JP2013103962A - Surface-treatment agent for silicon nitride-containing wafer, surface-treatment liquid and surface-treatment method - Google Patents

Surface-treatment agent for silicon nitride-containing wafer, surface-treatment liquid and surface-treatment method Download PDF

Info

Publication number
JP2013103962A
JP2013103962A JP2011247497A JP2011247497A JP2013103962A JP 2013103962 A JP2013103962 A JP 2013103962A JP 2011247497 A JP2011247497 A JP 2011247497A JP 2011247497 A JP2011247497 A JP 2011247497A JP 2013103962 A JP2013103962 A JP 2013103962A
Authority
JP
Japan
Prior art keywords
silicon nitride
wafer
surface treatment
silicon
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011247497A
Other languages
Japanese (ja)
Other versions
JP5953707B2 (en
Inventor
Masanori Saito
真規 斎藤
Shinobu Arata
忍 荒田
Takashi Saio
崇 齋尾
Soichi Kumon
創一 公文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2011247497A priority Critical patent/JP5953707B2/en
Priority to KR1020147013734A priority patent/KR101680438B1/en
Priority to PCT/JP2012/077950 priority patent/WO2013069499A1/en
Priority to TW101141939A priority patent/TW201323595A/en
Publication of JP2013103962A publication Critical patent/JP2013103962A/en
Application granted granted Critical
Publication of JP5953707B2 publication Critical patent/JP5953707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-treatment liquid that improves adhesion between a silicon nitride-containing wafer surface and a resist, and a surface-treatment method.SOLUTION: The surface-treatment agent for silicon nitride-containing wafers improves adhesion between the wafer and a resist by hydrophobizing the silicon nitride-containing wafer surface before a resist film formation on the wafer surface. The surface-treatment agent is a silicon compound represented by general formula [1] RSiX(wherein Rs are each mutually independently a hydrogen group or a 1-18C hydrocarbon group and hydrogen atoms of the hydrocarbon group may be substituted with a halogen atom; the total number of carbon atoms contained as Ris ≥6 in formula [1]; X's are each mutually independently at least one group selected from a monovalent functional group in which the element to be bonded to a silicon element is nitrogen, a monovalent functional group in which the element to be bonded to a silicon element is oxygen and a halogen group; (a) is an integer of 1-3).

Description

本発明は、半導体デバイス製造などにおけるレジストと窒化ケイ素を含むウェハの密着性を改善する前記ウェハ用の表面処理剤、表面処理液、及び前記ウェハの表面処理方法に関する。   The present invention relates to a surface treatment agent for a wafer, a surface treatment liquid, and a surface treatment method for the wafer, which improve the adhesion between a wafer containing a resist and silicon nitride in semiconductor device manufacturing and the like.

半導体チップの製造では、レジストを成膜した後、リソグラフィやエッチングなどを経てシリコンウェハ表面に微細なレジストパターンが形成される。さらに、このレジストパターンを型にして、ウェハ表面のエッチングが行われ、ウェハ表面に凹凸パターンが形成される。前記のレジストの成膜において、レジストとウェハ表面の密着性が不十分である場合が多いため、レジストの成膜前にHMDSなどのシランカップリング剤を用いてウェハ表面を疎水化処理することで密着性を改善できることが知られている(例えば、特許文献1)。この処理を行った後、レジストの成膜を行うことで、ウェハとレジストとの密着性が改善し、良好なレジストパターンを形成することが可能である。しかし、パターンが微細化されるにしたがって、ウェハとレジストの接触面積がより小さくなるため、ウェハとレジストとの密着性はより高いものが要求される。この密着性が不足していると、レジストパターンの剥がれや倒れの問題が発生する。さらに、前記パターンの微細化に対応した液浸リソグラフィにおいては、液浸中にレジストが剥がれやすいことが特に問題となっている。ウェハ表面の疎水性をより向上させると、ウェハとレジストとの密着性をより改善できる傾向があるため、これまで種々のシランカップリング剤を用いて、ウェハ表面の疎水性向上が検討されている(例えば、特許文献2、3)。   In the manufacture of semiconductor chips, after forming a resist film, a fine resist pattern is formed on the surface of the silicon wafer through lithography and etching. Further, the wafer surface is etched using this resist pattern as a mold, and an uneven pattern is formed on the wafer surface. In the film formation of the resist, since the adhesion between the resist and the wafer surface is often insufficient, the wafer surface can be hydrophobized using a silane coupling agent such as HMDS before film formation of the resist. It is known that adhesion can be improved (for example, Patent Document 1). After this treatment, a resist film is formed, whereby the adhesion between the wafer and the resist is improved, and a good resist pattern can be formed. However, as the pattern is miniaturized, the contact area between the wafer and the resist becomes smaller, so that higher adhesion between the wafer and the resist is required. If this adhesion is insufficient, a problem of peeling or falling of the resist pattern occurs. Further, in the immersion lithography corresponding to the miniaturization of the pattern, there is a particular problem that the resist is easily peeled off during the immersion. Increasing the hydrophobicity of the wafer surface tends to improve the adhesion between the wafer and the resist. Therefore, various types of silane coupling agents have been used to improve the hydrophobicity of the wafer surface. (For example, Patent Documents 2 and 3).

近年、ウェハの材質の多様化に伴って、酸化ケイ素に比べてシランカップリング処理しにくい窒化ケイ素を含むウェハへの疎水化処理も要求されるようになってきた。しかしながら、窒化ケイ素表面に対しても、優れた疎水性を付与できる表面処理液はこれまでに無かった。   In recent years, with the diversification of wafer materials, there has been a demand for a hydrophobic treatment for a wafer containing silicon nitride which is difficult to perform a silane coupling treatment as compared with silicon oxide. However, there has been no surface treatment solution that can impart excellent hydrophobicity to the silicon nitride surface.

特公昭47−026043号公報Japanese Examined Patent Publication No. 47-026043 特開平09−102458号公報Japanese Patent Laid-Open No. 09-102458 特開2007−19465号公報JP 2007-19465 A

ウェハとレジストとの密着性は、ウェハ表面を充分に疎水化することで改善することができる。ウェハ表面の疎水化には、ウェハ表面に存在する水酸基などの反応活性点と、疎水性を持つ化合物とを結合させる必要がある。窒化ケイ素を含むウェハ(以降、「窒化ケイ素含有ウェハ」、「窒化ケイ素ウェハ」、又は単に「ウェハ」と記載する場合がある)では、該ウェハ表面に存在する水酸基が少ないため、従来の技術では、該ウェハ表面に充分な疎水性を付与することは難しく、ウェハとレジストとの密着性を高めることができない場合があった。本発明は、窒化ケイ素含有ウェハ表面を疎水化することにより該ウェハとレジストとの密着性を改善することが可能な、窒化ケイ素含有ウェハ用表面処理剤(以降、「表面処理剤」、又は単に「処理剤」と記載する場合がある)、窒化ケイ素含有ウェハ用表面処理液(以降、「表面処理液」、又は単に「処理液」と記載する場合がある)、及び、窒化ケイ素含有ウェハの表面処理方法を提供することを課題とする。   The adhesion between the wafer and the resist can be improved by sufficiently hydrophobizing the wafer surface. In order to make the wafer surface hydrophobic, it is necessary to bond a reactive site such as a hydroxyl group present on the wafer surface to a hydrophobic compound. In a wafer containing silicon nitride (hereinafter referred to as “silicon nitride-containing wafer”, “silicon nitride wafer”, or simply “wafer”), since there are few hydroxyl groups on the wafer surface, In some cases, it is difficult to impart sufficient hydrophobicity to the wafer surface, and the adhesion between the wafer and the resist cannot be improved. The present invention is a surface treatment agent for silicon nitride-containing wafers (hereinafter referred to as “surface treatment agent”, or simply, which can improve the adhesion between the wafer and the resist by hydrophobizing the silicon nitride-containing wafer surface. Of a silicon nitride-containing wafer surface treatment liquid (hereinafter, sometimes referred to as “surface treatment liquid” or simply “treatment liquid”), and a silicon nitride-containing wafer. It is an object to provide a surface treatment method.

本発明は、窒化ケイ素を含むウェハ表面にレジストを成膜する前に、該ウェハ表面を疎水化することにより該ウェハとレジストとの密着性を改善するための窒化ケイ素含有ウェハ用表面処理剤であって、前記処理剤が下記一般式[1]で表されるケイ素化合物であることを特徴とする、窒化ケイ素含有ウェハ用表面処理剤である。
SiX4−a [1]
[式[1]中、Rは、それぞれ互いに独立して、水素基、又は炭素数が1〜18の炭化水素基であり、該炭化水素基の水素原子はハロゲン原子で置換されていてもよい。式[1]においてRとして含まれる炭素原子の総数は6以上である。Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1〜3の整数である。]
The present invention provides a silicon nitride-containing surface treatment agent for a wafer for improving adhesion between the wafer and the resist by hydrophobizing the wafer surface before forming a resist film on the wafer surface containing silicon nitride. A silicon nitride-containing wafer surface treating agent, wherein the treating agent is a silicon compound represented by the following general formula [1].
R 1 a SiX 4-a [1]
[In the formula [1], R 1 s are each independently a hydrogen group or a hydrocarbon group having 1 to 18 carbon atoms, and the hydrogen atom of the hydrocarbon group may be substituted with a halogen atom. Good. In the formula [1], the total number of carbon atoms contained as R 1 is 6 or more. X is each independently at least one selected from a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and a halogen group And a is an integer of 1 to 3. ]

前記のケイ素化合物は下記一般式[2]で表されるケイ素化合物であることが好ましい。
SiX [2]
[式[2]中、R、Xはそれぞれ一般式[1]と同様である。]
The silicon compound is preferably a silicon compound represented by the following general formula [2].
R 1 3 SiX [2]
[In the formula [2], R 1 and X are the same as in the general formula [1]. ]

前記のケイ素化合物は下記一般式[3]で表されるケイ素化合物であることが好ましい。
(CHSiX [3]
[式[3]中、Rは炭素数が4〜18の炭化水素基であり、該炭化水素基の水素原子はハロゲン原子で置換されていてもよい。Xは一般式[1]と同様である。]
The silicon compound is preferably a silicon compound represented by the following general formula [3].
R 2 (CH 3 ) 2 SiX [3]
Wherein [3], R 2 is a hydrocarbon group having a carbon number of 4 to 18, a hydrogen atom of the hydrocarbon group may be substituted with a halogen atom. X is the same as in the general formula [1]. ]

前記のケイ素化合物は下記一般式[4]で表されるケイ素化合物であることが好ましい。
(CHSiY [4]
[式[4]中、Rは炭素数が4〜18の、少なくとも一部の水素原子がハロゲン原子で置換された炭化水素基であり、Yはハロゲン基である。]
The silicon compound is preferably a silicon compound represented by the following general formula [4].
R 3 (CH 3 ) 2 SiY [4]
[In the formula [4], R 3 is a hydrocarbon group having 4 to 18 carbon atoms in which at least some of the hydrogen atoms are substituted with halogen atoms, and Y is a halogen group. ]

また、上記の窒化ケイ素含有ウェハ用表面処理剤を希釈溶媒で溶解して得られる窒化ケイ素含有ウェハ用表面処理液であって、該処理液の総量100質量%に対して、前記のケイ素化合物が0.1〜50質量%含有されることを特徴とする、窒化ケイ素含有ウェハ用表面処理液である。   Further, a silicon nitride-containing surface treatment solution for a wafer obtained by dissolving the silicon nitride-containing wafer surface treatment agent with a diluent solvent, wherein the silicon compound is contained with respect to 100% by mass of the treatment solution. A silicon nitride-containing surface treatment solution for a wafer containing 0.1 to 50% by mass.

また、上記の窒化ケイ素含有ウェハ用表面処理剤と酸を希釈溶媒で溶解して得られる窒化ケイ素含有ウェハ用表面処理液であって、該処理液の総量100質量%に対して、前記のケイ素化合物が0.1〜50質量%含有されることを特徴とする、窒化ケイ素含有ウェハ用表面処理液である。   Further, a silicon nitride-containing wafer surface treatment liquid obtained by dissolving the silicon nitride-containing wafer surface treatment agent and acid with a diluting solvent, wherein the silicon is added to the total amount of the treatment liquid of 100% by mass. A surface treatment solution for a silicon nitride-containing wafer, characterized in that the compound is contained in an amount of 0.1 to 50% by mass.

また、前記の酸を含有する窒化ケイ素含有ウェハ用表面処理液において、ケイ素化合物が下記一般式[5]で表されるケイ素化合物であることが好ましい。
(CHSiZ [5]
[式[5]中、Rは炭素数が4〜18の炭化水素基であり、該炭化水素基の水素原子はハロゲン原子で置換されていてもよい。Zはケイ素元素と結合する元素が窒素である1価の官能基、又は、ケイ素元素と結合する元素が酸素である1価の官能基である。]
In the silicon nitride-containing surface treatment solution for a wafer containing silicon, the silicon compound is preferably a silicon compound represented by the following general formula [5].
R 4 (CH 3 ) 2 SiZ [5]
[In the formula [5], R 4 is a hydrocarbon group having 4 to 18 carbon atoms, and the hydrogen atom of the hydrocarbon group may be substituted with a halogen atom. Z is a monovalent functional group in which the element bonded to the silicon element is nitrogen, or a monovalent functional group in which the element bonded to the silicon element is oxygen. ]

また、前記一般式[5]のRの炭素数は6〜18であることが好ましい。 The number of carbon atoms of R 4 in the general formula [5] is preferably 6 to 18.

また、前記一般式[5]のZはケイ素元素と結合する元素が窒素である1価の官能基であることが好ましい。   Further, Z in the general formula [5] is preferably a monovalent functional group in which the element bonded to the silicon element is nitrogen.

また、窒化ケイ素を含むウェハ表面を疎水化することにより、該ウェハとレジストとの密着性を高める前記ウェハの表面処理方法であって、以下に示す工程、
前記ウェハ表面に窒化ケイ素含有ウェハ用表面処理剤又は窒化ケイ素含有ウェハ用表面処理液の蒸気を接触、又は前記ウェハ表面に窒化ケイ素含有ウェハ用表面処理剤又は窒化ケイ素含有ウェハ用表面処理液を接触させて、該ウェハ表面を疎水化する、表面処理工程、
前記ウェハ表面にレジストを成膜する、レジスト成膜工程
を含み、表面処理工程において上記のいずれかに記載の窒化ケイ素含有ウェハ用表面処理剤又は窒化ケイ素含有ウェハ用表面処理液を用いることを特徴とする、窒化ケイ素含有ウェハの表面処理方法である。
Further, the wafer surface treatment method for improving the adhesion between the wafer and the resist by hydrophobizing the wafer surface containing silicon nitride, the following steps:
Contact the wafer surface with a silicon nitride-containing wafer surface treatment agent or silicon nitride-containing wafer surface treatment solution, or contact the wafer surface with a silicon nitride-containing wafer surface treatment agent or silicon nitride-containing wafer surface treatment solution. A surface treatment step for hydrophobizing the wafer surface,
A resist film forming step for forming a resist film on the wafer surface, wherein the silicon nitride-containing wafer surface treatment agent or the silicon nitride-containing wafer surface treatment solution described above is used in the surface treatment step. This is a surface treatment method for a silicon nitride-containing wafer.

前記表面処理工程において、前記ウェハ表面に窒化ケイ素含有ウェハ用表面処理液を接触させて、該ウェハ表面を疎水化することが好ましい。   In the surface treatment step, it is preferable to make the wafer surface hydrophobic by bringing a surface treatment solution for silicon nitride-containing wafer into contact with the wafer surface.

本発明の窒化ケイ素含有ウェハ用の表面処理剤、表面処理液、及び前記ウェハの表面処理方法を用いることで、窒化ケイ素を含むウェハ表面に良好な疎水性を付与することができる。従って本発明の窒化ケイ素含有ウェハ用の表面処理剤、表面処理液、及び前記ウェハの表面処理方法を用いて疎水化された窒化ケイ素含有ウェハはレジストとの間に良好な密着性を有することが期待される。   By using the surface treatment agent for a silicon nitride-containing wafer of the present invention, the surface treatment liquid, and the surface treatment method of the wafer, good hydrophobicity can be imparted to the wafer surface containing silicon nitride. Accordingly, the silicon nitride-containing wafer hydrophobized by using the surface treatment agent for silicon nitride-containing wafers of the present invention, the surface treatment liquid, and the wafer surface treatment method has good adhesion to the resist. Be expected.

