JP2013105907A - Current lead - Google Patents

Current lead Download PDF

Info

Publication number
JP2013105907A
JP2013105907A JP2011248941A JP2011248941A JP2013105907A JP 2013105907 A JP2013105907 A JP 2013105907A JP 2011248941 A JP2011248941 A JP 2011248941A JP 2011248941 A JP2011248941 A JP 2011248941A JP 2013105907 A JP2013105907 A JP 2013105907A
Authority
JP
Japan
Prior art keywords
temperature side
side electrode
low temperature
plating layer
peltier element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011248941A
Other languages
Japanese (ja)
Other versions
JP5697162B2 (en
Inventor
Sakutaro Yamaguchi
作太郎 山口
Makoto Hamabe
誠 浜辺
Yasuo Hikichi
康雄 引地
Hideo Sugane
秀夫 菅根
Masahiro Minowa
昌啓 箕輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu University
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Chubu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd, Chubu University filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2011248941A priority Critical patent/JP5697162B2/en
Priority to CN201280054742.1A priority patent/CN103931068B/en
Priority to PCT/JP2012/007213 priority patent/WO2013073146A1/en
Priority to KR1020147012328A priority patent/KR20140097153A/en
Publication of JP2013105907A publication Critical patent/JP2013105907A/en
Application granted granted Critical
Publication of JP5697162B2 publication Critical patent/JP5697162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current lead which has stable characteristics, achieves high reliability, and improves the productivity during manufacturing.SOLUTION: A current lead includes: a low temperature side electrode connecting with a superconductive application device installed at a lower temperature part; a normal temperature side electrode connecting with an external device installed at a normal temperature part; a Peltier element where the low temperature side electrode is joined to one surface and the normal temperature side electrode is joined to the other surface; and connects the superconductive application device with the external device. An Ni plating layer, having a thickness of 5 to 40 μm, is formed on joining surfaces of the Peltier element which are joined to the normal temperature side electrode and the normal temperature side electrode. An Ag plating layer, having a thickness of 5 to 40 μm, is formed on joining surfaces of the normal temperature side electrode and the low temperature side electrode which are joined to the Peltier element. The Peltier element, the low temperature side electrode, the normal temperature side electrode are disposed so that each Ni plating layer faces each Ag plating layer and those layers are joined by solder.

Description

本発明は、低温部に設置される超電導応用機器と常温部に設置される外部機器を接続する電流リードに関し、特に熱電変換素子を用いた熱電冷却型の電流リードに関する。   The present invention relates to a current lead for connecting a superconducting application device installed in a low temperature part and an external device installed in a room temperature part, and more particularly to a thermoelectric cooling type current lead using a thermoelectric conversion element.

近年、超電導ケーブルや超電導マグネット等、超電導を利用した超電導応用機器の分野では、実用化に向けてさかんに研究、開発が行われている。一般に、超電導応用機器は低温部(低温容器)に設置され、常温部に設置された外部機器(例えば電源)と、電流リードを介して接続される。
超電導応用機器の運転は、極低温環境下で行われるため、低温部の断熱性が極めて重要となる。低温部の断熱性が悪く、低温部への熱侵入が大きいと、超電導応用機器の冷却効率が低下して超電導状態を維持するための冷却コストが増大することとなり、場合によっては超電導応用機器を運転できなくなってしまう。この低温部への熱侵入の経路としては、低温容器を伝熱する経路、又は電流リードを伝熱する経路が考えられる。
In recent years, in the field of superconducting applied equipment using superconductivity such as superconducting cables and superconducting magnets, research and development have been conducted for practical use. In general, a superconducting application device is installed in a low temperature part (low temperature container) and connected to an external device (for example, a power source) installed in the normal temperature part via a current lead.
Since the operation of superconducting equipment is performed in a cryogenic environment, the heat insulation of the low temperature part is extremely important. If the heat insulation property of the low temperature part is poor and the heat penetration into the low temperature part is large, the cooling efficiency of the superconducting application equipment will decrease and the cooling cost for maintaining the superconducting state will increase. It becomes impossible to drive. As a path of heat penetration into the low temperature portion, a path for transferring heat through the low temperature container or a path for transferring heat through the current leads can be considered.

低温容器を介した熱侵入を防止するための手法としては、液体窒素等の冷媒及び超電導応用機器を収容する冷媒槽と、冷媒槽の外側に設けられる真空槽とを有する二重構造の低温容器が知られている。この低温容器によれば、真空断熱により低温部への熱侵入が低減される。   As a technique for preventing heat intrusion through a cryogenic vessel, a dual-structure cryogenic vessel having a refrigerant tank containing a refrigerant such as liquid nitrogen and a superconducting application device and a vacuum tank provided outside the refrigerant vessel It has been known. According to this low-temperature container, heat penetration into the low-temperature part is reduced by vacuum insulation.

電流リードを介した熱侵入を防止するための手法としては、酸化物超電導体を用いた超電導電流リードが提案されている(例えば特許文献1〜3)。酸化物超電導体は、金属導体に比較して電気抵抗が小さく、かつ熱伝導率が小さいため(銅の数10分の1)、超電導電流リードにおけるジュール熱の発生はなく、低温部への伝熱量も極めて小さい。したがって、超電導電流リードによれば、低温部への熱侵入が低減される。
しかし、超電導電流リードを採用する場合、電流リードの超電導状態を維持できる様に冷却設備を設けなければならず、冷却コストが増大してしまう課題がある。
As a method for preventing heat intrusion through the current lead, a superconducting current lead using an oxide superconductor has been proposed (for example, Patent Documents 1 to 3). Oxide superconductors have lower electrical resistance and lower thermal conductivity than metal conductors (a few tenths of copper), so there is no Joule heat generation in the superconducting current leads, and transmission to the low temperature part. The amount of heat is very small. Therefore, according to the superconducting current lead, heat penetration into the low temperature portion is reduced.
However, when a superconducting current lead is employed, a cooling facility must be provided so that the superconducting state of the current lead can be maintained, and there is a problem that the cooling cost increases.

そこで、電流リードを介した熱侵入を防止するための他の手法として、熱電変換素子(以下、ペルチェ素子)を利用した熱電冷却型電流リードが提案されている(例えば特許文献4)。熱電冷却型電流リードにおいては、低温部の超電導応用機器に接続される電極(低温側電極)と、常温部の外部機器に接続される電極(常温側電極)とが、ペルチェ素子を介して接続される(図1参照)。具体的には、低温側電極とペルチェ素子の一端面が半田により接合され、同様に、ペルチェ素子の他端面と常温側電極が半田により接合される。以下において、低温側電極と常温側電極を区別しない場合は、単に電極と称することとする。   Therefore, as another method for preventing heat intrusion through the current lead, a thermoelectric cooling type current lead using a thermoelectric conversion element (hereinafter, Peltier element) has been proposed (for example, Patent Document 4). In a thermoelectric cooling type current lead, an electrode (low temperature side electrode) connected to a superconducting application device in a low temperature part and an electrode (normal temperature side electrode) connected to an external device in a normal temperature part are connected via a Peltier element. (See FIG. 1). Specifically, one end face of the low temperature side electrode and the Peltier element are joined by solder, and similarly, the other end face of the Peltier element and the room temperature side electrode are joined by solder. Hereinafter, when the low temperature side electrode and the normal temperature side electrode are not distinguished, they are simply referred to as electrodes.

