JP2013104719A - External surface bend measuring-method for steel pipe - Google Patents

External surface bend measuring-method for steel pipe Download PDF

Info

Publication number
JP2013104719A
JP2013104719A JP2011247378A JP2011247378A JP2013104719A JP 2013104719 A JP2013104719 A JP 2013104719A JP 2011247378 A JP2011247378 A JP 2011247378A JP 2011247378 A JP2011247378 A JP 2011247378A JP 2013104719 A JP2013104719 A JP 2013104719A
Authority
JP
Japan
Prior art keywords
steel pipe
measurement
center position
detectors
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011247378A
Other languages
Japanese (ja)
Inventor
Kohei Sato
康平 佐藤
Hirotsugu Toe
博継 戸江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011247378A priority Critical patent/JP2013104719A/en
Publication of JP2013104719A publication Critical patent/JP2013104719A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an external surface bend measuring-method that enables quantitative measurement of an external surface bend of a steel pipe even in the case of the steep pipe jumping during transportation and that of an elliptical deformation or variation in diameter occurring to the steel pipe, and that allows measurement intervals to be shortened without increasing man-hour.SOLUTION: A method includes: transporting a steep pipe 11 using plural rollers 31 in a longitudinal direction while rotating the pipe in its circumferential direction; arranging three detectors 21 in equidistance between adjacent rollers 31, of the plural rollers 31, the detector for detecting positions of upper and lower ends of the external surface of the steel pipe; calculating the center position of the external surface of the steel pipe from the positions of the upper and lower ends for each of the three detectors, the positions detected by the detectors 21; and calculating a run-out w using the following expression (1). Here, of three detectors 21, CA denotes the center position on an upstream side (A-position), CB denotes the center position at center (B-position), and CC denotes the center position on a downstream side (C-position). w=CB-(CA+CC)/2 ...(1)

Description

本発明は、周方向に回転させつつ長手方向に搬送される鋼管について外面曲がりを測定する方法に関する。さらに詳しくは、本発明は、搬送される鋼管が跳ねた場合や楕円または外径の変動が鋼管に生じている場合も正確に測定できるとともに、工数を増大させることなく測定間隔を短くして定量的に測定できる外面曲がりの測定方法に関する。   The present invention relates to a method for measuring outer surface bending of a steel pipe conveyed in a longitudinal direction while rotating in a circumferential direction. More specifically, the present invention enables accurate measurement even when the steel pipe to be transported bounces, or when the ellipse or the outer diameter fluctuates in the steel pipe, and quantifies by shortening the measurement interval without increasing the number of man-hours. The present invention relates to a method for measuring an external curvature that can be measured automatically.

鋼管の製造では、製造された鋼管の外面の中心位置(軸心)が直線状となることなく曲線状となり、外面に曲がりが生じる場合がある。製造された鋼管の外面に曲がりが生じると、鋼管を装置に組み付けて使用する場合や、鋼管を加工する場合に不具合が発生するおそれがある。   In the manufacture of steel pipes, the center position (axial center) of the outer surface of the manufactured steel pipe may be curved without being linear, and the outer surface may be bent. If the outer surface of the manufactured steel pipe is bent, a problem may occur when the steel pipe is assembled and used in an apparatus or when the steel pipe is processed.

このような外面曲がり等を低減するため、鋼管の製造では、傾斜ロール式矯正機を用いた矯正が行われる場合がある。傾斜ロール式矯正機では、一般に、鼓形状のロールを回転軸の方向が互いに交差する状態で上下方向に対向配置してロール対とし、このロール対が3〜5対配設される。傾斜ロール式矯正機では、ロール対の対向間隔を被矯正管の外径より若干小さくすることにより付与されるクラッシュ量や、隣接するロール対に対してロール高さ変更することにより付与されるオフセット量が設定される。これらのクラッシュ量やオフセット量といった矯正条件を調整することにより、鋼管の曲がりが矯正される。   In order to reduce such bending of the outer surface and the like, correction using an inclined roll type straightening machine may be performed in the manufacture of a steel pipe. In an inclined roll type straightening machine, in general, drum-shaped rolls are arranged opposite to each other in the vertical direction in a state where the directions of the rotation axes intersect with each other to form roll pairs, and 3 to 5 pairs of the rolls are arranged. In the inclined roll type straightening machine, the amount of crash given by making the interval between the roll pairs slightly smaller than the outer diameter of the pipe to be straightened, or the offset given by changing the roll height with respect to the adjacent roll pair. The amount is set. The bending of the steel pipe is corrected by adjusting the correction conditions such as the amount of crash and the amount of offset.

一方、JIS規格では、鋼管の曲がりについて実用的にまっすぐであることを規定するのみで、測定方法や許容範囲について規定されていない。このため、鋼管の用途に応じて、鋼管の外面曲がりの検査や測定が行われている。   On the other hand, the JIS standard only specifies that the bending of the steel pipe is practically straight, and does not specify the measurement method or the allowable range. For this reason, according to the use of a steel pipe, the test | inspection and measurement of the outer surface curvature of a steel pipe are performed.

鋼管の外面曲がりの検査や測定として、一般的に、鋼管の転がり具合による検査、ダイヤルゲージによる測定および隙間ゲージによる測定が用いられる。   As inspection and measurement of the outer surface bending of a steel pipe, in general, inspection by the rolling condition of the steel pipe, measurement by a dial gauge, and measurement by a gap gauge are used.

鋼管の転がり具合による検査は、例えば、下記の手順により行うことができる。
(1)鋼管を検査台上に載置し、
(2)目視により鋼管の曲がりを確認し、
(3)鋼管を転がした際の鋼管の振れの大きさおよび転がし易さを確認する。
The inspection by the rolling condition of the steel pipe can be performed, for example, by the following procedure.
(1) Place the steel pipe on the inspection table,
(2) Check the bending of the steel pipe by visual inspection,
(3) Confirm the magnitude of the vibration of the steel pipe when it is rolled and the ease of rolling.

このような転がり具合による検査は、比較的に大きい外面曲がりが鋼管に生じていれば確認できるが、外面曲がりを定量的に測定することはできない。また、検査作業が経験に基づく作業にならざるを得ず、検査員の個人技能によって検査結果に違いが生じる。このため、鋼管の製造において、製造された鋼管の外面曲がりについて転がり具合により検査を行い、その結果に応じて傾斜ロール式矯正機の矯正条件といった製造条件を調整するのは困難である。   Such an inspection based on the degree of rolling can be confirmed if a relatively large outer surface bending occurs in the steel pipe, but the outer surface bending cannot be measured quantitatively. Also, the inspection work must be based on experience, and the inspection results vary depending on the individual skills of the inspector. For this reason, in manufacturing a steel pipe, it is difficult to inspect the outer surface bending of the manufactured steel pipe according to the rolling condition and adjust the manufacturing conditions such as the correction conditions of the inclined roll type straightening machine according to the result.