以下、本発明につきさらに詳しく説明する。まず、本発明で提供する窒化ケイ素含有ウェハ用表面処理剤は、窒化ケイ素を含むウェハ表面にレジストを成膜する前に、該ウェハ表面に対して処理して、該ウェハとレジストとの密着性を改善する窒化ケイ素含有ウェハ用表面処理剤である。前記表面処理剤は、言い換えれば、窒化ケイ素含有ウェハ表面を疎水化するための表面処理剤であり、前記処理剤は下記一般式[1]で表されるケイ素化合物であることを特徴とする、窒化ケイ素含有ウェハ用表面処理剤である。
SiX4−a [1]
[式[1]中、Rは、それぞれ互いに独立して、水素基、又は炭素数が1〜18の炭化水素基であり、該炭化水素基の水素原子はハロゲン原子で置換されていてもよい。式[1]においてRとして含まれる炭素原子の総数は6以上である。Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1〜3の整数である。]
Hereinafter, the present invention will be described in more detail. First, the surface treatment agent for a silicon nitride-containing wafer provided by the present invention treats the wafer surface before forming a resist film on the wafer surface containing silicon nitride, and adheres the wafer to the resist. It is a silicon nitride-containing surface treatment agent for wafers. In other words, the surface treatment agent is a surface treatment agent for hydrophobizing the silicon nitride-containing wafer surface, and the treatment agent is a silicon compound represented by the following general formula [1], It is a surface treatment agent for silicon nitride-containing wafers.
R 1 a SiX 4-a [1]
[In the formula [1], R 1 s are each independently a hydrogen group or a hydrocarbon group having 1 to 18 carbon atoms, and the hydrogen atom of the hydrocarbon group may be substituted with a halogen atom. Good. In the formula [1], the total number of carbon atoms contained as R 1 is 6 or more. X is each independently at least one selected from a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and a halogen group And a is an integer of 1 to 3. ]

で表される炭化水素基は疎水性基であり、疎水性基が大きなケイ素化合物を含有する処理液用いて窒化ケイ素含有ウェハ表面を表面処理すると、処理後の前記ウェハ表面は良好な疎水性を示す。式[1]においてRとして含まれる炭素原子の総数が、6以上であれば、窒化ケイ素を含むウェハ表面を、十分に疎水化することができる。 The hydrocarbon group represented by R 1 is a hydrophobic group, and when the silicon nitride-containing wafer surface is treated with a treatment liquid containing a silicon compound having a large hydrophobic group, the wafer surface after the treatment has a good hydrophobicity. Showing gender. If the total number of carbon atoms contained as R 1 in Formula [1] is 6 or more, the wafer surface containing silicon nitride can be sufficiently hydrophobized.

前記一般式[1]で表されるケイ素化合物は、その反応性部位であるXで表される官能基が、ウェハ表面の水酸基と化学的に反応することが可能であり、結果、前記ケイ素化合物のケイ素元素はウェハ表面のケイ素元素と化学的に結合し、ウェハ表面に疎水性を付与することが可能である。   In the silicon compound represented by the general formula [1], the functional group represented by X which is the reactive site can chemically react with the hydroxyl group on the wafer surface, and as a result, the silicon compound The silicon element can chemically bond with the silicon element on the wafer surface to impart hydrophobicity to the wafer surface.

一般式[1]で示されるケイ素化合物としては、例えば、C(CHSiCl、C11(CHSiCl、C13(CHSiCl、C15(CHSiCl、C17(CHSiCl、C19(CHSiCl、C1021(CHSiCl、C1123(CHSiCl、C1225(CHSiCl、C1327(CHSiCl、C1429(CHSiCl、C1531(CHSiCl、C1633(CHSiCl、C1735(CHSiCl、C1837(CHSiCl、C11(CH)HSiCl、C13(CH)HSiCl、C15(CH)HSiCl、C17(CH)HSiCl、C19(CH)HSiCl、C1021(CH)HSiCl、C1123(CH)HSiCl、C1225(CH)HSiCl、C1327(CH)HSiCl、C1429(CH)HSiCl、C1531(CH)HSiCl、C1633(CH)HSiCl、C1735(CH)HSiCl、C1837(CH)HSiCl、C(CHSiCl、C(CHSiCl、C(CHSiCl、C11(CHSiCl、C13(CHSiCl、C15(CHSiCl、C17(CHSiCl、(CSiCl、C(CSiCl、C(CSiCl、C11(CSiCl、C13(CSiCl、C15(CSiCl、C17(CSiCl、C19(CSiCl、C1021(CSiCl、C1123(CSiCl、C1225(CSiCl、C1327(CSiCl、C1429(CSiCl、C1531(CSiCl、C1633(CSiCl、C1735(CSiCl、C1837(CSiCl、CF(CSiCl、C(CSiCl、C(CSiCl、C(CSiCl、C11(CSiCl、C13(CSiCl、C15(CSiCl、C17(CSiCl、(CSiCl、C11(CSiCl、C13(CSiCl、C15(CSiCl、C17(CSiCl、C19(CSiCl、C1021(CSiCl、C1123(CSiCl、C1225(CSiCl、C1327(CSiCl、C1429(CSiCl、C1531(CSiCl、C1633(CSiCl、C1735(CSiCl、C1837(CSiCl、CF(CSiCl、C(CSiCl、C(CSiCl、C(CSiCl、C11(CSiCl、C13(CSiCl、C15(CSiCl、C17(CSiCl、C11(CH)SiCl、C13(CH)SiCl、C15(CH)SiCl、C17(CH)SiCl、C19(CH)SiCl、C1021(CH)SiCl、C1123(CH)SiCl、C1225(CH)SiCl、C1327(CH)SiCl、C1429(CH)SiCl、C1531(CH)SiCl、C1633(CH)SiCl、C1735(CH)SiCl、C1837(CH)SiCl、C(CH)SiCl、C(CH)SiCl、C11(CH)SiCl、C13(CH)SiCl、C15(CH)SiCl、C17(CH)SiCl、C13SiCl、C15SiCl、C17SiCl、C19SiCl、C1021SiCl、C1123SiCl、C1225SiCl、C1327SiCl、C1429SiCl、C1531SiCl、C1633SiCl、C1735SiCl、C1837SiCl、CSiCl、C11SiCl、C13SiCl
、C15SiCl、C17SiClなどのクロロシラン系化合物が挙げられる。
Examples of the silicon compound represented by the general formula [1] include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, and C 7. H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) HSiCl, C 6 H 13 (CH 3) HSiCl , C 7 H 15 (CH 3) HSiCl, C 8 H 17 (CH 3) HSiCl, C 9 H 19 (CH 3) HSiCl, C 10 H 21 (CH 3) HSiCl, C 11 H 23 (CH 3) HSiCl , C 12 H 25 (CH 3) HSiCl, C 13 H 27 (CH 3) HSiCl, C 14 H 29 (CH 3) HSiCl, C 15 H 31 (CH 3) HSiCl, C 16 H 33 (CH 3) HSiCl , C 17 H 35 (CH 3) HSiCl, C 18 H 37 (CH 3) HSiCl, C 2 F 5 C 2 H 4 (CH 3) 2 SiCl, C 3 F 7 C 2 H 4 (CH 3) 2 SiCl , C 4 F 9 C 2 H 4 (CH 3) 2 SiCl, C 5 F 11 C 2 H 4 (CH 3) 2 SiC , C 6 F 13 C 2 H 4 (CH 3) 2 SiCl, C 7 F 15 C 2 H 4 (CH 3) 2 SiCl, C 8 F 17 C 2 H 4 (CH 3) 2 SiCl, (C 2 H 5 ) 3 SiCl, C 3 H 7 (C 2 H 5 ) 2 SiCl, C 4 H 9 (C 2 H 5 ) 2 SiCl, C 5 H 11 (C 2 H 5 ) 2 SiCl, C 6 H 13 (C 2 H 5) 2 SiCl, C 7 H 15 (C 2 H 5) 2 SiCl, C 8 H 17 (C 2 H 5) 2 SiCl, C 9 H 19 (C 2 H 5) 2 SiCl, C 10 H 21 (C 2 H 5 ) 2 SiCl, C 11 H 23 (C 2 H 5 ) 2 SiCl, C 12 H 25 (C 2 H 5 ) 2 SiCl, C 13 H 27 (C 2 H 5 ) 2 SiCl, C 14 H 29 (C 2 H 5 ) 2 SiCl C 15 H 31 (C 2 H 5 ) 2 SiCl, C 16 H 33 (C 2 H 5 ) 2 SiCl, C 17 H 35 (C 2 H 5 ) 2 SiCl, C 18 H 37 (C 2 H 5 ) 2 SiCl, CF 3 C 2 H 4 (C 2 H 5 ) 2 SiCl, C 2 F 5 C 2 H 4 (C 2 H 5 ) 2 SiCl, C 3 F 7 C 2 H 4 (C 2 H 5 ) 2 SiCl, C 4 F 9 C 2 H 4 (C 2 H 5) 2 SiCl, C 5 F 11 C 2 H 4 (C 2 H 5) 2 SiCl, C 6 F 13 C 2 H 4 (C 2 H 5) 2 SiCl, C 7 F 15 C 2 H 4 (C 2 H 5 ) 2 SiCl, C 8 F 17 C 2 H 4 (C 2 H 5 ) 2 SiCl, (C 4 H 9 ) 3 SiCl, C 5 H 11 (C 4 H 9) 2 SiCl , C 6 H 13 (C 4 H 9 2 SiCl, C 7 H 15 ( C 4 H 9) 2 SiCl, C 8 H 17 (C 4 H 9) 2 SiCl, C 9 H 19 (C 4 H 9) 2 SiCl, C 10 H 21 (C 4 H 9 ) 2 SiCl, C 11 H 23 (C 4 H 9 ) 2 SiCl, C 12 H 25 (C 4 H 9 ) 2 SiCl, C 13 H 27 (C 4 H 9 ) 2 SiCl, C 14 H 29 (C 4 H 9) 2 SiCl, C 15 H 31 (C 4 H 9) 2 SiCl, C 16 H 33 (C 4 H 9) 2 SiCl, C 17 H 35 (C 4 H 9) 2 SiCl, C 18 H 37 (C 4 H 9 ) 2 SiCl, CF 3 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 2 F 5 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 3 F 7 C 2 H 4 ( C 4 H 9) 2 SiCl, 4 F 9 C 2 H 4 ( C 4 H 9) 2 SiCl, C 5 F 11 C 2 H 4 (C 4 H 9) 2 SiCl, C 6 F 13 C 2 H 4 (C 4 H 9) 2 SiCl, C 7 F 15 C 2 H 4 (C 4 H 9) 2 SiCl, C 8 F 17 C 2 H 4 (C 4 H 9) 2 SiCl, C 5 H 11 (CH 3) SiCl 2, C 6 H 13 ( CH 3 ) SiCl 2 , C 7 H 15 (CH 3 ) SiCl 2 , C 8 H 17 (CH 3 ) SiCl 2 , C 9 H 19 (CH 3 ) SiCl 2 , C 10 H 21 (CH 3 ) SiCl 2 , C 11 H 23 (CH 3 ) SiCl 2 , C 12 H 25 (CH 3 ) SiCl 2 , C 13 H 27 (CH 3 ) SiCl 2 , C 14 H 29 (CH 3 ) SiCl 2 , C 15 H 31 (CH 3 ) Si Cl 2 , C 16 H 33 (CH 3 ) SiCl 2 , C 17 H 35 (CH 3 ) SiCl 2 , C 18 H 37 (CH 3 ) SiCl 2 , C 3 F 7 C 2 H 4 (CH 3 ) SiCl 2 , C 4 F 9 C 2 H 4 (CH 3) SiCl 2, C 5 F 11 C 2 H 4 (CH 3) SiCl 2, C 6 F 13 C 2 H 4 (CH 3) SiCl 2, C 7 F 15 C 2 H 4 (CH 3 ) SiCl 2 , C 8 F 17 C 2 H 4 (CH 3 ) SiCl 2 , C 6 H 13 SiCl 3 , C 7 H 15 SiCl 3 , C 8 H 17 SiCl 3 , C 9 H 19 SiCl 3, C 10 H 21 SiCl 3, C 11 H 23 SiCl 3, C 12 H 25 SiCl 3, C 13 H 27 SiCl 3, C 14 H 29 SiCl 3, C 15 H 1 SiCl 3, C 16 H 33 SiCl 3, C 17 H 35 SiCl 3, C 18 H 37 SiCl 3, C 4 F 9 C 2 H 4 SiCl 3, C 5 F 11 C 2 H 4 SiCl 3, C 6 F 13 C 2 H 4 SiCl
3 , chlorosilane compounds such as C 7 F 15 C 2 H 4 SiCl 3 and C 8 F 17 C 2 H 4 SiCl 3 .

また、例えば、上記のクロロシラン系化合物のクロロ基が、メトキシ基やエトキシ基などのアルコキシ基に置き換わったアルコキシシラン系化合物や、イソシアネート基に置き換わったイソシアネートシラン系化合物が挙げられる。   Moreover, for example, an alkoxysilane compound in which the chloro group of the chlorosilane compound is replaced with an alkoxy group such as a methoxy group or an ethoxy group, or an isocyanate silane compound in which an isocyanate group is replaced.