ペルチェ素子は、通電したときに一端側から吸熱し、他端側から放熱する機能を有する。ペルチェ素子は、例えばBiTe(ビスマス−テルル)系の化合物半導体で構成される。ペルチェ素子がp型半導体で構成される場合は、電流の流入側で吸熱が生じ、流出側で発熱が生じる。逆に、ペルチェ素子がn型半導体で構成される場合は、電流の流入側で発熱が生じ、流出側で吸熱が生じる。したがって、熱電冷却型電流リードにおける通電方向に応じて、p型半導体又はn型半導体で構成されるペルチェ素子を用いることで、通電時に低温部から常温部に向けて熱を移動させることができるので、低温部への熱侵入が低減される。   The Peltier element has a function of absorbing heat from one end side and releasing heat from the other end side when energized. The Peltier device is made of, for example, a BiTe (bismuth-tellurium) -based compound semiconductor. When the Peltier element is made of a p-type semiconductor, heat is absorbed on the current inflow side and heat is generated on the outflow side. Conversely, when the Peltier element is composed of an n-type semiconductor, heat is generated on the current inflow side and heat is absorbed on the outflow side. Therefore, by using a Peltier element composed of a p-type semiconductor or an n-type semiconductor according to the energization direction in the thermoelectrically cooled current lead, heat can be transferred from the low temperature portion to the normal temperature portion during energization. , Heat penetration into the low temperature part is reduced.

なお、電極は、一般に純度99.99%以上の無酸素銅(OFC:Oxygen-Free Copper)で構成される。   The electrode is generally composed of oxygen-free copper (OFC) having a purity of 99.99% or more.

特開平7−283023号公報JP-A-7-283023 特開平9−153407号公報JP-A-9-153407 特開平8−273922号公報JP-A-8-273922 特開2004−6859号公報JP 2004-6859 A 特表2005−538246号公報JP 2005-538246 A 特開2003−110154号公報JP 2003-110154 A

ところで、ペルチェ素子と電極を半田接合する際に電極表面が酸化すると、酸化物層(絶縁層)が生成し、あるいは接合面に凹凸や微小な空隙等の欠陥が生じ、熱伝導性が低下するとともに、電気抵抗が増大する虞がある。そのため、従来は、電極表面(ペルチェ素子との接合面)にフラックスを塗布することにより、電極表面が酸化するのを防止している。また、金属表面の酸化を防止する技術としては、予め金属表面にAg等の金属被膜を形成する手法がある(例えば特許文献5)。   By the way, when the electrode surface is oxidized when soldering the Peltier element and the electrode, an oxide layer (insulating layer) is generated, or defects such as irregularities and minute voids are generated on the bonding surface, resulting in a decrease in thermal conductivity. At the same time, the electrical resistance may increase. Therefore, conventionally, the electrode surface is prevented from being oxidized by applying a flux to the electrode surface (joint surface with the Peltier element). Further, as a technique for preventing the oxidation of the metal surface, there is a technique of previously forming a metal film such as Ag on the metal surface (for example, Patent Document 5).

また、BiTe系半導体からなるペルチェ素子と電極を半田接合する場合、半田中のSnとペルチェ素子中のTeが反応し、この半田反応層によってペルチェ素子の特性が劣化する虞がある。そこで、一般にはペルチェ素子の電極との接合面に、予めNi等のめっきが施される(例えば特許文献6)。   In addition, when a Peltier element made of a BiTe-based semiconductor and an electrode are soldered together, Sn in the solder reacts with Te in the Peltier element, and the characteristics of the Peltier element may be deteriorated by the solder reaction layer. Therefore, in general, Ni or the like is plated in advance on the joint surface with the electrode of the Peltier element (for example, Patent Document 6).

しかしながら、特許文献5、6に記載の技術を適用した熱電冷却型の電流リードは、特性が経時的に低下することが判明した。すなわち、特許文献5、6に記載の技術を利用すると強固な半田接合を実現することはできるが、熱電冷却型の電流リードに適用するには、さらなる改善が必要である。   However, it has been found that the characteristics of thermoelectric cooling type current leads to which the techniques described in Patent Documents 5 and 6 are applied deteriorate over time. That is, when the techniques described in Patent Documents 5 and 6 are used, a strong solder joint can be realized, but further improvement is required to apply to a thermoelectric cooling type current lead.

本発明は、上記課題を解決するためになされたもので、安定した特性を有する信頼性の高い電流リードを提供できるとともに、製造時の生産性を向上することができる電流リードを提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a current lead capable of providing a highly reliable current lead having stable characteristics and improving productivity at the time of manufacture. Objective.

本発明の電流リードは、低温部に設置される超電導応用機器に接続される低温側電極と、
常温部に設置される外部機器に接続される常温側電極と、
一方の面に前記低温側電極が接合され、他方の面に前記常温側電極が接合されるペルチェ素子と、を備え、前記超電導応用機器と前記外部機器とを接続する電流リードであって、
前記ペルチェ素子の前記低温側電極、前記常温側電極との接合面に、5〜40μm厚のNiめっき層が形成され、
前記低温側電極、前記常温側電極の前記ペルチェ素子との接合面に、5〜40μm厚のAgめっき層が形成され、
前記ペルチェ素子、前記低温側電極、及び前記常温側電極が、前記Niめっき層と前記Agめっき層が対向するように配置され、これらが半田接合された構造を備えていることを特徴とする。
The current lead of the present invention is a low temperature side electrode connected to a superconducting application device installed in a low temperature part,
A room temperature side electrode connected to an external device installed in the room temperature section;
The Peltier element, wherein the low temperature side electrode is bonded to one surface and the normal temperature side electrode is bonded to the other surface, and a current lead for connecting the superconducting application device and the external device,
A Ni plating layer having a thickness of 5 to 40 μm is formed on the joint surface between the low temperature side electrode and the normal temperature side electrode of the Peltier element,
An Ag plating layer having a thickness of 5 to 40 μm is formed on the joint surface of the low temperature side electrode and the normal temperature side electrode with the Peltier element,
The Peltier element, the low temperature side electrode, and the normal temperature side electrode are arranged so that the Ni plating layer and the Ag plating layer face each other, and have a structure in which these are soldered.