続いて、ダイヤルゲージによる測定は、例えば、下記の手順により行うことができる。
(1)鋼管を、その端部から所定の距離(例えばl/4、l:鋼管の長さ)を設けた2点でV字ブロックまたはローラによって回転可能に支持し、
(2)ダイヤルゲージの測定子を鋼管外面に当てた状態で鋼管を回転させ、その際のダイヤルゲージの振れ幅を測定し、
(3)上記(2)による振れ幅の測定を、鋼管の長手方向に所定の測定間隔で行う。
Subsequently, measurement using a dial gauge can be performed, for example, according to the following procedure.
(1) A steel pipe is rotatably supported by a V-shaped block or a roller at two points provided with a predetermined distance (for example, l / 4, l: length of the steel pipe) from the end thereof,
(2) Rotate the steel pipe with the dial gauge probe touching the outer surface of the steel pipe, and measure the deflection width of the dial gauge.
(3) The runout width measurement according to (2) above is performed at predetermined measurement intervals in the longitudinal direction of the steel pipe.

このようなダイヤルゲージによる測定では、所定の測定間隔で振れ幅を測定することにより定量的な測定が可能であるが、測定間隔を短くすると測定に要する工数が増大する。ここで、鋼管の外面には、周期が短い曲がりが繰り返し現れる外面曲がり、いわゆる蛇曲がりが生じる場合がある。このような蛇曲がりを定量的に測定して把握するには、蛇曲がりの周期ごとに複数の位置で振れ幅が測定されるように測定間隔を短くする必要がある。しかし、ダイヤルゲージによる測定で測定間隔を短くすることは、工数の増大を招くことから、困難である。このため、測定間隔が適切に設定されていない状態で蛇曲がりが生じた鋼管についてダイヤルゲージによる測定を行う場合があり、この場合は、鋼管の長手方向で不規則に振れ幅が変化し、鋼管の外面曲がりを把握することができない。   In such a measurement using a dial gauge, a quantitative measurement is possible by measuring a swing width at a predetermined measurement interval. However, if the measurement interval is shortened, the man-hour required for the measurement increases. Here, on the outer surface of the steel pipe, there may be a so-called serpentine bend, which is an outer bend in which a bend with a short cycle appears repeatedly. In order to quantitatively measure and grasp such a meandering, it is necessary to shorten the measurement interval so that the swing width is measured at a plurality of positions for every meandering period. However, it is difficult to shorten the measurement interval by measurement with a dial gauge because it increases the number of man-hours. For this reason, there are cases where measurement is performed with a dial gauge on a steel pipe that has been bent in a state where the measurement interval is not set appropriately. In this case, the runout varies irregularly in the longitudinal direction of the steel pipe, and the steel pipe I can't figure out the outside curve.

一方、鋼管を製造すると、円となるはずの外面が変形して楕円となったり、外径が局所的に変動して径が大きくなる箇所や小さくなる箇所が発生したりする場合がある。これらの場合、ダイヤルゲージによる測定では、楕円や外径の変動に影響されて振れ幅が変動することから、測定された外面曲がりが誤差を含むこととなり、外面曲がりを正確に測定することが困難となる。   On the other hand, when a steel pipe is manufactured, the outer surface, which should be a circle, may be deformed into an ellipse, or the outer diameter may vary locally to generate a location where the diameter increases or decreases. In these cases, in the measurement with the dial gauge, the fluctuation width is affected by the fluctuation of the ellipse and the outer diameter, so the measured outer surface curvature includes an error, and it is difficult to accurately measure the outer surface curvature. It becomes.

続いて、隙間ゲージによる測定は、例えば、下記の手順により行うことができる。
(1)鋼管を定盤上に載置し、
(2)この鋼管と定盤との隙間に隙間ゲージを挿入することによって外面曲がりを測定する。
Subsequently, measurement with a gap gauge can be performed, for example, according to the following procedure.
(1) Place the steel pipe on the surface plate,
(2) The outer surface bending is measured by inserting a gap gauge into the gap between the steel pipe and the surface plate.

このような隙間ゲージによる外面曲がりの測定は、隙間ゲージを挿入する隙間の測定を、鋼管の長手方向に所定の間隔ごとに行うとともに、鋼管の周方向に所定の角度ごとに360°にわたって行うことにより、理論上は、外面曲がりを定量的に測定できる。しかしながら、鋼管の長手方向および周方向にわたる隙間の測定は、測定に要する工数が非常に増大するので、実用上で実施するのは難しい。また、隙間ゲージによる外面曲がりの測定では、鋼管に楕円や外径の変動が発生すると、それに影響されて鋼管と定盤との隙間が変動することから、測定された外面曲がりが誤差を含むこととなり、外面曲がりを正確に測定することが困難となる。   The measurement of the bending of the outer surface with such a gap gauge is performed by measuring the gap into which the gap gauge is inserted at predetermined intervals in the longitudinal direction of the steel pipe and at 360 ° at predetermined angles in the circumferential direction of the steel pipe. Thus, in theory, the outer surface bend can be measured quantitatively. However, the measurement of the gap in the longitudinal direction and the circumferential direction of the steel pipe is difficult to implement in practice because the man-hours required for the measurement are greatly increased. In addition, when measuring the outer surface bend with a gap gauge, if the oval or outer diameter variation occurs in the steel pipe, the gap between the steel pipe and the surface plate will be affected by this, and the measured outer surface bend will contain errors. Thus, it is difficult to accurately measure the outer surface curvature.

一方、搬送される鋼管の外面曲がりの測定に関し、従来から種々の提案がなされており、例えば、特許文献1および2がある。特許文献1で提案される外面曲がりの測定では、継目無鋼管の製造ラインにおいて、被加工材である鋼管の外径を複数の径方向から測定する外径計を配設する。このように配設された複数の外径計を用いて外径測定位置に対する鋼管の中心位置を各径方向についてそれぞれ算出することにより、鋼管の中心位置の変動量を算出する。この鋼管の中心位置の変動量を鋼管の長手方向にわたって算出することにより、鋼管の外面曲がりを測定する。   On the other hand, various proposals have conventionally been made regarding the measurement of the outer surface bending of a steel pipe to be conveyed. For example, there are Patent Documents 1 and 2. In the measurement of the outer surface bend proposed in Patent Document 1, an outer diameter meter that measures the outer diameter of a steel pipe as a workpiece from a plurality of radial directions is disposed in a seamless steel pipe production line. By calculating the center position of the steel pipe with respect to the outer diameter measurement position in each radial direction using the plurality of outer diameter meters arranged in this manner, the amount of variation in the center position of the steel pipe is calculated. By calculating the fluctuation amount of the center position of the steel pipe over the longitudinal direction of the steel pipe, the bending of the outer surface of the steel pipe is measured.

