JP2013104790A - Emergency power supply system - Google Patents

Emergency power supply system Download PDF

Info

Publication number
JP2013104790A
JP2013104790A JP2011249075A JP2011249075A JP2013104790A JP 2013104790 A JP2013104790 A JP 2013104790A JP 2011249075 A JP2011249075 A JP 2011249075A JP 2011249075 A JP2011249075 A JP 2011249075A JP 2013104790 A JP2013104790 A JP 2013104790A
Authority
JP
Japan
Prior art keywords
heat
heat exchange
power supply
chemical
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011249075A
Other languages
Japanese (ja)
Inventor
Taku Kitamura
拓 北村
Norio Sakai
紀夫 堺
Yutaka Takeuchi
豊 武内
Shungo Sakurai
俊吾 櫻井
Kenya Takiwaki
賢也 滝脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011249075A priority Critical patent/JP2013104790A/en
Publication of JP2013104790A publication Critical patent/JP2013104790A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a stable supply of emergency power when all power sources are lost.SOLUTION: An emergency power supply system includes: a chemical heat storage facility 11 that includes a reaction vessel 16 filled with a heat storage medium 28 and a storage container 17 connected to the reaction vessel via a communication pipe 18 and stores heat using a chemical reaction of the heat storage medium to radiate the heat; a first heat exchange loop 13 for performing heat exchange between the storage container and a nuclear reactor vessel primary system to heat the storage container; a thermoelectric conversion device 12 for generating electricity by a temperature difference between a high-temperature part 12A and a low-temperature part 12B; a second heat exchange loop 14 for performing heat exchange between the reaction vessel and a high-temperature part of the thermoelectric conversion device to heat the high-temperature part; and a final radiation cooling loop 15 for performing heat exchange between a low-temperature part of the thermoelectric conversion device and a final heat sink 25 to cool the low-temperature part. Further, a valve disposed in the first heat exchange loop 13 passively open-operates when power is lost to cause the storage container to be heated by a nuclear reactor vessel primary coolant to radiate the heat stored in the chemical heat storage facility 11 so that the thermoelectric conversion device 12 generates power using the heat.

Description

本発明は、原子力プラントに適用されて全電源喪失時に非常用電力を供給する非常用電力供給システムに関する。   The present invention relates to an emergency power supply system that is applied to a nuclear power plant and supplies emergency power when all power is lost.

軽水炉プラントは、外部電源の喪失時に原子炉を安全に停止するために必要な電源を供給すると共に、工学的安全施設を作動させるための電源を供給する非常用ディーゼル発電設備を有する。本設備は多重性と独立性を備え、単一故障を考えても電源の完全喪失とならないよう設計されている(非特許文献1)。   The light water reactor plant has an emergency diesel power generation facility that supplies the power necessary to safely shut down the reactor when external power is lost and also supplies the power to operate the engineering safety facility. This facility has multiplicity and independence, and is designed not to cause complete loss of power even if a single failure is considered (Non-Patent Document 1).

ところで、化学蓄熱は、熱を化学エネルギとして蓄える方法であり、化学反応に伴う熱の出入りを利用し、化学エネルギを蓄えることによって蓄熱を行うものである(非特許文献2)。この化学蓄熱は、温水蓄熱などに比べ高密度での蓄熱が可能であって高効率が期待できると共に、長期間の蓄熱が可能である。   By the way, chemical heat storage is a method of storing heat as chemical energy, and heat storage is performed by storing the chemical energy by using heat input and output associated with a chemical reaction (Non-patent Document 2). This chemical heat storage can store heat at a higher density than hot water heat storage and the like, and can be expected to have high efficiency, and can store heat for a long period of time.

また、一般に沸騰水型原子炉の一次系温度は300℃程度である。この温度レベルの熱を蓄熱・放熱可能な反応系として、例えば、図7に示すような酸化マグネシウム−水酸化マグネシウム反応系を用いた化学蓄熱設備1が知られている(特許文献1)。   In general, the primary temperature of a boiling water reactor is about 300 ° C. As a reaction system capable of storing and releasing heat at this temperature level, for example, a chemical heat storage facility 1 using a magnesium oxide-magnesium hydroxide reaction system as shown in FIG. 7 is known (Patent Document 1).

この化学蓄熱設備1では、放熱状態からの蓄熱過程(図7(A))において、反応容器3を加熱することにより蓄熱媒体2の水酸化マグネシウムの脱水を行い、発生した水蒸気を、連通配管5を通して貯蔵器4へと移動させる。このとき蓄熱媒体2は酸化マグネシウムに変化し、反応系は化学的に蓄熱された状態になる。蓄熱状態からの放熱過程(図7(B))においては、貯蔵器4を駆動熱によって加熱することにより、発生した水蒸気を、連通配管6を通して反応容器3へと移動させる。すると、蓄熱媒体2は水蒸気と反応して水酸化マグネシウムに変化し、加水反応熱を放熱(発熱)する。   In this chemical heat storage facility 1, magnesium hydroxide in the heat storage medium 2 is dehydrated by heating the reaction vessel 3 in the heat storage process from the heat release state (FIG. 7A), and the generated water vapor is connected to the communication pipe 5. Through to reservoir 4. At this time, the heat storage medium 2 is changed to magnesium oxide, and the reaction system is in a state in which heat is chemically stored. In the heat dissipation process from the heat storage state (FIG. 7B), the water vapor generated is moved to the reaction vessel 3 through the communication pipe 6 by heating the storage 4 with drive heat. Then, the heat storage medium 2 reacts with water vapor to change to magnesium hydroxide, and radiates (heats) the heat of hydrolysis reaction.

蓄熱過程では、反応容器3の温度を蓄熱媒体2に応じた化学反応平衡温度以上とすることが求められ、放熱過程では、反応容器3の温度を化学反応平衡温度以下とすることが求められる。但し、反応系(反応容器3及び貯蔵器4)の圧力レベルを上昇させることにより、化学反応平衡温度を上昇させることが可能である。   In the heat storage process, the temperature of the reaction vessel 3 is required to be equal to or higher than the chemical reaction equilibrium temperature corresponding to the heat storage medium 2, and in the heat dissipation process, the temperature of the reaction vessel 3 is required to be equal to or lower than the chemical reaction equilibrium temperature. However, the chemical reaction equilibrium temperature can be increased by increasing the pressure level of the reaction system (reaction vessel 3 and reservoir 4).

また、一次系ループと二次系ループが分離された間接サイクル式原子力発電所について、従来の蒸気発生器に代えて熱電変換装置を設置し、原子炉一次系を高温源、二次系を低温源とし、熱電変換装置の熱電素子モジュールにより温度差発電を行う技術が開示されている(特許文献2)。   In addition, for an indirect cycle nuclear power plant where the primary system loop and secondary system loop are separated, a thermoelectric converter is installed instead of the conventional steam generator, the primary system of the reactor is the high temperature source, and the secondary system is the low temperature. A technique for performing temperature difference power generation using a thermoelectric element module of a thermoelectric conversion device as a source is disclosed (Patent Document 2).

特開平6−213529号公報JP-A-6-213529 特開2001−242287号公報JP 2001-242287 A

(財)原子力安全研究協会編、軽水炉発電所のあらまし、平成4年10月Japan Nuclear Safety Research Association, Summary of light water reactor power plant, October 1992 電力中央研究所・研究報告W87005、1987年9月Central Research Institute of Electric Power Industry, Research Report W87005, September 1987

前述の非常用ディーゼル発電設備は巨大津波による冠水等によって全系統が同時に不作動となる恐れがある。よって、非常用ディーゼル発電設備の不作動を仮定した上で、全く異なる原理を用いながら、全電源喪失時に受動的に作動して非常用ディーゼル発電設備をバックアップする非常用電力供給システムの確立が望まれる。   The above-mentioned emergency diesel power generation facilities may become inoperable at the same time due to flooding caused by a huge tsunami. Therefore, it is desirable to establish an emergency power supply system that backs up the emergency diesel power generation system by passively operating it when all power is lost, assuming that the emergency diesel power generation system is not operating. It is.

本発明の目的は、上述の事情を考慮してなされたものであり、全電源喪失時に非常用電力を安定して供給できる非常用電力供給システムを提供することにある。   An object of the present invention is to provide an emergency power supply system that can stably supply emergency power when all the power sources are lost.

本発明は、蓄熱媒体を充填した反応容器、及びこの反応容器に連通配管を介して接続されて水を貯蔵する貯蔵器を備え、前記蓄熱媒体の化学反応を利用して蓄熱し放熱する化学蓄熱設備と、前記貯蔵器と原子炉一次系との間で熱交換を行って、前記貯蔵器を加熱する第1熱交換系と、高温部と低温部との温度差により発電する熱電変換装置と、前記反応容器と前記熱電変換装置の前記高温部との間で熱交換を行って、前記高温部を加熱する第2熱交換系と、前記熱電変換装置の前記低温部と最終ヒートシンクとの間で熱交換を行って、前記低温部を冷却する最終放熱冷却系とを有し、電源喪失時に前記第1熱交換系に配設された弁が受動で開動作して、前記貯蔵器が前記原子炉一次系により加熱されることで、前記化学蓄熱設備に蓄熱された熱が放熱され、この熱により前記熱電変換装置が発電を行うよう構成されたことを特徴とするものである。   The present invention comprises a reaction vessel filled with a heat storage medium, and a reservoir that is connected to the reaction vessel via a communication pipe and stores water, and stores and heatsinks using the chemical reaction of the heat storage medium to store and dissipate heat. A facility, a first heat exchange system for performing heat exchange between the reservoir and the reactor primary system to heat the reservoir, and a thermoelectric conversion device for generating electric power due to a temperature difference between the high temperature portion and the low temperature portion A heat exchange between the reaction vessel and the high temperature part of the thermoelectric converter to heat the high temperature part, and between the low temperature part and the final heat sink of the thermoelectric converter A heat dissipation cooling system that cools the low-temperature part by performing heat exchange at the time, the valve disposed in the first heat exchange system is passively opened when power is lost, and the reservoir is Heat was stored in the chemical heat storage facility by being heated by the reactor primary system. There is radiated, it is characterized in that the heat by the thermoelectric conversion device is configured to perform power generation.