本発明によれば、ペルチェ素子表面に形成されるNiめっき層により半田反応層の形成が防止され、電極表面に形成されるAgめっき層により電極表面の酸化が防止されるので、強固な半田接合が実現される。また、Niめっき層、Agめっき層が最適な厚さで形成されるので、電流リードの特性が経時的に低下することもない。したがって、安定した特性を有する信頼性の高い電流リードを提供できるとともに、製造時の生産性を向上することができる。   According to the present invention, formation of a solder reaction layer is prevented by the Ni plating layer formed on the surface of the Peltier element, and oxidation of the electrode surface is prevented by the Ag plating layer formed on the electrode surface. Is realized. Further, since the Ni plating layer and the Ag plating layer are formed with the optimum thickness, the characteristics of the current lead do not deteriorate with time. Therefore, it is possible to provide a highly reliable current lead having stable characteristics and improve productivity during manufacturing.

従来の熱電冷却型電流リードの具体的な構成を示す図である。It is a figure which shows the specific structure of the conventional thermoelectric cooling type | mold current lead. 本発明の一実施の形態に係る電流リードを用いた超電導磁石装置の一例を示す図である。It is a figure which shows an example of the superconducting magnet apparatus using the current lead which concerns on one embodiment of this invention. 実施の形態に係る電流リードの詳細な構成を示す図である。It is a figure which shows the detailed structure of the current lead which concerns on embodiment. 半田接合部を詳細に示す図である。It is a figure which shows a solder joint part in detail. 本発明の他の実施の形態に係る電流リードを示す図である。It is a figure which shows the current lead which concerns on other embodiment of this invention.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図2は、本発明の一実施の形態に係る電流リードを用いた超電導磁石装置を示す図である。
図2に示すように、超電導磁石装置1は、低温部に設置される超電導コイル11と、常温部に設置される電源12と、電源12と超電導コイル11を電気的に接続する2つの電流リード10を備えている。2つの電流リード10を区別する場合は、電流リード10A、10Bと称する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 is a diagram showing a superconducting magnet device using a current lead according to an embodiment of the present invention.
As shown in FIG. 2, the superconducting magnet device 1 includes a superconducting coil 11 installed in a low temperature part, a power supply 12 installed in a room temperature part, and two current leads electrically connecting the power supply 12 and the superconducting coil 11. 10 is provided. When the two current leads 10 are distinguished, they are referred to as current leads 10A and 10B.

超電導コイル11は、例えば、真空断熱構造を有する低温容器13内に設置され、液体ヘリウムによって冷却される。電源12は、超電導コイル11を励磁するのに必要な電流を、電流リード10を介して供給する。   The superconducting coil 11 is installed in, for example, a cryogenic container 13 having a vacuum heat insulating structure and cooled by liquid helium. The power source 12 supplies a current necessary for exciting the superconducting coil 11 via the current lead 10.

電流リード10は、熱電変換素子であるペルチェ素子101を有する熱電冷却型の電流リードである。ペルチェ素子101の一方の面には超電導コイル11に接続される低温側電極102が接合され、他方の面には電源12に接続される常温側電極103が接合されている。低温側電極102、常温側電極103は、電気抵抗の面からCu含有量が90重量%以上であることが望ましく、例えば純度99.99%以上の無酸素銅で構成される。
ペルチェ素子101と低温側電極102、ペルチェ素子101と常温側電極103は、それぞれ半田付けにより接合される。この場合に用いられる半田としては、Sn含有量が90〜99重量%であるSn−Ag−Cu(いわゆる鉛フリー半田)が耐熱性の面から好適である。ペルチェ素子101と低温側電極102、常温側電極103を半田接合する方法については、後述する。
The current lead 10 is a thermoelectric cooling type current lead having a Peltier element 101 which is a thermoelectric conversion element. A low temperature side electrode 102 connected to the superconducting coil 11 is bonded to one surface of the Peltier element 101, and a normal temperature side electrode 103 connected to the power source 12 is bonded to the other surface. The low temperature side electrode 102 and the normal temperature side electrode 103 preferably have a Cu content of 90% by weight or more from the viewpoint of electrical resistance, and are made of oxygen-free copper having a purity of 99.99% or more, for example.
The Peltier element 101 and the low temperature side electrode 102, and the Peltier element 101 and the normal temperature side electrode 103 are joined by soldering. As the solder used in this case, Sn—Ag—Cu (so-called lead-free solder) having a Sn content of 90 to 99% by weight is preferable from the viewpoint of heat resistance. A method of soldering the Peltier element 101 to the low temperature side electrode 102 and the normal temperature side electrode 103 will be described later.

ペルチェ素子101は、例えばBiTe系、BiTeSb系、又はBiSb系の化合物半導体で構成される。特に、熱電変換効率の面からTe含有量が5〜50重量%であるBiTe系半導体又はBiTeSb系半導体が好適である。BiTe系半導体又はBiTeSb系半導体を適用した場合、常温から200K付近までの温度範囲で良好な冷却能力が得られる。また、BiSb系半導体を適用した場合、200K付近から液体窒素温度(77K)付近までの温度範囲で良好な冷却能力が得られる。
また、ペルチェ素子101には、室温以下の低温において、性能指数Z(=α2/(κρ)、α:ゼーベック係数、κ:熱伝導率、ρ:比抵抗)の値が最大となるように組成が調整された半導体を使用することが望ましい。
The Peltier device 101 is made of, for example, a BiTe-based, BiTeSb-based, or BiSb-based compound semiconductor. In particular, a BiTe-based semiconductor or BiTeSb-based semiconductor having a Te content of 5 to 50% by weight is preferable from the viewpoint of thermoelectric conversion efficiency. When a BiTe-based semiconductor or BiTeSb-based semiconductor is applied, a good cooling capacity can be obtained in a temperature range from room temperature to around 200K. In addition, when a BiSb-based semiconductor is applied, a good cooling capacity can be obtained in a temperature range from around 200K to around liquid nitrogen temperature (77K).
The Peltier device 101 has a maximum value of the figure of merit Z (= α 2 / (κρ), α: Seebeck coefficient, κ: thermal conductivity, ρ: specific resistance) at a low temperature below room temperature. It is desirable to use a semiconductor whose composition is adjusted.

電源12の正極側に接続される電流リード10Aのペルチェ素子101にはn型半導体が適用され、負極側に接続される電流リード10Bのペルチェ素子101にはp型半導体が適用される。例えば、BiTe系半導体の導電型は、SbI3を添加することによりn型に制御され、PbI3を添加することによりp型に制御される。また、構成元素の量を化学量論比からわずかにずらすことによって、BiTe系半導体の導電型を制御することもできる。
何れの電流リード10A、10Bにおいても、ペルチェ素子101の低温側で吸熱が生じ、常温側で発熱が生じる。すなわち、ペルチェ素子101において、通電時に低温側から常温側に向けて熱が移動するので、低温部への熱侵入が低減されるとともに、超電導コイル11を効率よく冷却することができる。
An n-type semiconductor is applied to the Peltier element 101 of the current lead 10A connected to the positive side of the power supply 12, and a p-type semiconductor is applied to the Peltier element 101 of the current lead 10B connected to the negative side. For example, the conductivity type of BiTe-based semiconductor is controlled in n-type by adding SbI 3, it is controlled in p-type by adding PbI 3. In addition, the conductivity type of the BiTe semiconductor can be controlled by slightly shifting the amount of the constituent element from the stoichiometric ratio.
In any of the current leads 10A and 10B, heat is generated on the low temperature side of the Peltier element 101, and heat is generated on the normal temperature side. That is, in the Peltier element 101, heat is transferred from the low temperature side to the normal temperature side when energized, so that heat penetration into the low temperature part is reduced and the superconducting coil 11 can be efficiently cooled.

