13を流路L2の長手方向に対して垂直に配置することで、培地供給用流路L3と流路L2がつながる。そしてポンプを作動させ、培地を送り込むことで、流路切り替えバルブ13を介して培養部20に培地が送り込まれる。   As shown in the top view of FIG. 3, the microdevice 10 </ b> A includes a main body 11, a flow path switching valve 13 in which one end 13 a is fitted in a substantially central portion of the main body 11, and a medium supply flow path L <b> 3. The chamber 15 is formed integrally with the main body 11. Each of the sample supply channel L1, the channel L2, and the medium supply channel L3 is attached to the microdevice 10A in a fitting manner. An L-shaped channel is provided inside one end 13 a of the channel switching valve 13. Therefore, as shown in the cutaway top view of FIG. 4, the sample supply flow path is arranged by arranging the longitudinal direction axis of the flow path switching valve 13 (virtual line) to coincide with the longitudinal direction axis of the flow path L2. L1 and the flow path L2 are connected. When cells are poured from the syringe 31, they are poured into the culture unit 20 via the microdevice 10A. As shown in FIG. 5, the flow path switching valve 13 is rotated by 90 degrees about the one end 13 a as shown by the phantom line, and the flow path switching valve 13 is arranged perpendicular to the longitudinal direction of the flow path L <b> 2. Thus, the medium supply flow path L3 and the flow path L2 are connected. Then, the medium is fed into the culture unit 20 via the flow path switching valve 13 by operating the pump and feeding the medium.

なお、バルブについては、培地供給用流路L3及び試料供給用流路L1のいずれか一方を培養部に切り替えることができるのであれば、上述のバルブに限定されることなく、種々のバルブを用いることができる。内部容積を少なくするため流路内径が0.5mm程度のバルブを使用することが好ましい。   The valve is not limited to the above-described valve, and various valves may be used as long as either one of the medium supply channel L3 and the sample supply channel L1 can be switched to the culture unit. be able to. In order to reduce the internal volume, it is preferable to use a valve having a flow path inner diameter of about 0.5 mm.

図6は、本体11の一部に本体11と一体に形成されたチャンバー15の断面図である。チャンバー15は、直方体形状をしている。使用する溶液量を考慮すると、流路の出入口の内径を0.4〜0.6mmとしたときに一辺が5〜10mmとすることが好ましい。図2のポンプ33を作動させて矢印で示すように培地供給用流路L3からチャンバー15の入口からチャンバー15内に培地を充填すると、培地中の気泡(主に空気)Aは培地よりも比重が軽いので上方に移動し、夾雑物Bは培地よりも比重が重いので下方に沈降する。このようにして、比重の違いを利用することで、培地中の気泡Aや夾雑物Bをチャンバー15中にトラップすることで、培地から夾雑物Bや気泡Aを除去することができる。なお、チャンバー15のサイズ及び形状については、灌流する培地由来および配管時に発生する気泡Aと、夾雑物Bを保持する機能を保てれば特に限定はされない。   FIG. 6 is a cross-sectional view of the chamber 15 formed integrally with the main body 11 in a part of the main body 11. The chamber 15 has a rectangular parallelepiped shape. Considering the amount of solution to be used, it is preferable that one side is 5 to 10 mm when the inner diameter of the inlet / outlet of the flow path is 0.4 to 0.6 mm. When the medium is filled into the chamber 15 from the inlet of the chamber 15 through the medium supply flow path L3 as shown by the arrow by operating the pump 33 in FIG. 2, bubbles (mainly air) A in the medium has a higher specific gravity than the medium. Since it is light, it moves upward, and the contaminant B has a higher specific gravity than the medium, so it settles downward. In this way, by utilizing the difference in specific gravity, trapping bubbles A and contaminants B in the medium in the chamber 15 allows the contaminants B and bubbles A to be removed from the medium. The size and shape of the chamber 15 are not particularly limited as long as the function of retaining the bubbles A and impurities B generated from the medium to be perfused and generated during piping is maintained.