本発明によれば、電源喪失時に化学蓄熱設備が受動的に作動して発熱し、この熱を用いて熱電変換装置が発電を行うので、全電源喪失時に非常用電力を安定して供給することができる。   According to the present invention, when the power supply is lost, the chemical heat storage facility is passively operated to generate heat, and the thermoelectric conversion device generates power using this heat. Therefore, emergency power can be stably supplied when all power is lost. Can do.

本発明に係る非常用電力供給システムの第1実施形態を示す系統図。1 is a system diagram showing a first embodiment of an emergency power supply system according to the present invention. FIG. 本発明に係る非常用電力供給システムの第2実施形態が放熱発電モードを実施している状況を示す系統図。The system diagram which shows the condition where 2nd Embodiment of the emergency power supply system which concerns on this invention is implementing the thermal radiation power generation mode. 図2の非常用電力供給システムが蓄熱モードを実施している状況を示す系統図。FIG. 3 is a system diagram showing a situation where the emergency power supply system of FIG. 2 is implementing a heat storage mode. 本発明に係る非常用電力供給システムの第3実施形態を示す系統図。The systematic diagram which shows 3rd Embodiment of the emergency power supply system which concerns on this invention. 本発明に係る非常用電力供給システムの第4実施形態を示す系統図。The systematic diagram which shows 4th Embodiment of the emergency power supply system which concerns on this invention. 本発明に係る非常用電力供給システムの第5実施形態を示す系統図。The systematic diagram which shows 5th Embodiment of the emergency power supply system which concerns on this invention. 化学蓄熱設備を示し、(A)が放熱状態から蓄熱過程へ移行する状況を説明する模式図、(B)が蓄熱状態から放熱過程へ移行する状況を説明する模式図。The schematic diagram which shows the chemical heat storage equipment, (A) demonstrates the condition which transfers to a thermal storage process from a thermal radiation state, (B) The schematic diagram explaining the condition which transfers to a thermal radiation process from a thermal storage state.

以下、本発明を実施するための実施形態を図面に基づき説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

[A]第1実施形態(図1)
図1は、本発明に係る非常用電力供給システムの第1実施形態を示す系統図である。この非常用電力供給システム10は原子力プラント、例えば沸騰水型原子炉に適用されて全電源喪失時に非常用電力を供給するものであり、化学蓄熱設備11、第1熱交換系としての第1熱交換ループ13、熱電変換装置12、第2熱交換系としての第2熱交換ループ14、及び最終放熱冷却系としての最終放熱冷却ループ15を有して構成される。
[A] First embodiment (FIG. 1)
FIG. 1 is a system diagram showing a first embodiment of an emergency power supply system according to the present invention. This emergency power supply system 10 is applied to a nuclear power plant, for example, a boiling water reactor, and supplies emergency power when all power is lost. The chemical heat storage system 11 and the first heat as a first heat exchange system are provided. It has an exchange loop 13, a thermoelectric converter 12, a second heat exchange loop 14 as a second heat exchange system, and a final heat radiation cooling loop 15 as a final heat radiation cooling system.

化学蓄熱設備11は、酸化マグネシウム−水酸化マグネシウムの化学反応系を利用して蓄熱し放熱するものであり、反応容器16、貯蔵器17、及び反応容器16と貯蔵器17とを接続する連通配管18を備えて構成される。連通配管18に蓄熱開放弁19が配置され、この蓄熱開放弁19の開弁時に連通配管18を介して反応容器16と貯蔵器17とが連通される。反応容器16には、蓄熱媒体28としての酸化マグネシウム等が充填されている。また、貯蔵器17には水が貯蔵されている。   The chemical heat storage facility 11 stores heat and dissipates heat using a chemical reaction system of magnesium oxide-magnesium hydroxide, and connects the reaction vessel 16, the reservoir 17, and the communication pipe connecting the reaction vessel 16 and the reservoir 17. 18 is configured. A heat storage release valve 19 is disposed in the communication pipe 18, and the reaction vessel 16 and the reservoir 17 are communicated via the communication pipe 18 when the heat storage release valve 19 is opened. The reaction vessel 16 is filled with magnesium oxide or the like as the heat storage medium 28. The reservoir 17 stores water.

貯蔵器17は、化学蓄熱設備11の放熱過程において駆動熱により加熱されるため、昇温時の高温及び高圧に耐え得る断熱素材にて構成される。この貯蔵器17内は予め加圧されている。また、反応容器16も、化学蓄熱設備11の放熱過程において放熱(発熱)するため、昇温時の高温及び高圧に耐え得る素材にて構成される。   Since the reservoir 17 is heated by driving heat in the heat dissipation process of the chemical heat storage facility 11, it is made of a heat insulating material that can withstand high temperatures and high pressures when the temperature is raised. The inside of the reservoir 17 is pressurized in advance. In addition, the reaction vessel 16 is also made of a material that can withstand the high temperature and high pressure at the time of temperature rise because it radiates heat (heat generation) in the heat release process of the chemical heat storage facility 11.

前記第1熱交換ループ13は、化学蓄熱設備11の貯蔵器17と、原子炉一次系の構成要素である原子炉圧力容器20との間で熱交換を行って、貯蔵器17を加熱するものである。つまり、第1熱交換ループ13は、伝熱部21が貯蔵器17に内包され、両端部が原子炉圧力容器20に接続されると共に、開閉弁22A及び22Bを備える。開閉弁22A及び22Bの開動作時に原子炉圧力容器20内の原子炉一次冷却材が第1熱交換ループ13を流れ、伝熱部21で貯蔵器17内の水と熱交換して、この貯蔵器17内の水を加熱する。前記開閉弁22A及び22Bは、化学蓄熱設備11の前記蓄熱開放弁19と共に、受動で開動作するよう構成されている。   The first heat exchange loop 13 heats the reservoir 17 by exchanging heat between the reservoir 17 of the chemical heat storage facility 11 and the reactor pressure vessel 20 which is a component of the primary reactor system. It is. That is, the first heat exchange loop 13 includes the heat transfer section 21 in the reservoir 17, both ends are connected to the reactor pressure vessel 20, and includes on-off valves 22 </ b> A and 22 </ b> B. During the opening operation of the on-off valves 22A and 22B, the reactor primary coolant in the reactor pressure vessel 20 flows through the first heat exchange loop 13 and exchanges heat with the water in the reservoir 17 in the heat transfer section 21. Water in the vessel 17 is heated. The on-off valves 22 </ b> A and 22 </ b> B are configured to passively open with the heat storage open valve 19 of the chemical heat storage facility 11.

熱電変換装置12は高温部12A及び低温部12Bを備え、これらの高温部12Aと低温部12Bとの温度差により発電する。この熱電変換装置12の発電により非常用電力が供給可能になる。   The thermoelectric conversion device 12 includes a high temperature part 12A and a low temperature part 12B, and generates electric power by a temperature difference between the high temperature part 12A and the low temperature part 12B. Emergency power can be supplied by the power generation of the thermoelectric converter 12.

第2熱交換ループ14は、化学蓄熱設備11の反応容器16と熱電変換装置12の高温部12Aとの間で熱交換を行って、高温部12Aを加熱する。つまり、第2熱交換ループ14は、一方の伝熱部23が反応容器16に内包され、他方の伝熱部24が熱電変換装置12の高温部12Aに接触し、反応容器16内での蓄熱媒体28の加水反応により発熱した熱を、熱電変換装置12の高温部12Aへ伝達する。   The 2nd heat exchange loop 14 heat-exchanges between the reaction container 16 of the chemical thermal storage equipment 11 and the high temperature part 12A of the thermoelectric converter 12, and heats the high temperature part 12A. That is, in the second heat exchange loop 14, one heat transfer portion 23 is included in the reaction vessel 16, and the other heat transfer portion 24 comes into contact with the high temperature portion 12 </ b> A of the thermoelectric conversion device 12, thereby storing heat in the reaction vessel 16. The heat generated by the hydrolysis reaction of the medium 28 is transmitted to the high temperature part 12A of the thermoelectric conversion device 12.

最終放熱冷却ループ15は、熱電変換装置12の低温部12Bと最終ヒートシンク25との間で熱交換を行って、低温部12Bを冷却する。つまり、最終放熱冷却ループ15は、一方の伝熱部26が最終ヒートシンク25に内包され、他方の伝熱部27が熱電変換装置12の低温部12Bに接触して、最終ヒートシンク25により低温部12Bを冷却する。この最終ヒートシンク25は、冷却用海水、冷却用空気、または海水を除く冷却用水を用いた冷却機構を1または複数備えて構成される。この第1実施形態では、最終ヒートシンク25は、冷却用空気を用いた1台の空冷塔である。   The final heat radiation cooling loop 15 performs heat exchange between the low temperature part 12B of the thermoelectric converter 12 and the final heat sink 25 to cool the low temperature part 12B. That is, in the final heat radiation cooling loop 15, one heat transfer section 26 is included in the final heat sink 25, and the other heat transfer section 27 comes into contact with the low temperature section 12 </ b> B of the thermoelectric conversion device 12. Cool down. The final heat sink 25 includes one or more cooling mechanisms using cooling seawater, cooling air, or cooling water excluding seawater. In the first embodiment, the final heat sink 25 is a single air-cooling tower using cooling air.