特許文献1で提案される外面曲がりの測定では、外径測定位置を設定するために、略真円状の対比試験片を用意する必要があり、様々な外径の鋼管に対応するには対比試験片の管理が煩雑となって工数が非常に増大する。また、特許文献1で提案される外面曲がりの測定では、鋼管に楕円や外径の変動が発生すると、搬送される鋼管がローラ等で支持されていることから、鋼管の中心位置も変動する。これにより、鋼管の外面に曲がりがない場合でも、外径計を用いて算出される中心位置の変動量が零となることなく、外面曲がり測定されるので、測定された外面曲がりが誤差を含むこととなり、外面曲がりを正確に測定することが困難となる。   In the measurement of the outer surface bend proposed in Patent Document 1, it is necessary to prepare a substantially circular contrast specimen in order to set the outer diameter measurement position. The management of the test piece becomes complicated, and the man-hour increases greatly. Further, in the measurement of the outer surface bend proposed in Patent Document 1, when the ellipse or the outer diameter fluctuates in the steel pipe, since the steel pipe to be conveyed is supported by a roller or the like, the center position of the steel pipe also fluctuates. Thereby, even when there is no bend on the outer surface of the steel pipe, the outer surface bend is measured without the amount of fluctuation of the center position calculated using the outer diameter meter being zero, so the measured outer bend includes an error. As a result, it is difficult to accurately measure the external curvature.

ここで、製造ラインで搬送される鋼管は、搬送装置を構成する部材が有する段差や、装置や設備の動作に起因して生じる振動によって、鋼管が跳ねる(上下動する)場合がある。特許文献1で提案される外面曲がりの測定では、測定する際に鋼管が跳ねると、それによって外径計を用いて算出される中心位置も変動することから、測定された外面曲がりが誤差を含むこととなり、外面曲がりを正確に測定することが困難となる。   Here, the steel pipe conveyed in the production line may be bounced (moves up and down) due to a level difference of a member constituting the conveyance device or vibration caused by the operation of the apparatus or equipment. In the measurement of the outer surface bend proposed in Patent Document 1, if the steel pipe bounces at the time of measurement, the center position calculated using the outer diameter meter also fluctuates accordingly, so the measured outer surface bend includes an error. As a result, it is difficult to accurately measure the external curvature.

特許文献2は、傾斜ロール式矯正機の制御方法に関するものであり、傾斜ロール式矯正機の出側で鋼管の外面曲がりを測定する方法が開示されている。特許文献2に開示される外面曲がりの測定では、継目無鋼管の製造ラインに配置される傾斜ロール式矯正機の出側に、被加工材である鋼管の外径を複数の径方向から測定する外径計を配設する。このように配設された複数の外径計を用いて鋼管の中間位置を各径方向についてそれぞれ算出し、幾何学計算によって鋼管の中心位置を算出する。そして、鋼管の外面曲がりは、外径計から入力された鋼管の中心位置について長手方向の変動量を算出することによって測定されるとしている。   Patent Document 2 relates to a control method of an inclined roll type straightening machine, and discloses a method of measuring the outer surface bending of a steel pipe on the exit side of the inclined roll type straightening machine. In the measurement of the outer surface bend disclosed in Patent Document 2, the outer diameter of the steel pipe, which is a workpiece, is measured from a plurality of radial directions on the exit side of the inclined roll type straightening machine arranged in the production line of the seamless steel pipe. An outside diameter meter is provided. The intermediate position of the steel pipe is calculated for each radial direction using a plurality of outer diameter meters arranged in this manner, and the center position of the steel pipe is calculated by geometric calculation. The outer surface bending of the steel pipe is measured by calculating the amount of fluctuation in the longitudinal direction with respect to the center position of the steel pipe input from the outer diameter meter.

このような特許文献2で開示される外面曲がりの測定は、傾斜ロール式矯正機の出側で鋼管を測定するものであり、すなわち、鋼管の一部をロールにより挟んだ状態で測定する必要がある。このため、搬送される鋼管の測定にそのまま用いることは難しい。   The measurement of the outer surface bending disclosed in Patent Document 2 is to measure a steel pipe on the exit side of the inclined roll type straightening machine, that is, it is necessary to measure in a state where a part of the steel pipe is sandwiched between rolls. is there. For this reason, it is difficult to use it as it is for the measurement of the steel pipe conveyed.

特開2006−247724号公報JP 2006-247724 A 特開2006−281228号公報JP 2006-281228 A

前述の通り、鋼管の外面曲がりの検査や測定には、鋼管の転がり具合による検査、ダイヤルゲージによる測定および隙間ゲージによる測定が用いられていた。しかし、従来の鋼管の転がり具合による検査では、外面曲がりを定量的に測定することはできない。また、従来のダイヤルゲージによる測定および隙間ゲージによる測定では、定量的な測定が可能であるが、測定に要する工数が増大することから測定間隔を短くするのが難しく、楕円や外径の変動が生じた鋼管では外面曲がりを正確に測定することが困難であった。   As described above, for the inspection and measurement of the outer surface bending of the steel pipe, the inspection by the rolling condition of the steel pipe, the measurement by the dial gauge, and the measurement by the gap gauge are used. However, in the conventional inspection based on the rolling condition of the steel pipe, the outer surface bending cannot be quantitatively measured. In addition, conventional dial gauge measurement and gap gauge measurement allow quantitative measurement. However, since the number of man-hours required for measurement increases, it is difficult to shorten the measurement interval, and fluctuations in the ellipse and outer diameter occur. It was difficult to accurately measure the outer surface bending of the resulting steel pipe.

一方、特許文献1で提案される外面曲がりの測定では、対比試験片を用意する必要があり、様々な外径の鋼管に対応するには対比試験片の管理が煩雑となって工数が非常に増大する。また、特許文献2で開示される外面曲がりの測定では、傾斜ロール式矯正機の出側で鋼管を測定するものであり、搬送される鋼管の測定にそのまま用いることは難しい。   On the other hand, in the measurement of the outer surface bend proposed in Patent Document 1, it is necessary to prepare a contrast test piece, and the management of the contrast test piece becomes complicated to cope with various outer diameter steel pipes. Increase. Moreover, in the measurement of the external curvature disclosed in Patent Document 2, the steel pipe is measured on the exit side of the inclined roll type straightening machine, and it is difficult to use it as it is for the measurement of the steel pipe being conveyed.

本発明は、このような状況に鑑みてなされたものであり、搬送される鋼管が跳ねた場合や楕円または外径の変動が鋼管に生じている場合も正確に測定できるとともに、工数を増大させることなく測定間隔を短くして定量的に測定できる外面曲がりの測定方法を提供することを目的とする。   The present invention has been made in view of such a situation, and can accurately measure and increase the number of man-hours when a steel pipe to be transported bounces or when an elliptical shape or a variation in outer diameter occurs in the steel pipe. It is an object of the present invention to provide a method for measuring an external curvature that can be quantitatively measured without shortening the measurement interval.