マイクロデバイス10A(流路切り替えバルブ13、チャンバー15)の材質については、微細加工が可能で培養する細胞に悪影響を与えるものでなければ特に制限なく種々のものを使用することができる。使い捨て(ディスポーサブル)を考慮する場合はポリスチレンなど樹脂類を使用することが好ましく、耐薬品性を考慮する場合はポリエーテルエーテルケトン(PEEK)やフッ素樹脂を使用することが望ましい。   Regarding the material of the micro device 10A (the flow path switching valve 13, the chamber 15), various materials can be used without particular limitation as long as they can be finely processed and do not adversely affect the cells to be cultured. When considering disposable (disposable), it is preferable to use resins such as polystyrene, and when considering chemical resistance, it is desirable to use polyetheretherketone (PEEK) or fluororesin.

本実施形態に使用できる細胞の種類は、マイクロチャネルに接着する性能を持つ細胞であれば特に限定はされない。   The type of cell that can be used in this embodiment is not particularly limited as long as it has the ability to adhere to microchannels.

次に、実施形態に係るマイクロデバイス及びバイオアッセイシステムの使用方法について、PC12細胞およびHT22細胞の培養方法を例に挙げて、具体的に説明する。   Next, a method for using the microdevice and the bioassay system according to the embodiment will be specifically described with reference to a method for culturing PC12 cells and HT22 cells.

(イ)まず図2に示すマイクロデバイスを備えるバイオアッセイシステムを用意する。ここでは、流路切り替えバルブとして、耐薬品性能を考慮しフッ素樹脂を用いて製造したものを用いた。図2の基板(マイクロチップ)21として、幅0.3mm、深さ0.1mm、長さ60mmの直線状チャネルを持ち、チャネル内はコラーゲンにて予めコーティングしたものを用いた。 (A) First, a bioassay system including the microdevice shown in FIG. 2 is prepared. Here, a flow path switching valve manufactured using a fluororesin in consideration of chemical resistance performance was used. As the substrate (microchip) 21 in FIG. 2, a linear channel having a width of 0.3 mm, a depth of 0.1 mm, and a length of 60 mm was used, and the inside of the channel was previously coated with collagen.

(ロ)次に、図4に示すように試料供給用流路L1と流路2が繋がるよう、マイクロデバイス10Aの流路切り替えバルブ13が所定の位置にあることを確認する。その後、図2の試料供給用流路L1より10/mL個程度の濃度の細胞懸濁液をマイクロデバイス10Aを介して基板21に注入する。注入後、細胞を静置する。静置時間は細胞の性能により変化するものであるが、ここでは2時間静置することにより細胞をチャネル壁面に接着させた。 (B) Next, as shown in FIG. 4, it is confirmed that the flow path switching valve 13 of the microdevice 10A is in a predetermined position so that the sample supply flow path L1 and the flow path 2 are connected. Thereafter, a cell suspension having a concentration of about 10 6 / mL is injected into the substrate 21 through the microdevice 10A from the sample supply channel L1 of FIG. After injection, the cells are allowed to stand. Although the standing time varies depending on the performance of the cells, the cells were allowed to adhere to the channel wall surface by standing for 2 hours.

(ハ)細胞をチャネル壁面に接着させた後、図5に示すようにマイクロデバイス10Aの流路切り替えバルブ13が所定の位置にあることを確認する。その後、培地供給用流路L3に繋がれているポンプ33に用意されている培地を灌流させる。灌流速度は0.1μL/min程度が好ましい。 (C) After the cells are adhered to the channel wall surface, it is confirmed that the flow path switching valve 13 of the microdevice 10A is in a predetermined position as shown in FIG. Thereafter, the medium prepared in the pump 33 connected to the medium supply channel L3 is perfused. The perfusion rate is preferably about 0.1 μL / min.

以上のようにして、PC12細胞およびHT22細胞を培養することができる。なお、薬剤アッセイなどで刺激物を投与する場合、培地供給用流路L3を他のチューブに差し替え、薬剤の入っているシリンジを接続することにより溶液交換を行うことができる。   As described above, PC12 cells and HT22 cells can be cultured. In addition, when administering an irritant in a drug assay or the like, solution exchange can be performed by replacing the medium supply flow path L3 with another tube and connecting a syringe containing the drug.