本実施形態の非常用電力供給システム10では、前述のごとく、電源喪失時に蓄熱開放弁19、開放弁22A及び22Bが受動(自動)で開動作する。すると、図7(B)にも示すように、化学蓄熱設備11の貯蔵器17が原子炉圧力容器20内の原子炉一次冷却材により第1熱交換ループ13を用いて加熱されることで、水蒸気が貯蔵器17から連通配管18を通って反応容器16内へ流入し、化学蓄熱設備11に蓄熱された熱が放熱、即ち反応容器16内で蓄熱媒体28(酸化マグネシウム)が水蒸気と反応して水酸化マグネシウムに変化し、加水反応熱を放熱(発熱)する。   In the emergency power supply system 10 of the present embodiment, as described above, the heat storage open valve 19 and the open valves 22A and 22B are opened passively (automatically) when the power is lost. Then, as shown in FIG. 7B, the reservoir 17 of the chemical heat storage facility 11 is heated by the primary heat exchange loop 13 by the reactor primary coolant in the reactor pressure vessel 20, Water vapor flows from the reservoir 17 through the communication pipe 18 into the reaction vessel 16, and the heat stored in the chemical heat storage facility 11 is dissipated, that is, the heat storage medium 28 (magnesium oxide) reacts with the water vapor in the reaction vessel 16. Changes to magnesium hydroxide and dissipates the heat of the hydrolysis reaction (heat generation).

このとき、貯蔵器17内は予め加圧されているので、反応容器16内も加圧され、蓄熱媒体28の上述の化学反応の結果得られる温度は、原子炉圧力容器20内の原子炉一次冷却材の温度よりも高温になる。   At this time, since the inside of the reservoir 17 has been previously pressurized, the inside of the reaction vessel 16 is also pressurized, and the temperature obtained as a result of the above-described chemical reaction of the heat storage medium 28 is the primary reactor in the reactor pressure vessel 20. It becomes higher than the temperature of the coolant.

化学蓄熱設備11の反応容器16から放熱された熱が第2熱交換ループ14を介して熱電変換装置12の高温部12Aを加熱し、最終放熱冷却ループ15の最終ヒートシンク25が熱電変換装置12の低温部12Bを冷却することで、熱電変換装置12が高温部12Aと低温部12Bとの温度差により発電を行って、非常用電力が得られる。尚、本実施形態の非常用電力供給システム10では、化学蓄熱設備11は、予め化学的に蓄熱された状態である必要があり、また、受動的な蓄熱はできず、放熱は1回に限られる。   The heat radiated from the reaction vessel 16 of the chemical heat storage facility 11 heats the high temperature portion 12A of the thermoelectric conversion device 12 via the second heat exchange loop 14, and the final heat sink 25 of the final heat dissipation cooling loop 15 serves as the thermoelectric conversion device 12. By cooling the low temperature part 12B, the thermoelectric converter 12 generates electric power by the temperature difference between the high temperature part 12A and the low temperature part 12B, and emergency power is obtained. In the emergency power supply system 10 of the present embodiment, the chemical heat storage facility 11 needs to be in a state where the chemical heat is stored in advance, and passive heat storage cannot be performed, and heat radiation is limited to one time. It is done.

また、本実施形態の非常用電力供給システム10では、第1熱交換ループ13の破断による原子炉一次冷却材喪失の可能性に鑑み、この原子炉一次冷却材の原子炉格納容器29外への漏出を防止するため、化学蓄熱設備11の反応容器16、貯蔵器17及び連通配管18並びに第1熱交換ループ13が原子炉格納容器29の内部に配置される。特に、耐震性を確保する観点から、反応容器16及び貯蔵器17が原子炉格納容器29の下部に設置されることが好ましい。   Further, in the emergency power supply system 10 of the present embodiment, in view of the possibility of the loss of the primary reactor coolant due to the breakage of the first heat exchange loop 13, the reactor primary coolant is discharged to the outside of the reactor containment vessel 29. In order to prevent leakage, the reaction vessel 16, the reservoir 17, the communication pipe 18, and the first heat exchange loop 13 of the chemical heat storage facility 11 are arranged inside the reactor containment vessel 29. In particular, from the viewpoint of ensuring earthquake resistance, the reaction vessel 16 and the reservoir 17 are preferably installed below the reactor containment vessel 29.

以上のように構成されたことから、本実施形態によれば、次の効果(1)及び(2)を奏する。
(1)電源喪失時に蓄熱開放弁19、開放弁22A及び22Bが受動で開動作して、化学蓄熱設備11の貯蔵器17が第1熱交換ループ13を介して原子炉一次冷却材により加熱され、化学蓄熱設備11に蓄熱されていた熱が反応容器16から放熱され、この熱を用いて熱電変換装置12が発電を行うので、全電源喪失時に、安全性確保の点から重要度の高い機器(例えば計装制御系機器)へ非常用電力を安定して供給できる。
With the configuration as described above, according to the present embodiment, the following effects (1) and (2) are obtained.
(1) When the power is lost, the heat storage open valve 19 and the open valves 22A and 22B are passively opened, and the reservoir 17 of the chemical heat storage facility 11 is heated by the primary reactor coolant through the first heat exchange loop 13. Since the heat stored in the chemical heat storage facility 11 is dissipated from the reaction vessel 16 and the thermoelectric conversion device 12 generates power using this heat, a highly important device from the viewpoint of ensuring safety when all power is lost. Emergency power can be stably supplied to (for example, instrumentation control system equipment).

(2)特に、化学蓄熱設備11の反応容器16に充填される蓄熱媒体28の種類や反応容器16及び貯蔵器17内の圧力、熱電変換装置12を適切に選択することにより、非常時の原子炉一次冷却材よりも高い温度の熱を反応容器16から放熱できるので、熱電変換装置12により高効率な熱電変換を実現できる。   (2) In particular, by appropriately selecting the type of the heat storage medium 28 filled in the reaction container 16 of the chemical heat storage facility 11, the pressure in the reaction container 16 and the reservoir 17, and the thermoelectric conversion device 12, Since heat at a temperature higher than that of the primary coolant of the furnace can be radiated from the reaction vessel 16, highly efficient thermoelectric conversion can be realized by the thermoelectric conversion device 12.

尚、第1熱交換ループ13に配設された開閉弁22Aと22Bは、いずれか一方が開閉弁、他方が逆止弁であってもよい。また、第1熱交換ループ13及び第2熱交換ループ14は、後述の第2実施形態と同様なループ型のヒートパイプにて構成されてもよい。更に、物量削減及び経済性向上の観点から、サプレッションチャンバの一部が化学蓄熱設備11の反応容器16と貯蔵器17の機能を兼用してもよい。この場合には、サプレッションチャンバは、他から完全に分離された2区画を有し、これらの2区画の一方が反応容器16として、他方が貯蔵器17として機能してもよい。   One of the on-off valves 22A and 22B disposed in the first heat exchange loop 13 may be an on-off valve and the other may be a check valve. Moreover, the 1st heat exchange loop 13 and the 2nd heat exchange loop 14 may be comprised with the loop type heat pipe similar to 2nd Embodiment mentioned later. Furthermore, from the viewpoint of reducing the amount of material and improving the economic efficiency, a part of the suppression chamber may function as the reaction vessel 16 and the reservoir 17 of the chemical heat storage facility 11. In this case, the suppression chamber may have two compartments completely separated from the other, one of these two compartments may function as the reaction vessel 16 and the other as the reservoir 17.

[B]第2実施形態(図2、図3)
図2は、本発明に係る非常用電力供給システムの第2実施形態が放熱発電モードを実施している状況を示す系統図であり、図3は、図2の非常用電力供給システムが蓄熱モードを実施している状況を示す系統図である。この第2実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIGS. 2 and 3)
FIG. 2 is a system diagram showing a situation where the second embodiment of the emergency power supply system according to the present invention implements the heat dissipation power generation mode, and FIG. 3 shows the emergency power supply system of FIG. 2 in the heat storage mode. It is a systematic diagram which shows the condition which is implementing. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施形態の非常用電力供給システム30が前記第1実施形態と異なる主な点は、第3熱交換系としての第3熱交換ループ31、第4熱交換系としての第4熱交換ループ32を追加して備え、更に、原子炉一次系が原子炉圧力容器20と、この原子炉圧力容器20内の原子炉一次冷却材を循環する原子炉一次冷却材ループ33とを有してなり、第1熱交換ループ13が、原子炉一次冷却材ループ33と化学蓄熱設備11の貯蔵器17との間で熱交換を行って貯蔵器17を加熱する点である。ここで、符号34は、第1熱交換ループ13における原子炉一次冷却材ループ33側の伝熱部である。   The main difference of the emergency power supply system 30 of the present embodiment from the first embodiment is that a third heat exchange loop 31 as a third heat exchange system and a fourth heat exchange loop 32 as a fourth heat exchange system. The reactor primary system further includes a reactor pressure vessel 20 and a reactor primary coolant loop 33 for circulating the reactor primary coolant in the reactor pressure vessel 20, The first heat exchange loop 13 is a point that heats the reservoir 17 by exchanging heat between the reactor primary coolant loop 33 and the reservoir 17 of the chemical heat storage facility 11. Here, reference numeral 34 denotes a heat transfer section on the reactor primary coolant loop 33 side in the first heat exchange loop 13.

前記第3熱交換ループ31は、化学蓄熱設備11の反応容器16と原子炉一次冷却材ループ33との間で熱交換を行って、反応容器16を加熱する。つまり、第3熱交換ループ31は、一方の伝熱部35が原子炉一次冷却材ループ33を流れる原子炉一次冷却材により加熱され、他方の伝熱部36が反応容器16に内包され、原子炉一次冷却材の熱により反応容器16を加熱する。   The third heat exchange loop 31 heats the reaction vessel 16 by exchanging heat between the reaction vessel 16 of the chemical heat storage facility 11 and the reactor primary coolant loop 33. That is, in the third heat exchange loop 31, one heat transfer section 35 is heated by the reactor primary coolant flowing through the reactor primary coolant loop 33, the other heat transfer section 36 is included in the reaction vessel 16, The reaction vessel 16 is heated by the heat of the furnace primary coolant.