図3は、実施の形態に係る電流リード10の詳細な構成を示す図である。
図3に示すように、電流リード10において、ペルチェ素子101の一方の面には低温側電極102が半田付けにより接合され、他方の面には常温側電極103が半田付けにより接合されている。
FIG. 3 is a diagram illustrating a detailed configuration of the current lead 10 according to the embodiment.
As shown in FIG. 3, in the current lead 10, the low temperature side electrode 102 is joined to one surface of the Peltier element 101 by soldering, and the normal temperature side electrode 103 is joined to the other surface by soldering.

ここでは、常温側電極103が、2つの部材(第1の常温側電極103a、第2の常温側電極103bと称する)に分割されている。そして、第1の常温側電極103aと第2の常温側電極103bは、可とう性を有するフレキシブル導体105により接続されている。フレキシブル導体105は、例えば平編み銅線で構成される。フレキシブル導体105は、電流リード10、特にペルチェ素子101、低温側電極102、常温側電極103の接合部Bに生じる曲げや歪みを吸収する。   Here, the room temperature side electrode 103 is divided into two members (referred to as a first room temperature side electrode 103a and a second room temperature side electrode 103b). The first room temperature side electrode 103a and the second room temperature side electrode 103b are connected by a flexible conductor 105 having flexibility. The flexible conductor 105 is composed of, for example, a flat knitted copper wire. The flexible conductor 105 absorbs bending and distortion generated at the junction B of the current lead 10, particularly the Peltier element 101, the low temperature side electrode 102, and the normal temperature side electrode 103.

円盤状の常温側固定板110の中央部には開口(図示略)が形成されており、この開口に第1の常温側電極103aが挿嵌される。第1の常温側電極103aには、常温側固定板110の開口よりも大径のフランジが形成される等により、常温側固定板110に第1の常温側電極103aを挿嵌した状態で、第1の常温側電極103aが脱落しないようになっている。常温側固定板110の周縁部には複数(例えば等間隔で4つ)の挿通孔が形成されており、この挿通孔に常温側固定ボルト108が挿通される。そして、常温側固定ボルト108が連結スペーサ111の一端側に螺着されることにより、第1の常温側電極103aが固定される。   An opening (not shown) is formed at the center of the disk-shaped room temperature side fixing plate 110, and the first room temperature side electrode 103a is inserted into the opening. In the first room temperature side electrode 103a, a flange having a diameter larger than the opening of the room temperature side fixing plate 110 is formed. The first normal temperature side electrode 103a is prevented from falling off. A plurality of (for example, four at regular intervals) insertion holes are formed in the peripheral portion of the room temperature side fixing plate 110, and the room temperature side fixing bolts 108 are inserted into the insertion holes. And the 1st normal temperature side electrode 103a is fixed by screwing the normal temperature side fixing bolt 108 to the one end side of the connection spacer 111. As shown in FIG.

低温側電極102の固定態様も第1の常温側電極103aの固定態様とほぼ同様である。すなわち、円盤状の低温側固定板109の中央部には開口(図示略)が形成されており、この開口に低温側電極102が挿嵌される。低温側電極102には、低温側固定板109の開口よりも大径のフランジが形成される等により、低温側固定板109に低温側電極102を挿嵌した状態で、低温側電極102が脱落しないようになっている。低温側固定板109の周縁部には複数(例えば等間隔で4つ)の挿通孔が形成されており、この挿通孔に低温側固定ボルト107が挿通される。そして、低温側固定ボルト107が連結スペーサ111の他端側に螺着されることにより、低温側電極102が固定される。   The fixing mode of the low temperature side electrode 102 is substantially the same as the fixing mode of the first normal temperature side electrode 103a. That is, an opening (not shown) is formed in the central portion of the disk-shaped low temperature side fixing plate 109, and the low temperature side electrode 102 is inserted into this opening. The low temperature side electrode 102 is dropped in a state where the low temperature side electrode 102 is inserted into the low temperature side fixing plate 109, for example, by forming a flange having a diameter larger than the opening of the low temperature side fixing plate 109. It is supposed not to. A plurality of (for example, four at regular intervals) insertion holes are formed in the peripheral edge portion of the low temperature side fixing plate 109, and the low temperature side fixing bolts 107 are inserted into the insertion holes. And the low temperature side electrode 102 is fixed by screwing the low temperature side fixing bolt 107 to the other end side of the connecting spacer 111.

このように、ペルチェ素子101、低温側電極102、第1の常温側電極103aとの接合部Bは、低温側固定板109と常温側固定板110により狭持された状態で、固定されている。   As described above, the joint B between the Peltier element 101, the low temperature side electrode 102, and the first normal temperature side electrode 103a is fixed in a state of being sandwiched between the low temperature side fixing plate 109 and the normal temperature side fixing plate 110. .

また、低温側固定ボルト107の頭部と低温側固定板109との間に付勢部材としてのコイルばね104を介在させている。低温側固定ボルト107を連結スペーサ111に螺着させることに伴い、コイルばね104が圧縮されて付勢力が生じるので、低温側固定板109を介して接合部Bには所定の圧力が加えられることになる。すなわち、低温側固定ボルト107の連結スペーサ111への締め込み量を調整することで、接合部Bに加わる圧力を適宜に調整することができる。
コイルばね104には、低温側固定ボルト107を連結スペーサ111に螺着させることに伴い接合部Bに0.3〜17.0MPaの圧力が付与されるものが適用される。
Further, a coil spring 104 as an urging member is interposed between the head of the low temperature side fixing bolt 107 and the low temperature side fixing plate 109. As the low temperature side fixing bolt 107 is screwed to the connecting spacer 111, the coil spring 104 is compressed and an urging force is generated, so that a predetermined pressure is applied to the joint B via the low temperature side fixing plate 109. become. That is, the pressure applied to the joint portion B can be appropriately adjusted by adjusting the amount of tightening of the low temperature side fixing bolt 107 to the connecting spacer 111.
The coil spring 104 is applied with a pressure of 0.3 to 17.0 MPa applied to the joint B as the low temperature side fixing bolt 107 is screwed to the connecting spacer 111.