(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

実施形態においては、基台60上に流路L2につながる1つのマイクロデバイス10Aを配置した。しかし、図7に示すように、複数の流路切り替えバルブ13を並列に配置し、そして一方の液を他方の液と反応させても構わない。また図2の培養部20と流路切り替えバルブ13の間にさらに流路切り替えバルブ13を直列に配置しても構わない。培養部20への通液をより確実に止めることができるからである。また図2の培養部20の廃液流路L4側にもマイクロデバイス10Aを設けても構わない。   In the embodiment, one micro device 10 </ b> A connected to the flow path L <b> 2 is arranged on the base 60. However, as shown in FIG. 7, a plurality of flow path switching valves 13 may be arranged in parallel, and one liquid may be reacted with the other liquid. Further, the flow path switching valve 13 may be further arranged in series between the culture unit 20 and the flow path switching valve 13 in FIG. This is because the liquid flow to the culture unit 20 can be stopped more reliably. Moreover, you may provide the microdevice 10A also in the waste liquid flow path L4 side of the culture | cultivation part 20 of FIG.

実施形態においては、チャンバーとバルブが一体に形成されたマイクロデバイス10Aを用いた。しかし、チャンバーは、図8に示すように、バルブから独立して形成しても構わない。この場合のチャンバーの寸法や材質は、バルブ一体型と同様とすることが好ましい。また、図2のチャンバーとバルブが一体に形成された流路切り替えバルブに加えて、図8のチャンバーを設けても構わない。図2のチャンバーと図8のチャンバーを組み合わせて用いても構わない。   In the embodiment, the micro device 10A in which the chamber and the valve are integrally formed is used. However, the chamber may be formed independently of the valve as shown in FIG. In this case, the dimensions and materials of the chamber are preferably the same as those of the valve integrated type. Further, in addition to the flow path switching valve in which the chamber and the valve in FIG. 2 are integrally formed, the chamber in FIG. 8 may be provided. The chamber of FIG. 2 and the chamber of FIG. 8 may be used in combination.

実施形態においては、チャンバー15の入口と出口を、マイクロデバイス10Aの本体11の厚み方向の略中心にそれぞれ設けたが、それに限定されるものではない。例えば、図9に示すように、チャンバー15の入口は、本体11の厚み方向の略中心より上面側に外すように設け、チャンバー15の出口は、本体11の厚み方向の略中心より下面側に外して配置しても構わない。但し、入口が上面に近すぎると気泡Aがチャンバー15内部で舞うおそれがあるので、略中心と上面の中間程度に配置することが好ましい。出口が下面に近すぎると夾雑物Bが舞うおそれがあるので、略中心と下面の間の中間程度に配置することが好ましい。また夾雑物Bがチャンバー15内で舞うことを防止するため、底面に堰11bを設けても構わない。   In the embodiment, the inlet and the outlet of the chamber 15 are provided at substantially the center in the thickness direction of the main body 11 of the microdevice 10A, but the present invention is not limited to this. For example, as shown in FIG. 9, the inlet of the chamber 15 is provided so as to be removed on the upper surface side from the approximate center in the thickness direction of the main body 11, and the outlet of the chamber 15 is provided on the lower surface side from the approximate center in the thickness direction of the main body 11. You may remove and arrange. However, if the inlet is too close to the upper surface, there is a possibility that the bubbles A will fly inside the chamber 15, so it is preferable that the inlet be disposed approximately between the center and the upper surface. If the outlet is too close to the lower surface, the foreign matter B may fly, so it is preferable that the outlet is disposed approximately in the middle between the center and the lower surface. Further, in order to prevent the foreign matter B from flying in the chamber 15, a dam 11b may be provided on the bottom surface.

本発明によれば、マイクロチップを用いた細胞培養において薬液を培養部に通液する際に、気泡や夾雑物の流入を防止し、また急な流量変化を防止することができるマイクロデバイス及びバイオアッセイシステムが提供される。   ADVANTAGE OF THE INVENTION According to this invention, when passing a chemical | medical solution to a culture part in the cell culture using a microchip, the inflow of a bubble and a foreign material can be prevented, and the microdevice and bio that can prevent a rapid flow rate change. An assay system is provided.

1:バイオアッセイシステム
10A:流路切り替えバルブ
13:弁
15:チャンバー
20:培養部
21:基板(マイクロチップ)
21a:マイクロ流路
31:シリンジ
33:ポンプ
35:廃液回収部
L1:試料・薬液供給用流路
L2:流路
L3:培地供給用流路
L4:廃液流路
1: Bioassay system 10A: Channel switching valve 13: Valve 15: Chamber 20: Culture unit 21: Substrate (microchip)
21a: Micro flow path 31: Syringe 33: Pump 35: Waste liquid recovery unit L1: Sample / chemical liquid supply flow path L2: Flow path L3: Medium supply flow path L4: Waste liquid flow path