また、前記第4熱交換ループ32は、化学蓄熱設備11の貯蔵器17と最終放熱冷却ループ15との間で熱交換を行って、貯蔵器17を冷却する。つまり、第4熱交換ループ32は、一方の伝熱部37が最終放熱冷却ループ15により冷却され、他方の伝熱部38が貯蔵器17に内包されて、最終放熱冷却ループ15により貯蔵器17内の水を冷却する。   The fourth heat exchange loop 32 cools the reservoir 17 by exchanging heat between the reservoir 17 of the chemical heat storage facility 11 and the final heat radiation cooling loop 15. That is, in the fourth heat exchange loop 32, one heat transfer unit 37 is cooled by the final heat dissipation cooling loop 15, and the other heat transfer unit 38 is included in the storage unit 17. Cool the water inside.

本実施形態の非常用電力供給システム30では、第1熱交換ループ13、第2熱交換ループ14、第3熱交換ループ31及び第4熱交換ループ32はループ型のヒートパイプにて構成されている。このうち、第1熱交換ループ13の伝熱部21(凝縮器)と第4熱交換ループ32の伝熱部38(蒸発部)とが分離して構成されている。同様に、第3熱交換ループ31の伝熱部36(凝縮部)と第2熱交換ループ14の伝熱部36(蒸発部)とが分離して構成されている。これらのループ型のヒートパイプは、凝縮部が蒸発部よりも上に位置するサーモサイフォン式ヒートパイプであり、無動力で作動媒体(例えば水)の循環が可能である。   In the emergency power supply system 30 of the present embodiment, the first heat exchange loop 13, the second heat exchange loop 14, the third heat exchange loop 31, and the fourth heat exchange loop 32 are configured by loop heat pipes. Yes. Among these, the heat transfer section 21 (condenser) of the first heat exchange loop 13 and the heat transfer section 38 (evaporation section) of the fourth heat exchange loop 32 are separated from each other. Similarly, the heat transfer section 36 (condensing section) of the third heat exchange loop 31 and the heat transfer section 36 (evaporating section) of the second heat exchange loop 14 are separated from each other. These loop heat pipes are thermosiphon heat pipes in which the condensing part is located above the evaporation part, and the working medium (for example, water) can be circulated without power.

第1熱交換ループ13、第2熱交換ループ14、第3熱交換ループ31及び第4熱交換ループ32がヒートパイプにて構成されたので、原子炉一次冷却材ループ33と、化学蓄熱設備11の反応容器16及び貯蔵器17と、熱電変換装置12と、最終放熱冷却ループ15との間では、ヒートパイプである第1熱交換ループ13、第2熱交換ループ14、第3熱交換ループ31及び第4熱交換ループ32を用いて熱交換が行われる。これらのヒートパイプは、その蒸発部と凝縮部の破損が同時に発生しない限り、原子炉一次冷却材ループ33、化学蓄熱設備11の反応容器16、貯蔵器17、熱電変換装置12、最終放熱冷却ループ15間で漏洩が発生しない構成になっている。   Since the 1st heat exchange loop 13, the 2nd heat exchange loop 14, the 3rd heat exchange loop 31, and the 4th heat exchange loop 32 were constituted by the heat pipe, the reactor primary coolant loop 33 and the chemical heat storage equipment 11 The first heat exchange loop 13, the second heat exchange loop 14, and the third heat exchange loop 31, which are heat pipes, between the reaction container 16 and the reservoir 17, the thermoelectric conversion device 12, and the final heat radiation cooling loop 15. Heat exchange is performed using the fourth heat exchange loop 32. These heat pipes have the reactor primary coolant loop 33, the reaction vessel 16 of the chemical heat storage facility 11, the reservoir 17, the thermoelectric conversion device 12, and the final heat radiation cooling loop as long as the evaporation section and the condensation section are not damaged at the same time. 15 is configured such that no leakage occurs.

このため、本実施形態の非常用電力供給システム30では、原子炉圧力容器20、原子炉一次冷却材ループ33及びこの原子炉一次冷却材ループ33に付属する弁(開閉弁39A及び逆止弁39B)を除く構成要素、即ち化学蓄熱設備11の反応容器16及び貯蔵器17、熱電変換装置12、並びに最終放熱冷却ループ15等が原子炉格納容器29の外部に設置される。従って、第1熱交換ループ13及び第3熱交換ループ31が原子炉格納容器29を貫通して設けられている。   For this reason, in the emergency power supply system 30 of the present embodiment, the reactor pressure vessel 20, the reactor primary coolant loop 33, and the valves attached to the reactor primary coolant loop 33 (open / close valve 39A and check valve 39B). ), That is, the reaction vessel 16 and the reservoir 17 of the chemical heat storage facility 11, the thermoelectric conversion device 12, the final heat radiation cooling loop 15, and the like are installed outside the reactor containment vessel 29. Therefore, the first heat exchange loop 13 and the third heat exchange loop 31 are provided through the reactor containment vessel 29.

更に、ループ型のヒートパイプから構成される第1熱交換ループ13、第2熱交換ループ14、第3熱交換ループ31及び第4熱交換ループ32には、それぞれ対をなす弁が配設される。即ち、第1熱交換ループ13には、第1実施形態の開閉弁22A及び22Bに代えて開閉弁41A及び逆止弁41Bが配設され、第2熱交換ループ14には開閉弁42A及び逆止弁42Bが配設され、第3熱交換ループ31には開閉弁43A及び逆止弁43Bが配設され、第4熱交換ループ32には開閉弁44A及び逆止弁44Bが配設されている。   Further, the first heat exchange loop 13, the second heat exchange loop 14, the third heat exchange loop 31, and the fourth heat exchange loop 32 configured by loop heat pipes are provided with pairs of valves, respectively. The That is, the first heat exchange loop 13 includes an on-off valve 41A and a check valve 41B instead of the on-off valves 22A and 22B of the first embodiment, and the second heat exchange loop 14 has an on-off valve 42A and a reverse valve. A stop valve 42B is provided, an open / close valve 43A and a check valve 43B are provided in the third heat exchange loop 31, and an open / close valve 44A and a check valve 44B are provided in the fourth heat exchange loop 32. Yes.

これらの開閉弁41A、42A、43A及び44Aと、原子炉一次冷却材ループ33の開閉弁39Aと、化学蓄熱設備11の蓄熱開放弁19とは、通常運転時には任意に開閉可能であるが、停電時(電源喪失時)には、開閉弁41A、42A及び蓄熱開放弁19が受動(自動)で開動作し、開閉弁43A及び44Aが受動(自動)で閉動作するよう構成されている(図2参照)。   These on-off valves 41A, 42A, 43A and 44A, the on-off valve 39A of the reactor primary coolant loop 33, and the heat storage open valve 19 of the chemical heat storage facility 11 can be arbitrarily opened and closed during normal operation. When the power is lost (when power is lost), the on-off valves 41A and 42A and the heat storage open valve 19 are opened passively (automatically), and the on-off valves 43A and 44A are closed passively (automatically) (see FIG. 2).

このうちの開閉弁41A、42A、43A及び44Aは、原子炉圧力容器20の上部または図示しない主蒸気管(本実施形態では原子炉圧力容器20の上部)から延びる分岐管40に接続され、原子炉圧力とばね圧とのバランスにより無給電で開閉動作する機能を更に備える。即ち、分岐管40から導入された原子炉圧力がばね圧よりも大きくなったときに、開閉弁41A及び42Aが無給電で閉動作し、開閉弁43A及び44Aが無給電で開動作する機能を備える(図3参照)。   Of these, the on-off valves 41A, 42A, 43A and 44A are connected to the branch pipe 40 extending from the upper part of the reactor pressure vessel 20 or the main steam pipe (not shown) (upper part of the reactor pressure vessel 20 in this embodiment). It further has a function of opening and closing operation without power supply according to the balance between the furnace pressure and the spring pressure. That is, when the reactor pressure introduced from the branch pipe 40 becomes larger than the spring pressure, the on-off valves 41A and 42A are closed without power supply, and the on-off valves 43A and 44A are opened with no power supply. Provide (see FIG. 3).

従って、本実施形態の非常用電力供給システム30では、電源が喪失して、開閉弁41A、42A、43A、44A、39A及び蓄熱開放弁19への電力供給が遮断されたとき、開閉弁41A、42A及び蓄熱開放弁19が受動で開動作し、開閉弁43A及び44Aが受動で閉動作して、非常用電力供給システム30は放熱発電モードに移行する(図2、図7(B)参照)。   Therefore, in the emergency power supply system 30 of the present embodiment, when the power supply is lost and the power supply to the on-off valves 41A, 42A, 43A, 44A, 39A and the heat storage open valve 19 is cut off, the on-off valve 41A, 42A and the heat storage open valve 19 are passively opened, and the on-off valves 43A and 44A are passively closed, and the emergency power supply system 30 shifts to the heat radiation power generation mode (see FIGS. 2 and 7B). .