また、複数の低温側固定ボルト107を連結スペーサ111に螺着したときに、コイルばね104に生じる付勢力が低温側固定板109に均等に伝わるように、低温側固定ボルト107は低温側固定板109と同様の形状を有する均圧板112を介してコイルばね104を圧縮するようになっている。   Further, the low temperature side fixing bolts 107 are connected to the low temperature side fixing plates 107 such that when the plurality of low temperature side fixing bolts 107 are screwed to the connecting spacers 111, the urging force generated in the coil spring 104 is evenly transmitted to the low temperature side fixing plates 109. The coil spring 104 is compressed via a pressure equalizing plate 112 having the same shape as 109.

さらに、ペルチェ素子101、低温側電極102、第1の常温側電極103aとの接合部Bの外周には、円筒状の保護管106が配設されている。保護管106は、電流リード10の設置時などに意図しない外力が働いたときに、この外力を直接受ける補強部材である。   Furthermore, a cylindrical protective tube 106 is disposed on the outer periphery of the joint B with the Peltier element 101, the low temperature side electrode 102, and the first normal temperature side electrode 103a. The protective tube 106 is a reinforcing member that directly receives an external force when an unintended external force is applied when the current lead 10 is installed.

保護管106には、ガラス繊維をプラスチックに混入して強度を向上させたガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)製のものが好適である。GFRP製の保護管106を用いることにより、外部からの熱の流入を遮断することができるので、保護管106で覆われた内部の構造体の温度上昇、及びこれに伴う機器の損傷、劣化を防止することができる。   The protective tube 106 is preferably made of glass fiber reinforced plastic (GFRP) in which strength is improved by mixing glass fiber into plastic. By using the protective tube 106 made of GFRP, it is possible to block the inflow of heat from the outside, so that the temperature rise of the internal structure covered with the protective tube 106, and the damage and deterioration of the equipment accompanying this increase in temperature. Can be prevented.

電流リード10を作製する場合、まず、低温側電極102、第1の常温側電極103aを上述したように固定した後、低温側電極102をコイルばね104が圧縮される方向に押し戻す。次に、低温側電極102と第1の常温側電極103aの間に所定厚の固形半田を介在させてペルチェ素子101を配置する。   When the current lead 10 is manufactured, first, the low temperature side electrode 102 and the first normal temperature side electrode 103a are fixed as described above, and then the low temperature side electrode 102 is pushed back in the direction in which the coil spring 104 is compressed. Next, the Peltier element 101 is disposed with solid solder having a predetermined thickness interposed between the low temperature side electrode 102 and the first normal temperature side electrode 103a.

このとき、図4に示すように、ペルチェ素子101、低温側電極102、第1の常温側電極103aには、予め所定のめっき処理を施しておく。
具体的には、ペルチェ素子101の両端面(低温側電極102、第1の常温側電極103aとの接合面)には、Niめっき層が形成される。Niめっき層の厚さが5μ未満であると、BiTe系半導体からなるペルチェ素子101と半田が反応して半田反応層が形成され、ペルチェ素子101の特性を劣化させる要因となる。また、Niめっき層の厚さが40μmを超えるとめっき工程に長時間を要するために生産性が低下する上、ペルチェ素子101の特性も低下する。したがって、Niめっき層の厚さは、5〜40μmであることが望ましい。
At this time, as shown in FIG. 4, the Peltier element 101, the low temperature side electrode 102, and the first normal temperature side electrode 103a are subjected to a predetermined plating process in advance.
Specifically, Ni plating layers are formed on both end surfaces of the Peltier element 101 (bonding surfaces between the low temperature side electrode 102 and the first normal temperature side electrode 103a). When the thickness of the Ni plating layer is less than 5 μm, the Peltier device 101 made of BiTe semiconductor reacts with the solder to form a solder reaction layer, which causes the characteristics of the Peltier device 101 to deteriorate. Further, if the thickness of the Ni plating layer exceeds 40 μm, the plating process takes a long time, so that productivity is lowered and characteristics of the Peltier element 101 are also lowered. Therefore, the thickness of the Ni plating layer is desirably 5 to 40 μm.

また、低温側電極102、第1の常温側電極103aの一端面(ペルチェ素子101との接合面)には、Agめっき層が形成される。Agめっき層の厚さが5μ未満であると、無酸素銅からなる低温側電極102、第1の常温側電極103aが半田接合時に酸化して、ペルチェ素子101の特性を劣化させる要因となる。また、Agめっき層の厚さが40μmを超えるとめっき工程に長時間を要するために生産性が低下する上、ペルチェ素子101の特性も低下する。したがって、Agめっき層の厚さは、5〜40μmであることが望ましい。   Further, an Ag plating layer is formed on one end face (joint face with the Peltier element 101) of the low temperature side electrode 102 and the first normal temperature side electrode 103a. If the thickness of the Ag plating layer is less than 5 μm, the low-temperature side electrode 102 and the first normal-temperature side electrode 103a made of oxygen-free copper are oxidized at the time of solder bonding, which causes the characteristics of the Peltier element 101 to deteriorate. Further, if the thickness of the Ag plating layer exceeds 40 μm, the plating process takes a long time, so that productivity is lowered and characteristics of the Peltier element 101 are also lowered. Therefore, the thickness of the Ag plating layer is desirably 5 to 40 μm.

なお、ペルチェ素子101へのNiめっき、及び低温側電極102、第1の常温側電極103aへのAgめっきには、電気めっき、無電解めっき等、公知の技術を適用できるが、めっき厚を5〜40μmで形成するには品質の面から電気めっきが好適である。   Note that known techniques such as electroplating and electroless plating can be applied to Ni plating on the Peltier element 101 and Ag plating on the low temperature side electrode 102 and the first normal temperature side electrode 103a. From the viewpoint of quality, electroplating is suitable for forming at ˜40 μm.

そして、接合部Bに加わる圧力が0.3MPa以上となるように、低温側固定ボルト107の連結スペーサ111への締め込み量を調整する。接合部Bに加わる圧力が0.3MPaよりも小さい状態で半田接合を行うと、接合面に凹凸や微小な空隙等の欠陥が生じ、熱伝導性が低下するとともに、電気抵抗が増大する虞があるためである。この状態で、半田の溶融温度(約250℃)まで昇温し、所定時間保持する。   Then, the tightening amount of the low-temperature side fixing bolt 107 to the connection spacer 111 is adjusted so that the pressure applied to the joint B is 0.3 MPa or more. When solder bonding is performed in a state where the pressure applied to the bonding portion B is smaller than 0.3 MPa, defects such as irregularities and minute voids are generated on the bonding surface, and the thermal conductivity may be lowered and the electrical resistance may be increased. Because there is. In this state, the temperature is raised to the melting temperature of the solder (about 250 ° C.) and held for a predetermined time.