本発明の要旨は、以下の通りである。
複数のローラによって鋼管をその周方向に回転させつつ長手方向に搬送し、前記ローラのうちで隣り合うローラの間に前記鋼管外面の上端および下端の位置を検出する検出器を等間隔に3台配置し、前記検出器で検出した上端および下端の位置から前記鋼管外面の中心位置を前記3台の検出器についてそれぞれ求め、下記(1)式により振れwを算出すること特徴とする鋼管の外面曲がり測定方法。
w=CB−(CA+CC)/2 ・・・(1)
ここで、3台の検出器のうちで上流側の検出器について求めた中心位置をCA、中央の検出器について求めた中心位置をCB、下流側の検出器について求めた中心位置をCCとする。
The gist of the present invention is as follows.
Three detectors that detect the positions of the upper and lower ends of the outer surface of the steel pipe between adjacent rollers among the rollers are rotated at equal intervals while rotating the steel pipe in the circumferential direction by a plurality of rollers. The outer surface of the steel pipe, wherein the center position of the outer surface of the steel pipe is obtained for each of the three detectors from the positions of the upper end and the lower end detected by the detector, and the runout w is calculated by the following equation (1) Bending measurement method.
w = CB- (CA + CC) / 2 (1)
Here, among the three detectors, the center position obtained for the upstream detector is CA, the center position obtained for the center detector is CB, and the center position obtained for the downstream detector is CC. .

本発明の外面曲がり測定方法は、下記の顕著な効果を有する。
(1)ローラ間に検出器を等間隔に3台配置し、それぞれの検出器を用いて求めた鋼管外面の中心位置から振れを算出する。
(2)上記(1)により、搬送される鋼管が跳ねた場合も正確に振れを算出できるとともに、楕円や外径の変動が生じた鋼管でも振れを正確に算出することができる。
(3)さらに、工数を増大させることなく、測定間隔を短くして鋼管の長手方向にわたって振れを算出することができるので、外面曲がりを定量的に測定できる。
(4)対比試験片を用意する必要がなく、様々な外径の鋼管に容易に対応できる。
The outer surface bending measuring method of the present invention has the following remarkable effects.
(1) Three detectors are arranged at equal intervals between the rollers, and the shake is calculated from the center position of the outer surface of the steel pipe obtained using each detector.
(2) According to the above (1), the shake can be accurately calculated even when the steel pipe to be conveyed is bounced, and the shake can be accurately calculated even in a steel pipe in which an ellipse or an outer diameter fluctuates.
(3) Furthermore, since the run-out can be calculated over the longitudinal direction of the steel pipe without increasing the number of steps, the outer surface bending can be measured quantitatively.
(4) There is no need to prepare a contrast test piece, and it can be easily applied to steel pipes having various outer diameters.

本発明の外面曲がり測定方法を説明する模式図であり、同図(a)は斜視図、同図(b)は側面図である。It is a schematic diagram explaining the outer surface curvature measuring method of this invention, The figure (a) is a perspective view, The figure (b) is a side view. 本発明で規定する計算式により算出される振れを説明する模式図であり、同図(a)は外面曲がりが生じていない場合、同図(b)は外面曲がりが生じている場合、同図(c)は鋼管が跳ねた場合をそれぞれ示す。It is a schematic diagram explaining the deflection calculated by the calculation formula prescribed | regulated by this invention, The figure (a) is the case where the outer surface curvature has not arisen, The figure (b) is the same figure, when the outer surface curvature has arisen. (C) shows the case where the steel pipe bounces.

以下に、本発明の外面曲がり測定方法について、図面に基づいて説明する。   Below, the outer surface curvature measuring method of this invention is demonstrated based on drawing.

図1は、本発明の外面曲がり測定方法を説明する模式図であり、同図(a)は斜視図、同図(b)は側面図である。同図には被測定材である鋼管11と、鋼管11を搬送する搬送装置が備えるローラ31と、鋼管外面の上端および下端の位置を検出する検出器21とを示す。同図(a)は、搬送装置が備える複数のローラの一部と、搬送される鋼管11の長手方向の一部を示すものである。例えば、鋼管の長さが5mであれば、隣り合うローラの間隔は700mm程度に設定され、ローラ31の数は鋼管を搬送する距離によって決定される。このローラ31は、鋼管外面の下部を支持しつつ鋼管11を搬送する。   1A and 1B are schematic views for explaining an outer surface bending measuring method of the present invention, in which FIG. 1A is a perspective view and FIG. 1B is a side view. The figure shows a steel pipe 11 which is a material to be measured, a roller 31 provided in a conveying device for conveying the steel pipe 11, and a detector 21 which detects the positions of the upper and lower ends of the outer surface of the steel pipe. The figure (a) shows a part of several rollers with which a conveying apparatus is provided, and a part of longitudinal direction of the steel pipe 11 conveyed. For example, if the length of the steel pipe is 5 m, the interval between adjacent rollers is set to about 700 mm, and the number of rollers 31 is determined by the distance for conveying the steel pipe. The roller 31 conveys the steel pipe 11 while supporting the lower part of the outer surface of the steel pipe.

本発明の外面曲がり測定方法は、複数のローラ31によって鋼管11をその周方向に回転(同図の太線矢印参照)させつつ長手方向に搬送(同図のハッチングを施した矢印参照)し、このローラ31のうちで隣り合うローラ31の間に鋼管外面の上端および下端の位置を検出する検出器21を等間隔に3台配置する。複数のローラ31によって鋼管11をその周方向に回転させつつ長手方向に搬送するのは、鋼管の長手方向に所定の間隔ごとに振れを算出するとともに、鋼管の周方向についても所定の角度ごとに振れを算出するためである。   In the outer surface bending measuring method of the present invention, the steel pipe 11 is rotated in the circumferential direction by a plurality of rollers 31 (see the thick arrow in the figure), and conveyed in the longitudinal direction (see the hatched arrow in the figure). Three detectors 21 that detect the positions of the upper end and the lower end of the outer surface of the steel pipe are arranged at equal intervals between adjacent rollers 31 among the rollers 31. The steel pipe 11 is conveyed in the longitudinal direction while rotating the circumferential direction of the steel pipe 11 by a plurality of rollers 31, and the runout is calculated at predetermined intervals in the longitudinal direction of the steel pipe, and also in the circumferential direction of the steel pipe at every predetermined angle. This is to calculate the shake.

鋼管外面の上端および下端の位置を検出する検出器21を用いるのは、検出した鋼管外面の上端および下端の位置から中心位置を求め、この中心位置に基づいて前記(1)式により振れを算出するためである。これにより、鋼管に楕円や外径の変動が生じた場合にも振れを正確に算出することができる。   The detector 21 that detects the positions of the upper and lower ends of the outer surface of the steel pipe is used to obtain the center position from the detected positions of the upper and lower ends of the outer surface of the steel pipe, and the shake is calculated by the above formula (1) based on the center position. It is to do. Thereby, even when an ellipse or an outer diameter fluctuates in the steel pipe, the shake can be accurately calculated.