また、例えば、C(CHSiNH、C11(CHSiNH、C13(CHSiNH、C15(CHSiNH、C17(CHSiNH、C19(CHSiNH、C1021(CHSiNH、C1123(CHSiNH、C1225(CHSiNH、C1327(CHSiNH、C1429(CHSiNH、C1531(CHSiNH、C1633(CHSiNH、C1735(CHSiNH、C1837(CHSiNH、C11(CH)HSiNH、C13(CH)HSiNH、C15(CH)HSiNH、C17(CH)HSiNH、C19(CH)HSiNH、C1021(CH)HSiNH、C1123(CH)HSiNH、C1225(CH)HSiNH、C1327(CH)HSiNH、C1429(CH)HSiNH、C1531(CH)HSiNH、C1633(CH)HSiNH、C1735(CH)HSiNH、C1837(CH)HSiNH、C(CHSiNH、C(CHSiNH、C(CHSiNH、C11(CHSiNH、C13(CHSiNH、C15(CHSiNH、C17(CHSiNH、(CSiNH、C(CSiNH、C(CSiNH、C11(CSiNH、C13(CSiNH、C15(CSiNH、C17(CSiNH、C19(CSiNH、C1021(CSiNH、C1123(CSiNH、C1225(CSiNH、C1327(CSiNH、C1429(CSiNH、C1531(CSiNH、C1633(CSiNH、C1735(CSiNH、C1837(CSiNH、(CSiNH、C11(CSiNH、C13(CSiNH、C15(CSiNH、C17(CSiNH、C19(CSiNH、C1021(CSiNH、C1123(CSiNH、C1225(CSiNH、C1327(CSiNH、C1429(CSiNH、C1531(CSiNH、C1633(CSiNH、C1735(CSiNH、C1837(CSiNH、[C(CHSi]NH、[C11(CHSi]NH、[C13(CHSi]NH、[C15(CHSi]NH、[C17(CHSi]NH、[C19(CHSi]NH、[C1021(CHSi]NH、[C1123(CHSi]NH、[C1225(CHSi]NH、[C1327(CHSi]NH、[C1429(CHSi]NH、[C1531(CHSi]NH、[C1633(CHSi]NH、[C1735(CHSi]NH、[C1837(CHSi]NH、[C(CHSi]NH、[C(CHSi]NH、[C(CHSi]NH、[C11(CHSi]NH、[C13(CHSi]NH、[C15(CHSi]NH、[C17(CHSi]NH、[(CSi]NH、[C(CSi]NH、[C(CSi]NH、[C11(CSi]NH、[C13(CSi]NH、[C15(CSi]NH、[C17(CSi]NH、[C19(CSi]NH、[C1021(CSi]NH、[C1123(CSi]NH、[C1225(CSi]NH、[C1327(CSi]NH、[C1429(CSi]NH、[C1531(CSi
NH、[C1633(CSi]NH、[C1735(CSi]NH、[C1837(CSi]NH、[CF(CSi]NH、[C(CSi]NH、[C(CSi]NH、[C(CSi]NH、[C11(CSi]NH、[C13(CSi]NH、[C15(CSi]NH、[C17(CSi]NH、[C(CHSi]N、[C11(CHSi]N、[C13(CHSi]N、[C15(CHSi]N、[C17(CHSi]N、[C19(CHSi]N、[C1021(CHSi]N、[C1123(CHSi]N、[C1225(CHSi]N、[C1327(CHSi]N、[C1429(CHSi]N、[C1531(CHSi]N、[C1633(CHSi]N、[C1735(CHSi]N、[C1837(CHSi]N、[C(CHSi]N、[C(CHSi]N、[C(CHSi]N、[C11(CHSi]N、[C13(CHSi]N、[C15(CHSi]N、[C17(CHSi]N、C(CHSiN(CH、C11(CHSiN(CH、C13(CHSiN(CH、C15(CHSiN(CH、C17(CHSiN(CH、C19(CHSiN(CH、C1021(CHSiN(CH、C1123(CHSiN(CH、C1225(CHSiN(CH、C1327(CHSiN(CH、C1429(CHSiN(CH、C1531(CHSiN(CH、C1633(CHSiN(CH、C1735(CHSiN(CH、C1837(CHSiN(CH、C11(CH)HSiN(CH、C13(CH)HSiN(CH、C15(CH)HSiN(CH、C17(CH)HSiN(CH、C19(CH)HSiN(CH、C1021(CH)HSiN(CH、C1123(CH)HSiN(CH、C1225(CH)HSiN(CH、C1327(CH)HSiN(CH、C1429(CH)HSiN(CH、C1531(CH)HSiN(CH、C1633(CH)HSiN(CH、C1735(CH)HSiN(CH、C1837(CH)HSiN(CH、C(CHSiN(CH、C(CHSiN(CH、C(CHSiN(CH、C11(CHSiN(CH、C13(CHSiN(CH、C15(CHSiN(CH、C17(CHSiN(CH、(CSiN(CH、C(CSiN(CH、C(CSiN(CH、C11(CSiN(CH、C13(CSiN(CH、C15(CSiN(CH、C17(CSiN(CH、C19(CSiN(CH、C1021(CSiN(CH、C1123(CSiN(CH、C1225(CSiN(CH、C1327(CSiN(CH、C1429(CSiN(CH、C1531(CSiN(CH、C1633(CSiN(CH、C1735(CSiN(CH、C1837(CSiN(CH、(CSiN(CH、C11(CSiN(CH、C13(CSiN(CH、C15(CSiN(CH、C17(CSiN(CH、C
(CSiN(CH、C1021(CSiN(CH、C1123(CSiN(CH、C1225(CSiN(CH、C1327(CSiN(CH、C1429(CSiN(CH、C1531(CSiN(CH、C1633(CSiN(CH、C1735(CSiN(CH、C1837(CSiN(CH、C11(CH)Si[N(CH、C13(CH)Si[N(CH、C15(CH)Si[N(CH、C17(CH)Si[N(CH、C19(CH)Si[N(CH、C1021(CH)Si[N(CH、C1123(CH)Si[N(CH、C1225(CH)Si[N(CH、C1327(CH)Si[N(CH、C1429(CH)Si[N(CH、C1531(CH)Si[N(CH、C1633(CH)Si[N(CH、C1735(CH)Si[N(CH、C1837(CH)Si[N(CH、C(CH)Si[N(CH、C(CH)Si[N(CH、C11(CH)Si[N(CH、C13(CH)Si[N(CH、C15(CH)Si[N(CH、C17(CH)Si[N(CH、C13Si[N(CH、C15Si[N(CH、C17Si[N(CH、C19Si[N(CH、C1021Si[N(CH、C1123Si[N(CH、C1225Si[N(CH、C1327Si[N(CH、C1429Si[N(CH、C1531Si[N(CH、C1633Si[N(CH、C1735Si[N(CH、C1837Si[N(CH、CSi[N(CH、C11Si[N(CH、C13Si[N(CH、C15Si[N(CH、C17Si[N(CH、C(CHSiN(C、C11(CHSiN(C、C13(CHSiN(C、C15(CHSiN(C、C17(CHSiN(C、C19(CHSiN(C、C1021(CHSiN(C、C1123(CHSiN(C、C1225(CHSiN(C、C1327(CHSiN(C、C1429(CHSiN(C、C1531(CHSiN(C、C1633(CHSiN(C、C1735(CHSiN(C、C1837(CHSiN(C、C(CHSiN(C、C(CHSiN(C、C(CHSiN(C、C11(CHSiN(C、C13(CHSiN(C、C15(CHSiN(C、C17(CHSiN(C、(CSiN(C、C(CSiN(C、C(CSiN(C、C11(CSiN(C、C13(CSiN(C、C15(CSiN(C、C17(CSiN(C、C19(CSiN(C、C1021(CSiN(C、C1123(CSiN(C、C1225(CSiN(C、C1327(CSiN(C、C1429(CSiN(C、C1531(CSiN(C、C1633(C
SiN(C、C1735(CSiN(C、C1837(CSiN(C、(CSiN(C、C11(CSiN(C、C13(CSiN(C、C15(CSiN(C、C17(CSiN(C、C19(CSiN(C、C1021(CSiN(C、C1123(CSiN(C、C1225(CSiN(C、C1327(CSiN(C、C1429(CSiN(C、C1531(CSiN(C、C1633(CSiN(C、C1735(CSiN(C、C1837(CSiN(Cなどのアミノシラン系化合物が挙げられる。
Further, for example, C 4 H 9 (CH 3 ) 2 SiNH 2 , C 5 H 11 (CH 3 ) 2 SiNH 2 , C 6 H 13 (CH 3 ) 2 SiNH 2 , C 7 H 15 (CH 3 ) 2 SiNH 2 , C 8 H 17 (CH 3 ) 2 SiNH 2 , C 9 H 19 (CH 3 ) 2 SiNH 2 , C 10 H 21 (CH 3 ) 2 SiNH 2 , C 11 H 23 (CH 3 ) 2 SiNH 2 , C 12 H 25 (CH 3) 2 SiNH 2, C 13 H 27 (CH 3) 2 SiNH 2, C 14 H 29 (CH 3) 2 SiNH 2, C 15 H 31 (CH 3) 2 SiNH 2, C 16 H 33 (CH 3) 2 SiNH 2, C 17 H 35 (CH 3) 2 SiNH 2, C 18 H 37 (CH 3) 2 SiNH 2, C 5 H 11 (CH 3) H iNH 2, C 6 H 13 ( CH 3) HSiNH 2, C 7 H 15 (CH 3) HSiNH 2, C 8 H 17 (CH 3) HSiNH 2, C 9 H 19 (CH 3) HSiNH 2, C 10 H 21 (CH 3 ) HSiNH 2 , C 11 H 23 (CH 3 ) HSiNH 2 , C 12 H 25 (CH 3 ) HSiNH 2 , C 13 H 27 (CH 3 ) HSiNH 2 , C 14 H 29 (CH 3 ) HSiNH 2, C 15 H 31 (CH 3) HSiNH 2, C 16 H 33 (CH 3) HSiNH 2, C 17 H 35 (CH 3) HSiNH 2, C 18 H 37 (CH 3) HSiNH 2, C 2 F 5 C 2 H 4 (CH 3) 2 SiNH 2, C 3 F 7 C 2 H 4 (CH 3) 2 SiNH 2, C 4 F 9 C 2 H 4 (C 3) 2 SiNH 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiNH 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiNH 2, C 7 F 15 C 2 H 4 (CH 3) 2 SiNH 2 , C 8 F 17 C 2 H 4 (CH 3 ) 2 SiNH 2 , (C 2 H 5 ) 3 SiNH 2 , C 3 H 7 (C 2 H 5 ) 2 SiNH 2 , C 4 H 9 (C 2 H 5) 2 SiNH 2, C 5 H 11 (C 2 H 5) 2 SiNH 2, C 6 H 13 (C 2 H 5) 2 SiNH 2, C 7 H 15 (C 2 H 5) 2 SiNH 2, C 8 H 17 (C 2 H 5 ) 2 SiNH 2 , C 9 H 19 (C 2 H 5 ) 2 SiNH 2 , C 10 H 21 (C 2 H 5 ) 2 SiNH 2 , C 11 H 23 (C 2 H 5) 2 SiNH 2, C 12 H 5 (C 2 H 5) 2 SiNH 2, C 13 H 27 (C 2 H 5) 2 SiNH 2, C 14 H 29 (C 2 H 5) 2 SiNH 2, C 15 H 31 (C 2 H 5) 2 SiNH 2, C 16 H 33 ( C 2 H 5) 2 SiNH 2, C 17 H 35 (C 2 H 5) 2 SiNH 2, C 18 H 37 (C 2 H 5) 2 SiNH 2, (C 4 H 9 ) 3 SiNH 2 , C 5 H 11 (C 4 H 9 ) 2 SiNH 2 , C 6 H 13 (C 4 H 9 ) 2 SiNH 2 , C 7 H 15 (C 4 H 9 ) 2 SiNH 2 , C 8 H 17 (C 4 H 9 ) 2 SiNH 2 , C 9 H 19 (C 4 H 9 ) 2 SiNH 2 , C 10 H 21 (C 4 H 9 ) 2 SiNH 2 , C 11 H 23 (C 4 H 9 ) 2 SiNH 2 , C 12 H 2 5 (C 4 H 9 ) 2 SiNH 2 , C 13 H 27 (C 4 H 9 ) 2 SiNH 2 , C 14 H 29 (C 4 H 9 ) 2 SiNH 2 , C 15 H 31 (C 4 H 9 ) 2 SiNH 2, C 16 H 33 ( C 4 H 9) 2 SiNH 2, C 17 H 35 (C 4 H 9) 2 SiNH 2, C 18 H 37 (C 4 H 9) 2 SiNH 2, [C 4 H 9 (CH 3 ) 2 Si] 2 NH, [C 5 H 11 (CH 3 ) 2 Si] 2 NH, [C 6 H 13 (CH 3 ) 2 Si] 2 NH, [C 7 H 15 (CH 3 ) 2 Si] 2 NH, [C 8 H 17 (CH 3 ) 2 Si] 2 NH, [C 9 H 19 (CH 3 ) 2 Si] 2 NH, [C 10 H 21 (CH 3 ) 2 Si] 2 NH, [C 11 H 23 (CH 3 ) 2 Si] 2 N , [C 12 H 25 (CH 3) 2 Si] 2 NH, [C 13 H 27 (CH 3) 2 Si] 2 NH, [C 14 H 29 (CH 3) 2 Si] 2 NH, [C 15 H 31 (CH 3 ) 2 Si] 2 NH, [C 16 H 33 (CH 3 ) 2 Si] 2 NH, [C 17 H 35 (CH 3 ) 2 Si] 2 NH, [C 18 H 37 (CH 3 ) 2 Si] 2 NH, [C 2 F 5 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 3 F 7 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 4 F 9 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 5 F 11 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 6 F 13 C 2 H 4 (CH 3) 2 Si] 2 NH , [C 7 F 15 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 8 F 7 C 2 H 4 (CH 3 ) 2 Si] 2 NH, [(C 2 H 5) 3 Si] 2 NH, [C 3 H 7 (C 2 H 5) 2 Si] 2 NH, [C 4 H 9 (C 2 H 5 ) 2 Si] 2 NH, [C 5 H 11 (C 2 H 5 ) 2 Si] 2 NH, [C 6 H 13 (C 2 H 5 ) 2 Si] 2 NH, [C 7 H 15 (C 2 H 5 ) 2 Si] 2 NH, [C 8 H 17 (C 2 H 5 ) 2 Si] 2 NH, [C 9 H 19 (C 2 H 5 ) 2 Si] 2 NH, [C 10 H 21 (C 2 H 5 ) 2 Si] 2 NH, [C 11 H 23 (C 2 H 5 ) 2 Si] 2 NH, [C 12 H 25 (C 2 H 5 ) 2 Si] 2 NH, [C 13 H 27 (C 2 H 5 ) 2 Si] 2 NH, [C 14 H 29 (C 2 H 5) 2 Si] 2 NH, [C 5 H 31 (C 2 H 5 ) 2 Si
] 2 NH, [C 16 H 33 (C 2 H 5 ) 2 Si] 2 NH, [C 17 H 35 (C 2 H 5 ) 2 Si] 2 NH, [C 18 H 37 (C 2 H 5 ) 2 Si] 2 NH, [CF 3 C 2 H 4 (C 2 H 5) 2 Si] 2 NH, [C 2 F 5 C 2 H 4 (C 2 H 5) 2 Si] 2 NH, [C 3 F 7 C 2 H 4 (C 2 H 5) 2 Si] 2 NH, [C 4 F 9 C 2 H 4 (C 2 H 5) 2 Si] 2 NH, [C 5 F 11 C 2 H 4 (C 2 H 5) 2 Si] 2 NH, [C 6 F 13 C 2 H 4 (C 2 H 5) 2 Si] 2 NH, [C 7 F 15 C 2 H 4 (C 2 H 5) 2 Si] 2 NH, [C 8 F 17 C 2 H 4 (C 2 H 5) 2 Si] 2 NH, [C 4 H 9 (CH 3) 2 Si] 3 N, [C 5 H 11 (CH 3 ) 2 Si] 3 N, [C 6 H 13 (CH 3 ) 2 Si] 3 N, [C 7 H 15 (CH 3 ) 2 Si] 3 N, [C 8 H 17 (CH 3 ) 2 Si] 3 N, [C 9 H 19 (CH 3 ) 2 Si] 3 N, [C 10 H 21 (CH 3 ) 2 Si] 3 N, [C 11 H 23 (CH 3 ) 2 Si] 3 N, [C 12 H 25 (CH 3 ) 2 Si] 3 N, [C 13 H 27 (CH 3 ) 2 Si] 3 N, [C 14 H 29 (CH 3 ) 2 Si] 3 N, [C 15 H 31 (CH 3 ) 2 Si] 3 N, [C 16 H 33 (CH 3 ) 2 Si] 3 N, [C 17 H 35 (CH 3 ) 2 Si] 3 N, [C 18 H 37 (CH 3 ) 2 Si] 3 N, [C 2 F 5 C 2 H 4 (CH 3 ) 2 Si] 3 N, [C 3 F 7 C 2 H 4 (CH 3) 2 Si] 3 N, [C 4 F 9 C 2 H 4 (CH 3) 2 Si] 3 N, [C 5 F 11 C 2 H 4 (CH 3) 2 Si ] 3 N, [C 6 F 13 C 2 H 4 (CH 3) 2 Si] 3 N, [C 7 F 15 C 2 H 4 (CH 3) 2 Si] 3 N, [C 8 F 17 C 2 H 4 (CH 3 ) 2 Si] 3 N, C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (CH 3 ) 2 SiN (CH 3 ) 2 , C 7 H 15 (CH 3 ) 2 SiN (CH 3 ) 2 , C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (CH 3 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (CH 3) 2 SiN (CH 3) 2, C 12 H 25 (CH 3) 2 SiN (CH 3) 2, C 13 H 27 (CH 3) 2 SiN (CH 3) 2, C 14 H 29 (CH 3 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) HSiN (CH 3 ) 2 , C 6 H 13 (CH 3 ) HSiN (CH 3 ) 2 , C 7 H 15 (CH 3 ) HSiN (CH 3 ) 2 , C 8 H 17 (CH 3 ) HSiN (CH 3 ) 2 , C 9 H 19 (CH 3 ) HSiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) HSiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) HSiN (CH 3 ) 2 , C 12 H 25 (CH 3 ) HSiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) HSiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) HSiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) HSiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) HSiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) HSiN (CH 3) 2, C 18 H 37 (CH 3) HSiN (CH 3) 2, C 2 F 5 C 2 H 4 (CH 3) 2 SiN (CH 3) 2 , C 3 F 7 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 4 F 9 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 5 F 11 C 2 H 4 ( CH 3) 2 SiN (C 3) 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 7 F 15 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 8 F 17 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, (C 2 H 5) 3 SiN (CH 3) 2, C 3 H 7 (C 2 H 5) 2 SiN (CH 3) 2, C 4 H 9 (C 2 H 5) 2 SiN (CH 3) 2, C 5 H 11 (C 2 H 5) 2 SiN (CH 3) 2, C 6 H 13 (C 2 H 5) 2 SiN (CH 3) 2, C 7 H 15 (C 2 H 5) 2 SiN (CH 3) 2, C 8 H 17 (C 2 H 5) 2 SiN (CH 3) 2, C 9 H 19 (C 2 H 5) 2 SiN (CH 3) 2, C 10 H 21 (C 2 H 5) 2 SiN (CH 3) 2, C 11 23 (C 2 H 5) 2 SiN (CH 3) 2, C 12 H 25 (C 2 H 5) 2 SiN (CH 3) 2, C 13 H 27 (C 2 H 5) 2 SiN (CH 3) 2 , C 14 H 29 (C 2 H 5) 2 SiN (CH 3) 2, C 15 H 31 (C 2 H 5) 2 SiN (CH 3) 2, C 16 H 33 (C 2 H 5) 2 SiN ( CH 3) 2, C 17 H 35 (C 2 H 5) 2 SiN (CH 3) 2, C 18 H 37 (C 2 H 5) 2 SiN (CH 3) 2, (C 4 H 9) 3 SiN ( CH 3) 2, C 5 H 11 (C 4 H 9) 2 SiN (CH 3) 2, C 6 H 13 (C 4 H 9) 2 SiN (CH 3) 2, C 7 H 15 (C 4 H 9 ) 2 SiN (CH 3) 2 , C 8 H 17 (C 4 H 9) 2 iN (CH 3) 2, C 9 H 1
9 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 12 H 25 (C 4 H 9) 2 SiN (CH 3) 2, C 13 H 27 (C 4 H 9) 2 SiN (CH 3) 2, C 14 H 29 (C 4 H 9) 2 SiN ( CH 3) 2, C 15 H 31 (C 4 H 9) 2 SiN (CH 3) 2, C 16 H 33 (C 4 H 9) 2 SiN (CH 3) 2, C 17 H 35 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 H 13 (CH 3) Si [N ( CH 3) 2] 2, C 7 H 15 (C 3) Si [N (CH 3 ) 2] 2, C 8 H 17 (CH 3) Si [N (CH 3) 2] 2, C 9 H 19 (CH 3) Si [N (CH 3) 2] 2 , C 10 H 21 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 11 H 23 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 12 H 25 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 13 H 27 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 14 H 29 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 15 H 31 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 16 H 33 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 17 H 35 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 18 H 37 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 3 F 7 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 4 F 9 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 5 F 11 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 F 13 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 7 F 15 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 8 F 17 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 H 13 Si [N (CH 3 ) 2 ] 3 , C 7 H 15 Si [N (CH 3 ) 2 ] 3 , C 8 H 17 Si [N (CH 3 ) 2 ] 3 , C 9 H 19 Si [N (CH 3 ) 2 ] 3 , C 10 H 21 Si [N (CH 3) 2] 3, C 11 H 23 Si [N (CH 3) 2] 3, C 12 H 25 Si [N (CH 3) 2] , C 13 H 27 Si [N (CH 3) 2] 3, C 14 H 29 Si [N (CH 3) 2] 3, C 15 H 31 Si [N (CH 3) 2] 3, C 16 H 33 Si [N (CH 3 ) 2 ] 3 , C 17 H 35 Si [N (CH 3 ) 2 ] 3 , C 18 H 37 Si [N (CH 3 ) 2 ] 3 , C 4 F 9 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 5 F 11 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 6 F 13 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 7 F 15 C 2 H 4 Si [ N (CH 3) 2] 3, C 8 F 17 C 2 H 4 Si [N (CH 3) 2] 3, C 4 H 9 (CH 3) 2 SiN (C 2 H 5) 2, C 5 H 11 (CH 3) 2 SiN (C 2 H 5) 2, C 6 H 13 (CH 3) SiN (C 2 H 5) 2 , C 7 H 15 (CH 3) 2 SiN (C 2 H 5) 2, C 8 H 17 (CH 3) 2 SiN (C 2 H 5) 2, C 9 H 19 ( CH 3) 2 SiN (C 2 H 5) 2, C 10 H 21 (CH 3) 2 SiN (C 2 H 5) 2, C 11 H 23 (CH 3) 2 SiN (C 2 H 5) 2, C 12 H 25 (CH 3) 2 SiN (C 2 H 5) 2, C 13 H 27 (CH 3) 2 SiN (C 2 H 5) 2, C 14 H 29 (CH 3) 2 SiN (C 2 H 5 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 16 H 33 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 17 H 35 (CH 3 ) 2 SiN ( C 2 H 5) 2, C 18 H 37 (CH 3) 2 SiN C 2 H 5) 2, C 2 F 5 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 3 F 7 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2 , C 4 F 9 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 6 F 13 C 2 H 4 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 7 F 15 C 2 H 4 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 8 F 17 C 2 H 4 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , (C 2 H 5 ) 3 SiN (C 2 H 5 ) 2 , C 3 H 7 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 4 H 9 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 5 H 11 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 6 H 13 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 8 H 17 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 11 H 23 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 12 H 25 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 13 H 27 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 14 H 29 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 15 H 31 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 16 H 33 (C 2 H 5
) 2 SiN (C 2 H 5 ) 2 , C 17 H 35 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 18 H 37 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , (C 4 H 9 ) 3 SiN (C 2 H 5 ) 2 , C 5 H 11 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 6 H 13 (C 4 H 9 ) 2 SiN ( C 2 H 5) 2, C 7 H 15 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 8 H 17 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 9 H 19 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 11 H 23 (C 4 H 9 ) 2 SiN ( C 2 H 5) 2, C 12 H 25 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 13 H 27 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 14 H 29 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 15 H 31 (C 4 H 9 ) 2 SiN (C 2 H 5) 2, C 16 H 33 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 17 H 35 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 18 H 37 Examples include aminosilane compounds such as (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 .