Claims (4)

培地供給用流路及び試料供給用流路のいずれか一方を培養部につなぐ流路切り替えバルブと、
前記培地供給用流路と連通し培地が内部に充填された際に前記培地との比重差を用いて前記培地中の気泡及び夾雑物をトラップするチャンバー
とを有することを特徴とするマイクロデバイス。
A flow path switching valve that connects one of the culture medium supply flow path and the sample supply flow path to the culture section;
A microdevice comprising: a chamber that communicates with the medium supply channel and traps bubbles and contaminants in the medium using a specific gravity difference from the medium when the medium is filled therein.
前記チャンバーは、前記流路切り替えバルブと一体に形成されていることを特徴とする請求項1記載のマイクロデバイス。   The micro device according to claim 1, wherein the chamber is formed integrally with the flow path switching valve. 前記チャンバーは、流路の出入口の内径が0.4〜0.6mmであって、一辺が5〜10mmの直方体状であることを特徴とする請求項1記載のマイクロデバイス。   2. The microdevice according to claim 1, wherein the chamber has a rectangular parallelepiped shape having an inner diameter of 0.4 to 0.6 mm at a flow path entrance and a side of 5 to 10 mm. マイクロ流路が表面に形成された基板を備える培養部と、
培地供給用流路及び試料供給用流路のいずれか一方を前記培養部につなぐ流路切り替えバルブと、
前記培地供給用流路と連通し培地が内部に充填された際に密度差により培地中の気泡及び夾雑物をトラップするチャンバー
とを有することを特徴とするバイオアッセイシステム。
A culture section comprising a substrate having a microchannel formed on the surface;
A flow path switching valve that connects one of the flow path for medium supply and the flow path for sample supply to the culture unit;
A bioassay system comprising a chamber that communicates with the medium supply channel and traps bubbles and contaminants in the medium due to a density difference when the medium is filled therein.
JP2011256517A 2011-11-24 2011-11-24 Microdevice and bioassay system Active JP5892589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011256517A JP5892589B2 (en) 2011-11-24 2011-11-24 Microdevice and bioassay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011256517A JP5892589B2 (en) 2011-11-24 2011-11-24 Microdevice and bioassay system

Publications (2)

Publication Number Publication Date
JP2013106595A true JP2013106595A (en) 2013-06-06
JP5892589B2 JP5892589B2 (en) 2016-03-23

Family

ID=48704035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011256517A Active JP5892589B2 (en) 2011-11-24 2011-11-24 Microdevice and bioassay system

Country Status (1)

Country Link
JP (1) JP5892589B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015123012A (en) * 2013-12-26 2015-07-06 高砂電気工業株式会社 Micro fluid chip device
JP2015192642A (en) * 2014-03-28 2015-11-05 日立化成株式会社 Cell-capturing apparatus, cell-capturing device with pretreatment part, and pretreatment part
WO2017061346A1 (en) * 2015-10-05 2017-04-13 株式会社タカゾノテクノロジー Fluid supply device and fluid observation device
CN108300647A (en) * 2018-03-27 2018-07-20 中国科学院力学研究所 A kind of bubble entrapment device
JP2020078315A (en) * 2015-10-05 2020-05-28 株式会社タカゾノテクノロジー Microorganism detection device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242607A (en) * 2005-03-01 2006-09-14 Rohm Co Ltd Micro flow channel and micro fluid tip
JP2007292527A (en) * 2006-04-24 2007-11-08 Sumitomo Bakelite Co Ltd Microchip and system for detecting chemical reaction
WO2007125642A1 (en) * 2006-04-05 2007-11-08 Nikkiso Co., Ltd. Mixer, mixing device and unit for measuring medical component
JP2007298486A (en) * 2006-05-08 2007-11-15 Fujimori Kogyo Co Ltd Method and apparatus for observing blood clot using vascular endothelial cell
JP2008082961A (en) * 2006-09-28 2008-04-10 Sumitomo Bakelite Co Ltd Microchannel device
JP2008301746A (en) * 2007-06-06 2008-12-18 Canon Inc Culture apparatus
WO2009049268A1 (en) * 2007-10-12 2009-04-16 Rheonix, Inc. Integrated microfluidic device and methods
JP2010286421A (en) * 2009-06-15 2010-12-24 Hitachi High-Technologies Corp Fluorescence analysis method
WO2011034620A2 (en) * 2009-09-21 2011-03-24 Akonni Biosystems Integrated cartridge