このとき、化学蓄熱設備11の貯蔵器17が第1熱交換ループ13を用いて原子炉一次冷却材ループ33内の原子炉一次冷却材により加熱されることで、水蒸気が貯蔵器17から連通配管18を通って反応容器16内に流入し、化学蓄熱設備11に蓄熱された熱が放熱、即ち反応容器16内で蓄熱媒体28(酸化マグネシウム)が水蒸気と反応して水酸化マグネシウムに変化し、加水反応熱を放熱(発熱)する。この反応容器16から放熱された熱が第2熱交換ループ14を介して熱電変換装置12の高温部12Aを加熱し、最終放熱冷却ループ15の最終ヒートシンク25が熱電変換装置12の低温部12Bを冷却することで、熱電変換装置12が高温部12Aと低温部12Bとの温度差により発電を行って、非常用電力が得られる。   At this time, the reservoir 17 of the chemical heat storage facility 11 is heated by the reactor primary coolant in the reactor primary coolant loop 33 using the first heat exchange loop 13, so that steam is connected from the reservoir 17 to the communication pipe. 18 flows into the reaction vessel 16 through 18 and the heat stored in the chemical heat storage facility 11 is dissipated, that is, the heat storage medium 28 (magnesium oxide) reacts with water vapor in the reaction vessel 16 to change into magnesium hydroxide, Dissipates the heat of the hydrolysis reaction (heat generation). The heat radiated from the reaction vessel 16 heats the high temperature part 12A of the thermoelectric conversion device 12 via the second heat exchange loop 14, and the final heat sink 25 of the final heat radiation cooling loop 15 passes through the low temperature part 12B of the thermoelectric conversion device 12. By cooling, the thermoelectric conversion device 12 generates power by the temperature difference between the high temperature part 12A and the low temperature part 12B, and emergency power is obtained.

また、通常運転時には、開閉弁43A、44A、39A及び蓄熱開放弁19を給電により開操作させ、開閉弁41A及び42Aを給電により閉操作させることで、非常用電力供給システム30は蓄熱モードに移行する(図3、図7(A)参照)。   Further, during normal operation, the on-off valves 43A, 44A, 39A and the heat storage open valve 19 are opened by power feeding, and the on-off valves 41A and 42A are closed by power feeding, so that the emergency power supply system 30 shifts to the heat storage mode. (See FIGS. 3 and 7A).

このとき、化学蓄熱設備11の反応容器16が第3熱交換ループ31を用いて原子炉一次冷却材ループ33内の原子炉一次冷却材により加熱されることで、反応容器16内の蓄熱媒体28(水酸化マグネシウム)が脱水反応を行って酸化マグネシウムに変化し、発生した水蒸気が連通配管18を経て貯蔵器17へ移動し、第4熱交換ループ32により凝縮されて貯蔵器17に貯蔵される。蓄熱媒体28が酸化マグネシウムに変化することで、化学蓄熱設備11は化学的に蓄熱された状態になる。   At this time, the reaction container 16 of the chemical heat storage facility 11 is heated by the reactor primary coolant in the reactor primary coolant loop 33 using the third heat exchange loop 31, so that the heat storage medium 28 in the reaction container 16. (Magnesium hydroxide) undergoes a dehydration reaction to change into magnesium oxide, and the generated water vapor moves to the storage 17 through the communication pipe 18 and is condensed by the fourth heat exchange loop 32 and stored in the storage 17. . By changing the heat storage medium 28 to magnesium oxide, the chemical heat storage facility 11 is in a state where it is chemically stored.

例えば、蓄熱媒体28の状態から蓄熱が完了したと判断されたときに、開閉弁41A、42A、43A、44A、39A及び蓄熱開放弁19が給電により開操作されて、化学蓄熱設備11及び非常用電力供給システム30は待機モードに移行する。   For example, when it is determined that the heat storage is completed from the state of the heat storage medium 28, the on-off valves 41A, 42A, 43A, 44A, 39A and the heat storage open valve 19 are opened by power feeding, and the chemical heat storage equipment 11 and the emergency storage The power supply system 30 shifts to the standby mode.

更に、電源喪失時で、例えば原子炉隔離時冷却系(不図示)による原子炉圧力容器20内の冷却が失敗し、原子炉圧力容器20内の原子炉圧力が上昇したときに、この原子炉圧力が分岐管40を経て開閉弁41A、42A、43A及び44Aに導入され、この原子炉圧力によって開閉弁43A及び44Aが無給電で開動作し、開閉弁41A及び42Aが無給電で閉動作する。これにより、化学蓄熱設備11及び非常用電力供給システム30は蓄熱モード(図3、図7(A))に移行する。   Further, when the power supply is lost, for example, when cooling of the reactor pressure vessel 20 by the reactor isolation cooling system (not shown) fails and the reactor pressure in the reactor pressure vessel 20 rises, this reactor The pressure is introduced into the on-off valves 41A, 42A, 43A and 44A via the branch pipe 40, and the on-off valves 43A and 44A are opened without power supply and the on-off valves 41A and 42A are closed with no power supply. . Thereby, the chemical heat storage equipment 11 and the emergency power supply system 30 shift to the heat storage mode (FIGS. 3 and 7A).

上述の電源喪失時に、例えば主蒸気逃がし安全弁(不図示)の作動により、原子炉圧力容器20及び原子炉一次冷却材ループ33内が減圧されたときには、開閉弁41A及び42Aが受動で開動作し、開閉弁43A及び44Aが受動で閉動作して、化学蓄熱設備11及び非常用電力供給システム30は受動で放熱発電モード(図2、図7(B))に移行する。   When the power supply is lost, for example, when the pressure in the reactor pressure vessel 20 and the reactor primary coolant loop 33 is reduced by the operation of a main steam relief safety valve (not shown), the on-off valves 41A and 42A are passively opened. The on-off valves 43A and 44A are passively closed, and the chemical heat storage equipment 11 and the emergency power supply system 30 are passively shifted to the heat radiation power generation mode (FIGS. 2 and 7B).

以上のように構成されたことから、本第2実施形態によれば、前記第1実施形態の効果(2)と同様な効果を奏するほか、次の効果(3)〜(5)を奏する。   With the configuration described above, according to the second embodiment, in addition to the same effects as the effect (2) of the first embodiment, the following effects (3) to (5) are achieved.

(3)電源喪失時に、開閉弁41A、42A、39A及び蓄熱開放弁19が受動で開動作し、開閉弁43A及び44Aが受動で閉動作して、化学蓄熱設備11の貯蔵器17が、第1熱交換ループ13を介して原子炉一次冷却材ループ33の原子炉一次冷却材により加熱され、化学蓄熱設備11に蓄熱されていた熱が反応容器16から放熱され、この熱を用いて熱電変換装置12が発電を行う放熱発電モードに移行する。このため、全電源喪失時に、安全性確保の点から重要度の高い機器(例えば計装制御系機器)へ非常用電力を安定して供給することができる。   (3) When power is lost, the on-off valves 41A, 42A, 39A and the heat storage open valve 19 are passively opened, the on-off valves 43A and 44A are passively closed, and the reservoir 17 of the chemical heat storage equipment 11 Heat heated by the reactor primary coolant in the reactor primary coolant loop 33 through the heat exchange loop 13 and stored in the chemical heat storage facility 11 is dissipated from the reaction vessel 16, and thermoelectric conversion is performed using this heat. The apparatus 12 shifts to a heat radiation power generation mode in which power is generated. For this reason, when all the power supplies are lost, emergency power can be stably supplied to a device (for example, an instrumentation control system device) that is highly important in terms of ensuring safety.

(4)通常運転時に開閉弁43A、44A、39A及び蓄熱開放弁19を開操作し、開閉弁41A及び42Aを閉操作することにより、また、電源喪失時で原子炉圧力が上昇したときに、開閉弁43A及び44Aが受動で開動作し、開閉弁41A及び42Aが受動で閉動作することにより、それぞれ、化学蓄熱設備11の反応容器16が、第3熱交換ループ31を用いて原子炉一次冷却材ループ33内の原子炉一次冷却材により加熱される。この加熱により、反応容器16内の蓄熱媒体28が脱水反応して、化学蓄熱設備11及び非常用電力供給システム30が蓄熱モードに移行する。従って、本実施形態の非常用電力供給システム30では、放熱発電モードと蓄熱モードとを交互に繰り返して実行させて、非常用電力を長期間に亘り供給することができる。   (4) When the on-off valves 43A, 44A, 39A and the heat storage release valve 19 are opened during normal operation and the on-off valves 41A and 42A are closed, and when the reactor pressure rises due to power loss, The on-off valves 43A and 44A are passively opened and the on-off valves 41A and 42A are passively closed, whereby the reaction vessel 16 of the chemical heat storage facility 11 uses the third heat exchange loop 31, respectively. Heated by the reactor primary coolant in the coolant loop 33. By this heating, the heat storage medium 28 in the reaction vessel 16 undergoes a dehydration reaction, and the chemical heat storage facility 11 and the emergency power supply system 30 shift to the heat storage mode. Therefore, in the emergency power supply system 30 of the present embodiment, the heat generation mode and the heat storage mode can be alternately and repeatedly executed to supply emergency power over a long period of time.

(5)化学蓄熱設備11が原子炉格納容器29の外部に設置されたので、非常時に原子炉格納容器29の内部で発生した熱を原子炉格納容器29の外部の反応容器16(蓄熱モード時)または貯蔵器17(放熱発電モード時)へと導くことができる。この結果、非常用電力供給システム30は、放射性物質の漏洩のリスクを抑制しつつ、原子炉圧力容器20ひいては原子炉格納容器29の全体の除熱にも寄与できる。   (5) Since the chemical heat storage facility 11 is installed outside the reactor containment vessel 29, the heat generated inside the reactor containment vessel 29 in the event of an emergency is converted into the reaction vessel 16 outside the reactor containment vessel 29 (in the heat storage mode). ) Or the reservoir 17 (in the heat dissipation power generation mode). As a result, the emergency power supply system 30 can contribute to heat removal from the reactor pressure vessel 20 and thus the entire reactor containment vessel 29 while suppressing the risk of leakage of radioactive materials.

[C]第3実施形態(図4)
図4は、本発明に係る非常用電力供給システムの第3実施形態を示す系統図である。この第3実施形態において、前記第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 4)
FIG. 4 is a system diagram showing a third embodiment of the emergency power supply system according to the present invention. In the third embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description is simplified or omitted.