これらのケイ素化合物のうち、炭化水素基の水素原子がハロゲン原子で置換される場合、疎水化性能を考慮すると置換するハロゲン原子としてはフッ素原子であることが好ましい。   Among these silicon compounds, when a hydrogen atom of a hydrocarbon group is substituted with a halogen atom, the halogen atom to be substituted is preferably a fluorine atom in consideration of the hydrophobizing performance.

また、一般式[1]のXで表される、ケイ素元素と結合する元素が窒素である1価の官能基は、炭素、水素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などの元素から構成される官能基であれば良く、例えば、−NHSi(CH基、−NHSi(CH基、−NHSi(CH17基、−N(CH基、−N(C基、−N(C基、−N(CH)(C)基、−NH(C)基、−NCO基、イミダゾール基、アセトアミド基などが挙げられる。 In addition, the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is nitrogen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine, iodine, or any other functional group, for example, —NHSi (CH 3 ) 3 group, —NHSi (CH 3 ) 2 C 4 H 9 group, —NHSi (CH 3 ) 2 C 8 H 17 groups, —N (CH 3 ) 2 groups, —N (C 2 H 5 ) 2 groups, —N (C 3 H 7 ) 2 groups, —N (CH 3 ) (C 2 H 5 ) groups, -NH (C 2 H 5) group, -NCO group, an imidazole group, such as acetamide groups.

さらに、一般式[1]のXで表される、ケイ素元素と結合する元素が酸素である1価の官能基は、炭素、水素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などの元素から構成される官能基であれば良く、例えば、−OCH基、−OC基、−OC基、−OCOCH基、−OCOCF基などが挙げられる。 Furthermore, the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is oxygen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine, iodine, and the like. For example, —OCH 3 group, —OC 2 H 5 group, —OC 3 H 7 group, —OCOCH 3 group, —OCOCF 3 group Etc.

また、一般式[1]のXで表される、ハロゲン基としては−F基、−Cl基、−Br基、−I基などが挙げられる。なかでも−Cl基がより好ましい。   Examples of the halogen group represented by X in the general formula [1] include -F group, -Cl group, -Br group, and -I group. Of these, a -Cl group is more preferred.

また、一般式[1]のaは1〜3の整数であればよいが、aが1又は2である場合、窒化ケイ素含有ウェハ用表面処理剤を長期保存すると、水分の混入などにより、ケイ素化合物の重合が発生し、疎水性付与効果が低下する恐れがあるため、保存可能期間が短くなる可能性がある。また後述するように、前記処理剤を希釈溶媒で溶解して窒化ケイ素含有ウェハ用表面処理液とした場合、該処理液は使用中に大気中の水分が混入することによりケイ素化合物の重合が発生し、該処理液中に不溶物が析出する可能性がある。処理剤及び処理液のポットライフや処理後のウェハ表面の清浄性を考慮すると、一般式[1]のaが3のもの(すなわち、前記一般式[2]で表されるケイ素化合物)が好ましい。   In addition, a in the general formula [1] may be an integer of 1 to 3, but when a is 1 or 2, if the silicon nitride-containing wafer surface treatment agent is stored for a long period of time, silicon may be mixed due to moisture mixing. Since the polymerization of the compound occurs and the hydrophobicity-imparting effect may be reduced, the storage period may be shortened. As will be described later, when the treatment agent is dissolved in a diluent solvent to form a surface treatment solution for a silicon nitride-containing wafer, the treatment solution is mixed with moisture in the atmosphere during use, and polymerization of the silicon compound occurs. Insoluble substances may be deposited in the treatment liquid. In consideration of the pot life of the treatment agent and the treatment liquid and the cleanliness of the wafer surface after the treatment, those having a of 3 in the general formula [1] (that is, the silicon compound represented by the general formula [2]) are preferable. .

また、一般式[1]で表されるケイ素化合物のうち、Rが、炭素数が4〜18の無置換もしくは水素原子がハロゲン原子で置換されていてもよい炭化水素基1個とメチル基2個からなるもの(すなわち、前記一般式[3]で表されるケイ素化合物)は、ウェハ表面の水酸基との反応速度が速いので好ましい。これは、ウェハ表面の水酸基と前記ケイ素化合物との反応において、疎水性基による立体障害が反応速度に大きな影響を与えるためであり、ケイ素元素に結合するアルキル鎖は最も長い一つを除く残り二つは短い方が好ましいからである。 Moreover, among the silicon compounds represented by the general formula [1], R 1 is an unsubstituted hydrocarbon group having 4 to 18 carbon atoms or one hydrocarbon group in which a hydrogen atom may be substituted with a halogen atom and a methyl group. Those composed of two compounds (that is, the silicon compound represented by the general formula [3]) are preferable because the reaction rate with the hydroxyl group on the wafer surface is high. This is because the steric hindrance due to the hydrophobic group has a great influence on the reaction rate in the reaction between the hydroxyl group on the wafer surface and the silicon compound, and the alkyl chain bonded to the silicon element has the remaining two except the longest one. This is because a shorter one is preferable.

これらのことから、前述した一般式[1]で示されるケイ素化合物の中でも好ましい化合物としては、例えば、C(CHSiCl、C11(CHSiCl、C13(CHSiCl、C15(CHSiCl、C17(CHSiCl、C19(CHSiCl、C1021(CHSiCl、C1123(CHSiCl、C1225(CHSiCl、C1327(CHSiCl、C1429(CHSiCl、C1531(CHSiCl、C1633(CHSiCl、C1735(CHSiCl、C1837(CHSiCl、C(CHSiCl、C(CHSiCl、C(CHSiCl、C11(CHSiCl、C13(CHSiCl、C15(CHSiCl、C17(CHSiCl、C(CHSiN(CH、C11(CHSiN(CH、C13(CHSiN(CH、C15(CHSiN(CH、C17(CHSiN(CH、C19(CHSiN(CH、C1021(CHSiN(CH、C1123(CHSiN(CH、C1225(CHSiN(CH、C1327(CHSiN(CH、C1429(CHSiN(CH、C1531(CHSiN(CH、C1633(CHSiN(CH、C1735(CHSiN(CH、C1837(CHSiN(CH、C(CHSiN(CH、C(CHSiN(CH、C(CHSiN(CH、C11(CHSiN(CH、C13(CHSiN(CH、C15(CHSiN(CH、C17(CHSiN(CH等が挙げられる。 From these things, as a preferable compound among the silicon compounds shown by the general formula [1] described above, for example, C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, C 7 H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3) 2 SiCl, C 16 H 33 (CH 3) 2 SiCl, C 17 H 35 (CH 3) 2 SiCl, C 18 H 37 (CH 3) 2 iCl, C 2 F 5 C 2 H 4 (CH 3) 2 SiCl, C 3 F 7 C 2 H 4 (CH 3) 2 SiCl, C 4 F 9 C 2 H 4 (CH 3) 2 SiCl, C 5 F 11 C 2 H 4 (CH 3 ) 2 SiCl, C 6 F 13 C 2 H 4 (CH 3 ) 2 SiCl, C 7 F 15 C 2 H 4 (CH 3 ) 2 SiCl, C 8 F 17 C 2 H 4 (CH 3 ) 2 SiCl, C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (CH 3 ) 2 SiN ( CH 3 ) 2 , C 7 H 15 (CH 3 ) 2 SiN (CH 3 ) 2 , C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (CH 3 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) 2 SiN (CH 3 ) 2 , C 12 H 25 (CH 3 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) 2 SiN ( CH 3) 2, C 14 H 29 (CH 3) 2 SiN (CH 3) 2, C 15 H 31 (CH 3) 2 SiN (CH 3) 2, C 16 H 33 (CH 3) 2 SiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (CH 3 ) 2 SiN (CH 3 ) 2 , C 2 F 5 C 2 H 4 (CH 3 ) 2 SiN ( CH 3) 2, C 3 F 7 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 4 F 9 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiN (CH ) 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 7 F 15 C 2 H 4 (CH 3) 2 SiN (CH 3) 2, C 8 F 17 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 and the like.

また、前記窒化ケイ素含有ウェハ用表面処理剤が前記一般式[4]で表されるケイ素化合物であると、窒化ケイ素含有ウェハ表面により優れた疎水性を付与でき、結果としてより短時間の処理で充分な疎水性を付与できるため好ましい。   Further, when the surface treatment agent for a silicon nitride-containing wafer is a silicon compound represented by the general formula [4], it is possible to impart superior hydrophobicity to the silicon nitride-containing wafer surface, and as a result, the treatment can be performed in a shorter time. It is preferable because sufficient hydrophobicity can be imparted.

本発明の窒化ケイ素含有ウェハ用表面処理液は、少なくとも上記の窒化ケイ素含有ウェハ用表面処理剤が含有されていればよく、前記処理剤を2種以上含有するものであっても良い。また、前記処理剤は希釈溶媒で溶解されている。該希釈溶媒は、前記処理剤を溶解するものであれば良く、例えば、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、ラクトン系溶媒、カーボネート系溶媒、アルコール類、多価アルコールの誘導体、窒素元素含有溶媒などの有機溶媒が好適に使用される。水を希釈溶媒として用いた場合、水により処理液中の処理剤であるケイ素化合物の反応性部位(前記一般式[1]のXや一般式[2]のY)が加水分解してシラノール基(Si−OH)が生成する可能性がある。前記反応性部位は、このシラノール基とも反応するために、ケイ素化合物同士が結合して2量体が生成する可能性がある。この2量体は、ウェハ表面の水酸基との反応性が低いため、ウェハ表面を疎水化するのに要する時間が長くなる恐れがあることから、水を希釈溶媒として使用することは好ましくない。   The surface treatment liquid for silicon nitride-containing wafers of the present invention only needs to contain at least the above-mentioned surface treatment agent for silicon nitride-containing wafers, and may contain two or more of the treatment agents. The treating agent is dissolved in a diluting solvent. The dilution solvent is not particularly limited as long as it dissolves the treatment agent. For example, hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols. Organic solvents such as polyhydric alcohol derivatives and nitrogen element-containing solvents are preferably used. When water is used as a diluting solvent, the reactive site (X in the general formula [1] or Y in the general formula [2]) is hydrolyzed by the water to react with the silanol group. (Si—OH) may be generated. Since the reactive site also reacts with the silanol group, silicon compounds may be bonded to each other to form a dimer. Since this dimer has low reactivity with the hydroxyl group on the wafer surface, it may take a long time to hydrophobize the wafer surface, so it is not preferable to use water as a diluting solvent.