このように、本実施の形態では、電流リード10を製造するに際し、ペルチェ素子101の低温側電極102、常温側電極103との接合面に、5〜40μm厚のNiめっき層を形成する。また、低温側電極102、第1の常温側電極103aのペルチェ素子101との接合面に、5〜40μm厚のAgめっき層を形成する。そして、Niめっき層とAgめっき層が対向するようにペルチェ素子101、低温側電極102、第1の常温側電極103aを配置して、これらを半田接合する。   As described above, in the present embodiment, when the current lead 10 is manufactured, a Ni plating layer having a thickness of 5 to 40 μm is formed on the joint surface between the low temperature side electrode 102 and the normal temperature side electrode 103 of the Peltier element 101. Further, an Ag plating layer having a thickness of 5 to 40 μm is formed on the bonding surface between the low temperature side electrode 102 and the first normal temperature side electrode 103a with the Peltier element 101. Then, the Peltier element 101, the low temperature side electrode 102, and the first normal temperature side electrode 103a are arranged so that the Ni plating layer and the Ag plating layer face each other, and these are soldered.

ペルチェ素子101の両端面にはNiめっき層が形成されているので、半田反応層が形成されるのを防止できる。また、低温側電極102、第1の常温側電極103aの表面にはAgめっき層が形成されているので、電極表面が酸化するのを防止できる。したがって、欠陥のない安定した品質の半田層が形成されるので、ペルチェ素子101、低温側電極102、第1の常温側電極103aが強固に接合される。
また、Niめっき層、Agめっき層が最適な厚さで形成されるので、電流リード10の特性が経時的に低下することもない。したがって、安定した特性を有する信頼性の高い電流リード10を製造できるとともに、製造時の生産性を向上することができる。
Since Ni plating layers are formed on both end faces of the Peltier element 101, it is possible to prevent the formation of a solder reaction layer. In addition, since the Ag plating layer is formed on the surfaces of the low temperature side electrode 102 and the first normal temperature side electrode 103a, it is possible to prevent the electrode surfaces from being oxidized. Accordingly, since a stable quality solder layer without defects is formed, the Peltier element 101, the low temperature side electrode 102, and the first normal temperature side electrode 103a are firmly bonded.
Further, since the Ni plating layer and the Ag plating layer are formed with the optimum thickness, the characteristics of the current lead 10 do not deteriorate with time. Therefore, the highly reliable current lead 10 having stable characteristics can be manufactured, and productivity at the time of manufacturing can be improved.

[実施例]
実施例では、ペルチェ素子101の両端面に形成するNiめっき層の厚さ、低温側電極102、第1の常温側電極103aの一端面に形成するAgめっき厚さを変えて、複数の電流リード10を作製した。このとき、Niめっき層とAgめっき層の厚さは、両方の厚さが5〜40μmの範囲に入るように設定した。また、各試験片におけるNiめっき層とAgめっき層は同等の厚さとした。そして、作製した複数の電流リード10を用いて、熱履歴に対する評価を行った。めっき厚は、F40顕微鏡式膜厚測定システム(フィルメトリクス(株)製)を使用して測定した。
なお、実施例では、常温側電極103を一部材で構成し、保護管106及びフレキシブル導体105も省略した。
[Example]
In the embodiment, the thickness of the Ni plating layer formed on both end faces of the Peltier element 101, the Ag plating thickness formed on one end face of the low temperature side electrode 102, and the first normal temperature side electrode 103a are changed, and a plurality of current leads are formed. 10 was produced. At this time, the thicknesses of the Ni plating layer and the Ag plating layer were set so that both thicknesses were in the range of 5 to 40 μm. Moreover, the Ni plating layer and the Ag plating layer in each test piece were set to the same thickness. And the evaluation with respect to a thermal history was performed using the produced several current lead 10. FIG. The plating thickness was measured using an F40 microscope type film thickness measurement system (manufactured by Filmetrics Co., Ltd.).
In the embodiment, the room temperature side electrode 103 is formed of one member, and the protective tube 106 and the flexible conductor 105 are also omitted.

具体的には、ペルチェ素子101として、断面形状が10mm×10mmの正方形で、厚さ4mmのBiTeSb化合物半導体素子を用いた。ペルチェ素子101の低温側電極102との接合面、及び常温側電極103との接合面には、Niめっき層を形成した。
低温側電極102、常温側電極103には、断面形状が10mm×10mmの正方形で、長さが約100mmの無酸素銅を用いた。低温側電極102及び常温側電極103のペルチェ素子101との接合面には、Agめっき層を形成した。
Specifically, a BiTeSb compound semiconductor element having a square shape of 10 mm × 10 mm and a thickness of 4 mm was used as the Peltier element 101. Ni plating layers were formed on the bonding surface of the Peltier element 101 with the low temperature side electrode 102 and the bonding surface with the normal temperature side electrode 103.
The low temperature side electrode 102 and the normal temperature side electrode 103 were made of oxygen-free copper having a square shape with a cross section of 10 mm × 10 mm and a length of about 100 mm. An Ag plating layer was formed on the joint surface between the low temperature side electrode 102 and the normal temperature side electrode 103 with the Peltier element 101.

Niめっき層、Agめっき層の厚さは、実施例1では約7μm、実施例2では約18μm、実施例3では約27μm、実施例4では約32μm、実施例5では約38μmとした。   The thicknesses of the Ni plating layer and the Ag plating layer were about 7 μm in Example 1, about 18 μm in Example 2, about 27 μm in Example 3, about 32 μm in Example 4, and about 38 μm in Example 5.

実施の形態で説明したように、ペルチェ素子101と低温側電極102との間、ペルチェ素子101と常温側電極103との間に、厚さ50μmのSn−Ag−Cu合金からなる固形半田を挿入し、接合部Bに適度な圧力(例えば、0.6MPa)が加わるように、低温側固定ボルト107の連結スペーサ111への締め込み量を調整した。
そして、この状態で250℃まで昇温して60min間保持し、ペルチェ素子101と低温側電極102、ペルチェ素子101と常温側電極103を半田接合して、通電容量が100Aの電流リード10を作製した。
As described in the embodiment, solid solder made of a 50 μm thick Sn—Ag—Cu alloy is inserted between the Peltier element 101 and the low temperature side electrode 102 and between the Peltier element 101 and the room temperature side electrode 103. Then, the tightening amount of the low temperature side fixing bolt 107 to the connection spacer 111 was adjusted so that an appropriate pressure (for example, 0.6 MPa) was applied to the joint B.
In this state, the temperature is raised to 250 ° C. and held for 60 minutes, and the Peltier element 101 and the low-temperature side electrode 102 and the Peltier element 101 and the normal-temperature side electrode 103 are soldered to produce a current lead 10 having a current carrying capacity of 100A. did.