本実施形態の非常用電力供給システム50が、前記第2実施形態の非常用電力供給システム30と異なる点は、化学蓄熱設備11の連通配管18に圧縮機51が配設されて、化学蓄熱設備11の反応容器16を加圧可能に構成した点である。   The emergency power supply system 50 of the present embodiment is different from the emergency power supply system 30 of the second embodiment in that a compressor 51 is disposed in the communication pipe 18 of the chemical heat storage facility 11 and the chemical heat storage facility. 11 reaction vessels 16 are configured to be pressurized.

化学蓄熱設備11の連通配管18に配設された圧縮機51の動力源は、例えば原子炉隔離時冷却系のタービン動力、または同様に崩壊熱により発生する原子炉蒸気を利用したタービン動力が用いられる。   The power source of the compressor 51 disposed in the communication pipe 18 of the chemical heat storage facility 11 is, for example, turbine power of a cooling system at the time of reactor isolation or turbine power using reactor steam generated by decay heat. It is done.

化学蓄熱設備11の反応容器16が放熱(発熱)して熱電変換装置12が発電する非常用電力供給システム50の放熱発電モードにおいて、圧縮機51により反応容器16が加圧されることで、この反応容器16内でなされる蓄熱媒体28の化学反応(加水反応)の化学反応平衡温度を上昇させることが可能になる。このため、蓄熱媒体28の放熱過程における化学反応をより高温の条件下で進めることが可能になり、反応容器16から得られる温度を、反応容器16が圧縮機51により加圧されていない状態と比べて高温化できる。これにより、熱電変換装置12による熱電変換効率が向上する。   In the heat radiation power generation mode of the emergency power supply system 50 in which the reaction container 16 of the chemical heat storage facility 11 radiates heat (generates heat) and the thermoelectric converter 12 generates power, the reaction container 16 is pressurized by the compressor 51, It becomes possible to raise the chemical reaction equilibrium temperature of the chemical reaction (hydrolysis) of the heat storage medium 28 performed in the reaction vessel 16. For this reason, it becomes possible to advance the chemical reaction in the heat dissipation process of the heat storage medium 28 under a higher temperature condition, and the temperature obtained from the reaction vessel 16 is set to a state where the reaction vessel 16 is not pressurized by the compressor 51. Compared to higher temperatures. Thereby, the thermoelectric conversion efficiency by the thermoelectric conversion apparatus 12 improves.

以上のように構成されたことから、本第3実施形態によれば、前記第1及び第2実施形態の効果(2)及び(3)〜(5)と同様な効果を奏するほか、次の効果(6)を奏する。   With the configuration as described above, according to the third embodiment, in addition to the effects (2) and (3) to (5) of the first and second embodiments, the following effects are obtained. There exists effect (6).

(6)化学蓄熱設備11の連通配管18に配設された圧縮機51が反応容器16を加圧することで、この反応容器16内での蓄熱媒体28の放熱過程における化学反応(加水反応)の温度を上昇させることができる。このため、化学蓄熱設備11の貯蔵器17を加熱する原子炉一次冷却材ループ33の原子炉一次冷却材の温度が低下した場合にも、熱電変換装置12の高温部12Aの温度を高温に維持でき、熱電変換装置12による発電効率を良好に確保できる。   (6) The compressor 51 disposed in the communication pipe 18 of the chemical heat storage facility 11 pressurizes the reaction container 16, so that the chemical reaction (hydrolysis) in the heat release process of the heat storage medium 28 in the reaction container 16 is performed. The temperature can be raised. For this reason, even when the temperature of the reactor primary coolant of the reactor primary coolant loop 33 that heats the reservoir 17 of the chemical heat storage facility 11 is lowered, the temperature of the high temperature portion 12A of the thermoelectric converter 12 is maintained at a high temperature. In addition, the power generation efficiency of the thermoelectric converter 12 can be ensured satisfactorily.

[D]第4実施形態(図5)
図5は、本発明に係る非常用電力供給システムの第4実施形態を示す系統図である。この第4実施形態において、前記第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth embodiment (FIG. 5)
FIG. 5 is a system diagram showing a fourth embodiment of the emergency power supply system according to the present invention. In the fourth embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and description thereof is simplified or omitted.

本実施形態の非常用電力供給システム60が、前記第2実施形態と異なる点は、非常用電力供給システム60が複数系統設けられ、各系統の非常用電力供給システム60における第1熱交換系61、第2熱交換系62、第3熱交換系63及び第4熱交換系64が単一流路のヒートパイプにて構成された点である。   The emergency power supply system 60 of the present embodiment is different from the second embodiment in that a plurality of emergency power supply systems 60 are provided, and the first heat exchange system 61 in the emergency power supply system 60 of each system. The second heat exchanging system 62, the third heat exchanging system 63, and the fourth heat exchanging system 64 are configured by a single flow path heat pipe.

つまり、非常用電力供給システム60は、原子炉一次系の原子炉圧力容器20に対して複数系統(例えば2系統)設けられている。従って、電源喪失時に少なくとも一つの系統の非常用電力供給システム60における化学蓄熱設備11が放熱を行い、熱電変換装置12が発電を行うように構成することが可能になる。例えば、非常用電力供給システム60が2系統である場合には、1系統の非常用電力供給システム60で放熱発電モードを行い、残りの1系統の非常用電力供給システム60で、前記1系統からの給電により蓄熱モードを行い、これらの放熱発電モードと蓄熱モードとを交互に繰り返し実行することが可能になる。   That is, the emergency power supply system 60 is provided with a plurality of systems (for example, two systems) for the reactor pressure vessel 20 of the primary reactor system. Therefore, when the power is lost, the chemical heat storage facility 11 in the emergency power supply system 60 of at least one system can dissipate heat, and the thermoelectric conversion device 12 can generate power. For example, when the emergency power supply system 60 has two systems, the radiation power generation mode is performed by one emergency power supply system 60, and the remaining one emergency power supply system 60 starts from the one system. It is possible to perform the heat storage mode by supplying power and to repeatedly execute the heat radiation power generation mode and the heat storage mode alternately.

また、各系統の非常用電力供給システム60では、第1熱交換系61、第2熱交換系62、第3熱交換系63、第4熱交換系64が単一流路のヒートパイプにて構成されたので、各熱交換系61、62、63、64には、それぞれ1つの開閉弁65、66、67、68が設けられ、他の開閉弁や逆止弁は不要になる。   In the emergency power supply system 60 of each system, the first heat exchange system 61, the second heat exchange system 62, the third heat exchange system 63, and the fourth heat exchange system 64 are configured by a single flow path heat pipe. Thus, each heat exchange system 61, 62, 63, 64 is provided with one on-off valve 65, 66, 67, 68, and no other on-off valve or check valve is required.

以上のように構成されたことから、本第4実施形態においても、前記第1及び第2実施形態の効果(2)及び(3)〜(5)と同様な効果を奏するほか、次の効果(7)及び(8)を奏する。   Since it is configured as described above, the fourth embodiment has the same effects as the effects (2) and (3) to (5) of the first and second embodiments, and the following effects. Perform (7) and (8).

(7)原子炉圧力容器20に対して非常用電力供給システム60が複数系統設けられ、電源喪失時に、少なくとも1系統の非常用電力供給システム60を放熱発電モードとし、残りの系統の非常用電力供給システム60を蓄熱モードとすることで、非常用電力の供給を連続して行うことが可能になる。   (7) A plurality of emergency power supply systems 60 are provided for the reactor pressure vessel 20, and at the time of power loss, at least one emergency power supply system 60 is set in the heat radiation power generation mode, and the remaining system emergency power is supplied. By setting the supply system 60 to the heat storage mode, it is possible to continuously supply emergency power.

(8)各系統の非常用電力供給システム60における第1熱交換系61、第2熱交換系62、第3熱交換系63、第4熱交換系64が単一流路のヒートパイプにて構成されたので、これらの熱交換系61〜64のそれぞれにおいて開閉弁65、66、67、68を一つ設置すれば足り、他の開閉弁や逆止弁を不要にできる。このように、第1熱交換系61〜第4熱交換系64において弁数を削減できるので、各非常用電力供給システム60の信頼性を向上させることができる。   (8) The first heat exchanging system 61, the second heat exchanging system 62, the third heat exchanging system 63, and the fourth heat exchanging system 64 in the emergency power supply system 60 of each system are configured with a single flow path heat pipe. Therefore, it is sufficient to install one on-off valve 65, 66, 67, 68 in each of these heat exchange systems 61 to 64, and other on-off valves and check valves can be dispensed with. Thus, since the number of valves can be reduced in the first heat exchange system 61 to the fourth heat exchange system 64, the reliability of each emergency power supply system 60 can be improved.

[E]第5実施形態(図6)
図6は、本発明に係る非常用電力供給システムの第5実施形態を示す系統図である。この第5実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[E] Fifth embodiment (FIG. 6)
FIG. 6 is a system diagram showing a fifth embodiment of the emergency power supply system according to the present invention. In the fifth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is simplified or omitted.

本実施形態の非常用電力供給システム70が前記第1実施形態と異なる点は、化学蓄熱設備11の反応容器16に放熱過程の化学反応を行わせるために、この反応容器16に、原子炉一次系の原子炉圧力容器20内の原子炉蒸気が原子炉蒸気導入配管71を介して導入可能に構成された点である。   The emergency power supply system 70 of the present embodiment is different from the first embodiment in that the reaction vessel 16 of the chemical heat storage facility 11 is caused to perform a chemical reaction in the heat release process. The point is that the reactor steam in the reactor pressure vessel 20 of the system can be introduced through the reactor steam introduction pipe 71.