検出器21は、同図に実線または破線の矢印で示すように、レーザビームを走査しながら鋼管11に向けて投光する投光部22と、投光部22に対向配置され、レーザビームを受光する受光部23とで構成できる。この構成の検出器21では、投光部22から投光されたレーザビームの一部が鋼管によって遮蔽されることから、受光部23で受光されなかった位置を検出することによって鋼管外面の上端および下端の位置(高さ位置)を検出できる。   The detector 21 is disposed opposite to the light projecting unit 22 and a light projecting unit 22 that projects the laser beam toward the steel pipe 11 while scanning the laser beam, as indicated by solid or broken arrows in FIG. It can comprise with the light-receiving part 23 which light-receives. In the detector 21 having this configuration, since a part of the laser beam projected from the light projecting unit 22 is shielded by the steel pipe, the upper end of the outer surface of the steel pipe and the position detected by the light receiving unit 23 are detected. The lower end position (height position) can be detected.

このような構成を採用できる検出器21は、同図に示すように、隣り合うローラ31の間にあり、上流側のA位置、中央のB位置、下流側のC位置にそれぞれ配置される。このように隣り合うローラ間に検出器を3台配置するのは、搬送される鋼管が跳ねた場合にも、振れを正確に算出するためである。また、同図に示すように、A〜Cの各位置に配置される3台の検出器21は、鋼管の長手方向におけるA位置とB位置の間隔とB位置とC位置との間隔とを同じにして配置される。このように検出器21を等間隔にして配置するのは、本発明が前記(1)式によって算出される振れによって外面曲がりを測定することによる。   As shown in the figure, the detector 21 that can employ such a configuration is located between adjacent rollers 31 and is arranged at an upstream A position, a central B position, and a downstream C position. The reason why the three detectors are arranged between the adjacent rollers in this way is to accurately calculate the shake even when the steel pipe to be conveyed bounces. Moreover, as shown in the figure, the three detectors 21 arranged at the respective positions A to C indicate the distance between the A position and the B position and the distance between the B position and the C position in the longitudinal direction of the steel pipe. Arranged in the same way. The reason why the detectors 21 are arranged at equal intervals in this way is that the present invention measures the outer surface curvature by the deflection calculated by the equation (1).

本発明の外面曲がりの測定方法は、検出器21で検出した上端および下端の位置から鋼管外面の中心位置を3台の検出器についてそれぞれ求め、前記(1)式により振れwを算出する。すなわち、同図に示すA〜Cの各位置においてそれぞれ鋼管外面の中心位置を求め、前記(1)式により振れwを算出する。鋼管外面の中心位置は上端および下端位置の中間位置とすればよく、例えば、検出器21の基準(原点)をローラの中心位置(高さ)とし、鋼管外面の上端位置(高さ)をPU、下端位置(高さ)をPDとすると、中心位置(高さ)は(PU−PD)/2で算出できる。   In the method of measuring the outer surface bending according to the present invention, the center position of the outer surface of the steel pipe is obtained for each of the three detectors from the positions of the upper end and the lower end detected by the detector 21, and the deflection w is calculated by the equation (1). That is, the center position of the outer surface of the steel pipe is obtained at each of the positions A to C shown in FIG. The center position of the outer surface of the steel pipe may be an intermediate position between the upper end and the lower end position. For example, the reference (origin) of the detector 21 is the center position (height) of the roller, and the upper end position (height) of the outer surface of the steel pipe is PU. If the lower end position (height) is PD, the center position (height) can be calculated by (PU−PD) / 2.

図2は、本発明で規定する計算式により算出される振れを説明する模式図であり、同図(a)は外面曲がりが生じていない場合、同図(b)は外面曲がりが生じている場合、同図(c)は鋼管が跳ねた場合をそれぞれ示す。同図では、搬送される鋼管11と、ローラ31とを示し、検出器については省略したが、3台の検出器が配置されるA〜C位置をそれぞれ一点鎖線で示す。また、3台の検出器により検出される鋼管外面の上端および下端位置を黒塗りの丸印で示し、その上端および下端位置から求められる中心位置CA〜CCを×印でそれぞれ示す。さらに、同図には、A位置およびC位置について求められた中心位置を結ぶ直線Lを破線でそれぞれ示す。   FIG. 2 is a schematic diagram for explaining the deflection calculated by the calculation formula stipulated in the present invention. FIG. 2A shows a case where no external curvature occurs, and FIG. 2B shows an external curvature. In the case, FIG. 3C shows the case where the steel pipe is bounced. In the figure, the steel pipe 11 to be conveyed and the roller 31 are shown, and the detector is omitted, but the A to C positions where the three detectors are arranged are indicated by alternate long and short dash lines. Moreover, the upper end and lower end position of the outer surface of the steel pipe detected by the three detectors are indicated by black circles, and the center positions CA to CC obtained from the upper end and lower end positions are indicated by X marks. Furthermore, in the same figure, the straight line L which connects the center position calculated | required about A position and C position is each shown with a broken line.

外面曲がりが生じていないまっすぐな鋼管を測定する場合、A位置(上流側)での中心位置をCA、B位置(中央)での中心位置をCB、C位置(下流側)での中心位置をCCとすると、同図(a)に示すように、同じ高さとなる。   When measuring a straight steel pipe with no external curvature, the center position at the A position (upstream side) is CA, the center position at the B position (center) is CB, and the center position at the C position (downstream side) is Assuming CC, the height is the same as shown in FIG.

ここで、振れwを算出する前記(1)式は、中心位置CBから中心位置CAおよびCCの平均値を減じたものである。この中心位置CAおよびCCの平均値は、A〜C位置までの各間隔が等しいことから、中心位置CAおよびCCを結ぶ直線L(同図に破線で示す直線)とB位置を示す直線との交点で表される。すなわち、振れwは、中心位置CBと、中心位置CAおよびCCを結ぶ直線とB位置を示す直線との交点との高さ(垂直)方向の距離となる。このような振れwの値は、外面曲がりが生じていないまっすぐな鋼管を測定する場合には0(ゼロ)となる。   Here, the equation (1) for calculating the shake w is obtained by subtracting the average value of the center positions CA and CC from the center position CB. Since the average values of the center positions CA and CC are equal to the intervals A to C, the straight line L (straight line shown by a broken line in the figure) connecting the center positions CA and CC and the straight line showing the B position are the same. Represented by the intersection. In other words, the shake w is the distance in the height (vertical) direction between the center position CB and the intersection of the straight line connecting the center positions CA and CC and the straight line indicating the B position. The value of such a run-out w is 0 (zero) when measuring a straight steel pipe with no outer surface bending.

外面曲がりが生じている鋼管を測定する場合、同図(b)に示すように、中心位置CA、CBおよびCCが異なる高さとなる。通常、鋼管はローラ31によって支持されつつ搬送されるので、同図(b)に示すように上流側の検出器が配置されるA位置と、下流側の検出器が配置されるC位置とをローラ31の近傍にそれぞれ設定すれば、中心位置CAおよびCCはほぼ同じ高さとなり、中心位置CAおよびCCを結ぶ直線は水平となる。振れwは、前述の通り、中心位置CBと、中心位置CAおよびCCを結ぶ直線LとB位置を示す直線との交点との高さ方向の距離であり、同図(b)に示すようになる。   When measuring a steel pipe in which outer surface bending occurs, the center positions CA, CB, and CC have different heights as shown in FIG. Normally, the steel pipe is transported while being supported by the roller 31, so as shown in FIG. 4B, the A position where the upstream detector is arranged and the C position where the downstream detector is arranged. If each is set in the vicinity of the roller 31, the center positions CA and CC have substantially the same height, and the straight line connecting the center positions CA and CC becomes horizontal. As described above, the shake w is the distance in the height direction between the center position CB and the intersection of the straight line L indicating the B position and the straight line L connecting the center positions CA and CC, as shown in FIG. Become.