作製した電流リード10を用いて、まず、接合部Bの室温での電気抵抗(初期値)を、直流4端子法により測定した。
次に、電流リード10に直流電流を通電し、ペルチェ素子101の両端の温度差が100℃以上となるように電流値を調整した。ペルチェ素子101の両端の温度は、低温側電極102、常温側電極103のペルチェ素子101近傍部位に設置した熱電対により測定した。
この温度差がついた状態を10分間保持した後、通電を中止して大気中に放置し、接合部Bの温度が室温となるまで冷却した。そして、この熱履歴を50回繰り返して電流リード10に与えた(熱履歴試験)。
First, the electrical resistance (initial value) at room temperature of the junction B was measured by the direct current four-terminal method using the produced current lead 10.
Next, a direct current was passed through the current lead 10, and the current value was adjusted so that the temperature difference between both ends of the Peltier element 101 was 100 ° C. or more. The temperature at both ends of the Peltier element 101 was measured by a thermocouple installed in the vicinity of the Peltier element 101 of the low temperature side electrode 102 and the normal temperature side electrode 103.
After maintaining this temperature difference state for 10 minutes, the energization was stopped and left in the atmosphere, and the joint B was cooled until the temperature reached room temperature. This thermal history was repeated 50 times and given to the current lead 10 (thermal history test).

電流リード10の熱履歴に対する評価は、熱履歴試験後の接合部Bの室温での電気抵抗を直流4端子法により測定し、初期値と比較することにより行った。また、熱履歴試験後の接合部Bの外観を観察した。   Evaluation of the thermal history of the current lead 10 was performed by measuring the electrical resistance at room temperature of the joint B after the thermal history test by the direct current four-terminal method and comparing it with the initial value. Moreover, the external appearance of the junction part B after a heat history test was observed.

実施例に係る電流リード10の構成、及び評価結果を表1に示す。   Table 1 shows the configuration of the current lead 10 according to the example and the evaluation results.

Figure 2013105907
Figure 2013105907

表1に示すように、Agめっき層、Niめっき層の両方を5〜40μmの厚さで形成した場合に、外観にクラック等の異常は発生せず、初期の電気抵抗、及び初期値からの劣化も小さくなることが確認された(実施例1〜5)。
特に、Agめっき層、Niめっき層の両方を5〜30μmの厚さで形成した場合には、外観にクラック等の異常は発生せず、初期の電気抵抗、及び初期値からの劣化も小さくなることが確認された(実施例1〜3)。さらに、Agめっき層、Niめっき層の両方を5〜25μmの厚さで形成した場合には、初期の電気抵抗、及び初期値からの劣化が極めて小さくなることが確認された(実施例1、2)。
As shown in Table 1, when both the Ag plating layer and the Ni plating layer were formed with a thickness of 5 to 40 μm, no abnormalities such as cracks occurred in the appearance, the initial electric resistance, and the initial value It was confirmed that the deterioration was also reduced (Examples 1 to 5).
In particular, when both the Ag plating layer and the Ni plating layer are formed with a thickness of 5 to 30 μm, no abnormalities such as cracks occur in the appearance, and the initial electrical resistance and deterioration from the initial value are also reduced. It was confirmed (Examples 1-3). Furthermore, when both the Ag plating layer and the Ni plating layer were formed with a thickness of 5 to 25 μm, it was confirmed that the initial electrical resistance and the deterioration from the initial value were extremely small (Example 1, 2).

[比較例]
比較例では、Niめっき層とAgめっき層の何れかの厚さが、5〜40μmの範囲外となるように、それぞれの厚さを設定した。Niめっき層、Agめっき層の厚さ以外の条件は実施例と同じとした。
比較例に係る電流リードの構成、及び評価結果を表2に示す。
[Comparative example]
In the comparative example, each thickness was set so that the thickness of either the Ni plating layer or the Ag plating layer would be outside the range of 5 to 40 μm. The conditions other than the thicknesses of the Ni plating layer and the Ag plating layer were the same as in the examples.
Table 2 shows the configuration of the current leads according to the comparative example and the evaluation results.

Figure 2013105907
Figure 2013105907

表2に示すように、Niめっき層とAgめっき層の何れかの厚さが5〜40μmの範囲外となっている場合には、初期の電気抵抗が大きく、初期値に対する劣化も極めて大きい。また、外観に関しては、接合部Bにクラックが発生していた。このように、実施例と比較例との差は歴然であった。   As shown in Table 2, when the thickness of any of the Ni plating layer and the Ag plating layer is outside the range of 5 to 40 μm, the initial electrical resistance is large and the deterioration with respect to the initial value is extremely large. Moreover, regarding the external appearance, the crack was generate | occur | produced in the junction part B. FIG. Thus, the difference between the example and the comparative example was obvious.

以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、図5に示すように、低温側電極102が、2つの部材102a、102bに分割され、これらが可とう性を有するフレキシブル導体105により接続された電流リードにも、本発明を適用することができる。また、図1に示すような圧力調整機構(コイルばね104等)を備えていない従来型の電流リードにも本発明を適用することができる。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.
For example, as shown in FIG. 5, the present invention is also applied to a current lead in which a low temperature side electrode 102 is divided into two members 102a and 102b and these are connected by a flexible conductor 105 having flexibility. Can do. Further, the present invention can also be applied to a conventional current lead that does not include a pressure adjusting mechanism (such as the coil spring 104) as shown in FIG.

また、Niめっき層、Agめっき層の厚さは、5〜40μmの範囲内であれば、それぞれ異なっていてもよい。   Further, the thicknesses of the Ni plating layer and the Ag plating layer may be different as long as they are within a range of 5 to 40 μm.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 超電導磁石装置
10 電流リード
11 超電導コイル
12 電源
13 低温容器
101 ペルチェ素子
102 低温側電極
103 常温側電極
104 コイルばね
105 フレキシブル導体
106 保護管
107 低温側固定ボルト
108 常温側固定ボルト
109 低温側固定板
110 常温側固定板
111 連結スペーサ
112 均圧板
B 接合部
DESCRIPTION OF SYMBOLS 1 Superconducting magnet apparatus 10 Current lead 11 Superconducting coil 12 Power supply 13 Low temperature container 101 Peltier element 102 Low temperature side electrode 103 Room temperature side electrode 104 Coil spring 105 Flexible conductor 106 Protection tube 107 Low temperature side fixing bolt 108 Room temperature side fixing bolt 109 Low temperature side fixing plate 110 Room temperature side fixed plate 111 Connecting spacer 112 Pressure equalizing plate B Joint

Claims (5)