つまり、本実施形態の非常用電力供給システム70では、前記第1実施形態の貯蔵器17及び第1熱交換ループ13が設けられておらず、主蒸気隔離弁73の閉止に伴う原子炉隔離時に崩壊熱により発生する原子炉蒸気及び圧力が、原子炉蒸気導入配管71を経て化学蓄熱設備11の反応容器16に直接導入される。これにより、反応容器16内で蓄熱媒体28(酸化マグネシウム)が加水反応により水酸化マグネシウムに変化する間に発熱する。従って、蓄熱媒体28は、反応容器16内に導入される原子炉蒸気の温度及び圧力条件下でも水蒸気と反応し得る媒体が用いられる。   That is, in the emergency power supply system 70 of the present embodiment, the reservoir 17 and the first heat exchange loop 13 of the first embodiment are not provided, and the reactor is isolated when the main steam isolation valve 73 is closed. Reactor steam and pressure generated by decay heat are directly introduced into the reaction vessel 16 of the chemical heat storage facility 11 via the reactor steam introduction pipe 71. Thereby, heat is generated while the heat storage medium 28 (magnesium oxide) is changed into magnesium hydroxide by the hydrolysis reaction in the reaction vessel 16. Therefore, the heat storage medium 28 is a medium that can react with water vapor even under the temperature and pressure conditions of the reactor steam introduced into the reaction vessel 16.

また、本実施形態の非常用電力供給システム70では、前記第1実施形態の第2熱交換ループ14が設けられず、熱電変換装置12の高温部12Aは反応容器16に直接接触して構成され、この反応容器16からの放熱により高温部12Aが直接加熱される。熱電変換装置12は、低温部12Bが最終放熱冷却ループ15により冷却されることで、高温部12Aと低温部12Bとの間の温度差により発電する。   Further, in the emergency power supply system 70 of the present embodiment, the second heat exchange loop 14 of the first embodiment is not provided, and the high temperature part 12A of the thermoelectric converter 12 is configured in direct contact with the reaction vessel 16. The high temperature portion 12A is directly heated by the heat radiation from the reaction vessel 16. The thermoelectric conversion device 12 generates power by the temperature difference between the high temperature part 12A and the low temperature part 12B by cooling the low temperature part 12B by the final heat radiation cooling loop 15.

前記原子炉蒸気導入配管71には原子炉蒸気抽気弁72が配設される。この原子炉蒸気抽気弁72は、ばねにより原子炉圧力が一定以上に達すると自動で開動作し、原子炉圧力容器20内の原子炉蒸気を化学蓄熱設備11の反応容器16へ導く。この原子炉蒸気抽気弁72の開閉設定圧力は、主蒸気逃がし安全弁74の開閉設定圧力よりも低く設定され、反応容器16内の圧力が一定以上になるまでの間、原子炉蒸気抽気弁72が主蒸気逃がし安全弁74に先行して開閉する。但し、この原子炉蒸気抽気弁72は、通常運転時の交流電源または非常用ディーゼル電源(不図示)が通常に供給されている場合には開動作しないように構成されている。   A reactor steam extraction valve 72 is disposed in the reactor steam introduction pipe 71. The reactor steam bleed valve 72 automatically opens when the reactor pressure reaches a certain level or more by a spring, and guides the reactor steam in the reactor pressure vessel 20 to the reaction vessel 16 of the chemical heat storage facility 11. The open / close set pressure of the reactor steam bleed valve 72 is set lower than the open / close set pressure of the main steam relief safety valve 74, and the reactor steam bleed valve 72 is maintained until the pressure in the reaction vessel 16 becomes a certain level or higher. The main steam relief safety valve 74 opens and closes. However, the reactor steam extraction valve 72 is configured not to open when an AC power supply or an emergency diesel power supply (not shown) during normal operation is normally supplied.

以上のように構成されたことから、本実施形態によれば、次の効果(8)及び(9)を奏する。
(8)電源喪失時で主蒸気隔離弁73の閉止による原子炉隔離時に、原子炉圧力容器20内の原子炉蒸気が原子炉蒸気導入配管71及び原子炉蒸気抽気弁72を経て化学蓄熱設備11の反応容器16内に導入され、この反応容器16内で蓄熱媒体28が放熱のための加水反応を行い、熱電変換装置12が発電を行うので、安全確保のために重要度の高い機器へ非常用電力を供給することができる。
With the configuration as described above, according to the present embodiment, the following effects (8) and (9) are achieved.
(8) When the reactor is isolated by closing the main steam isolation valve 73 when the power is lost, the reactor steam in the reactor pressure vessel 20 passes through the reactor steam introduction pipe 71 and the reactor steam extraction valve 72, and the chemical heat storage equipment 11 In this reaction vessel 16, the heat storage medium 28 performs a hydrolysis reaction for heat dissipation, and the thermoelectric conversion device 12 generates power. Electric power can be supplied.

(9)本実施形態の非常用電力供給システム70は、原子炉蒸気抽気弁72の開弁時にのみ、化学蓄熱設備11により放熱がなされ熱電変換装置12により発電がなされるので、非常用電力の供給は間欠的なものになるが、化学蓄熱設備11の貯蔵器17、第1熱交換ループ13及び第2熱交換ループ14を削除することで、単純で安価な構造を実現できる。   (9) Since the emergency power supply system 70 of the present embodiment dissipates heat by the chemical heat storage facility 11 and generates power by the thermoelectric converter 12 only when the reactor steam extraction valve 72 is opened, Although the supply is intermittent, a simple and inexpensive structure can be realized by deleting the reservoir 17, the first heat exchange loop 13 and the second heat exchange loop 14 of the chemical heat storage facility 11.

尚、第1実施形態の非常用電力供給システム10に、原子炉蒸気抽気弁72を備えた原子炉蒸気導入配管71を設置し、第1熱交換ループ13を介しての貯蔵器17への駆動熱の供給と、原子炉蒸気導入配管71からの反応容器16への原子炉蒸気の導入とを択一に実施できるようにしてもよい。   The emergency power supply system 10 of the first embodiment is provided with a reactor steam introduction pipe 71 having a reactor steam extraction valve 72 and driven to the reservoir 17 via the first heat exchange loop 13. The supply of heat and the introduction of the reactor steam from the reactor steam introduction pipe 71 to the reaction vessel 16 may be performed alternatively.

以上、本発明を上記実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で構成要素を種々変形してもよく、また、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this, A component may be variously deformed in the range which does not deviate from the summary, and it covers different embodiment. You may combine a component suitably.

例えば、上述の各実施形態では、蓄熱媒体28が水酸化マグネシウム(⇔酸化マグネシウム+水)の場合を述べたが、塩化カルシウム水和物(⇔塩化カルシウム+水)であってもよく、また、第1及び第5実施形態のように再蓄熱を考慮しない場合には、水酸化カルシウム(←酸化カルシウム+水)であってもよい。   For example, in each of the above-described embodiments, the case where the heat storage medium 28 is magnesium hydroxide (magnesium oxide + water) has been described. However, calcium chloride hydrate (calcium chloride + water) may be used, When re-storage is not considered as in the first and fifth embodiments, calcium hydroxide (← calcium oxide + water) may be used.

10 非常用電力供給システム、11 化学蓄熱設備、12 熱電変換装置、12A 高温部、12B 低温部、13 第1熱交換ループ(第1熱交換系)、14 第2熱交換ループ(第2熱交換系)、15 最終放熱冷却ループ(最終放熱冷却系)、16 反応容器、17 貯蔵器、18 連通配管、19 蓄熱開放弁、20 原子炉圧力容器(原子炉一次系)、22A、22B 開閉弁、25 最終ヒートシンク、28 蓄熱媒体、30 非常用電力供給システム、31 第3熱交換ループ(第3熱交換系)、32 第4熱交換ループ(第4熱交換系)、33 原子炉一次冷却材ループ(原子炉一次冷却系)、40 分岐管、41A、42A、43A、44A 開閉弁、41B、42B、43B、44B 逆止弁、50 非常用電力供給システム、51 圧縮機、60 非常用電力供給システム、61 第1熱交換系、62 第2熱交換系、63 第3熱交換系、64 第4熱交換系、70 非常用電力供給システム、71 原子炉蒸気導入配管、72 原子炉蒸気抽気弁。   DESCRIPTION OF SYMBOLS 10 Emergency power supply system, 11 Chemical heat storage equipment, 12 Thermoelectric converter, 12A High temperature part, 12B Low temperature part, 13 1st heat exchange loop (1st heat exchange system), 14 2nd heat exchange loop (2nd heat exchange) System), 15 final heat radiation cooling loop (final heat radiation cooling system), 16 reaction vessel, 17 reservoir, 18 communication pipe, 19 heat storage release valve, 20 reactor pressure vessel (reactor primary system), 22A, 22B on-off valve, 25 Final heat sink, 28 Heat storage medium, 30 Emergency power supply system, 31 3rd heat exchange loop (3rd heat exchange system), 32 4th heat exchange loop (4th heat exchange system), 33 Reactor primary coolant loop (Reactor primary cooling system), 40 Branch pipe, 41A, 42A, 43A, 44A On-off valve, 41B, 42B, 43B, 44B Check valve, 50 Emergency power supply system, 51 Compactor, 60 Emergency power supply system, 61 1st heat exchange system, 62 2nd heat exchange system, 63 3rd heat exchange system, 64 4th heat exchange system, 70 Emergency power supply system, 71 Reactor steam introduction Piping, 72 reactor steam extraction valve.