さらに、前記ケイ素化合物は、プロトン性溶媒と反応しやすいため、前記有機溶媒として、非プロトン性溶媒を用いると、短時間で疎水性を発現しやすくなるので特に好ましい。なお、非プロトン性溶媒は、非プロトン性極性溶媒と非プロトン性非極性溶媒の両方のことである。このような非プロトン性溶媒としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、ラクトン系溶媒、カーボネート系溶媒、水酸基を持たない多価アルコールの誘導体、N−H結合を持たない窒素元素含有溶媒が挙げられる。前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1、1、1、3、3−ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3−ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン株式会社製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE−3000(旭硝子株式会社製)、Novec7100、Nove7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1−クロロ−3,3,3−トリフルオロプロペン、1,2−ジクロロ−3,3,3−トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、前記ラクトン系溶媒の例としては、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-ノナノラクトン、γ-デカノラクトン、γ-ウンデカノラクトン、γ-ドデカノラクトン、δ-バレロラクトン、δ-カプロラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、ε-カプロラクトンなどがあり、前記カーボネート系溶媒の例としては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、プロピレンカーボネートなどがあり、前記水酸基を持たない多価アルコール誘導体の例としては、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールジアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジアセテート、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールジアセテート、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールジブチルエーテル、テトラエチレングリコールモノメチルエーテルアセテート、テトラエチレングリコールモノエチルエーテルアセテート、テトラエチレングリコールモノブチルエーテルアセテート、テトラエチレングリコールジアセテート、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチルプロピルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、ジプロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル、トリプロピレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノエチルエーテルアセテート、トリプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールジアセテート、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールモノメチルエーテルアセテート、テトラプロピレングリコールジアセテート、ブチレングリコールジメチルエーテル、ブチレングリコールモノメチルエーテルアセテート、ブチレングリコールジアセテート、グリセリントリアセテートなどがあり、N−H結合を持たない窒素元素含有溶媒の例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、トリエチルアミン、ピリジンなどがある。   Further, since the silicon compound easily reacts with a protic solvent, it is particularly preferable to use an aprotic solvent as the organic solvent because hydrophobicity is easily developed in a short time. The aprotic solvent is both an aprotic polar solvent and an aprotic apolar solvent. Examples of such aprotic solvents include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, polyhydric alcohol derivatives having no hydroxyl group, N Examples thereof include a nitrogen element-containing solvent having no —H bond. Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether. Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane and the like, and examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, and cyclohexanone. Examples of the halogen-containing solvent include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, 3, 3-pentane. Hydrofluorocarbons such as fluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeorora H (manufactured by Nippon Zeon Co., Ltd.), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl perfluoro Hydrofluoroethers such as fluoroisobutyl ether, Asahiklin AE-3000 (manufactured by Asahi Glass Co., Ltd.), Novec7100, Nove7200, Novec7300, and Novec7600 (all manufactured by 3M), chlorocarbons such as tetrachloromethane, hydrochlorocarbons such as chloroform, Chlorofluorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2,3,3,3-pentafluoropro 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3-trifluoro There are hydrochlorofluorocarbons such as propene, perfluoroethers, perfluoropolyethers, etc. Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of the lactone solvents include γ-butyrolactone, γ-valero Lactone, γ-caprolactone, γ-heptanolactone, γ-octanolactone, γ-nonanolactone, γ-decanolactone, γ-undecanolactone, γ-dodecanolactone, δ-valerolactone, δ-caprolactone, δ-octa Nolactone, δ-nonanolactone, δ-decanolactone, δ-undecanolactone, δ-dodecanolactone, ε- Examples of the carbonate-based solvent include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and propylene carbonate. Examples of the polyhydric alcohol derivative having no hydroxyl group include ethylene glycol dimethyl ether and ethylene glycol. Diethyl ether, ethylene glycol dibutyl ether, ethylene glycol diacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, di Tylene glycol dibutyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol diacetate, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dibutyl ether, triethylene glycol butyl methyl ether, triethylene glycol Ethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether acetate, triethylene glycol monobutyl ether acetate, triethylene glycol diacetate, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetra Tylene glycol dibutyl ether, tetraethylene glycol monomethyl ether acetate, tetraethylene glycol monoethyl ether acetate, tetraethylene glycol monobutyl ether acetate, tetraethylene glycol diacetate, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dibutyl ether, propylene glycol di Acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol dimethyl ether, dipropylene glycol methyl propyl ether, dipropylene glycol diethyl ether, dipropiate Lenglycol dibutyl ether, dipropylene glycol diacetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monobutyl ether acetate, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol dibutyl ether, Tripropylene glycol monomethyl ether acetate, tripropylene glycol monoethyl ether acetate, tripropylene glycol monobutyl ether acetate, tripropylene glycol diacetate, tetrapropylene glycol dimethyl ether, tetrapropylene glycol monomethyl ether acetate, tetrapropylene Examples of the nitrogen element-containing solvent having no N—H bond include N, N-dimethylformamide, N, N-dimethylformamide, N-H bond, etc., such as recall diacetate, butylene glycol dimethyl ether, butylene glycol monomethyl ether acetate, butylene glycol diacetate, glycerol triacetate N-dimethylacetamide, N-methyl-2-pyrrolidone, triethylamine, pyridine and the like.

また、前記希釈溶媒の一部、又は、全てに不燃性のものを使うと、処理液が不燃性になる、あるいは、引火点が高くなって、該処理液の危険性が低下するので好ましい。含ハロゲン溶媒は不燃性のものが多く、不燃性含ハロゲン溶媒は不燃性希釈溶媒として好適に使用できる。また、「化学品の分類および表示に関する国際的調和システム;GHS」によると、引火点が93℃以下の溶媒を「引火性液体」として定義している。そのため、不燃性溶媒でなくとも、前記希釈溶媒として引火点が93℃を超える溶媒を用いると、前記処理液の引火点は93℃以上になりやすく、該処理液が「引火性液体」に該当し難くなるため、安全性の観点から好ましい。   Further, it is preferable to use a non-flammable solvent for a part or all of the dilution solvent because the treatment liquid becomes non-flammable or the flash point becomes high, and the risk of the treatment liquid is reduced. Many of the halogen-containing solvents are nonflammable, and the nonflammable halogen-containing solvent can be suitably used as a nonflammable diluent solvent. According to “International Harmonized System for Classification and Labeling of Chemicals; GHS”, a solvent having a flash point of 93 ° C. or lower is defined as “flammable liquid”. Therefore, even if it is not a nonflammable solvent, if a solvent having a flash point exceeding 93 ° C. is used as the dilution solvent, the flash point of the treatment liquid tends to be 93 ° C. or higher, and the treatment liquid falls under “flammable liquid”. This is preferable from the viewpoint of safety.

また、ラクトン系溶媒や、カーボネート系溶媒や、多価アルコールの誘導体は、引火点が高いものが多いので、これを溶媒に用いると、処理液の危険性を低くできるので好ましい。上記の安全性の観点から、具体的には引火点が93℃を超える、γ-ブチロラクトン、γ-カプロラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-ノナノラクトン、γ-デカノラクトン、γ-ウンデカノラクトン、γ-ドデカノラクトン、δ-バレロラクトン、δ-カプロラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、ε-カプロラクトン、プロピレンカーボネート、エチレングリコールジアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールイソモノブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールジアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノプロピルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールジアセテート、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールモノエチルエーテル、テトラエチレングリコールモノプロピルエーテル、テトラエチレングリコールモノブチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールジブチルエーテル、テトラエチレングリコールモノメチルエーテルアセテート、テトラエチレングリコールモノエチルエーテルアセテート、テトラエチレングリコールモノブチルエーテルアセテート、テトラエチレングリコールジアセテート、プロピレングリコールジアセテート、ジプロピレングリコールジアセテート、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル、トリプロピレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノエチルエーテルアセテート、トリプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールジアセテート、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールモノメチルエーテルアセテート、テトラプロピレングリコールジアセテート、ブチレングリコールジメチルエーテル、ブチレングリコールモノメチルエーテルアセテート、ブチレングリコールジアセテート、グリセリントリアセテート等を前記溶媒として用いることがより好ましい。   Moreover, since many lactone solvents, carbonate solvents, and polyhydric alcohol derivatives have a high flash point, it is preferable to use them as solvents because the risk of the treatment liquid can be reduced. From the above safety viewpoint, specifically, γ-butyrolactone, γ-caprolactone, γ-heptanolactone, γ-octanolactone, γ-nonanolactone, γ-decanolactone, γ- Undecanolactone, γ-dodecanolactone, δ-valerolactone, δ-caprolactone, δ-octanolactone, δ-nonanolactone, δ-decanolactone, δ-undecanolactone, δ-dodecanolactone, ε-caprolactone, propylene Carbonate, ethylene glycol diacetate, diethylene glycol monomethyl ether, diethylene glycol monopropyl ether, diethylene glycol isomonobutyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, diethylene glycol diacetate, diethyl Glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monopropyl ether, triethylene glycol monobutyl ether, triethylene glycol dimethyl ether, triethylene Glycol diethyl ether, triethylene glycol dibutyl ether, triethylene glycol butyl methyl ether, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether acetate, triethylene glycol monobutyl ether acetate, triethylene glycol diacetate , Tetraethylene glycol monomethyl ether, tetraethylene glycol monoethyl ether, tetraethylene glycol monopropyl ether, tetraethylene glycol monobutyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol dibutyl ether, tetraethylene glycol monomethyl ether acetate , Tetraethylene glycol monoethyl ether acetate, tetraethylene glycol monobutyl ether acetate, tetraethylene glycol diacetate, propylene glycol diacetate, dipropylene glycol diacetate, dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether, dip Lopylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monobutyl ether acetate, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol dibutyl ether, tripropylene glycol monomethyl ether acetate, tripropylene glycol monoethyl Ether acetate, tripropylene glycol monobutyl ether acetate, tripropylene glycol diacetate, tetrapropylene glycol dimethyl ether, tetrapropylene glycol monomethyl ether acetate, tetrapropylene glycol diacetate, butylene glycol dimethyl ether, butylene glycol Monomethyl ether acetate, butylene glycol diacetate, it is more preferable to use glycerol triacetate as the solvent.

また、希釈溶媒には、微量の水分であれば存在してもよい。ただし、この水分が溶媒に大量に含まれると、ケイ素化合物は該水分によって加水分解して反応性が低下することがある。このため、溶媒中の水分量は低くすることが好ましく、該水分量は、前記ケイ素化合物と混合したときに、該ケイ素化合物に対して、モル比で1モル倍未満とすることが好ましく、0.5モル倍未満にすることが特に好ましい。   Further, the dilution solvent may be present as long as it is a trace amount of water. However, when this moisture is contained in a large amount in the solvent, the silicon compound may be hydrolyzed by the moisture to reduce the reactivity. For this reason, it is preferable to reduce the amount of water in the solvent, and the amount of water is preferably less than 1 mole in terms of molar ratio to the silicon compound when mixed with the silicon compound. It is particularly preferable to make it less than 5 mole times.

さらに、前記ケイ素化合物は、前記処理液の総量100質量%に対して0.1〜50質量%となるように混合されていれば好ましく、より好適には前記処理液の総量100質量%に対して0.3〜20質量%である。ケイ素化合物が0.1質量%未満では、希釈溶媒中に微量に含まれる水分などと反応して失活し易いため、疎水化する能力が乏しく、ウェハ表面を充分に疎水化することができない場合がある。一方、50質量%より多い場合、ウェハ表面に不純物として残留する懸念があること、またコスト的な観点から見ても好ましくない。   Furthermore, the silicon compound is preferably mixed so as to be 0.1 to 50% by mass with respect to 100% by mass of the total amount of the treatment liquid, and more preferably with respect to 100% by mass of the total amount of the treatment liquid. 0.3 to 20% by mass. When the silicon compound is less than 0.1% by mass, it reacts with moisture contained in a minute amount in the diluting solvent and is easily deactivated, so the ability to hydrophobize is poor and the wafer surface cannot be sufficiently hydrophobized. There is. On the other hand, when it is more than 50% by mass, there is a concern that it remains as an impurity on the wafer surface, and it is not preferable from the viewpoint of cost.

また、前記処理液が酸を含有するものであると、窒化ケイ素含有ウェハ表面により短時間の処理で充分な疎水性を付与できるため好ましい。   In addition, it is preferable that the treatment liquid contains an acid because sufficient hydrophobicity can be imparted to the silicon nitride-containing wafer surface in a short time.

また、前記の酸を含有する窒化ケイ素含有ウェハ用表面処理液において、ケイ素化合物が下記一般式[5]で表されるケイ素化合物であると、窒化ケイ素含有ウェハ表面により短時間の処理で充分な疎水性を付与できるため好ましい。
(CHSiZ [5]
[式[5]中、Rは炭素数が4〜18の炭化水素基であり、該炭化水素基の水素原子はハロゲン原子で置換されていてもよい。Zはケイ素元素と結合する元素が窒素である1価の官能基、又は、ケイ素元素と結合する元素が酸素である1価の官能基である。]
In addition, in the silicon nitride-containing wafer surface treatment liquid containing the acid, if the silicon compound is a silicon compound represented by the following general formula [5], the silicon nitride-containing wafer surface is sufficient for a short time treatment. Since hydrophobicity can be provided, it is preferable.
R 4 (CH 3 ) 2 SiZ [5]
[In the formula [5], R 4 is a hydrocarbon group having 4 to 18 carbon atoms, and the hydrogen atom of the hydrocarbon group may be substituted with a halogen atom. Z is a monovalent functional group in which the element bonded to the silicon element is nitrogen, or a monovalent functional group in which the element bonded to the silicon element is oxygen. ]

また、前記酸は、前記ケイ素化合物と、窒化ケイ素含有ウェハ表面の水酸基との反応を促進させるものである。このような酸として、トリフルオロ酢酸、無水トリフルオロ酢酸、ペンタフルオロプロピオン酸、無水ペンタフルオロプロピオン酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸、硫酸、塩化水素などの水を含まない酸が挙げられる。特に、前記反応の促進効果を考慮すると、トリフルオロ酢酸、トリフルオロ酢酸無水物、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸無水物、硫酸、塩化水素などの酸が好ましく、当該の酸は水分を含んでいないことが好ましい。   The acid promotes the reaction between the silicon compound and the hydroxyl group on the silicon nitride-containing wafer surface. Examples of such acids include water-free acids such as trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, and hydrogen chloride. It is done. In particular, in consideration of the promotion effect of the reaction, acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride, and the like are preferable. Preferably not.

酸の添加量は、前記ケイ素化合物の総量100質量%に対して、0.01〜100質量%が好ましい。添加量が少なくなると触媒効果が低下するので好ましくない。また、過剰に添加しても触媒効果は向上せず、ケイ素化合物よりも多くすると、逆に触媒効果が低下する場合もある。さらに、不純物としてウェハ表面に残留する懸念もある。このため、前記酸の添加量は、前記ケイ素化合物の総量100質量%に対して、0.01〜100質量%が好ましく、より好ましくは0.1〜50質量%である。   The addition amount of the acid is preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the silicon compound. If the amount added is small, the catalytic effect is lowered, which is not preferable. Moreover, even if it adds excessively, a catalyst effect will not improve, but when it increases more than a silicon compound, a catalyst effect may fall conversely. Furthermore, there is a concern that the impurities may remain on the wafer surface as impurities. For this reason, as for the addition amount of the said acid, 0.01-100 mass% is preferable with respect to 100 mass% of total amounts of the said silicon compound, More preferably, it is 0.1-50 mass%.

また、前記の酸以外にも、前記ケイ素化合物と、窒化ケイ素含有ウェハ表面の水酸基との反応を促進させるものとして、前記処理液には、アンモニア、アルキルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、トリエチレンジアミン、ジメチルアニリン、ピリジン、ピペラジン、N−アルキルモルホリンなどの塩基、硫化アンモニウム、酢酸カリウム、メチルヒドロキシアミン塩酸塩などの塩、及び、スズ、アルミニウム、チタンなどの金属錯体や金属塩が含まれていてもよい。   In addition to the above acid, the treatment liquid may be ammonia, alkylamine, N, N, N ′, N ′, which promotes the reaction between the silicon compound and the hydroxyl group on the silicon nitride-containing wafer surface. -Bases such as tetramethylethylenediamine, triethylenediamine, dimethylaniline, pyridine, piperazine, N-alkylmorpholine, salts such as ammonium sulfide, potassium acetate, methylhydroxyamine hydrochloride, and metal complexes such as tin, aluminum, titanium, etc. Metal salts may be included.

前記一般式[5]のRの炭素数が6〜18であると、窒化ケイ素含有ウェハ表面により優れた疎水性を付与できるため、より好ましい。 It is more preferable that the carbon number of R 4 in the general formula [5] is 6 to 18 because excellent hydrophobicity can be imparted to the silicon nitride-containing wafer surface.

また、前記一般式[5]のZがケイ素元素と結合する元素が窒素である1価の官能基であると、反応速度が速い傾向があり、その結果、窒化ケイ素含有ウェハ表面に短時間で優れた疎水性を発現しやすいため好ましい。前記Zがケイ素元素と結合する元素が酸素である1価の官能基であるケイ素化合物は、ウェハ表面との反応や水分との反応により副生した化合物により、ケイ素化合物が失活しやすい傾向がある。一方、前記Zがケイ素元素と結合する元素が窒素である1価の官能基であるケイ素化合物では、そのような失活は起こりにくい。   In addition, when Z in the general formula [5] is a monovalent functional group in which the element bonded to the silicon element is nitrogen, the reaction rate tends to be high, and as a result, the surface of the silicon nitride-containing wafer is quickly formed. It is preferable because excellent hydrophobicity is easily expressed. The silicon compound that is a monovalent functional group in which Z is an element in which the element bonded to the silicon element is oxygen tends to be deactivated by a compound by-produced by reaction with the wafer surface or reaction with moisture. is there. On the other hand, such deactivation is unlikely to occur in a silicon compound having a monovalent functional group in which the element in which Z is bonded to the silicon element is nitrogen.

一般式[1]における疎水性基Rの炭素数が大きいケイ素化合物は、Rの立体障害のために窒化ケイ素含有ウェハ表面の水酸基との反応性が低下する場合がある。この場合は、一般式[1]の反応性基Xがケイ素元素と結合する元素が窒素である1価の官能基であるケイ素化合物を用いること、及び水を含まない酸を添加することで、窒化ケイ素含有ウェハ表面の水酸基と前記ケイ素化合物との反応が促進され、疎水性基による立体障害による反応性の低下を補ってくれるため特に好ましい。 The silicon compound having a large number of carbon atoms of the hydrophobic group R 1 in the general formula [1] may have a decreased reactivity with the hydroxyl group on the silicon nitride-containing wafer surface due to the steric hindrance of R 1 . In this case, by using a silicon compound that is a monovalent functional group in which the reactive group X of the general formula [1] is bonded to the silicon element is nitrogen, and by adding an acid not containing water, The reaction between the hydroxyl group on the silicon nitride-containing wafer surface and the silicon compound is accelerated, and this is particularly preferable because it compensates for a decrease in reactivity due to steric hindrance due to a hydrophobic group.