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242607A (en) * 2005-03-01 2006-09-14 Rohm Co Ltd Micro flow channel and micro fluid tip
WO2007125642A1 (en) * 2006-04-05 2007-11-08 Nikkiso Co., Ltd. Mixer, mixing device and unit for measuring medical component
JPWO2007125642A1 (en) * 2006-04-05 2009-09-10 日機装株式会社 Mixer, mixing device and medical component measurement unit
JP2007292527A (en) * 2006-04-24 2007-11-08 Sumitomo Bakelite Co Ltd Microchip and system for detecting chemical reaction
JP2007298486A (en) * 2006-05-08 2007-11-15 Fujimori Kogyo Co Ltd Method and apparatus for observing blood clot using vascular endothelial cell
JP2008082961A (en) * 2006-09-28 2008-04-10 Sumitomo Bakelite Co Ltd Microchannel device
JP2008301746A (en) * 2007-06-06 2008-12-18 Canon Inc Culture apparatus
WO2009049268A1 (en) * 2007-10-12 2009-04-16 Rheonix, Inc. Integrated microfluidic device and methods
JP2010286421A (en) * 2009-06-15 2010-12-24 Hitachi High-Technologies Corp Fluorescence analysis method
WO2011034620A2 (en) * 2009-09-21 2011-03-24 Akonni Biosystems Integrated cartridge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015123012A (en) * 2013-12-26 2015-07-06 高砂電気工業株式会社 Micro fluid chip device
JP2015192642A (en) * 2014-03-28 2015-11-05 日立化成株式会社 Cell-capturing apparatus, cell-capturing device with pretreatment part, and pretreatment part
WO2017061346A1 (en) * 2015-10-05 2017-04-13 株式会社タカゾノテクノロジー Fluid supply device and fluid observation device
JP2017070222A (en) * 2015-10-05 2017-04-13 株式会社タカゾノテクノロジー Fluid supply device and fluid observation device
JP2020078315A (en) * 2015-10-05 2020-05-28 株式会社タカゾノテクノロジー Microorganism detection device
CN108300647A (en) * 2018-03-27 2018-07-20 中国科学院力学研究所 A kind of bubble entrapment device

Also Published As

Publication number Publication date
JP5892589B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
US20230234061A1 (en) Manipulation of fluids, fluid components and reactions in microfluidic systems
US11618024B2 (en) Manipulation of fluids, fluid components and reactions in microfluidic systems
CN105164246B (en) The method and apparatus that many cells for analytic definition combine
JP5624629B2 (en) System and method for filtering particles
US9511366B2 (en) Microfluidic device and its use for positioning of cells or organisms
JP5892589B2 (en) Microdevice and bioassay system
US20100159590A1 (en) Systems and methods for active microfluidic cell handling
US20110236970A1 (en) Chamber of a bioreactor platform
WO2012019436A1 (en) Microfluidic device for cell motility screening and chemotaxis testing
US20110130310A1 (en) Microbioreactor and microtiter plate comprising a plurality of microbioreactors
CN103103120A (en) Integrated temperature controlled PCR-CE (polymerase chain reaction-capillary electrophoresis) micro-fluidic chip and preparation method thereof
CN105873680A (en) Microfluidic device, system, and method
WO2009118015A2 (en) A sample port of a cell culture system
Birchler et al. Seamless combination of fluorescence-activated cell sorting and hanging-drop networks for individual handling and culturing of stem cells and microtissue spheroids
US20170216838A1 (en) Microfluidic device with channel plates
Liu et al. A power-free, parallel loading microfluidic reactor array for biochemical screening
Harink et al. Microtiter plate-sized standalone chip holder for microenvironmental physiological control in gas-impermeable microfluidic devices
Li et al. Comparison of inlet geometry in microfluidic cell affinity chromatography
JP6192007B2 (en) Microdevice and bioassay system
JP2004150980A (en) Liquid sending device and liquid feed method of microchemical/biochemical chip
Li et al. Integrated and diffusion-based micro-injectors for open access cell assays
US20220372418A1 (en) Pumpless Microfluidic Devices and Uses Thereof
JP2023109022A (en) Microchannel device, channel system and particle introduction method
Ke Microfluidic-based cell assay for biomedical application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160218

R150 Certificate of patent or registration of utility model

Ref document number: 5892589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250