Claims (7)

蓄熱媒体を充填した反応容器、及びこの反応容器に連通配管を介して接続されて水を貯蔵する貯蔵器を備え、前記蓄熱媒体の化学反応を利用して蓄熱し放熱する化学蓄熱設備と、
前記貯蔵器と原子炉一次系との間で熱交換を行って、前記貯蔵器を加熱する第1熱交換系と、
高温部と低温部との温度差により発電する熱電変換装置と、
前記反応容器と前記熱電変換装置の前記高温部との間で熱交換を行って、前記高温部を加熱する第2熱交換系と、
前記熱電変換装置の前記低温部と最終ヒートシンクとの間で熱交換を行って、前記低温部を冷却する最終放熱冷却系とを有し、
電源喪失時に前記第1熱交換系に配設された弁が受動で開動作して、前記貯蔵器が前記原子炉一次系により加熱されることで、前記化学蓄熱設備に蓄熱された熱が放熱され、この熱により前記熱電変換装置が発電を行うよう構成されたことを特徴とする非常用電力供給システム。
A reaction vessel filled with a heat storage medium, and a storage device connected to the reaction vessel via a communication pipe for storing water, and a chemical heat storage facility for storing and radiating heat using a chemical reaction of the heat storage medium;
A first heat exchange system for performing heat exchange between the reservoir and a reactor primary system to heat the reservoir;
A thermoelectric conversion device that generates electricity due to a temperature difference between the high temperature part and the low temperature part;
A second heat exchange system for performing heat exchange between the reaction vessel and the high temperature part of the thermoelectric converter to heat the high temperature part;
Heat exchange between the low temperature part and the final heat sink of the thermoelectric converter, and having a final heat radiation cooling system for cooling the low temperature part,
When the power supply is lost, the valve disposed in the first heat exchange system is passively opened and the reservoir is heated by the primary reactor system, so that the heat stored in the chemical heat storage facility is dissipated. An emergency power supply system, wherein the thermoelectric conversion device is configured to generate electric power with this heat.
前記化学蓄熱設備の反応容器と原子炉一次系との間で熱交換を行って、前記反応容器を加熱する第3熱交換系と、
前記化学蓄熱設備の貯蔵器と最終放熱冷却系との間で熱交換を行って、前記貯蔵器を冷却する第4熱交換系とを更に有し、
第1熱交換系、第2熱交換系、前記第3熱交換系及び前記第4熱交換系のそれぞれに対をなす弁が配設され、
電源喪失時に、前記第1及び第2熱交換系のそれぞれの前記弁が受動で開動作すると共に、前記第3及び第4熱交換系のそれぞれの前記弁が受動で閉動作して、前記貯蔵器が前記原子炉一次系により前記第1熱交換系を介して加熱されることで、前記化学蓄熱設備に蓄熱された熱が放熱され、この熱が前記第2熱交換系を介して熱電変換装置の高温部を加熱することで、前記熱電変換装置が発電を行うよう構成されたことを特徴とする請求項1に記載の非常用電力供給システム。
A third heat exchange system for heating the reaction vessel by performing heat exchange between the reaction vessel of the chemical heat storage facility and the primary reactor system;
A heat exchange between the reservoir of the chemical heat storage facility and the final heat radiation cooling system, and further comprising a fourth heat exchange system for cooling the reservoir;
A pair of valves are disposed in each of the first heat exchange system, the second heat exchange system, the third heat exchange system, and the fourth heat exchange system,
When power is lost, the valves of the first and second heat exchange systems are passively opened, and the valves of the third and fourth heat exchange systems are passively closed to store the storage. When the reactor is heated by the reactor primary system through the first heat exchange system, the heat stored in the chemical heat storage facility is dissipated, and this heat is converted into thermoelectric conversion through the second heat exchange system. The emergency power supply system according to claim 1, wherein the thermoelectric conversion device is configured to generate power by heating a high temperature part of the device.
前記第1熱交換系、前記第2熱交換系、前記第3熱交換系及び前記第4熱交換系のそれぞれの弁は、原子炉圧力とばね圧とのバランスにより無給電で開閉動作する機能を備え、
前記原子炉圧力の上昇時に、前記第3及び第4熱交換系のそれぞれの前記弁が開動作すると共に、前記第1及び第2熱交換系のそれぞれの前記弁が閉動作して、化学蓄熱設備が蓄熱する蓄熱モードに移行し、
前記原子炉圧力の低下時に、前記第1及び第2熱交換系のそれぞれの前記弁が開動作すると共に、前記第3及び第4熱交換系のそれぞれの前記弁が閉動作して、前記化学蓄熱設備が放熱して熱電変換装置が発電する放熱発電モードに移行するよう構成されたことを特徴とする請求項2に記載の非常用電力供給システム。
The respective valves of the first heat exchange system, the second heat exchange system, the third heat exchange system, and the fourth heat exchange system function to open and close without power supply due to the balance between the reactor pressure and the spring pressure. With
When the reactor pressure is increased, the valves of the third and fourth heat exchange systems are opened, and the valves of the first and second heat exchange systems are closed, so that chemical heat storage is performed. Transition to the heat storage mode where the equipment stores heat,
When the reactor pressure is decreased, the valves of the first and second heat exchange systems are opened, and the valves of the third and fourth heat exchange systems are closed. The emergency power supply system according to claim 2, wherein the heat storage facility is configured to shift to a heat radiation power generation mode in which heat is radiated and the thermoelectric converter generates power.
前記化学蓄熱設備の連通配管に圧縮機が配設され、この圧縮機により反応容器を加圧して、この反応容器内での放熱過程における化学反応の温度を上昇させるよう構成された請求項2または3に記載の非常用電力供給システム。 A compressor is provided in the communication pipe of the chemical heat storage facility, and a pressure is applied to the reaction vessel by the compressor to increase the temperature of the chemical reaction in the heat dissipation process in the reaction vessel. The emergency power supply system according to 3. 前記第1熱交換系、前記第2熱交換系、前記第3熱交換系及び前記第4熱交換系の対をなすそれぞれの弁は、一方が開閉弁であり、他方が逆止弁であることを特徴とする請求項1乃至4のいずれか1項に記載の非常用電力供給システム。 One of the valves forming the pair of the first heat exchange system, the second heat exchange system, the third heat exchange system, and the fourth heat exchange system is an on-off valve, and the other is a check valve. The emergency power supply system according to any one of claims 1 to 4, wherein the emergency power supply system is provided. 前記第1熱交換系、前記第2熱交換系、前記第3熱交換系及び前記第4熱交換系は、ループ型または単一流路のヒートパイプを備えて構成されたことを特徴とする請求項1乃至5のいずれか1項に記載の非常用電力供給システム。 The first heat exchange system, the second heat exchange system, the third heat exchange system, and the fourth heat exchange system are configured to include a loop type or single flow path heat pipe. Item 6. The emergency power supply system according to any one of Items 1 to 5. 前記原子炉一次系の原子炉圧力容器に対して複数系統設けられ、電源喪失時に少なくとも1つの系統の化学蓄熱設備が放熱し熱電変換機が発電を行うよう構成されたことを特徴とする請求項1乃至6のいずれか1項に記載の非常用電力供給システム。 A plurality of systems are provided for a reactor pressure vessel of the reactor primary system, and at least one system of chemical heat storage equipment dissipates heat when a power source is lost, and a thermoelectric converter generates power. The emergency power supply system according to any one of 1 to 6.
JP2011249075A 2011-11-14 2011-11-14 Emergency power supply system Pending JP2013104790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249075A JP2013104790A (en) 2011-11-14 2011-11-14 Emergency power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249075A JP2013104790A (en) 2011-11-14 2011-11-14 Emergency power supply system

Publications (1)

Publication Number Publication Date
JP2013104790A true JP2013104790A (en) 2013-05-30

Family

ID=48624426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249075A Pending JP2013104790A (en) 2011-11-14 2011-11-14 Emergency power supply system

Country Status (1)

Country Link
JP (1) JP2013104790A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810474B1 (en) * 2016-11-01 2017-12-20 한국원자력연구원 Passive safety system and nuclear power plant having the same
KR101906185B1 (en) * 2017-12-13 2018-10-10 한국원자력연구원 Passive safety system and nuclear power plant having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810474B1 (en) * 2016-11-01 2017-12-20 한국원자력연구원 Passive safety system and nuclear power plant having the same
KR101906185B1 (en) * 2017-12-13 2018-10-10 한국원자력연구원 Passive safety system and nuclear power plant having the same

Similar Documents

Publication Publication Date Title
CN105810256A (en) Passive residual heat removal system for nuclear power plant
CN204480678U (en) A kind of nuclear power station Heat Discharging System of Chinese
EP2518731A2 (en) Nuclear power plant, fuel pool water cooling facility and method thereof
KR101480046B1 (en) Cooling system of emergency coolling tank and nuclear power plant having the same
US9080788B2 (en) Solar power system and method of operation
JP2014525046A (en) Power generation by decay heat for cooling and monitoring of spent nuclear fuel pool
KR101654096B1 (en) Self-diagnostic Unmanned Reactor
US9390818B2 (en) Underwater electricity production module
US10255999B2 (en) System for removing the residual power of a pressurised water nuclear reactor
CN102623072A (en) Compound accident residual heat removal system for accelerator-driven sub-critical reactor
US20150016581A1 (en) System for removing the residual power of a pressurised water nuclear reactor
US9679667B2 (en) Submerged electricity production module
CN210837199U (en) Waste heat discharge system and nuclear power system
JP2007134519A (en) Exhaust heat recovery utilization system
JP2013104790A (en) Emergency power supply system
US9390820B2 (en) Electricity production module
JP2013057559A (en) Water cooling type nuclear power generation facility and emergency stop method for the same
KR100832851B1 (en) Latent heat storage type heat storage system for fuel cell using phase change materials
RU111336U1 (en) EMERGENCY COOLING SYSTEM WITH COMBINED HEAT EXCHANGER
JP7199634B2 (en) Nuclear power plant
US20140321594A1 (en) Submerged energy production module
KR101278906B1 (en) Apparatus for preventing thermal shock having a condensate mixing storage tank on condensate return line
CN210039652U (en) Lead-bismuth fast reactor emergency waste heat discharge system with heat conduction oil intermediate circuit
JP2015510582A (en) Submersible or underwater power generation module
US9396820B2 (en) Submerged electricity production module