鋼管が跳ねると、同図(c)に示すように、一方のローラ31によってのみ鋼管が支持される状態となる場合がある。本発明の外面曲がり測定方法は、A位置およびC位置に検出器を配置するとともに、前記(1)式に第2項を設け、すなわち、中心位置CAおよびCCを結ぶ直線Lに基づいて振れwを算出する。これにより、同図(c)に示すように、鋼管の跳ねを考慮して振れwを算出することができる。   When the steel pipe bounces, the steel pipe may be supported only by one roller 31 as shown in FIG. In the outer surface bending measuring method of the present invention, detectors are arranged at the A position and the C position, and the second term is provided in the equation (1). Is calculated. As a result, as shown in FIG. 5C, the runout w can be calculated in consideration of the steel pipe splash.

このように本発明の外面曲がり測定方法は、ローラ間に検出器を等間隔に3台配置し、それぞれの検出器を用いて求めた鋼管外面の中心位置から振れを算出する。これにより、搬送される鋼管が跳ねた場合も正確に振れを算出できるとともに、楕円や外径の変動が生じた鋼管でも振れを正確に算出することができる。また、3台の検出器の間隔を変更することによって測定間隔を調整でき、検出器を用いることから、工数を増大させることなく測定間隔を容易に短くして鋼管の長手方向にわたって振れを算出することができる。これらにより、本発明の外面曲がり測定方法は、外面曲がりを定量的に測定できる。   As described above, in the outer surface bending measurement method of the present invention, three detectors are arranged at equal intervals between the rollers, and the deflection is calculated from the center position of the outer surface of the steel pipe obtained by using each detector. Thereby, even when the steel pipe to be conveyed bounces, the shake can be calculated accurately, and the shake can be accurately calculated even in a steel pipe in which an ellipse or an outer diameter change occurs. Also, the measurement interval can be adjusted by changing the interval between the three detectors, and since the detector is used, the measurement interval can be easily shortened without increasing the number of man-hours, and the runout can be calculated along the longitudinal direction of the steel pipe. be able to. Accordingly, the outer surface bending measurement method of the present invention can quantitatively measure the outer surface bending.

さらに、本発明の外面曲がり測定方法は、対比試験片を用意する必要がないことから、様々な外径の鋼管に容易に対応できる。   Furthermore, since the outer surface bending measuring method of the present invention does not require the preparation of a contrast test piece, it can be easily applied to steel pipes having various outer diameters.

本発明の外面曲がり測定方法は、検出器で検出した上端および下端の位置から鋼管外面の中心位置を3台の検出器についてそれぞれ求め、前記(1)式により振れwを算出する際に、演算装置を用いるのが好ましい。これにより、振れwの算出に要する手間を省き、容易に曲がり状況を把握できる。演算装置としては、例えば、CPU、ROM、RAM等を備えた汎用の演算装置を用いることができる。   The outer surface bending measurement method of the present invention calculates the center position of the outer surface of the steel pipe for each of the three detectors from the positions of the upper end and the lower end detected by the detector, and calculates the deflection w by the above equation (1). An apparatus is preferably used. As a result, it is possible to save the time required for calculating the shake w and easily grasp the bending state. As the arithmetic device, for example, a general-purpose arithmetic device including a CPU, a ROM, a RAM, and the like can be used.

本発明の外面曲がり測定方法は、複数のローラによって鋼管をその周方向に回転させつつ長手方向に搬送する鋼管について、検出器で検出された位置に基づいて振れを算出して外面曲がりを測定する。このため、様々な長手方向の位置および周方向の角度での振れを算出できる。本発明の外面曲がり測定方法は、3台の検出器で鋼管外面の上端および下端位置を検知する時期や、搬送する鋼管の長手方向の速度または周方向の速度(回転数)を調整し、所定の角度(例えば1°)ごとに振れを算出し、この所定の角度ごとに振れを整理(マッピング)することにより、所定の角度間隔で鋼管の長手方向の全長にわたる振れを評価するのが好ましい。これにより、鋼管外面の曲がり量を可視化することができ、容易に曲がり状況を把握できる。   The outer surface bending measuring method of the present invention measures the outer surface bending by calculating the deflection based on the position detected by the detector for the steel tube that is conveyed in the longitudinal direction while rotating the steel tube in the circumferential direction by a plurality of rollers. . For this reason, shakes at various longitudinal positions and circumferential angles can be calculated. The outer surface bending measuring method of the present invention adjusts the time at which the upper and lower end positions of the outer surface of the steel pipe are detected by three detectors, the longitudinal speed or the circumferential speed (rotation speed) of the steel pipe to be conveyed, It is preferable to evaluate the deflection over the entire length in the longitudinal direction of the steel pipe at predetermined angular intervals by calculating the deflection for each angle (for example, 1 °) and organizing (mapping) the deflection for each predetermined angle. Thereby, the bending amount of the outer surface of the steel pipe can be visualized, and the bending state can be easily grasped.

本発明の外面曲がり測定方法は、3台の検出器を等間隔に配置して外面曲がりを測定するので、測定可能な外面曲がりの周期は検出器の間隔によって決定される。具体的には、測定可能な外面曲がりの周期(mm)は、上流側の検出器と下流側の検出器との間隔(mm)が下限となる。ここで、製造された鋼管に発生する外面曲がりは、製造条件が同じであれば、同じ傾向の外面曲がりとなる場合が多い。例えば、前述の傾斜ロール式矯正機で矯正された鋼管は、矯正条件を同じにすれば、矯正された鋼管に発生する外面曲がりも同程度となる。したがって、本発明の外面曲がり測定方法は、鋼管の製造条件に応じて検出器の間隔を調整すれば、蛇曲がりも測定することができる。   In the outer surface bending measuring method of the present invention, three detectors are arranged at equal intervals to measure the outer surface bending, and therefore the measurable period of the outer surface bending is determined by the detector interval. Specifically, the interval (mm) between the upstream detector and the downstream detector is the lower limit of the period (mm) of the outer surface bend that can be measured. Here, the outer surface bending that occurs in the manufactured steel pipe is often the outer surface bending with the same tendency if the manufacturing conditions are the same. For example, a steel pipe straightened by the above-described inclined roll type straightening machine has the same degree of external bending when the straightening conditions are the same. Therefore, the outer surface bending measuring method of the present invention can also measure snake bending if the distance between the detectors is adjusted according to the manufacturing conditions of the steel pipe.