低温部に設置される超電導応用機器に接続される低温側電極と、
常温部に設置される外部機器に接続される常温側電極と、
一方の面に前記低温側電極が接合され、他方の面に前記常温側電極が接合されるペルチェ素子と、を備え、前記超電導応用機器と前記外部機器とを接続する電流リードであって、
前記ペルチェ素子の前記低温側電極、前記常温側電極との接合面に、5〜40μm厚のNiめっき層が形成され、
前記低温側電極、前記常温側電極の前記ペルチェ素子との接合面に、5〜40μm厚のAgめっき層が形成され、
前記ペルチェ素子、前記低温側電極、及び前記常温側電極が、前記Niめっき層と前記Agめっき層が対向するように配置され、これらが半田接合された構造を備えていることを特徴とする電流リード。
A low temperature side electrode connected to a superconducting application device installed in a low temperature section;
A room temperature side electrode connected to an external device installed in the room temperature section;
The Peltier element, wherein the low temperature side electrode is bonded to one surface and the normal temperature side electrode is bonded to the other surface, and a current lead for connecting the superconducting application device and the external device,
A Ni plating layer having a thickness of 5 to 40 μm is formed on the joint surface between the low temperature side electrode and the normal temperature side electrode of the Peltier element,
An Ag plating layer having a thickness of 5 to 40 μm is formed on the joint surface of the low temperature side electrode and the normal temperature side electrode with the Peltier element,
The Peltier device, the low temperature side electrode, and the normal temperature side electrode are arranged so that the Ni plating layer and the Ag plating layer face each other, and have a structure in which these are soldered together Lead.
前記Agめっき層及び前記Niめっき層の厚さが、5〜30μmであることを特徴とする請求項1に記載の電流リード。   The current lead according to claim 1, wherein the Ag plating layer and the Ni plating layer have a thickness of 5 to 30 μm. 前記Agめっき層及び前記Niめっき層の厚さが、5〜25μmであることを特徴とする請求項2に記載の電流リード。   The current lead according to claim 2, wherein the Ag plating layer and the Ni plating layer have a thickness of 5 to 25 μm. 前記半田接合に用いられる半田のSn含有量が、90〜99重量%であることを特徴とする請求項1から3の何れか一項に記載の電流リード。   The current lead according to any one of claims 1 to 3, wherein the Sn content of the solder used for the solder bonding is 90 to 99% by weight. 前記ペルチェ素子が、5〜50重量%のTeを含有し、
前記低温側電極及び前記常温側電極が、90重量%以上のCuを含有することを特徴とする請求項1から4の何れか一項に記載の電流リード。
The Peltier element contains 5 to 50 wt% Te;
The current lead according to any one of claims 1 to 4, wherein the low-temperature side electrode and the normal-temperature side electrode contain 90 wt% or more of Cu.
JP2011248941A 2011-11-14 2011-11-14 Current lead Active JP5697162B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011248941A JP5697162B2 (en) 2011-11-14 2011-11-14 Current lead
CN201280054742.1A CN103931068B (en) 2011-11-14 2012-11-09 Current feed
PCT/JP2012/007213 WO2013073146A1 (en) 2011-11-14 2012-11-09 Electric current lead
KR1020147012328A KR20140097153A (en) 2011-11-14 2012-11-09 Electric Current Lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248941A JP5697162B2 (en) 2011-11-14 2011-11-14 Current lead

Publications (2)

Publication Number Publication Date
JP2013105907A true JP2013105907A (en) 2013-05-30
JP5697162B2 JP5697162B2 (en) 2015-04-08

Family

ID=48429244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248941A Active JP5697162B2 (en) 2011-11-14 2011-11-14 Current lead

Country Status (4)

Country Link
JP (1) JP5697162B2 (en)
KR (1) KR20140097153A (en)
CN (1) CN103931068B (en)
WO (1) WO2013073146A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544410B2 (en) * 2012-11-21 2014-07-09 昭和電線ケーブルシステム株式会社 Current lead

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236342A (en) * 1994-11-21 1996-09-13 Unie Net:Kk Thermoelectric cooled powr lead
JPH08273922A (en) * 1995-03-30 1996-10-18 Toshiba Corp Oxide superconducting current lead and superconducting magnet device
JP2005183941A (en) * 2003-11-28 2005-07-07 Dowa Mining Co Ltd Composite conductor, superconductive device system, and manufacturing method of composite conductor
JP2007006619A (en) * 2005-06-23 2007-01-11 Toyota Motor Corp Thermoelectric generator
JP2009248189A (en) * 2008-04-02 2009-10-29 Omae Seiko Kk Erosion preventive for soldering iron tip
JP2009295878A (en) * 2008-06-06 2009-12-17 Yamaha Corp Heat exchange device
JP2011146292A (en) * 2010-01-15 2011-07-28 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69310649T2 (en) * 1992-09-14 1997-09-04 Hitachi Cable Superconducting power supply
CN100397671C (en) * 2003-10-29 2008-06-25 京瓷株式会社 Thermoelectric inverting model
DE102008005694B4 (en) * 2008-01-23 2015-05-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a thermoelectric component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236342A (en) * 1994-11-21 1996-09-13 Unie Net:Kk Thermoelectric cooled powr lead
JPH08273922A (en) * 1995-03-30 1996-10-18 Toshiba Corp Oxide superconducting current lead and superconducting magnet device
JP2005183941A (en) * 2003-11-28 2005-07-07 Dowa Mining Co Ltd Composite conductor, superconductive device system, and manufacturing method of composite conductor
JP2007006619A (en) * 2005-06-23 2007-01-11 Toyota Motor Corp Thermoelectric generator
JP2009248189A (en) * 2008-04-02 2009-10-29 Omae Seiko Kk Erosion preventive for soldering iron tip
JP2009295878A (en) * 2008-06-06 2009-12-17 Yamaha Corp Heat exchange device
JP2011146292A (en) * 2010-01-15 2011-07-28 Swcc Showa Cable Systems Co Ltd Oxide superconductive current lead

Also Published As

Publication number Publication date
CN103931068B (en) 2016-11-02
CN103931068A (en) 2014-07-16
WO2013073146A1 (en) 2013-05-23
KR20140097153A (en) 2014-08-06
JP5697162B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5697161B2 (en) Current lead
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP5005582B2 (en) Superconducting current lead manufacturing method
Uglietti et al. Fabrication trials of round strands composed of coated conductor tapes
WO2015030220A1 (en) Thermoelectric power generation module
WO2014080591A1 (en) Electric current lead
JP2012256744A (en) Superconductive coil
JP5022279B2 (en) Oxide superconducting current lead
JP5724029B2 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
JP2013175293A (en) Superconductive current lead, current lead device, and superconducting magnet device
JP2017152715A (en) Thermoelectric generation module
JP5697162B2 (en) Current lead
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6268648B2 (en) High temperature superconducting current lead
JP5011181B2 (en) Oxide superconducting current lead
JP2015023056A (en) Laminated superconducting pancake coil and superconducting apparatus including the same
JP2014130788A (en) Connection structure of oxide superconductive wire material and superconductive appliance
JP6548292B2 (en) Current lead and method of manufacturing current lead
JP2012164859A (en) High temperature superconducting coil
JP6484470B2 (en) Current lead
JP6484471B2 (en) Current lead
JP6628391B2 (en) Flange unit for fixing current lead and flange unit with current lead
JP4857436B2 (en) Oxide superconducting current lead, superconducting system, and method for connecting metal conductor to metal superconducting conductor
JP6480825B2 (en) Flange unit with current lead
JP4901585B2 (en) Oxide superconducting current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150205

R150 Certificate of patent or registration of utility model

Ref document number: 5697162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350