前記酸を含む処理液の場合、該処理液は、前記ケイ素化合物と前記酸が最初から混合されて含まれる1液タイプでもよいし、前記ケイ素化合物を含む液と前記酸を含む液の2液タイプとして、使用する際に混合するものであってもよい。   In the case of the treatment liquid containing the acid, the treatment liquid may be one liquid type in which the silicon compound and the acid are mixed from the beginning, or two liquids of the liquid containing the silicon compound and the liquid containing the acid. As a type, it may be mixed when used.

続いて、本発明のウェハの表面処理方法について説明する。本発明の処理剤及び処理液を用いて表面処理する窒化ケイ素を含むウェハは、シリコンウェハや、シリコンウェハ上にCVD法やスパッタ法などにより窒化ケイ素膜が形成されたものが挙げられる。また、サファイアウェハ、各種化合物半導体ウェハ、プラスチックウェハなどケイ素元素を含まないウェハ上に、窒化ケイ素膜が形成されたものであっても良い。なお、前記処理液は窒化ケイ素を含むウェハ表面、ウェハ上に形成された窒化ケイ素を含む膜表面などを疎水化することができる。   Next, the wafer surface treatment method of the present invention will be described. Examples of the wafer containing silicon nitride that is surface-treated using the treatment agent and the treatment liquid of the present invention include a silicon wafer and a silicon wafer on which a silicon nitride film is formed by CVD or sputtering. In addition, a silicon nitride film may be formed on a wafer that does not contain a silicon element, such as a sapphire wafer, various compound semiconductor wafers, and a plastic wafer. The treatment liquid can hydrophobize the surface of a wafer containing silicon nitride, the surface of a film containing silicon nitride formed on the wafer, and the like.

一般的に、表面に窒化ケイ素膜や窒化ケイ素部分を多く有するウェハにおいては、該表面に水酸基が少なく、従来の技術では疎水性を付与するのが難しかった。しかし、そのようなウェハであっても、本発明の処理剤及び処理液を用いるとウェハ表面に十分な疎水性を付与でき、ひいてはウェハ表面とレジストとの密着性を高める効果を奏する。故に表面に窒化ケイ素膜や窒化ケイ素部分を多く有するウェハは本発明の処理液を適用するのにふさわしい。なお、本発明のウェハの表面処理方法を施す前に、窒化ケイ素含有ウェハ表面を予め洗浄してもよい。前記洗浄に用いる洗浄液としては、水、有機溶媒、水と有機溶媒の混合液、及び、それらに酸または塩基が溶解されたもの等が挙げられる。前記洗浄として、窒化ケイ素含有ウェハを洗浄液中に浸漬してもよいし、窒化ケイ素含有ウェハをほぼ水平に保持して回転させながら回転中心付近に前記洗浄液を供給してウェハを1枚ずつ洗浄処理するスピン処理を行ってもよい。また、前記洗浄液を加熱した状態で用いてもよい。   In general, a wafer having a large amount of silicon nitride film or silicon nitride portion on the surface has few hydroxyl groups on the surface, and it has been difficult to impart hydrophobicity by conventional techniques. However, even with such a wafer, the use of the treatment agent and the treatment liquid of the present invention can impart sufficient hydrophobicity to the wafer surface, which in turn has the effect of increasing the adhesion between the wafer surface and the resist. Therefore, a wafer having many silicon nitride films or silicon nitride portions on the surface is suitable for applying the processing liquid of the present invention. Note that the surface of the silicon nitride-containing wafer may be cleaned in advance before performing the wafer surface treatment method of the present invention. Examples of the cleaning solution used for the cleaning include water, an organic solvent, a mixed solution of water and an organic solvent, and a solution in which an acid or a base is dissolved. As the cleaning, a silicon nitride-containing wafer may be immersed in a cleaning liquid, or the wafer is cleaned one by one by supplying the cleaning liquid to the vicinity of the rotation center while rotating the silicon nitride-containing wafer almost horizontally. Spin processing may be performed. Further, the cleaning liquid may be used in a heated state.

本発明は、窒化ケイ素を含むウェハ表面を疎水化することにより、該ウェハとレジストとの密着性を高める前記ウェハの表面処理方法であって、
前記ウェハ表面に窒化ケイ素含有ウェハ用表面処理剤又は窒化ケイ素含有ウェハ用表面処理液の蒸気を接触、又は前記ウェハ表面に窒化ケイ素含有ウェハ用表面処理剤又は窒化ケイ素含有ウェハ用表面処理液を接触させて、該ウェハ表面を疎水化する、表面処理工程、
前記ウェハ表面にレジストを成膜する、レジスト成膜工程
を有する。
The present invention is the wafer surface treatment method for improving the adhesion between the wafer and the resist by hydrophobizing the wafer surface containing silicon nitride,
Contact the wafer surface with a silicon nitride-containing wafer surface treatment agent or silicon nitride-containing wafer surface treatment solution, or contact the wafer surface with a silicon nitride-containing wafer surface treatment agent or silicon nitride-containing wafer surface treatment solution. A surface treatment step for hydrophobizing the wafer surface,
A resist film forming step of forming a resist film on the wafer surface;

まず、表面処理工程では前記ウェハ表面に窒化ケイ素含有ウェハ用表面処理剤又は窒化ケイ素含有ウェハ用表面処理液の蒸気を接触、又は前記ウェハ表面に窒化ケイ素含有ウェハ用表面処理剤又は窒化ケイ素含有ウェハ用表面処理液を接触させて、ウェハ表面を疎水化する。前記ウェハを表面処理する方法としては、前記の処理剤又は処理液を窒素などのガスでバブリングした気体をウェハ表面に吹き付ける、又は前記の処理剤又は処理液を減圧下及び/又は加熱下で蒸気化させてウェハ表面に付着させる蒸気処理法が一般的に用いられているが、蒸気処理法に限らず、前記の処理剤又は処理液を直接ウェハ表面に接触させる液体処理法で処理しても良い。液体処理法は、例えばスピン処理などで表面処理工程からレジスト成膜工程まで連続して行えることから、生産工程の簡素化に繋がると考えられる。本発明の窒化ケイ素含有ウェハ用表面処理剤又は窒化ケイ素含有ウェハ用表面処理液は、液体処理法であっても、窒化ケイ素含有ウェハ表面に充分な疎水性を付与することが可能であるため、大きなメリットがあると考えられる。   First, in the surface treatment step, the surface of the wafer is contacted with a silicon nitride-containing wafer surface treatment agent or a silicon nitride-containing wafer surface treatment solution, or the silicon nitride-containing wafer surface treatment agent or silicon nitride-containing wafer is contacted with the wafer surface. The surface of the wafer is brought into contact to make the wafer surface hydrophobic. As a method for surface-treating the wafer, a gas obtained by bubbling the treatment agent or treatment solution with a gas such as nitrogen is sprayed on the wafer surface, or the treatment agent or treatment solution is vaporized under reduced pressure and / or heating. Generally, a vapor treatment method for forming a wafer and adhering to the wafer surface is used, but not limited to the vapor treatment method, even if the treatment agent or the treatment liquid is directly contacted with the wafer surface. good. Since the liquid processing method can be performed continuously from the surface processing step to the resist film forming step by, for example, spin processing, it is considered to lead to simplification of the production process. Since the surface treatment agent for silicon nitride-containing wafers or the surface treatment liquid for silicon nitride-containing wafers of the present invention can impart sufficient hydrophobicity to the silicon nitride-containing wafer surface even in a liquid treatment method, There seems to be a big merit.

前記の表面処理剤又は表面処理液を用いて液体処理法で表面処理を行う場合、前記の表面処理剤又は表面処理液の供給方法は特に限定されず、前記ウェハ表面と、前記の表面処理剤又は表面処理液が接触するような方法であれば表面処理することが可能である。例えば、ウェハをほぼ水平に保持して回転させながら回転中心付近に前記の処理剤又は処理液を供給してウェハを1枚ずつ処理するスピン処理などがより好適に用いられる。   When performing the surface treatment by the liquid treatment method using the surface treatment agent or the surface treatment liquid, the method for supplying the surface treatment agent or the surface treatment liquid is not particularly limited, and the wafer surface and the surface treatment agent are used. Alternatively, the surface treatment can be performed as long as the surface treatment liquid is in contact with the surface treatment liquid. For example, a spin process for processing the wafers one by one by supplying the processing agent or the processing liquid to the vicinity of the rotation center while rotating the wafer while holding the wafer substantially horizontal is more preferably used.

表面処理工程では、前記の処理剤又は処理液の温度を高くすると、より短時間で表面処理しやすくなる。しかし、該温度を高くしすぎると、前記の処理剤又は処理液の沸騰や蒸発などにより、該処理剤又は処理液の安定性が損なわれる恐れがあるため、前記温度は10〜160℃であることが好ましく、特には15〜120℃が好ましい。   In the surface treatment step, when the temperature of the treatment agent or treatment liquid is increased, the surface treatment is facilitated in a shorter time. However, if the temperature is too high, the stability of the treatment agent or treatment liquid may be impaired due to boiling or evaporation of the treatment agent or treatment solution, and thus the temperature is 10 to 160 ° C. Particularly preferred is 15 to 120 ° C.

前記表面処理工程の後、前記ウェハ表面にレジストを成膜するレジスト成膜工程を行う。なお、前記表面処理工程後に、ウェハ表面に前記の処理剤又は処理液が残存した状態で該表面に硬化前のレジストを供給し、処理剤又は処理液を該レジストで置換しても良いし、前記表面処理工程後のウェハ表面に残存する前記の処理剤又は処理液を乾燥させた後に、該表面に硬化前のレジストを供給しても良い。また、前記表面処理工程後のウェハ表面を、パーティクルの除去等のために溶媒や水で洗浄し、ウェハ表面に前記溶媒や水が残存した状態で該表面に硬化前のレジストを供給し、溶媒や水を該レジストで置換しても良いし、前記洗浄後のウェハ表面に残存する溶媒や水を乾燥させた後に、該表面に硬化前のレジストを供給しても良い。レジストの成膜方法については特に限定されず、既知の方法を用いることが可能である。例えば、ウェハをほぼ水平に保持して回転させながら回転中心付近に硬化前のレジストを供給してウェハを1枚ずつ処理するスピン処理などがより好適に用いられる。   After the surface treatment step, a resist film forming step for forming a resist film on the wafer surface is performed. In addition, after the surface treatment step, the resist before curing may be supplied to the surface with the treatment agent or treatment liquid remaining on the wafer surface, and the treatment agent or treatment solution may be replaced with the resist. After drying the treatment agent or treatment liquid remaining on the wafer surface after the surface treatment step, a resist before curing may be supplied to the surface. In addition, the wafer surface after the surface treatment step is washed with a solvent or water for particle removal or the like, and the uncured resist is supplied to the surface with the solvent or water remaining on the wafer surface. Alternatively, the resist may be replaced with water, or after drying the solvent and water remaining on the cleaned wafer surface, the uncured resist may be supplied to the surface. The method for forming the resist is not particularly limited, and a known method can be used. For example, a spin process in which the wafer is processed one by one by supplying the uncured resist near the center of rotation while holding the wafer substantially horizontal and rotating is more preferably used.

レジストを成膜した後、リソグラフィやエッチングなどを経てウェハ表面に微細なパターンを形成する場合の一般的な方法としては、前記のレジスト成膜工程でウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、又は、露光されなかったレジストをエッチング除去することによって所望のパターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、パターンを有するレジストを得ることができる。続いて、ウェハをエッチングする。このとき、レジストパターンの凹の部分が選択的にエッチングされる。最後に、レジストを剥離すると、パターンを有するウェハが得られる。   After forming a resist, a general method for forming a fine pattern on the wafer surface through lithography, etching, etc. is to apply the resist on the wafer surface in the resist film forming step, and then apply a resist mask. Then, the resist is exposed to light, and the resist having a desired pattern is produced by etching away the exposed resist or the resist that has not been exposed. A resist having a pattern can also be obtained by pressing a mold having a pattern against the resist. Subsequently, the wafer is etched. At this time, the concave portion of the resist pattern is selectively etched. Finally, the resist is removed to obtain a wafer having a pattern.

ウェハ表面の疎水性の程度と、レジストとウェハの密着性についてはこれまでに種々検討されてきており、ウェハ表面の疎水性が高いほど密着性が良くなることが分かっている。そこで、本発明の処理剤又は処理液を用いて窒化ケイ素含有ウェハ表面を処理し、処理後のウェハ表面の水に対する接触角を測定することにより、処理後のウェハ表面の疎水性を評価した。   Various studies have been made on the degree of hydrophobicity of the wafer surface and the adhesion between the resist and the wafer, and it has been found that the higher the hydrophobicity of the wafer surface, the better the adhesion. Thus, the hydrophobicity of the treated wafer surface was evaluated by treating the silicon nitride-containing wafer surface with the treatment agent or treatment liquid of the present invention and measuring the contact angle of the treated wafer surface with water.

[接触角の評価方法]
ウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角を接触角計(協和界面科学製:CA−X型)で測定し接触角とした。
[Evaluation method of contact angle]
About 2 μl of pure water was placed on the wafer surface, and the angle formed by the water droplet and the wafer surface was measured with a contact angle meter (Kyowa Interface Science Co., Ltd .: CA-X type) to obtain the contact angle.

[実施例1]
(1)窒化ケイ素含有ウェハ用表面処理液の調製
ケイ素化合物としてノナフルオロヘキシルジメチルクロロシラン〔C(CH(CHSiCl〕;1g、希釈溶媒としてハイドロフルオロエーテル(3M製Novec7100);96g、プロピレングリコールモノメチルエーテルアセテート(PGMEA);3gを混合し(前記溶媒を表1中でNovec7100/PGMEA−3と表記する)、約5分間撹拌して、表面処理液の総量に対するケイ素化合物の濃度(以降「ケイ素化合物濃度」と記載する)が1質量%の窒化ケイ素含有ウェハ用表面処理液を得た。
[Example 1]
(1) Preparation of silicon nitride-containing wafer surface treatment solution Nonafluorohexyldimethylchlorosilane [C 4 F 9 (CH 2 ) 2 (CH 3 ) 2 SiCl] as a silicon compound; 1 g, hydrofluoroether (manufactured by 3M) as a diluting solvent Novec7100); 96 g, propylene glycol monomethyl ether acetate (PGMEA); 3 g are mixed (the solvent is indicated as Novec7100 / PGMEA-3 in Table 1), and stirred for about 5 minutes to obtain silicon based on the total amount of the surface treatment solution. A surface treatment solution for a silicon nitride-containing wafer having a compound concentration (hereinafter referred to as “silicon compound concentration”) of 1% by mass was obtained.

(2)窒化ケイ素含有ウェハの洗浄
LP−CVDで作製した平滑な窒化ケイ素膜付きシリコンウェハ(表面に厚さ50nmの窒化ケイ素層を有する平滑なシリコンウェハ)を室温で1質量%のフッ酸水溶液に2分間浸漬し、次いで室温で純水に1分間浸漬し、28質量%アンモニア水:30質量%過酸化水素水:水を1:1:5の体積比で混合し、ホットプレートで液温を70℃とした洗浄液に1分間浸漬し、室温で純水に1分間浸漬し、室温で2−プロパノールに1分間浸漬した。
(2) Cleaning of silicon nitride-containing wafer A silicon wafer with a smooth silicon nitride film (smooth silicon wafer having a silicon nitride layer with a thickness of 50 nm on the surface) produced by LP-CVD is used at room temperature in a 1% by mass hydrofluoric acid aqueous solution. 2 minutes, then immersed in pure water for 1 minute at room temperature, mixed with 28% by weight ammonia water: 30% by weight hydrogen peroxide water: water at a volume ratio of 1: 1: 5, and the liquid temperature on a hot plate Was immersed in a cleaning solution at 70 ° C. for 1 minute, immersed in pure water at room temperature for 1 minute, and immersed in 2-propanol at room temperature for 1 minute.

(3)窒化ケイ素含有ウェハ表面への処理液による表面処理
「(2)窒化ケイ素含有ウェハの洗浄」後のウェハを、上記「(1)窒化ケイ素含有ウェハ用表面処理液の調製」で調製した処理液に20℃で1分間浸漬させた。その後、ウェハを室温で2−プロパノールに1分間浸漬し、次いで、室温で純水に1分間浸漬した。最後に、ウェハを純水から取出し、エアーを吹き付けて、表面の純水を除去した。
(3) Surface treatment of silicon nitride-containing wafer surface with treatment liquid The wafer after “(2) Cleaning of silicon nitride-containing wafer” was prepared in the above “(1) Preparation of surface treatment liquid for silicon nitride-containing wafer”. It was immersed in the treatment liquid at 20 ° C. for 1 minute. Thereafter, the wafer was immersed in 2-propanol for 1 minute at room temperature, and then immersed in pure water for 1 minute at room temperature. Finally, the wafer was taken out from the pure water and air was blown to remove the pure water on the surface.

得られたウェハを上記「接触角の評価方法」に記載した要領で評価したところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は94°となり、優れた疎水性を示した。   When the obtained wafer was evaluated in the manner described in the above “Evaluation Method of Contact Angle”, as shown in Table 1, the initial contact angle before the surface treatment was less than 10 °. The angle was 94 °, indicating excellent hydrophobicity.