鋼管に蛇曲がりが発生していない場合や、上流側の検出器と下流側の検出器との距離により決定される測定可能な外面曲がりの周期が鋼管に生じる外面曲がりの周期より十分に小さくできる場合には、ロール間に配置される3台の検出器のうちで中央の検出器は、両方のロールとも距離が同じになるように配置し、上流側および下流側をローラの近傍に配置するのが好ましい。このようにローラの近傍に上流側および下流側の検出器を配置すれば、通常は鋼管がローラと接触することから、上流側および下流側の検出器で求められる中心位置は変動がほとんどなく、基準点として認識し易くなる。   When there is no snake bend in the steel pipe, the measurable outer bend period determined by the distance between the upstream detector and the downstream detector can be sufficiently smaller than the outer bend period generated in the steel pipe. In this case, among the three detectors arranged between the rolls, the central detector is arranged so that both rolls have the same distance, and the upstream side and the downstream side are arranged in the vicinity of the rollers. Is preferred. If the upstream and downstream detectors are arranged in the vicinity of the roller in this way, the steel pipe normally contacts the roller, so the center position required by the upstream and downstream detectors hardly fluctuates, It becomes easy to recognize as a reference point.

また、測定を開始する際は、搬送される鋼管が下流側の検出器に到達することが必要であるが、下流側の検出器の近傍にローラがあることから、搬送される鋼管が下流側の検出器に到達するのとほぼ同時にその近傍のローラにも鋼管が到達する。これにより、測定を開始する際に鋼管が片持ち状態になることなく、両側のローラに支持された状態とすることができる。測定を終了する際も、上流側の検出器の近傍にローラがあることから、同様に、測定を開始する際に鋼管が片持ち状態になることなく、両側のローラに支持された状態とすることができる。   In addition, when starting measurement, it is necessary that the steel pipe to be conveyed reaches the downstream detector, but since the roller is in the vicinity of the downstream detector, the steel pipe to be conveyed is downstream. At the same time as reaching the detector, the steel pipe reaches the nearby roller. Thereby, when starting a measurement, it can be set as the state supported by the roller of both sides, without a steel pipe becoming a cantilever state. When finishing the measurement, there is a roller in the vicinity of the upstream detector. Similarly, when starting the measurement, the steel pipe is not cantilevered and is supported by the rollers on both sides. be able to.

搬送される鋼管の長手方向の速度および周方向の速度(角速度)は、速すぎると検出器で検出する鋼管外面の上端および下端位置に誤差が生じるおそれがあり、遅すぎると測定に要する時間が長くなる。例えば、周方向の角速度は400°/秒、長手方向への送り速度は最速で14mm/回転に設定できる。この場合、検出器による上端および下端位置の検出および振れの算出は、周方向の1°ごとに鋼管の長手方向にわたって振れを整理(マッピング)するため、400回/秒で行えばよい。   If the steel pipe being transported is too fast, the speed in the circumferential direction (angular speed) may cause errors in the positions of the upper and lower ends of the outer surface of the steel pipe detected by the detector. become longer. For example, the angular velocity in the circumferential direction can be set to 400 ° / second, and the feeding speed in the longitudinal direction can be set to 14 mm / rotation at the maximum. In this case, detection of the upper end and lower end positions by the detector and calculation of the shake may be performed at 400 times / second in order to organize (mapping) the shake over the longitudinal direction of the steel pipe every 1 ° in the circumferential direction.

本発明の外面曲がり測定方法は、下記の顕著な効果を有する。
(1)ローラ間に検出器を等間隔に3台配置し、それぞれの検出器を用いて求めた鋼管外面の中心位置から振れを算出する。
(2)上記(1)により、搬送される鋼管が跳ねた場合も正確に振れを算出できるとともに、楕円や外径の変動が生じた鋼管でも振れを正確に算出することができる。
(3)さらに、工数を増大させることなく、測定間隔を短くして鋼管の長手方向にわたって振れを算出することができるので、外面曲がりを定量的に測定できる。
(4)対比試験片を用意する必要がなく、様々な外径の鋼管に容易に対応できる。
The outer surface bending measuring method of the present invention has the following remarkable effects.
(1) Three detectors are arranged at equal intervals between the rollers, and the shake is calculated from the center position of the outer surface of the steel pipe obtained using each detector.
(2) According to the above (1), the shake can be accurately calculated even when the steel pipe to be conveyed is bounced, and the shake can be accurately calculated even in a steel pipe in which an ellipse or an outer diameter fluctuates.
(3) Furthermore, since the run-out can be calculated over the longitudinal direction of the steel pipe without increasing the number of steps, the outer surface bending can be measured quantitatively.
(4) There is no need to prepare a contrast test piece, and it can be easily applied to steel pipes having various outer diameters.

このような本発明の外面曲がり測定方法を、鋼管の製造において、製造された鋼管の外面曲がりの測定に適用すれば、測定結果を製造工程にフィードバックすることができ、鋼管の品質を向上させることができる。したがって、本発明は鋼管の製造において有効に利用できる。   If such an outer surface bending measuring method of the present invention is applied to the measurement of outer surface bending of a manufactured steel pipe in the manufacture of a steel pipe, the measurement result can be fed back to the manufacturing process, and the quality of the steel pipe can be improved. Can do. Therefore, the present invention can be effectively used in the manufacture of steel pipes.

11:鋼管、 21:検出器、 22:投光部、 23:受光部、 31:ローラ、
CA〜CC:A〜C位置で求められた中心位置、
L:中心位置CAおよびCCを結ぶ直線、
11: Steel pipe, 21: Detector, 22: Light projecting part, 23: Light receiving part, 31: Roller,
CA to CC: center position obtained at positions A to C,
L: a straight line connecting the center positions CA and CC,

Claims (1)

複数のローラによって鋼管をその周方向に回転させつつ長手方向に搬送し、
前記ローラのうちで隣り合うローラの間に前記鋼管外面の上端および下端の位置を検出する検出器を等間隔に3台配置し、
前記検出器で検出した上端および下端の位置から前記鋼管外面の中心位置を前記3台の検出器についてそれぞれ求め、下記(1)式により振れwを算出すること特徴とする鋼管の外面曲がり測定方法。
w=CB−(CA+CC)/2 ・・・(1)
ここで、3台の検出器のうちで上流側の検出器について求めた中心位置をCA、中央の検出器について求めた中心位置をCB、下流側の検出器について求めた中心位置をCCとする。
The steel pipe is conveyed in the longitudinal direction while rotating in the circumferential direction by a plurality of rollers,
Three detectors that detect the positions of the upper and lower ends of the outer surface of the steel pipe are arranged at equal intervals between the adjacent rollers among the rollers,
The center position of the outer surface of the steel pipe is obtained for each of the three detectors from the positions of the upper end and the lower end detected by the detector, and the deflection w is calculated by the following equation (1). .
w = CB- (CA + CC) / 2 (1)
Here, among the three detectors, the center position obtained for the upstream detector is CA, the center position obtained for the center detector is CB, and the center position obtained for the downstream detector is CC. .
JP2011247378A 2011-11-11 2011-11-11 External surface bend measuring-method for steel pipe Pending JP2013104719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247378A JP2013104719A (en) 2011-11-11 2011-11-11 External surface bend measuring-method for steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247378A JP2013104719A (en) 2011-11-11 2011-11-11 External surface bend measuring-method for steel pipe

Publications (1)

Publication Number Publication Date
JP2013104719A true JP2013104719A (en) 2013-05-30

Family

ID=48624373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247378A Pending JP2013104719A (en) 2011-11-11 2011-11-11 External surface bend measuring-method for steel pipe

Country Status (1)

Country Link
JP (1) JP2013104719A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105363833A (en) * 2015-12-02 2016-03-02 中国石油集团渤海石油装备制造有限公司 Online detecting method for pre-bending process of straight seam steel pipe
CN106168462A (en) * 2015-05-19 2016-11-30 发那科株式会社 Axle precision determination device
CN108120388A (en) * 2016-11-30 2018-06-05 株式会社大福 Check device
CN115235385A (en) * 2022-08-03 2022-10-25 江苏精益智控科技有限公司 Steel pipe flatness full-length detection device and method
JP7392446B2 (en) 2019-12-16 2023-12-06 株式会社レゾナック Work straightening method and work straightening device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115463A (en) * 1974-07-30 1976-02-06 Nippon Steel Corp MAGARISOKUTE ISOCHI
JPS61182514A (en) * 1985-02-08 1986-08-15 Daido Steel Co Ltd Measuring instrument of bent variable of rod material
JPH06229742A (en) * 1993-01-29 1994-08-19 Nippon Steel Corp Method for measuring curvature, outer diameter, and circularity of tubular item simultaneously
JPH08304046A (en) * 1995-05-10 1996-11-22 Osaka Denshi Kikai Kk Bending measuring instrument
JP2000161944A (en) * 1998-11-26 2000-06-16 Kawasaki Steel Corp Instrument for measuring curvature amount of bar-like object
US20060144158A1 (en) * 2005-01-03 2006-07-06 Gunther Hartmann Method and apparatus for determining the deflection of a fastener
JP2006247724A (en) * 2005-03-11 2006-09-21 Sumitomo Metal Ind Ltd Method and device for detecting bend of tube stock
JP2006281228A (en) * 2005-03-31 2006-10-19 Sumitomo Metal Ind Ltd Method for controlling roll-type pipe straightening machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115463A (en) * 1974-07-30 1976-02-06 Nippon Steel Corp MAGARISOKUTE ISOCHI
JPS61182514A (en) * 1985-02-08 1986-08-15 Daido Steel Co Ltd Measuring instrument of bent variable of rod material
JPH06229742A (en) * 1993-01-29 1994-08-19 Nippon Steel Corp Method for measuring curvature, outer diameter, and circularity of tubular item simultaneously
JPH08304046A (en) * 1995-05-10 1996-11-22 Osaka Denshi Kikai Kk Bending measuring instrument
JP2000161944A (en) * 1998-11-26 2000-06-16 Kawasaki Steel Corp Instrument for measuring curvature amount of bar-like object
US20060144158A1 (en) * 2005-01-03 2006-07-06 Gunther Hartmann Method and apparatus for determining the deflection of a fastener
JP2006247724A (en) * 2005-03-11 2006-09-21 Sumitomo Metal Ind Ltd Method and device for detecting bend of tube stock
JP2006281228A (en) * 2005-03-31 2006-10-19 Sumitomo Metal Ind Ltd Method for controlling roll-type pipe straightening machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106168462A (en) * 2015-05-19 2016-11-30 发那科株式会社 Axle precision determination device
CN105363833A (en) * 2015-12-02 2016-03-02 中国石油集团渤海石油装备制造有限公司 Online detecting method for pre-bending process of straight seam steel pipe
CN108120388A (en) * 2016-11-30 2018-06-05 株式会社大福 Check device
KR20180062398A (en) * 2016-11-30 2018-06-08 가부시키가이샤 다이후쿠 Inspection equipment
JP2018091657A (en) * 2016-11-30 2018-06-14 株式会社ダイフク Inspection apparatus
TWI733940B (en) * 2016-11-30 2021-07-21 日商大福股份有限公司 Inspection equipment
CN113758436A (en) * 2016-11-30 2021-12-07 株式会社大福 Inspection apparatus
CN108120388B (en) * 2016-11-30 2022-01-14 株式会社大福 Inspection apparatus
KR102412923B1 (en) 2016-11-30 2022-06-23 가부시키가이샤 다이후쿠 Inspection equipment
JP7392446B2 (en) 2019-12-16 2023-12-06 株式会社レゾナック Work straightening method and work straightening device
CN115235385A (en) * 2022-08-03 2022-10-25 江苏精益智控科技有限公司 Steel pipe flatness full-length detection device and method
CN115235385B (en) * 2022-08-03 2024-01-05 江苏精益智控科技有限公司 Equipment and method for detecting flatness and overall length of steel pipe

Similar Documents

Publication Publication Date Title
JP2013104719A (en) External surface bend measuring-method for steel pipe
US8804104B2 (en) Apparatus, system, and method for measuring thread features on pipe or tube end
JP4826949B2 (en) Seamless pipe manufacturing status monitoring apparatus and method, and seamless pipe manufacturing equipment
JP6616226B2 (en) Roundness measuring method and roundness measuring apparatus for welded steel pipe
EP2045026A1 (en) Method and device for controlling sizing mill of pipe or tube
CN113446965B (en) Method for measuring straightness error of steel pipe end
JP4362829B2 (en) Method and apparatus for detecting bending of pipe material
KR20100110223A (en) Method and system for measurement of roll diameter
JP6512157B2 (en) Thickness measurement apparatus, thickness evaluation apparatus, thickness measurement method and thickness evaluation method
JP5353495B2 (en) Method and apparatus for manufacturing welded H-section steel
KR101327588B1 (en) Apparatus, method and system for determining a filling ratio of flux, and computer readable storage medium for recording program of determining a filling ratio of flux
JP3583468B2 (en) Axis misalignment measuring device
JP6303883B2 (en) Coil inner peripheral hole deformation measuring device and coil inner peripheral hole deformation measuring method
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
JP7190153B2 (en) Bend detection system for long materials
JP2013092439A (en) Inner-surface curvature measurement device for pipe, and measurement method using the same
JP2016109242A (en) Manufacturing method of self-aligning roller bearing and inner ring circular arc face measurement device
WO2006106938A1 (en) Drawing/rolling control method
JP6179408B2 (en) Method for measuring thickness deviation of seamless pipes
JP2013195161A (en) Instrument for measuring amount of bending of rod-like material
JP2009288081A (en) Shape-measuring apparatus for metal belt
JP6641985B2 (en) Pipe wall thickness measuring device and wall thickness measuring method
JP2016134074A (en) Device and method for counting number of round bar
JP2012240104A (en) Method of detecting generation of twist in rolled stock, method of suppressing twist in rolled stock and rolling mill adopting these methods
JP2013136064A (en) Method for measuring misalignment of pass line on piercer delivery side and bending of bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303