Figure 2013103962
Figure 2013103962

[実施例2〜3]
実施例1で用いた希釈溶媒を適宜変更して、実施例1と同様の手順で、ウェハの表面処理を行い、さらにその評価を行った。結果を表1に示す。なお、表1中で、CTFP/PGMEAは実施例1のNovec7100の代わりに1−クロロ−3,3,3−トリフルオロプロペン(CTFP)を用いた溶媒を意味し、DCTFP/PGMEAは実施例1のNovec7100の代わりにcis−1,2−ジクロロ−3,3,3−トリフルオロプロペン(DCTFP)を用いた溶媒を意味する。
[Examples 2-3]
The dilution solvent used in Example 1 was appropriately changed, and the wafer surface treatment was performed in the same procedure as in Example 1 and further evaluated. The results are shown in Table 1. In Table 1, CTFP / PGMEA means a solvent using 1-chloro-3,3,3-trifluoropropene (CTFP) instead of Novec7100 in Example 1, and DCTFP / PGMEA in Example 1. The solvent using cis-1,2-dichloro-3,3,3-trifluoropropene (DCTFP) in place of Novec7100

[実施例4]
ケイ素化合物として、オクチルジメチルクロロシラン〔C17(CHSiCl〕;10g、希釈溶媒としてハイドロフルオロエーテル(3M製Novec7100);80g、プロピレングリコールモノメチルエーテルアセテート(PGMEA);10gを混合し(前記溶媒を表1中でNovec7100/PGMEA−10と表記する)、約5分間撹拌して、表面処理液の総量に対するケイ素化合物の濃度が10質量%の窒化ケイ素含有ウェハ用表面処理液を得た。その後、前記窒化ケイ素膜付きシリコンウェハを前記処理液に20℃で60分間浸漬した。その他の処理は、実施例1と同じである。得られたウェハを上記「接触角の評価方法」に記載した要領で評価したところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は75°となり、優れた疎水性を示した。
[Example 4]
10 g of octyldimethylchlorosilane [C 8 H 17 (CH 3 ) 2 SiCl] as a silicon compound; hydrofluoroether (3M Novec7100) as a diluting solvent; 80 g, propylene glycol monomethyl ether acetate (PGMEA); 10 g ( The solvent is expressed as “Novec7100 / PGMEA-10” in Table 1) and stirred for about 5 minutes to obtain a surface treatment solution for a silicon nitride-containing wafer having a silicon compound concentration of 10 mass% with respect to the total amount of the surface treatment solution. . Thereafter, the silicon wafer with the silicon nitride film was immersed in the treatment solution at 20 ° C. for 60 minutes. Other processes are the same as those in the first embodiment. When the obtained wafer was evaluated in the manner described in the above “Evaluation Method of Contact Angle”, as shown in Table 1, the initial contact angle before the surface treatment was less than 10 °. The angle was 75 °, indicating excellent hydrophobicity.

[実施例5]
ケイ素化合物としてオクチルジメチルシリルジメチルアミン〔C17(CHSiN(CH〕;1g、希釈溶媒としてPGMEA;98.9g、さらに酸としてトリフルオロ酢酸〔CFCOOH〕;0.1gを混合し、約5分間撹拌して、ケイ素化合物濃度が1質量%の窒化ケイ素含有ウェハ用表面処理液を得た。なお、前記ケイ素化合物の総量100質量%に対する前記酸の添加量(以下、酸濃度と記載する)は10質量%である。それ以外は、すべて実施例1と同じである。評価結果は表1に示すとおり、表面処理後の接触角は86°となり、優れた疎水性を示した。
[Example 5]
1 g of octyldimethylsilyldimethylamine [C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 ] as a silicon compound; 98.9 g of PGMEA as a diluting solvent; and trifluoroacetic acid [CF 3 COOH] as an acid; 0 0.1 g was mixed and stirred for about 5 minutes to obtain a silicon nitride-containing wafer surface treatment solution having a silicon compound concentration of 1% by mass. The amount of the acid added to the total amount of the silicon compound of 100% by mass (hereinafter referred to as acid concentration) is 10% by mass. The rest is the same as the first embodiment. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 86 °, indicating excellent hydrophobicity.

[実施例6〜24、27〜29]
実施例5で用いたケイ素化合物、ケイ素化合物濃度、酸、酸濃度、希釈溶媒、表面処理時間、及び、表面処理温度を適宜変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表1に示す。なお、表1中で、C(CHSiN(CHはブチルジメチルシリルジメチルアミンを意味し、(CFCO)Oはトリフルオロ酢酸無水物を意味する。
[Examples 6 to 24, 27 to 29]
The silicon compound used in Example 5, the silicon compound concentration, the acid, the acid concentration, the diluting solvent, the surface treatment time, and the surface treatment temperature were appropriately changed to perform surface treatment of the wafer, and further evaluated. The results are shown in Table 1. In Table 1, C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 means butyldimethylsilyldimethylamine, and (CF 3 CO) 2 O means trifluoroacetic anhydride.

[実施例25]
ケイ素化合物としてオクチルシリルトリスジメチルアミン〔C17Si〔N(CH〕;1g、希釈溶媒としてPGMEA;98.9g、さらに酸としてトリフルオロ酢酸無水物〔(CFCO)O〕;0.1gを混合し、約5分間撹拌して、ケイ素化合物濃度が1質量%の窒化ケイ素含有ウェハ用表面処理液を得た。それ以外は、すべて実施例5と同じである。評価結果は表1に示すとおり、表面処理後の接触角は87°となり、優れた疎水性を示した。しかし、前記処理液を大気中で30分間放置したところ、該処理液中に白色固体が沈殿物として析出した。これは、処理液中に大気中の水分が混入することにより、ケイ素化合物の重合が進んだために不溶物が発生したものと考えられる。なお、本実施例以外の実施例においては上記のような固体の析出は起こらなかった。
[Example 25]
Octylsilyltrisdimethylamine [C 8 H 17 Si [N (CH 3 ) 2 ] 3 ] as a silicon compound; 1 g, PGMEA as a diluting solvent; 98.9 g, and trifluoroacetic anhydride [(CF 3 CO) as an acid 2 O]; 0.1 g was mixed and stirred for about 5 minutes to obtain a surface treatment solution for a silicon nitride-containing wafer having a silicon compound concentration of 1% by mass. The rest is the same as Example 5. As shown in Table 1, the evaluation results showed that the contact angle after the surface treatment was 87 °, indicating excellent hydrophobicity. However, when the treatment liquid was allowed to stand in the atmosphere for 30 minutes, a white solid precipitated as a precipitate in the treatment liquid. This is considered that insoluble matter was generated due to the progress of the polymerization of the silicon compound due to the mixing of moisture in the atmosphere into the treatment liquid. In the examples other than this example, the above solid precipitation did not occur.

[実施例26]
(1)窒化ケイ素含有ウェハ用表面処理液の調製
実施例5と同様の窒化ケイ素含有ウェハ用表面処理液を作製した。
[Example 26]
(1) Preparation of silicon nitride-containing wafer surface treatment solution A silicon nitride-containing wafer surface treatment solution similar to Example 5 was prepared.

(2)窒化ケイ素含有ウェハの洗浄
LP−CVDで作製した平滑な窒化ケイ素膜付きシリコンウェハ(表面に厚さ50nmの窒化ケイ素層を有する平滑なシリコンウェハ、直径4インチ)を室温で1質量%のフッ酸水溶液に2分間浸漬し、次いで室温で純水に1分間浸漬し、28質量%アンモニア水:30質量%過酸化水素水:水を1:1:5の体積比で混合し、ホットプレートで液温を70℃とした洗浄液に1分間浸漬し、室温で純水に1分間浸漬し、室温で2−プロパノールに1分間浸漬した。
(2) Cleaning of silicon nitride-containing wafer 1% by mass of a silicon wafer with a smooth silicon nitride film (smooth silicon wafer having a silicon nitride layer with a thickness of 50 nm on the surface, 4 inches in diameter) produced by LP-CVD at room temperature Soaked in an aqueous hydrofluoric acid solution for 2 minutes, then immersed in pure water for 1 minute at room temperature, mixed with 28% by mass ammonia water: 30% by mass hydrogen peroxide water: water at a volume ratio of 1: 1: 5, and hot The plate was immersed in a cleaning solution having a liquid temperature of 70 ° C. for 1 minute, immersed in pure water at room temperature for 1 minute, and immersed in 2-propanol at room temperature for 1 minute.

(3)窒化ケイ素含有ウェハ表面への処理液による表面処理
「(2)窒化ケイ素含有ウェハの洗浄」後のウェハを、ほぼ水平に保持して回転させるウェハ保持回転機構であるスピンチャックに保持させ、該スピンチャックを約100rpmの回転速度で回転させながら、上記「(1)窒化ケイ素含有ウェハ用表面処理液の調製」で調製した処理液を20℃で60秒間供給しスピン処理した。その後、同様に回転させたウェハに、室温で2−プロパノールを1分間供給し、次いで、室温で純水を1分間供給した。最後に、そのまま該ウェハを約100rpmの回転速度で回転させて、ウェハ表面から純水を除去した。
(3) Surface treatment of silicon nitride-containing wafer surface with treatment liquid “(2) Cleaning of silicon nitride-containing wafer” is held by a spin chuck, which is a wafer holding and rotating mechanism that holds and rotates the wafer substantially horizontally. Then, while the spin chuck was rotated at a rotation speed of about 100 rpm, the treatment liquid prepared in “(1) Preparation of surface treatment liquid for silicon nitride-containing wafer” was supplied at 20 ° C. for 60 seconds for spin treatment. Thereafter, 2-propanol was supplied to the similarly rotated wafer at room temperature for 1 minute, and then pure water was supplied at room temperature for 1 minute. Finally, the wafer was rotated as it was at a rotation speed of about 100 rpm to remove pure water from the wafer surface.

得られたウェハを上記「接触角の評価方法」に記載した要領で評価したところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は85°となり、優れた疎水性を示した。   When the obtained wafer was evaluated in the manner described in the above “Evaluation Method of Contact Angle”, as shown in Table 1, the initial contact angle before the surface treatment was less than 10 °. The angle was 85 °, indicating excellent hydrophobicity.

[比較例1]
ケイ素化合物として、ヘキサメチルジシラザン〔HMDS、〔(CHSi〕NH〕;10g、希釈溶媒としてプロピレングリコールモノメチルエーテルアセテート(PGMEA);90gを用いて、窒化ケイ素含有ウェハ用表面処理液を調製した。さらに、表面処理時間を60分間とした。それ以外は、すべて実施例1と同じである。評価結果は表1に示すとおり、表面処理後の接触角は36°となり、疎水性は低かった。
[Comparative Example 1]
10 g of hexamethyldisilazane [HMDS, [(CH 3 ) 3 Si] 2 NH] as a silicon compound; propylene glycol monomethyl ether acetate (PGMEA); 90 g as a diluting solvent; Was prepared. Furthermore, the surface treatment time was 60 minutes. The rest is the same as the first embodiment. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 36 °, and the hydrophobicity was low.

[比較例2]
ケイ素化合物として、ヘキサメチルジシラザン〔HMDS、〔(CHSi〕NH〕;3g、有機溶媒としてハイドロフルオロエーテル(3M製Novec7100);97gを用いて、窒化ケイ素含有ウェハ用表面処理液を調製した。実施例1と同様に洗浄を行った窒化ケイ素含有ウェハを、一旦乾燥させた後、前記処理液を入れたビーカーを250℃に設定したホットプレート上に置いて該処理液を蒸気化させた蒸気に5分間曝し、該ウェハ表面に前記処理液の蒸気を付着させた。蒸気の正確な温度は分からないが、Novec7100の沸点である61℃以上と考えられる。評価結果は表1に示すとおり、表面処理後の接触角は46°となり、疎水性は低かった。
[Comparative Example 2]
A silicon nitride-containing wafer surface treatment solution using 3 g of hexamethyldisilazane [HMDS, [(CH 3 ) 3 Si] 2 NH] as a silicon compound; 97 g of hydrofluoroether (3M Novec7100) as an organic solvent; Was prepared. A silicon nitride-containing wafer that has been cleaned in the same manner as in Example 1 was once dried, and then a beaker containing the treatment liquid was placed on a hot plate set at 250 ° C. to vaporize the treatment liquid. For 5 minutes to allow the vapor of the processing solution to adhere to the wafer surface. Although the exact temperature of the steam is not known, it is considered to be 61 ° C. or higher which is the boiling point of Novec7100. As shown in Table 1, the contact angle after the surface treatment was 46 ° and the hydrophobicity was low as shown in Table 1.

[比較例3]
ケイ素化合物として、トリメチルシリルジメチルアミン〔(CHSiN(CH〕;1gを用いた以外はすべて実施例5と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は60°となり、疎水性は低かった。
[Comparative Example 3]
The silicon compound was the same as Example 5 except that 1 g of trimethylsilyldimethylamine [(CH 3 ) 3 SiN (CH 3 ) 2 ]; 1 g was used. As shown in Table 1, the contact angle after the surface treatment was 60 ° and the hydrophobicity was low as shown in Table 1.

[比較例4]
ケイ素化合物として、ビストリフルオロプロピルジメチルシラザン〔〔CF(CH(CHSi〕NH〕;1gを用いた以外はすべて実施例5と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は62°となり、疎水性は低かった。
[Comparative Example 4]
The same as Example 5 except that bistrifluoropropyldimethylsilazane [[CF 3 (CH 2 ) 2 (CH 3 ) 2 Si] 2 NH]; 1 g was used as the silicon compound. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 62 °, and the hydrophobicity was low.

上述のように、前記一般式[1]で表されるケイ素化合物を含む処理液を用いる実施例1〜29では、窒化ケイ素含有ウェハ表面に疎水性を付与することができた。さらに、前記一般式[2]で表されるケイ素化合物を含む処理液を用いる実施例1〜24、26〜29では、窒化ケイ素含有ウェハ表面に疎水性を付与できるとともに、処理液を大気中で放置しても、該処理液中に不溶物が析出することがなかった。さらに、前記一般式[3]で表されるケイ素化合物を含む処理液を用いる実施例1〜24、26〜29では、より短時間で前記ウェハ表面に疎水性を付与することができた。さらに、前記一般式[4]で表されるケイ素化合物を含む処理液を用いる実施例1〜3では、前記ウェハ表面にさらに短時間でより優れた疎水性を付与することができた。また、前記一般式[5]で表されるケイ素化合物を含む処理液を用いる実施例5〜24、26〜28では、より短時間で前記ウェハ表面に疎水性を付与することができた。さらに、前記一般式[5]のRの炭素数が6〜18であるケイ素化合物を含む処理液を用いる実施例5〜24、26では、前記ウェハ表面により優れた疎水性を付与することができた。さらに、前記一般式[5]のZがケイ素元素と結合する元素が窒素である1価の官能基であるケイ素化合物を含む処理液を用いる実施例5〜24、26では、前記ウェハ表面により優れた疎水性を付与することができた。これに対し、比較例1〜4では窒化ケイ素含有ウェハ表面に充分な疎水性を付与することができなかった。 As described above, in Examples 1 to 29 using the treatment liquid containing the silicon compound represented by the general formula [1], hydrophobicity could be imparted to the silicon nitride-containing wafer surface. Further, in Examples 1 to 24 and 26 to 29 using the treatment liquid containing the silicon compound represented by the general formula [2], hydrophobicity can be imparted to the silicon nitride-containing wafer surface, and the treatment liquid is used in the atmosphere. Even if it was allowed to stand, insoluble matters did not precipitate in the treatment liquid. Furthermore, in Examples 1 to 24 and 26 to 29 using the treatment liquid containing the silicon compound represented by the general formula [3], hydrophobicity could be imparted to the wafer surface in a shorter time. Furthermore, in Examples 1 to 3 using the treatment liquid containing the silicon compound represented by the general formula [4], it was possible to impart more excellent hydrophobicity to the wafer surface in a shorter time. In Examples 5 to 24 and 26 to 28 using the treatment liquid containing the silicon compound represented by the general formula [5], hydrophobicity could be imparted to the wafer surface in a shorter time. Furthermore, in Examples 5 to 24 and 26 using a treatment liquid containing a silicon compound having 6 to 18 carbon atoms in R 4 of the general formula [5], it is possible to impart excellent hydrophobicity to the wafer surface. did it. Furthermore, in Examples 5 to 24 and 26 using a treatment liquid containing a silicon compound which is a monovalent functional group in which Z in the general formula [5] is an element in which the element bonded to the silicon element is nitrogen, the wafer surface is more excellent. It was possible to impart hydrophobicity. On the other hand, in Comparative Examples 1 to 4, sufficient hydrophobicity could not be imparted to the silicon nitride-containing wafer surface.

Claims (11)

窒化ケイ素を含むウェハ表面にレジストを成膜する前に、該ウェハ表面を疎水化することにより該ウェハとレジストとの密着性を改善するための窒化ケイ素含有ウェハ用表面処理剤であって、前記処理剤が下記一般式[1]で表されるケイ素化合物であることを特徴とする、窒化ケイ素含有ウェハ用表面処理剤。
SiX4−a [1]
[式[1]中、Rは、それぞれ互いに独立して、水素基、又は炭素数が1〜18の炭化水素基であり、該炭化水素基の水素原子はハロゲン原子で置換されていてもよい。式[1]においてRとして含まれる炭素原子の総数は6以上である。Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1〜3の整数である。]
A silicon nitride-containing surface treatment agent for a wafer for improving adhesion between the wafer and the resist by hydrophobizing the wafer surface before forming a resist on the wafer surface containing silicon nitride, A surface treatment agent for a silicon nitride-containing wafer, wherein the treatment agent is a silicon compound represented by the following general formula [1].
R 1 a SiX 4-a [1]
[In the formula [1], R 1 s are each independently a hydrogen group or a hydrocarbon group having 1 to 18 carbon atoms, and the hydrogen atom of the hydrocarbon group may be substituted with a halogen atom. Good. In the formula [1], the total number of carbon atoms contained as R 1 is 6 or more. X is each independently at least one selected from a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and a halogen group And a is an integer of 1 to 3. ]
前記のケイ素化合物が下記一般式[2]で表されるケイ素化合物であることを特徴とする、請求項1に記載の窒化ケイ素含有ウェハ用表面処理剤。
SiX [2]
[式[2]中、R、Xはそれぞれ一般式[1]と同様である。]
The surface treatment agent for a silicon nitride-containing wafer according to claim 1, wherein the silicon compound is a silicon compound represented by the following general formula [2].
R 1 3 SiX [2]
[In the formula [2], R 1 and X are the same as in the general formula [1]. ]
前記のケイ素化合物が下記一般式[3]で表されるケイ素化合物であることを特徴とする、請求項1又は請求項2に記載の窒化ケイ素含有ウェハ用表面処理剤。
(CHSiX [3]
[式[3]中、Rは炭素数が4〜18の炭化水素基であり、該炭化水素基の水素原子はハロゲン原子で置換されていてもよい。Xは一般式[1]と同様である。]
The surface treatment agent for a silicon nitride-containing wafer according to claim 1 or 2, wherein the silicon compound is a silicon compound represented by the following general formula [3].
R 2 (CH 3 ) 2 SiX [3]
Wherein [3], R 2 is a hydrocarbon group having a carbon number of 4 to 18, a hydrogen atom of the hydrocarbon group may be substituted with a halogen atom. X is the same as in the general formula [1]. ]
前記のケイ素化合物が下記一般式[4]で表されるケイ素化合物であることを特徴とする、請求項1乃至請求項3のいずれかに記載の窒化ケイ素含有ウェハ用表面処理剤。
(CHSiY [4]
[式[4]中、Rは炭素数が4〜18の、少なくとも一部の水素原子がハロゲン原子で置換された炭化水素基であり、Yはハロゲン基である。]
The silicon nitride-containing wafer surface treatment agent according to any one of claims 1 to 3, wherein the silicon compound is a silicon compound represented by the following general formula [4].
R 3 (CH 3 ) 2 SiY [4]
[In the formula [4], R 3 is a hydrocarbon group having 4 to 18 carbon atoms in which at least some of the hydrogen atoms are substituted with halogen atoms, and Y is a halogen group. ]
請求項1乃至請求項4のいずれかに記載の窒化ケイ素含有ウェハ用表面処理剤を希釈溶媒で溶解して得られる窒化ケイ素含有ウェハ用表面処理液であって、該処理液の総量100質量%に対して、前記のケイ素化合物が0.1〜50質量%含有されることを特徴とする、窒化ケイ素含有ウェハ用表面処理液。 A silicon nitride-containing surface treatment solution for a silicon nitride-containing wafer obtained by dissolving the surface treatment agent for a silicon nitride-containing wafer according to any one of claims 1 to 4 with a diluent solvent, wherein the total amount of the treatment solution is 100% by mass In contrast, a silicon nitride-containing surface treatment solution for a wafer containing 0.1 to 50% by mass of the silicon compound. 請求項1乃至請求項3のいずれかに記載の窒化ケイ素含有ウェハ用表面処理剤と酸を希釈溶媒で溶解して得られる窒化ケイ素含有ウェハ用表面処理液であって、該処理液の総量100質量%に対して、前記のケイ素化合物が0.1〜50質量%含有されることを特徴とする、窒化ケイ素含有ウェハ用表面処理液。 A surface treatment solution for a silicon nitride-containing wafer obtained by dissolving the surface treatment agent for a silicon nitride-containing wafer according to any one of claims 1 to 3 and an acid with a diluent solvent, wherein the total amount of the treatment solution is 100 A silicon nitride-containing surface treatment solution for a wafer containing 0.1 to 50% by mass of the silicon compound based on% by mass. 前記のケイ素化合物が下記一般式[5]で表されるケイ素化合物であることを特徴とする、請求項6に記載の窒化ケイ素含有ウェハ用表面処理液。
(CHSiZ [5]
[式[5]中、Rは炭素数が4〜18の炭化水素基であり、該炭化水素基の水素原子はハロゲン原子で置換されていてもよい。Zはケイ素元素と結合する元素が窒素である1価の官能基、又は、ケイ素元素と結合する元素が酸素である1価の官能基である。]
The silicon nitride-containing wafer surface treatment solution according to claim 6, wherein the silicon compound is a silicon compound represented by the following general formula [5].
R 4 (CH 3 ) 2 SiZ [5]
[In the formula [5], R 4 is a hydrocarbon group having 4 to 18 carbon atoms, and the hydrogen atom of the hydrocarbon group may be substituted with a halogen atom. Z is a monovalent functional group in which the element bonded to the silicon element is nitrogen, or a monovalent functional group in which the element bonded to the silicon element is oxygen. ]
前記一般式[5]のRの炭素数が6〜18であることを特徴とする、請求項6又は請求項7に記載の窒化ケイ素含有ウェハ用表面処理液。 The silicon nitride-containing surface treatment solution for a silicon nitride-containing wafer according to claim 6, wherein R 4 in the general formula [5] has 6 to 18 carbon atoms. 前記一般式[5]のZがケイ素元素と結合する元素が窒素である1価の官能基であることを特徴とする、請求項6乃至請求項8のいずれかに記載の窒化ケイ素含有ウェハ用表面処理液。 The silicon nitride-containing wafer according to any one of claims 6 to 8, wherein Z in the general formula [5] is a monovalent functional group in which an element bonded to a silicon element is nitrogen. Surface treatment liquid. 窒化ケイ素を含むウェハ表面を疎水化することにより、該ウェハとレジストとの密着性を高める前記ウェハの表面処理方法であって、以下に示す工程、
前記ウェハ表面に窒化ケイ素含有ウェハ用表面処理剤又は窒化ケイ素含有ウェハ用表面処理液の蒸気を接触、又は前記ウェハ表面に窒化ケイ素含有ウェハ用表面処理剤又は窒化ケイ素含有ウェハ用表面処理液を接触させて、該ウェハ表面を疎水化する、表面処理工程、
前記ウェハ表面にレジストを成膜する、レジスト成膜工程
を含み、表面処理工程において請求項1乃至請求項4のいずれかに記載の窒化ケイ素含有ウェハ用表面処理剤、又は請求項5乃至請求項9のいずれかに記載の窒化ケイ素含有ウェハ用表面処理液を用いることを特徴とする、窒化ケイ素含有ウェハの表面処理方法。
The wafer surface treatment method for improving the adhesion between the wafer and the resist by hydrophobizing the wafer surface containing silicon nitride, comprising the following steps:
Contact the wafer surface with a silicon nitride-containing wafer surface treatment agent or silicon nitride-containing wafer surface treatment solution, or contact the wafer surface with a silicon nitride-containing wafer surface treatment agent or silicon nitride-containing wafer surface treatment solution. A surface treatment step for hydrophobizing the wafer surface,
A surface treatment agent for a silicon nitride-containing wafer according to any one of claims 1 to 4, or a surface treatment agent for a silicon nitride-containing wafer according to any one of claims 1 to 4, or a surface treatment step including a resist film formation step of forming a resist film on the wafer surface. A method for surface treatment of a silicon nitride-containing wafer, wherein the surface treatment liquid for silicon nitride-containing wafer according to any one of 9 is used.
前記表面処理工程において、前記ウェハ表面に窒化ケイ素含有ウェハ用表面処理液を接触させて、該ウェハ表面を疎水化することを特徴とする、請求項10に記載の窒化ケイ素含有ウェハの表面処理方法。 11. The surface treatment method for a silicon nitride-containing wafer according to claim 10, wherein in the surface treatment step, a surface treatment liquid for silicon nitride-containing wafer is brought into contact with the wafer surface to hydrophobize the wafer surface. .
JP2011247497A 2011-11-11 2011-11-11 Surface treatment agent for silicon nitride containing wafer, surface treatment liquid, and surface treatment method Expired - Fee Related JP5953707B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011247497A JP5953707B2 (en) 2011-11-11 2011-11-11 Surface treatment agent for silicon nitride containing wafer, surface treatment liquid, and surface treatment method
KR1020147013734A KR101680438B1 (en) 2011-11-11 2012-10-30 Wafer surface-treatment method and surface-treatment liquid, and surface-treatment agent, surface-treatment liquid, and surface-treatment method for silicon-nitride-containing wafers
PCT/JP2012/077950 WO2013069499A1 (en) 2011-11-11 2012-10-30 Wafer surface-treatment method and surface-treatment liquid, and surface-treatment agent, surface-treatment liquid, and surface-treatment method for silicon-nitride-containing wafers
TW101141939A TW201323595A (en) 2011-11-11 2012-11-09 Wafer surface-treatment method and surface-treatment liquid, and surface-treatment agent, surface-treatment liquid, and surface-treatment method for silicon-nitride-containing wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247497A JP5953707B2 (en) 2011-11-11 2011-11-11 Surface treatment agent for silicon nitride containing wafer, surface treatment liquid, and surface treatment method

Publications (2)

Publication Number Publication Date
JP2013103962A true JP2013103962A (en) 2013-05-30
JP5953707B2 JP5953707B2 (en) 2016-07-20

Family

ID=48623774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247497A Expired - Fee Related JP5953707B2 (en) 2011-11-11 2011-11-11 Surface treatment agent for silicon nitride containing wafer, surface treatment liquid, and surface treatment method

Country Status (1)

Country Link
JP (1) JP5953707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151090A1 (en) * 2018-01-30 2019-08-08 東京エレクトロン株式会社 Substrate processing method, substrate processing device, and etchant
WO2022196259A1 (en) * 2021-03-15 2022-09-22 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102458A (en) * 1995-08-03 1997-04-15 Matsushita Electric Ind Co Ltd Pattern formation and surface treatment agent
JPH10270306A (en) * 1996-10-16 1998-10-09 Matsushita Electric Ind Co Ltd Formation of pattern and surface-treating agent
JP2008209432A (en) * 2007-02-23 2008-09-11 Shin Etsu Chem Co Ltd Pattern forming method
JP2008209433A (en) * 2007-02-23 2008-09-11 Shin Etsu Chem Co Ltd Pattern forming method
WO2008111134A1 (en) * 2007-03-15 2008-09-18 Fujitsu Limited Surface-hydrophobicized film, material for formation of surface-hydrophobicized film, wiring layer, semiconductor device and process for producing semiconductor device
WO2009104748A1 (en) * 2008-02-22 2009-08-27 株式会社ルネサステクノロジ Water-repellant composition for substrate to be exposed, method of forming resist pattern, electronic device produced by the formation method, method of imparting water repellency to substrate to be exposed, water-repellant set for substrate to be exposed, and method of imparting water repellency with the same to substrate to be exposed
WO2010047196A1 (en) * 2008-10-21 2010-04-29 東京応化工業株式会社 Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate
JP2010129932A (en) * 2008-11-28 2010-06-10 Tokyo Ohka Kogyo Co Ltd Surface treatment method and liquid
JP2010285406A (en) * 2009-06-15 2010-12-24 Shin-Etsu Chemical Co Ltd Amino group-having organic silicon compound and method for producing the same
JP2011049468A (en) * 2009-08-28 2011-03-10 Tokyo Ohka Kogyo Co Ltd Surface treatment agent and surface treatment method
JP2011122137A (en) * 2009-11-13 2011-06-23 Tokyo Ohka Kogyo Co Ltd Surface treatment agent and surface treatment method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102458A (en) * 1995-08-03 1997-04-15 Matsushita Electric Ind Co Ltd Pattern formation and surface treatment agent
JPH10270306A (en) * 1996-10-16 1998-10-09 Matsushita Electric Ind Co Ltd Formation of pattern and surface-treating agent
JP2008209432A (en) * 2007-02-23 2008-09-11 Shin Etsu Chem Co Ltd Pattern forming method
JP2008209433A (en) * 2007-02-23 2008-09-11 Shin Etsu Chem Co Ltd Pattern forming method
WO2008111134A1 (en) * 2007-03-15 2008-09-18 Fujitsu Limited Surface-hydrophobicized film, material for formation of surface-hydrophobicized film, wiring layer, semiconductor device and process for producing semiconductor device
WO2009104748A1 (en) * 2008-02-22 2009-08-27 株式会社ルネサステクノロジ Water-repellant composition for substrate to be exposed, method of forming resist pattern, electronic device produced by the formation method, method of imparting water repellency to substrate to be exposed, water-repellant set for substrate to be exposed, and method of imparting water repellency with the same to substrate to be exposed
WO2010047196A1 (en) * 2008-10-21 2010-04-29 東京応化工業株式会社 Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate
JP2010129932A (en) * 2008-11-28 2010-06-10 Tokyo Ohka Kogyo Co Ltd Surface treatment method and liquid
JP2010285406A (en) * 2009-06-15 2010-12-24 Shin-Etsu Chemical Co Ltd Amino group-having organic silicon compound and method for producing the same
JP2011049468A (en) * 2009-08-28 2011-03-10 Tokyo Ohka Kogyo Co Ltd Surface treatment agent and surface treatment method
JP2011122137A (en) * 2009-11-13 2011-06-23 Tokyo Ohka Kogyo Co Ltd Surface treatment agent and surface treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151090A1 (en) * 2018-01-30 2019-08-08 東京エレクトロン株式会社 Substrate processing method, substrate processing device, and etchant
JPWO2019151090A1 (en) * 2018-01-30 2021-01-07 東京エレクトロン株式会社 Substrate processing method, substrate processing equipment and etching solution
JP7026704B2 (en) 2018-01-30 2022-02-28 東京エレクトロン株式会社 Substrate processing method, substrate processing equipment and etching solution
US11306249B2 (en) 2018-01-30 2022-04-19 Tokyo Electron Limited Substrate processing method, substrate processing device and etching liquid
WO2022196259A1 (en) * 2021-03-15 2022-09-22 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JP5953707B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP6032338B2 (en) Chemical solution for protective film formation
WO2012090779A1 (en) Wafer washing method
US9748092B2 (en) Liquid chemical for forming protecting film
WO2011145500A1 (en) Chemical for forming protective film
JP5953721B2 (en) Method for preparing protective film forming chemical
JP2012015335A (en) Chemical for forming protective film, and cleaning method of wafer surface
WO2012002145A1 (en) Chemical solution for forming water-repellent protective film
JP2010192878A (en) Silicon wafer cleaning agent
JP2010192879A (en) Silicon wafer cleaning agent
JP2013104954A (en) Wafer surface treatment method and surface treatment liquid
JP5716527B2 (en) Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution
JP2019123860A (en) Drug solution for forming water repellent protective film, and surface treatment method for wafers
JP5953707B2 (en) Surface treatment agent for silicon nitride containing wafer, surface treatment liquid, and surface treatment method
US20130146100A1 (en) Water Repellent Protective Film Forming Agent, Liquid Chemical for Forming Water Repellent Protective Film, and Wafer Cleaning Method Using Liquid Chemical
WO2013069499A1 (en) Wafer surface-treatment method and surface-treatment liquid, and surface-treatment agent, surface-treatment liquid, and surface-treatment method for silicon-nitride-containing wafers
JP6213616B2 (en) Method for preparing protective film forming chemical
JP6098741B2 (en) Wafer cleaning method
JP5678720B2 (en) Wafer cleaning method
WO2012002200A1 (en) Wafer cleaning method
WO2019138870A1 (en) Chemical agent for forming water repellent protective film and surface treatment method for wafers
WO2012002243A1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
WO2013115021A1 (en) Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer
JP5712670B2 (en) Water repellent protective film forming chemical
WO2010084826A1 (en) Silicon wafer cleaning agent
JP5974515B2 (en) Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5953707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees