JP2013100839A - Roll bearing - Google Patents

Roll bearing Download PDF

Info

Publication number
JP2013100839A
JP2013100839A JP2011243474A JP2011243474A JP2013100839A JP 2013100839 A JP2013100839 A JP 2013100839A JP 2011243474 A JP2011243474 A JP 2011243474A JP 2011243474 A JP2011243474 A JP 2011243474A JP 2013100839 A JP2013100839 A JP 2013100839A
Authority
JP
Japan
Prior art keywords
groove
end surface
tapered roller
roller bearing
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011243474A
Other languages
Japanese (ja)
Inventor
Masahito Kobayashi
将人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011243474A priority Critical patent/JP2013100839A/en
Publication of JP2013100839A publication Critical patent/JP2013100839A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/225Details of the ribs supporting the end of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • F16C33/366Tapered rollers, i.e. rollers generally shaped as truncated cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a roll bearing whose rolling resistance is further reduced.SOLUTION: Grooves are formed at a large end surface 3a, a small end surface 3b, a large collar surface 5b and a small collar surface 5d. Excess lubricants which accumulate between the large end surface 3a and the large collar surface 5b, and between the small end surface 3b and the small collar surface 5d, respectively, can be eliminated certainly by such a configuration. Accordingly, the roll bearing 11 can reduce friction at a slide contacting portion, and thereby the rolling resistance is low.

Description

本発明は、自動車、農業機械、建設機械、鉄鋼機械、直動装置などの可動部の軸受として適用されるころ軸受に関する。   The present invention relates to a roller bearing applied as a bearing for a movable part of an automobile, an agricultural machine, a construction machine, a steel machine, a linear motion device, or the like.

一般に、ころ軸受や玉軸受などの転がり軸受は、主軸などに連結される内輪とその外側に位置する外輪間にころや玉などの転がり部材を複数、保持器によって等間隔に保持した構造となっている。
このような転がり軸受は、高速回転時や高荷重時などに油膜切れを起こさないようにグリースなどの潤滑油を充分に供給する必要があるが、図21に示すように潤滑油が多すぎるとこの潤滑油が転がり部材と転動面との間に溜まってしまい、却って転がり抵抗が増してしまうことが知られている。
In general, a rolling bearing such as a roller bearing or a ball bearing has a structure in which a plurality of rolling members such as a roller or a ball are held at equal intervals by a cage between an inner ring connected to a main shaft or the like and an outer ring positioned outside the inner ring. ing.
Such a rolling bearing needs to supply a sufficient amount of lubricating oil such as grease so as not to cause oil film breakage during high-speed rotation or high load. However, if there is too much lubricating oil as shown in FIG. It is known that this lubricating oil accumulates between the rolling member and the rolling surface, and the rolling resistance increases on the contrary.

そのため、例えば以下の特許文献1や2では、転がり部材の転動面にその転がり方向に沿って複数の(縦)溝を形成し、この(縦)溝で潤滑油を保持することで油膜切れを防止しつつ、この(縦)溝に沿って潤滑油を逃がすことで高速回転時、高荷重時、高粘度油潤滑使用時などの余分な潤滑油による転がり抵抗を低減するようにしている。
一方、このような転がり軸受は、図22に示すように転動面に対する転がり部材の転がり中心Aと転がり時の面圧中心(面圧最大部)Bは、転がり方向にずれており、このずれが高速回転になるに従って大きくなることによっても転がり抵抗が発生することが知られている。
Therefore, for example, in Patent Documents 1 and 2 below, a plurality of (vertical) grooves are formed along the rolling direction on the rolling surface of the rolling member, and the lubricating oil is held in these (vertical) grooves to break the oil film. By preventing the lubricating oil from escaping along the (longitudinal) groove, rolling resistance due to excess lubricating oil during high speed rotation, high load, high viscosity oil lubrication, etc. is reduced.
On the other hand, in such a rolling bearing, as shown in FIG. 22, the rolling center A of the rolling member with respect to the rolling surface and the surface pressure center (surface pressure maximum portion) B at the time of rolling are shifted in the rolling direction. It is known that rolling resistance is also generated by increasing as the rotation speed increases.

そのため、例えば以下の特許文献3などでは、図23に示すように内輪又は外輪の軌道面にその転がり方向と直交する方向に複数の(横)溝を形成し、この(横)溝によって転がり中心Aと転がり時の面圧中心(面圧最大部)Bとの差を小さくすることで転がり部材の転がり抵抗を小さくするようにしている。
ところで、前記特許文献1や2のように、転動方向に延びる(縦)溝に沿って潤滑油を逃がす構造では、その(縦)溝内が既に潤滑油で満たされている場合には、転がり部材転動面との間に溜まった潤滑油の逃げ場所がなくなり、転がり抵抗を充分に低減できないケースが考えられる。
Therefore, in the following Patent Document 3, for example, as shown in FIG. 23, a plurality of (lateral) grooves are formed in a direction perpendicular to the rolling direction on the raceway surface of the inner ring or the outer ring, and the rolling center is formed by these (lateral) grooves. The rolling resistance of the rolling member is reduced by reducing the difference between A and the center of surface pressure (maximum surface pressure portion) B during rolling.
By the way, in the structure in which the lubricating oil is released along the (vertical) groove extending in the rolling direction as in Patent Documents 1 and 2, when the (vertical) groove is already filled with the lubricating oil, There may be a case where there is no escape area for the lubricating oil accumulated between the rolling surfaces of the rolling members and the rolling resistance cannot be reduced sufficiently.

一方、前記特許文献3に示すような構造では、各(横)溝内に溜まった余分な潤滑油を転がり部材の側部に逃がすことはできるが、転がり部材が各(横)溝とその間のランド部間を交互に転動することになるため、微小な振動が発生してしまうことがある。
そこで、特許文献4には、これらの問題を解決し、より転がり抵抗を低減させる技術が提案されている。
On the other hand, in the structure as shown in Patent Document 3, excess lubricating oil accumulated in each (lateral) groove can be released to the side of the rolling member, but the rolling member is located between each (lateral) groove and between them. Since the land portions roll alternately, minute vibrations may occur.
Therefore, Patent Document 4 proposes a technique for solving these problems and further reducing the rolling resistance.

特開2001−304267号公報JP 2001-304267 A 特開2007−040481号公報JP 2007-040482 A 特開2005−321048号公報JP-A-2005-32148 特開2009−204125号公報JP 2009-204125 A

しかし、転がり軸受の使用条件は近年益々厳しくなっており、さらなる転がり抵抗の低減が求められている。また、ころ軸受の場合には、内外輪の軌道面ところとの接触は転がり接触であるが、内外輪に形成されたつばと、ころの端面との接触は滑り接触(摺接)しており、より摩擦力が高く、転がり抵抗が高い。そのため、より転がり抵抗の低減が求められている。
そこで、本発明は上記のような従来技術が有する問題点を解決するために案出されたものであり、転がり抵抗のより低いころ軸受を提供することを課題とする。
However, the usage conditions of rolling bearings have become increasingly severe in recent years, and further reduction in rolling resistance is required. In the case of roller bearings, the contact with the raceway surface of the inner and outer rings is rolling contact, but the contact between the collar formed on the inner and outer rings and the end face of the roller is sliding contact (sliding contact). Higher frictional force and higher rolling resistance. Therefore, a reduction in rolling resistance is further demanded.
Therefore, the present invention has been devised to solve the above-described problems of the prior art, and an object thereof is to provide a roller bearing having a lower rolling resistance.

以上の課題を解決するため、本発明の一態様に係るころ軸受は、内輪と、外輪と、前記内輪及び前記外輪の間に転動自在に配された複数のころとを備え、前記内輪及び前記外輪の少なくとも一方につばが形成されたころ軸受であって、前記ころの端面及び前記つばのころと摺接する面の少なくとも一方に溝が形成されていることを特徴とする。
上記ころ軸受においては、前記つばのころと接する面に形成された溝は、前記ころと前記つばとが摺動する摺動方向に対して斜めに傾斜しており、ランド部を挟んで複数形成されていることが好ましい。
In order to solve the above-described problems, a roller bearing according to an aspect of the present invention includes an inner ring, an outer ring, and a plurality of rollers arranged to be freely rollable between the inner ring and the outer ring. A roller bearing having a flange formed on at least one of the outer rings, wherein a groove is formed on at least one of an end surface of the roller and a surface in sliding contact with the roller of the collar.
In the roller bearing, a plurality of grooves formed on a surface in contact with the collar roller are inclined with respect to a sliding direction in which the roller and the collar slide, and a plurality of grooves are formed across the land portion. It is preferable that

また、上記ころ軸受においては、前記つばのころと摺接する面に形成された前記溝の前記摺動方向に対する傾斜角度である傾斜角αが、前記ころの摺動方向と直交する方向を基準として−90°を超えかつ+90°未満の範囲であることが好ましい。
さらに、上記ころ軸受においては、前記溝は、その溝の横断方向断面の形状がほぼV字状になっていると共に、溝が形成された面と、断面V字状に形成された溝の内面とで形成される角度βが、15°以上90°未満であることが好ましい。
また、上記ころ軸受においては、前記溝は、平面形状が綾目状に形成されていることが好ましい。
さらに、上記ころ軸受においては、前記溝は、平面形状がV字状に形成されていることが好ましい。
In the roller bearing, an inclination angle α, which is an inclination angle with respect to the sliding direction of the groove formed on the surface in sliding contact with the collar roller, is based on a direction orthogonal to the sliding direction of the roller. It is preferably in the range of more than −90 ° and less than + 90 °.
Further, in the above roller bearing, the groove has a substantially V-shaped cross-sectional shape in the transverse direction, a groove-formed surface, and an inner surface of the groove formed in a V-shaped cross section. Is preferably 15 ° or more and less than 90 °.
In the roller bearing, it is preferable that the groove is formed in a cross-shaped planar shape.
Further, in the roller bearing, it is preferable that the groove is formed in a V shape in a planar shape.

本発明によればころの端面と、つばのころと摺接する面とに溝が形成されている。このような構成により、ころの端面と、つばのころと摺接する面との間に溜まった余分な潤滑剤を確実に排除できる。したがって、本発明のころ軸受は、摺接する部分の摩擦を低減することができるため、転がり抵抗が低い。   According to the present invention, the groove is formed in the end surface of the roller and the surface in sliding contact with the collar roller. With such a configuration, it is possible to reliably remove excess lubricant accumulated between the end surface of the roller and the surface that is in sliding contact with the collar roller. Therefore, since the roller bearing of the present invention can reduce the friction of the sliding contact portion, the rolling resistance is low.

本発明の実施形態に係る円すいころ軸受の構成を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the structure of the tapered roller bearing which concerns on embodiment of this invention. 大端面、小端面、大つば面及び小つば面に形成される溝の形態を示すモデル図である。It is a model figure which shows the form of the groove | channel formed in a large end surface, a small end surface, a large brim surface, and a small brim surface. 溝が形成された大つば面を円すいころが摺動しているときの潤滑剤などの状態を示す平面概念図である。It is a plane conceptual diagram which shows the states, such as a lubricant, when a tapered roller is sliding on the large brim surface in which the groove | channel was formed. 溝が形成された大つば面を円すいころが摺動しているときの潤滑剤などの状態を示す側面概念図である。It is a side surface conceptual diagram which shows the state of a lubricant etc. when a tapered roller is sliding on the large brim surface in which the groove | channel was formed. 円すいころの摺動方向と溝の傾斜角αとの関係を示す側面概念図である。It is a side surface conceptual diagram which shows the relationship between the sliding direction of a tapered roller, and the inclination angle (alpha) of a groove | channel. 溝の傾斜角αと転がり抵抗減少割合(%)との関係を示すグラフ図である。It is a graph which shows the relationship between the inclination-angle (alpha) of a groove | channel, and a rolling resistance reduction rate (%). 溝の転がり方向の幅aと、これに隣接するランド部の転がり方向の幅bとの比率を示す説明図である。It is explanatory drawing which shows the ratio of the width a of the rolling direction of a groove | channel, and the width b of the rolling direction of the land part adjacent to this. 溝の長手方向断面の角度βを示す概念図である。It is a conceptual diagram which shows angle (beta) of the longitudinal direction cross section of a groove | channel. ランド部の面取り幅cを示す概念図である。It is a conceptual diagram which shows the chamfering width c of a land part. 本発明に係る円すいころ軸受の他の実施の形態を示す概念図である。It is a conceptual diagram which shows other embodiment of the tapered roller bearing which concerns on this invention. 本発明に係る円すいころ軸受の他の実施の形態を示す概念図である。It is a conceptual diagram which shows other embodiment of the tapered roller bearing which concerns on this invention. 大端面、小端面、大つば面及び小つば面に形成される綾目状の溝6の形態を示すモデル図である。It is a model figure which shows the form of the twill-like groove | channel 6 formed in a large end surface, a small end surface, a large brim surface, and a small brim surface. 本発明に係る円すいころ軸受の他の実施の形態を示す概念図である。It is a conceptual diagram which shows other embodiment of the tapered roller bearing which concerns on this invention. 大端面、小端面、大つば面及び小つば面に形成されるV字状の溝の形態を示すモデル図である。It is a model figure which shows the form of the V-shaped groove | channel formed in a large end surface, a small end surface, a large brim surface, and a small brim surface. 転動方向とV字状の溝の形成方向との関係を示す説明図である。It is explanatory drawing which shows the relationship between a rolling direction and the formation direction of a V-shaped groove | channel. 本発明に係る円すいころ軸受の他の実施の形態を示す概念図である。It is a conceptual diagram which shows other embodiment of the tapered roller bearing which concerns on this invention. 本発明に係る円すいころ軸受の他の実施の形態を示す概念図である。It is a conceptual diagram which shows other embodiment of the tapered roller bearing which concerns on this invention. 軌道面及び転動面に溝を形成した状態を示した図である。It is the figure which showed the state which formed the groove | channel in the raceway surface and the rolling surface. 円すいころの大端面に形成した、斜め、綾目状及びV字状の溝を示す概念図である。It is a conceptual diagram which shows the groove | channel of slanting, a twill shape, and V shape formed in the large end surface of a tapered roller. 縦型内輪回転式試験機の断面図である。It is sectional drawing of a vertical type inner ring | wheel rotation type testing machine. 平滑な軌道面上を転がり部材(玉)が転動しているときの潤滑剤などの状態を示す概念図である。It is a conceptual diagram which shows states, such as a lubricant, when the rolling member (ball) is rolling on the smooth track surface. (縦)溝が形成された軌道面上を転がり部材(玉)が転動しているときの転がり中心Aと転がり時の面圧中心(面圧最大部)Bとの関係を示す概念図である。(Vertical) It is the conceptual diagram which shows the relationship between the rolling center A when the rolling member (ball) is rolling on the raceway surface in which the groove | channel was formed, and the surface pressure center (surface pressure maximum part) B at the time of rolling. is there. (横)溝が形成された転動面上を転がり部材(玉)が転動しているときの転がり中心Aと転がり時の面圧中心(面圧最大部)Bとの関係及び潤滑油の動きを示す概念図である。(Horizontal) Relationship between the rolling center A when the rolling member (ball) is rolling on the rolling surface on which the groove is formed and the surface pressure center (surface pressure maximum portion) B when rolling, and the lubricant It is a conceptual diagram which shows a motion.

次に、本発明に係るころ軸受の第1の実施形態を添付図面を参照しながら詳細に説明する。
図1は、本発明に係るころ軸受の第1の実施形態である円すいころ軸受11の構造を示す部分縦断面図である。
図1の円すいころ軸受11は、内輪1と、外輪2と、内輪1及び外輪2の間に転動自在に配された複数の円すいころ3と、内輪1及び外輪2の間に複数の円すいころ3を保持する保持器4とで構成されており、内輪1の外周面及び外輪2の内周面の間に形成された軸受内部空間には、図示しない潤滑剤(例えば潤滑油,グリース)が封入されている。なお、保持器4は備えていなくてもよい。
Next, a first embodiment of a roller bearing according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a partial longitudinal sectional view showing the structure of a tapered roller bearing 11 which is a first embodiment of a roller bearing according to the present invention.
The tapered roller bearing 11 shown in FIG. 1 includes an inner ring 1, an outer ring 2, a plurality of tapered rollers 3 that are rotatably arranged between the inner ring 1 and the outer ring 2, and a plurality of tapered rollers between the inner ring 1 and the outer ring 2. The bearing 4 is composed of a retainer 4 that holds the rollers 3, and a bearing inner space formed between the outer peripheral surface of the inner ring 1 and the inner peripheral surface of the outer ring 2 has a lubricant (for example, lubricating oil, grease) (not shown). Is enclosed. In addition, the holder | retainer 4 does not need to be provided.

この内輪1の外周面及び外輪2の内周面には、これら各円すいころ3が転動するための軌道面1a及び2aがそれぞれ形成されている。また、内輪1の外周面の軸方向両端部には、大つば5a,小つば5cが径方向外方に突出して設けられている。外輪2には、つばは設けられていない。ただし、図1の例とは逆に、外輪2の内周面の軸方向両端部に径方向内方に突出してつばを設け、内輪1にはつばを設けない構成としてもよいし、内輪1及び外輪2の両方につばを設ける構成としてもよい。   On the outer peripheral surface of the inner ring 1 and the inner peripheral surface of the outer ring 2, raceway surfaces 1a and 2a for rolling the tapered rollers 3 are formed, respectively. Further, a large brim 5a and a small brim 5c are provided at both ends in the axial direction of the outer peripheral surface of the inner ring 1 so as to protrude radially outward. The outer ring 2 is not provided with a collar. However, contrary to the example of FIG. 1, a configuration may be adopted in which a flange is provided projecting radially inward at both axial ends of the inner peripheral surface of the outer ring 2, and no collar is provided on the inner ring 1. And it is good also as a structure which provides a collar to both the outer ring | wheels 2. FIG.

大つば5aの軸方向内側面である大つば面5b、小つば5cの軸方向内側面である小つば面5dは、円すいころ3を案内し保持する面として機能しており、大つば面5bは円すいころ3の大端面3aと、小つば面5dは円すいころ3の小端面3bとそれぞれ摺接する。大端面3a、小端面3b、大つば面5b、及び小つば面5dには、図2に示す複数の溝6が等間隔かつ複数形成されている。   The large brim surface 5b which is the inner side surface in the axial direction of the large brim 5a and the small brim surface 5d which is the inner side surface in the axial direction of the small brim 5c function as a surface for guiding and holding the tapered roller 3, and the large brim surface 5b. The large end surface 3a of the tapered roller 3 and the small collar surface 5d are in sliding contact with the small end surface 3b of the tapered roller 3, respectively. A plurality of grooves 6 shown in FIG. 2 are formed at equal intervals on the large end surface 3a, the small end surface 3b, the large collar surface 5b, and the small collar surface 5d.

ここで、大端面3a、小端面3b、大つば面5b及び小つば面5dに形成される溝に共通する説明については、溝は符号6を用いるが、大端面3a及び小端面3bの溝について説明する場合には、溝6Aを用いる。また、大つば面5b及び小つば面5dの溝について説明する場合には、溝6Bを用いる。   Here, for the explanation common to the grooves formed on the large end surface 3a, the small end surface 3b, the large brim surface 5b and the small brim surface 5d, the reference numeral 6 is used as the groove, but the grooves on the large end surface 3a and the small end surface 3b are used. In the description, the groove 6A is used. Further, when the grooves of the large collar surface 5b and the small collar surface 5d are described, the groove 6B is used.

このように各円すいころ3の大端面3a及び小端面3bに複数の溝6Aを等間隔かつ複数形成することにより、また、大つば面5b及び小つば面5dに複数の溝6Bを平行に等間隔かつ複数形成することにより、大端面3aと大つば面5b、及び、小端面3bと小つば面5dとの摺接面に対して必要な潤滑剤を確実に供給しつつ、その潤滑剤による転がり抵抗を確実に低減できる。すなわち、図3及び図4に示すように円すいころ3の周囲に多くの潤滑剤が存在していると、円すいころ3の転動に際して大端面3aと大つば面5b、及び、小端面3bと小つば面5dとの間に潤滑剤が溜まってくるが、この部分に溜まった潤滑剤は、順次これら各溝6A及び溝6B内に押し込まれるように移動するため、大量に溜まることがなくなり、その潤滑剤による転がり抵抗を確実に低減できる。なお、図4において、大端面3aに形成された溝6Aは破線で、大つば面5bに形成された溝6Bは実線で示してある。また、図4において大端面3aの溝が形成されていない円形の部分は、大端面3aに形成された窪みの部分であり、図4以降の図面においても同様である。この窪みの部分は形成されていなくてもよく、大端面3aの全体を平坦とし、大端面3aの全面に溝6Aを形成してもよい。   In this way, a plurality of grooves 6A are formed at equal intervals in the large end surface 3a and the small end surface 3b of each tapered roller 3, and the plurality of grooves 6B are parallel to the large collar surface 5b and the small collar surface 5d. By forming a plurality of gaps, it is possible to reliably supply the necessary lubricant to the sliding surface between the large end surface 3a and the large brim surface 5b and the small end surface 3b and the small brim surface 5d. Rolling resistance can be reliably reduced. That is, as shown in FIGS. 3 and 4, if there is a lot of lubricant around the tapered roller 3, the large end surface 3 a, the large collar surface 5 b, and the small end surface 3 b when the tapered roller 3 rolls. Lubricant accumulates between the small brim surface 5d, but the lubricant accumulated in this portion moves so as to be sequentially pushed into the grooves 6A and 6B, so that it does not accumulate in a large amount. The rolling resistance due to the lubricant can be reliably reduced. In FIG. 4, the groove 6A formed on the large end surface 3a is indicated by a broken line, and the groove 6B formed on the large collar surface 5b is indicated by a solid line. Further, the circular portion in which the groove of the large end surface 3a is not formed in FIG. 4 is a recessed portion formed in the large end surface 3a, and the same applies to the drawings subsequent to FIG. The recessed portion may not be formed, the entire large end surface 3a may be flat, and the groove 6A may be formed over the entire large end surface 3a.

また、この溝6A及び溝6Bが既に潤滑剤で満たされている場合でも、新たに押し込まれる潤滑剤によって先に充填された潤滑剤がその溝6A及び溝6Bの一端または両端から押し出されるようにして溝6A及び溝6B内から排除されるため、円すいころ3と、大つば5a及び大つば5c間に潤滑剤が大量に溜まることがなくなり、その転がり抵抗を確実に低減できる。したがって、本実施形態に係る円すいころ軸受11は、摺接する部分の摩擦を低減することができるため、転がり抵抗を低減することができる。   Further, even when the groove 6A and the groove 6B are already filled with the lubricant, the lubricant previously filled with the newly pushed lubricant is pushed out from one end or both ends of the groove 6A and the groove 6B. Therefore, a large amount of lubricant does not accumulate between the tapered roller 3 and the large collar 5a and the large collar 5c, and the rolling resistance can be reliably reduced. Therefore, since the tapered roller bearing 11 according to the present embodiment can reduce the friction at the sliding contact portion, the rolling resistance can be reduced.

次に、大端面3a及び小端面3bに形成される溝6A、及び、大つば面5b及び小つば面5dに形成される溝6Bについての最良な形態について具体的に説明する。
各溝6Bは、大つば面5b及び小つば面5dにおいては、円すいころ3と摺接する摺動方向に対して斜めに傾斜して形成されており、平行に等間隔かつ複数形成されている。
図5に示すように、大つば面5b及び小つば面5dに形成された溝6Bの摺動方向に対する傾斜角度である傾斜角αは、円すいころ3の摺動方向と直交する方向を基準として−90°を超えかつ+90°未満の範囲であれば特に限定されるものではないが、−45°以上−15°以下及び15°以上45°以下の範囲が好ましい。また、大つば面5b及び小つば面5dに形成される溝6Bの傾斜方向はいずれの方向であっても良い。
Next, the best mode of the groove 6A formed on the large end surface 3a and the small end surface 3b and the groove 6B formed on the large collar surface 5b and the small collar surface 5d will be specifically described.
The grooves 6B are formed on the large brim surface 5b and the small brim surface 5d so as to be inclined obliquely with respect to the sliding direction in sliding contact with the tapered roller 3, and are formed in parallel at equal intervals.
As shown in FIG. 5, the inclination angle α, which is the inclination angle with respect to the sliding direction of the groove 6B formed on the large collar surface 5b and the small collar surface 5d, is based on the direction orthogonal to the sliding direction of the tapered roller 3. Although it will not specifically limit if it is the range which exceeds -90 degree and less than +90 degree, The range of -45 degrees or more and -15 degrees or less and 15 degrees or more and 45 degrees or less is preferable. Further, the inclination direction of the groove 6B formed in the large collar surface 5b and the small collar surface 5d may be any direction.

図6は、大つば面5b及び小つば面5dに形成される溝6Bの傾斜角度と転がり抵抗減少割合との関係を示したものであり、この溝6Bの傾斜角αが0°のときに顕著な転がり抵抗減少割合が得られ、−45°以上45°以下の範囲外では、十分な転がり抵抗減少効果が得られないことが分かる。一方、摺動方向に対して直交方向に溝が形成されている方が潤滑剤に添加される添加剤との相性がよく、金属接触が起こりそうな潤滑域でも、摺動方向に沿って溝が形成されている場合に比べて低摩擦になることが知られている。図6においても、−15°超過15°未満の範囲では減少率が最も大きいことがわかる。しかし、傾斜角αが0°に近くなると油膜の形成能力が低いために、軸受寿命が低下することも考えられるため、傾斜角αは、−45°以上−15°以下及び15°以上45°以下の範囲が好ましい。   FIG. 6 shows the relationship between the inclination angle of the groove 6B formed on the large collar surface 5b and the small collar surface 5d and the rolling resistance reduction rate. When the inclination angle α of the groove 6B is 0 °, FIG. A remarkable rolling resistance reduction ratio is obtained, and it is understood that a sufficient rolling resistance reduction effect cannot be obtained outside the range of −45 ° to 45 °. On the other hand, the groove formed in the direction perpendicular to the sliding direction is more compatible with the additive added to the lubricant, and the groove along the sliding direction can be used even in a lubricating region where metal contact is likely to occur. It is known that the friction becomes lower than that in the case where is formed. Also in FIG. 6, it can be seen that the decrease rate is the largest in the range of more than −15 ° and less than 15 °. However, since the ability to form an oil film is low when the inclination angle α is close to 0 °, the bearing life may be reduced. Therefore, the inclination angle α is −45 ° to −15 ° and 15 ° to 45 °. The following ranges are preferred.

このような構成であれば、十分な転がり抵抗減少効果が得られると共に、添加剤との相性も良く、摺接する部分において、金属接触が起こりやすい潤滑域でも、平滑面や溝が摺動方向に沿って形成されている場合に比べて低摩擦になるため、耐摩耗性及び耐焼付き性を得ることができる。
また、溝6Bの摺動方向の幅aとこれに隣接するランド部7の摺動方向の幅b、及び、溝6Aの横断方向の幅a’とこれに隣接するランド部7の横断方向の幅b’の比率としては、図7(a)、(b)に示すように、a(a’):b(b’)=50:50〜10:90の範囲となるように維持すれば、油膜切れを起こすことなく、高荷重負荷に対する耐久性を発揮することができる。すなわち、ランド部7の摺動方向の幅b又はランド部7の横断方向の幅b’が90%を超えると油膜強化効果が得られず、反対に50%未満であると、高荷重に耐えられなくなるからである。
With such a configuration, a sufficient rolling resistance reduction effect can be obtained, and the compatibility with the additive is good, and the smooth surface and the groove are in the sliding direction even in a lubrication region where metal contact is likely to occur in the sliding contact portion. Since the friction is lower than that in the case of being formed along, it is possible to obtain wear resistance and seizure resistance.
Further, the width a in the sliding direction of the groove 6B and the width b in the sliding direction of the land portion 7 adjacent thereto, and the width a ′ in the transverse direction of the groove 6A and the transverse direction of the land portion 7 adjacent thereto. As a ratio of the width b ′, as shown in FIGS. 7A and 7B, a ratio of a (a ′): b (b ′) = 50:50 to 10:90 is maintained. The durability against high load can be exhibited without causing the oil film to break. That is, if the width b in the sliding direction of the land portion 7 or the width b ′ in the transverse direction of the land portion 7 exceeds 90%, the oil film strengthening effect cannot be obtained. It is because it becomes impossible.

また、図8に示すように溝6は、その溝の横断方向断面の形状がほぼV字状になっていると共に、溝6が形成された面(大端面3a、小端面3b、大つば面5b又は小つば面5d)と、V字により形成された溝6の内面とで形成される角度βが、15°以上90°未満とすることが好ましい。
このような構成によれば、この溝6内に溜まった潤滑剤が良好に排出されてランド部7側に達するため、良好な油膜強化効果を得ることができる。
In addition, as shown in FIG. 8, the groove 6 has a substantially V-shaped cross section in the transverse direction of the groove, and the surface on which the groove 6 is formed (large end surface 3a, small end surface 3b, large brim surface). 5b or the small brim surface 5d) and the angle β formed by the inner surface of the groove 6 formed by the V-shape is preferably 15 ° or more and less than 90 °.
According to such a configuration, since the lubricant accumulated in the groove 6 is discharged well and reaches the land portion 7 side, a good oil film strengthening effect can be obtained.

ここで、角度βを15°以上90°未満としたのは、15°未満では油膜強化効果が少なく、一方90°以上ではエッジロードが発生するおそれがあるからである。角度βは、好ましくは30°以上80°以下、より好ましくは45°以上80°以下とした上で以下に記載する面取り(ダレ)を行うと良い。
また、図8に示すように、溝6Bの深さdはその摺動方向の幅aに対して、0.5a以上5.0a以下とすれば、より確実な油膜強化効果を得ることができる。さらに、溝6Aの深さも、溝6Bと同様の深さにすることにより確実な油膜強化効果を得ることができる。
Here, the reason why the angle β is set to 15 ° or more and less than 90 ° is that if the angle β is less than 15 °, the effect of strengthening the oil film is small, while if it is 90 ° or more, an edge load may occur. The angle β is preferably 30 ° or more and 80 ° or less, more preferably 45 ° or more and 80 ° or less, and chamfering (sagging) described below is performed.
As shown in FIG. 8, if the depth d of the groove 6B is 0.5a or more and 5.0a or less with respect to the width a in the sliding direction, a more reliable oil film strengthening effect can be obtained. . Further, the depth of the groove 6A is set to the same depth as that of the groove 6B, so that a reliable oil film strengthening effect can be obtained.

また、図9に示すように、溝6Bに隣接するランド部7の角を、ランド部7の摺動方向の幅bの15%以下の幅に亘って面取りすれば、円すいころ3の転動時においてランド部7の角部が欠けたりすることがなくなり、高荷重にも耐えることができる。ここで、面取りした幅である面取り量cをランド部7の摺動方向の幅bの15%以下と規定したのは、15%を超えるとランド部7の面積が減ってしまい却って高荷重に不向きになるからであり、好ましくは3%以上10%以下の範囲である。なお、溝6Aに隣接するランド部7の角も、溝6Bに隣接するランド部7と同様に面取りすることにより、確実な油膜強化効果を得ることができる。また、図8及び図9は例として大つば面5bに形成された溝を示したが、大端面3a、小端面3b及び小つば面5dも同様である。   Also, as shown in FIG. 9, if the corner of the land portion 7 adjacent to the groove 6B is chamfered over a width of 15% or less of the width b in the sliding direction of the land portion 7, the tapered roller 3 rolls. In some cases, the corners of the land portion 7 are not chipped and can withstand high loads. Here, the chamfering amount c, which is the chamfered width, is defined as 15% or less of the width b in the sliding direction of the land portion 7. The reason is that if the chamfering amount c exceeds 15%, the area of the land portion 7 decreases and the load is increased. It is because it becomes unsuitable, Preferably it is 3 to 10% of range. Note that the corner of the land portion 7 adjacent to the groove 6A is also chamfered in the same manner as the land portion 7 adjacent to the groove 6B, whereby a reliable oil film strengthening effect can be obtained. 8 and 9 show the grooves formed on the large brim surface 5b as an example, the same applies to the large end surface 3a, the small end surface 3b, and the small brim surface 5d.

このような条件で大端面3a及び小端面3bに溝6Aを、大つば面5b及び小つば面5dに溝6Bを形成すれば、摺接する部分に充分な油膜強化効果を発揮しつつ、転がり抵抗や摩擦を確実に低減することができる。
なお、溝6は、本実施形態のように、大端面3a、小端面3b、大つば面5b及び小つば面5dの全てに形成されていてもよいが、大端面3a、小端面3b、大つば面5b及び小つば面5dの少なくとも1つに形成されていればよい。例えば、大端面3aや小端面3bを平滑状態とし、大つば面5b又は小つば面5dのみに溝6Bが形成されていてもよい。
If the groove 6A is formed in the large end surface 3a and the small end surface 3b and the groove 6B is formed in the large brim surface 5b and the small brim surface 5d under such conditions, the rolling resistance is exhibited while exhibiting a sufficient oil film strengthening effect on the sliding contact portion. And friction can be reliably reduced.
The groove 6 may be formed on all of the large end surface 3a, the small end surface 3b, the large brim surface 5b, and the small brim surface 5d as in this embodiment, but the large end surface 3a, the small end surface 3b, What is necessary is just to be formed in at least 1 of the collar surface 5b and the small collar surface 5d. For example, the large end surface 3a and the small end surface 3b may be in a smooth state, and the groove 6B may be formed only on the large collar surface 5b or the small collar surface 5d.

また、図10(a)、(b)に示すように、大端面3a及び小端面3bに形成される溝6AのピッチP1と、大つば面5b及び小つば面5dに形成される溝6BのピッチP2と異ならしめるようにすることが好ましい。
このような構成にすれば、大端面3a及び小端面3bに形成された溝6Aと大つば面5b及び小つば面5dに形成された溝6B同士が重なることがなくなるため、油膜切れを解消することができる(溝同士が重なると油膜ができ難い)。また、一方のランド部7の角部などが他方の溝6A又は溝6Bに落ち込む(嵌り込む)ことによる振動の発生も抑制することができる。
Further, as shown in FIGS. 10A and 10B, the pitch P1 of the groove 6A formed on the large end surface 3a and the small end surface 3b and the groove 6B formed on the large collar surface 5b and the small collar surface 5d. It is preferable to make it different from the pitch P2.
With such a configuration, the groove 6A formed on the large end surface 3a and the small end surface 3b and the groove 6B formed on the large brim surface 5b and the small brim surface 5d do not overlap each other, so that the oil film breakage is eliminated. (If the grooves overlap, it is difficult to form an oil film). Moreover, generation | occurrence | production of the vibration by the corner | angular part etc. of one land part 7 falling in the other groove | channel 6A or groove | channel 6B can also be suppressed.

さらに、大端面3a、小端面3b、大つば面5b及び小つば面5dに形成される溝6は、例えば機械加工、レーザー、ショット、フォトリソグラフィーなどの公知の機械加工方法によって容易に加工することができるが、研削加工により形成することが好ましい。
なお、研削加工により溝6を形成した場合には、溝6の縁の部分に盛り上がりが発生することがある。この盛り上がりが、初期の転がり抵抗を上昇させる可能性があるので、この縁の部分の盛り上がりを除去するために、弾性体の表面に硬質な微粒子を塗付した粒子を用いて表面にショット加工を施すことで、初期の転がり抵抗を低減させることができる。このようなショット加工としては、例えば鏡面ショット加工があげられる。
Further, the grooves 6 formed in the large end surface 3a, the small end surface 3b, the large brim surface 5b, and the small brim surface 5d can be easily processed by a known machining method such as machining, laser, shot, photolithography, or the like. However, it is preferably formed by grinding.
In addition, when the groove | channel 6 is formed by grinding, a swell may generate | occur | produce in the edge part of the groove | channel 6. Since this bulge may increase the initial rolling resistance, in order to remove the bulge at the edge part, shot processing is performed on the surface using particles coated with hard fine particles on the surface of the elastic body. By applying, initial rolling resistance can be reduced. An example of such shot processing is mirror surface shot processing.

また、縁の部分の盛り上がりを除去する加工は、上記の鏡面ショット等に限るものではなく、研磨加工を施すことによっても可能であるが、その場合は、縁の部分の盛り上がりの塑性流動によって溝6が埋没しないように注意が必要である。
なお、この円すいころ軸受11を構成する内輪1や外輪2及び円すいころ3などは、SUJ2〜4、SCr420H、SCM420H、SNCM220H、SNCM420H、SNCM815、SUS440Cなどの従来から多用されている金属材料のみならず、セラミックスや非鉄金属等で製造されていてもよい。
In addition, the processing for removing the bulge at the edge portion is not limited to the above-described mirror shot or the like, and can be performed by polishing. In that case, the groove is formed by the plastic flow of the bulge at the edge portion. Care must be taken so that 6 is not buried.
The inner ring 1 and outer ring 2 and the tapered roller 3 constituting the tapered roller bearing 11 are not limited to conventional metal materials such as SUJ2 to 4, SCr420H, SCM420H, SNCM220H, SNCM420H, SNCM815, and SUS440C. Further, it may be made of ceramics or non-ferrous metal.

また、溝6の内面に化成処理、固体潤滑剤及び硬質膜等を塗布することにより、更なる転がり抵抗の低減や長寿命化が見込める。特に、固体潤滑剤である二硫化モリブデン(MoS)のショット加工を行うことで、溝6の内面に二硫化モリブデンの膜を形成することができる。そのため、大端面3a、小端面3b、大つば面5b及び小つば面5dの表面が摩耗した場合でも、大端面3a、小端面3b、大つば面5b及び小つば面5dの摺接面に固体潤滑剤を供給することができ、耐焼付き性を向上させることができる。また、固体潤滑剤としては、二硫化モリブデン(MoS)の他、カーボンや高分子といった固体潤滑剤を溝6の表面に埋設してもよい。さらに、ショット加工後に、溝6の内面に、ダイヤモンドライクカーボン(DLC)等をスパッタリングなどにより成膜することで、更なる転がり抵抗の低減や長寿命化が見込める。 Further, by applying a chemical conversion treatment, a solid lubricant, a hard film, or the like on the inner surface of the groove 6, further reduction in rolling resistance and longer life can be expected. In particular, a film of molybdenum disulfide can be formed on the inner surface of the groove 6 by performing shot processing of molybdenum disulfide (MoS 2 ), which is a solid lubricant. Therefore, even when the surfaces of the large end surface 3a, the small end surface 3b, the large brim surface 5b, and the small brim surface 5d are worn, the sliding surfaces of the large end surface 3a, the small end surface 3b, the large brim surface 5b, and the small brim surface 5d are solid. Lubricant can be supplied and seizure resistance can be improved. Further, as the solid lubricant, in addition to molybdenum disulfide (MoS 2 ), a solid lubricant such as carbon or polymer may be embedded in the surface of the groove 6. Furthermore, after shot processing, diamond-like carbon (DLC) or the like is formed on the inner surface of the groove 6 by sputtering or the like, so that further reduction of rolling resistance and longer life can be expected.

また、本実施形態では、本発明のころ軸受の一例として、単列円すいころ軸受である円すいころ軸受11を例にして説明したが、これに限られず、本発明は潤滑状態が良好でない環境下で使用されるその他のころ軸受にも好適に用いることができる。例えば、背面組合せ型円すいころ軸受や正面組み合わせ型円すいころ軸受に適用してもよい。また、円筒ころ軸受,針状ころ軸受,自動調心ころ軸受等のラジアル形の転がり軸受や、スラストころ軸受等のスラスト形の転がり軸受に適用してもよい。   In the present embodiment, the tapered roller bearing 11 that is a single-row tapered roller bearing is described as an example of the roller bearing of the present invention. However, the present invention is not limited to this, and the present invention is in an environment where the lubrication state is not good. It can be suitably used for other roller bearings used in the above. For example, the present invention may be applied to a back combination tapered roller bearing or a front combination tapered roller bearing. Further, the present invention may be applied to radial type rolling bearings such as cylindrical roller bearings, needle roller bearings, and self-aligning roller bearings, and thrust type rolling bearings such as thrust roller bearings.

さらに、本発明のころ軸受は、様々な種類の機械装置に対して適用することができる。例えば、リニアガイド、タペットローラ、直動ベアリングの他、鉄鋼関係の各種ロールのロールネック部軸受、製紙関係の各種ロールのロールネック部軸受などの高荷重を受ける軸受、オルタネータ、中間プーリ、電磁クラッチ内蔵コンプレッサ等の自動車の電装補機、水ポンプ等のエンジン補機、鉄道車両の主電動機用軸受、車軸用軸受、各種インバータモータ用軸受などの高速回転用の軸受として適用することができる。   Furthermore, the roller bearing of the present invention can be applied to various types of mechanical devices. For example, bearings that receive high loads, such as linear guides, tappet rollers, linear motion bearings, roll neck bearings for various steel-related rolls, roll neck bearings for various paper-related rolls, alternators, intermediate pulleys, electromagnetic clutches It can be applied as a bearing for high-speed rotation, such as an electrical accessory for an automobile such as a built-in compressor, an engine accessory such as a water pump, a bearing for a main motor of a railway vehicle, an axle bearing, and various inverter motor bearings.

次に図11〜図18は、本発明に係る円すいころ軸受11の他の実施の形態を示したものである。
他の実施の形態として、図11及び図12に示すように大端面3a、小端面3b、大つば面5b及び小つば面5dの少なくとも1つに、溝6A又は溝6Bを、平面形状が綾目状となるように形成しても良い。なお、図11(a)は、大端面3a及び小端面3bに形成された綾目状の溝6Aを示した図であり、図11(b)は、大つば面5b及び小つば面5dに形成された綾目状の溝6Bを示した図である。また、綾目状の溝とは、互いに平行な複数の直線状溝からなる溝群2つが、所定の交差角をもって交わり菱形模様を形成している状態である。溝6A及び溝6Bを平面形状が綾目状になるように形成すれば、大端面3aと大つば面5b、及び、小端面3bと小つば面5dとの摺接する部分において、より優れた低摩擦効果が得られる。
Next, FIGS. 11 to 18 show another embodiment of the tapered roller bearing 11 according to the present invention.
As another embodiment, as shown in FIGS. 11 and 12, at least one of the large end surface 3a, the small end surface 3b, the large brim surface 5b, and the small brim surface 5d is provided with a groove 6A or a groove 6B, and the planar shape is a twill. You may form so that it may become eye shape. FIG. 11A is a view showing a cross-shaped groove 6A formed on the large end surface 3a and the small end surface 3b, and FIG. 11B shows the large brim surface 5b and the small brim surface 5d. It is the figure which showed the formed twill-like groove | channel 6B. The twill-like groove is a state in which two groove groups composed of a plurality of linear grooves parallel to each other intersect each other with a predetermined crossing angle to form a rhombus pattern. If the groove 6A and the groove 6B are formed so that the planar shape is a cross-hatched shape, it is possible to achieve a more excellent low level in the sliding contact portion between the large end surface 3a and the large brim surface 5b and between the small end surface 3b and the small brim surface 5d. A friction effect is obtained.

また、他の実施形態として、図13〜図15に示すように、大端面3a、小端面3b、大つば面5b及び小つば面5dに溝6A又は溝6Bを、平面形状がV字状となるように形成してもよい。なお、図13(a)は、大端面3a及び小端面3bに形成されたV字状の溝6Aを示した図であり、図13(b)は、大つば面5b及び小つば面5dに形成されたV字状の溝6Bを示した図である。これによって、円すいころ3の摺動に際して大端面3aと大つば面5bとの間、及び、小端面3bと小つば面5dとの間に溜まった潤滑剤が、各溝6A及び溝6B内に押し込まれると共に、この溝6A及び溝6Bが既に潤滑剤で満たされている場合でも、新たに押し込まれる潤滑剤によって先に充填された潤滑剤がその斜め溝の一端または両端から押し出されるようにして逃げる。このため、大端面3aと大つば面5b、及び、小端面3bと小つば面5dとの摺接する部分において、潤滑剤が大量に溜まることがなくなり、その転がり抵抗を確実に低減できる。   Further, as another embodiment, as shown in FIGS. 13 to 15, the groove 6A or the groove 6B is formed on the large end surface 3a, the small end surface 3b, the large brim surface 5b, and the small brim surface 5d, and the planar shape is V-shaped. You may form so that it may become. FIG. 13A is a view showing a V-shaped groove 6A formed on the large end surface 3a and the small end surface 3b, and FIG. 13B shows the large collar surface 5b and the small collar surface 5d. It is the figure which showed the formed V-shaped groove | channel 6B. As a result, the lubricant accumulated between the large end surface 3a and the large brim surface 5b and between the small end surface 3b and the small brim surface 5d when the tapered roller 3 is slid into the grooves 6A and 6B. Even when the groove 6A and the groove 6B are already filled with the lubricant, the lubricant previously filled with the newly pushed lubricant is pushed out from one or both ends of the oblique groove. escape. For this reason, a large amount of lubricant does not accumulate in the portions where the large end surface 3a and the large brim surface 5b, and the small end surface 3b and the small brim surface 5d are in sliding contact, and the rolling resistance can be reliably reduced.

ここで、溝6を平面形状がV字状となるように形成する配置形態としては、特に限定されるものでない。例えば大つば面5b及び小つば面5dに配置される溝6Bは、図15(a)、(b)に示すようにV字状の溝6Bを、その屈曲部6cが摺動方向に重なり合うように配置したり、あるいは図15(c)、(d)に示すようにV字状の溝6Bを、その屈曲部6cが摺動方向と直交する方向に重なり合うように配置しても良い。また、大端面3a及び小端面3bに配置される溝6Aは、図15(e)に示すようにV字状の溝6Aを、その屈曲部6cが円すいころ3の自転方向に重なり合うように配置したり、あるいは図15(f)(g)に示すようにV字状の溝6Aを、その屈曲部6cが円すいころ3の自転方向と直交する方向に重なり合うように配置しても良い。   Here, the arrangement of the grooves 6 so that the planar shape is V-shaped is not particularly limited. For example, the groove 6B disposed on the large brim surface 5b and the small brim surface 5d has a V-shaped groove 6B as shown in FIGS. 15A and 15B, and its bent portion 6c overlaps in the sliding direction. Alternatively, as shown in FIGS. 15C and 15D, the V-shaped groove 6B may be arranged so that the bent portion 6c overlaps in the direction perpendicular to the sliding direction. Further, as shown in FIG. 15 (e), the groove 6 </ b> A arranged on the large end surface 3 a and the small end surface 3 b is arranged such that the V-shaped groove 6 </ b> A overlaps with the direction of rotation of the tapered roller 3. Alternatively, as shown in FIGS. 15 (f) and 15 (g), the V-shaped groove 6 </ b> A may be arranged so that the bent portion 6 c overlaps the direction perpendicular to the rotation direction of the tapered roller 3.

また、図16(a)、(b)に示すように、溝6Aが形成された大端面3a及び小端面3b、溝6Bが形成された大つば面5b及び小つば面5dの少なくとも1つに、この溝6よりも摺動方向の幅が小さい微小溝6dを、この溝6と交差する方向に複数形成すれば、油膜強化効果をさらに向上することができる。   16A and 16B, at least one of the large end surface 3a and the small end surface 3b in which the groove 6A is formed and the large brim surface 5b and the small brim surface 5d in which the groove 6B is formed. The oil film strengthening effect can be further improved by forming a plurality of minute grooves 6d having a width in the sliding direction smaller than that of the groove 6 in a direction crossing the groove 6.

ここで、これら微小溝6dと溝6の開口部分の合計面積とランド部7の面積の比は、11(溝):89(ランド部)〜60:40とすることが好ましい。また、大つば面5b及び小つば面5dに形成される微小溝6dの摺動方向の幅は、溝6Bの摺動方向の幅の1/100以上1/10以下であることが好ましい。さらに、大端面3a及び小端面3bに形成される微小溝6dの幅は、溝6Aの横断方向の幅の1/100以上1/10以下であることが好ましい。
また、図示するようにこの微小溝6dは、複数本(図の例では3本)を1組として配置しても良い。また、この微小溝6dと溝6との交差角度γは、溝6A又は溝6Bに対して15°以上90°以下の範囲であることが好ましい。
Here, it is preferable that the ratio of the total area of the opening portions of the minute grooves 6d and the grooves 6 to the area of the land portion 7 is 11 (groove): 89 (land portion) to 60:40. The width in the sliding direction of the minute groove 6d formed on the large collar surface 5b and the small collar surface 5d is preferably 1/100 or more and 1/10 or less of the width in the sliding direction of the groove 6B. Furthermore, the width of the minute groove 6d formed in the large end surface 3a and the small end surface 3b is preferably 1/100 or more and 1/10 or less of the width in the transverse direction of the groove 6A.
Further, as shown in the figure, a plurality of micro grooves 6d (three in the example in the figure) may be arranged as one set. Further, the crossing angle γ between the minute groove 6d and the groove 6 is preferably in the range of 15 ° or more and 90 ° or less with respect to the groove 6A or the groove 6B.

さらに、図17に示すように、大端面3a、小端面3b、大つば面5b及び小つば面5dの少なくとも1つに、方向の異なる2種類のV字状溝(図17(a))、U字状溝(図17(b))、X字状(図17(c))、8の字状溝(図17(d))、3の字状溝(図17(e))、C字状又は楕円状あるいはレンズ形状溝(図17(f))、M字状又はW字状溝(図17(g))の少なくとも1つの形状をした溝を形成すれば、前記各実施形態と同様な作用・効果を得ることが可能となる。なお、図17は例として大つば面5bに形成された溝を示したが小つば面5dも同様である。また、大端面3a及び小端面3bには、図17で示した溝が、円すいころ3の自転方向に沿って形成されている。   Furthermore, as shown in FIG. 17, at least one of the large end surface 3a, the small end surface 3b, the large brim surface 5b, and the small brim surface 5d has two types of V-shaped grooves having different directions (FIG. 17 (a)), U-shaped groove (FIG. 17B), X-shaped (FIG. 17C), 8-shaped groove (FIG. 17D), 3-shaped groove (FIG. 17E), C If a groove having at least one of a letter-shaped, elliptical, or lens-shaped groove (FIG. 17 (f)), an M-shaped or W-shaped groove (FIG. 17 (g)) is formed, Similar actions and effects can be obtained. In addition, although FIG. 17 showed the groove | channel formed in the large collar surface 5b as an example, the small collar surface 5d is also the same. Moreover, the groove | channel shown in FIG. 17 is formed along the autorotation direction of the tapered roller 3 in the large end surface 3a and the small end surface 3b.

さらに、溝6は、大端面3a、小端面3b、大つば面5b及び小つば面5dの全面に形成してもよく、部分的に形成してもよい。さらに、溝6を平面形状が綾目状やV字状等となるように形成した場合にも、これら溝6で形成された綾目状やV字状の模様を大端面3a、小端面3b、大つば面5b及び小つば面5dの全面に形成してもよく、部分的に形成してもよい。   Further, the groove 6 may be formed on the entire surface of the large end surface 3a, the small end surface 3b, the large brim surface 5b, and the small brim surface 5d, or may be partially formed. Further, when the groove 6 is formed so that the planar shape is a cross-shaped or V-shaped, the pattern of the cross-shaped or V-shaped formed by the grooves 6 is the large end surface 3a and the small end surface 3b. Further, it may be formed on the entire surface of the large collar surface 5b and the small collar surface 5d, or may be partially formed.

また、溝6は、大端面3a、小端面3b、大つば面5b及び小つば面5dの少なくとも一つに形成することに加えて、内輪1の軌道面1a、外輪2の軌道面2a及び円すいころ3の転動面3cの少なくとも1つに形成してもよい。溝6を内輪1の軌道面1a、外輪2の軌道面2a及び円すいころ3の転動面3cに形成した場合には、溝6は、円すいころ3の転がり方向に対して斜めに傾斜しているため、図18に示すように円すいころ3の転動面3cは、その一部が常にその溝6、6間のランド部7に接している状態となる。これによって、円すいころ3の転動面3cが溝6内に落ち込むようなことがなくなるため、転動時に微小な振動が発生してしまうこともない。   Further, the groove 6 is formed in at least one of the large end surface 3a, the small end surface 3b, the large brim surface 5b, and the small brim surface 5d, and the raceway surface 1a of the inner ring 1, the raceway surface 2a of the outer ring 2, and a conical shape. It may be formed on at least one of the rolling surfaces 3c of the roller 3. When the groove 6 is formed on the raceway surface 1 a of the inner ring 1, the raceway surface 2 a of the outer ring 2, and the rolling surface 3 c of the tapered roller 3, the groove 6 is inclined obliquely with respect to the rolling direction of the tapered roller 3. Therefore, as shown in FIG. 18, a part of the rolling surface 3 c of the tapered roller 3 is always in contact with the land portion 7 between the grooves 6 and 6. As a result, the rolling surface 3c of the tapered roller 3 does not fall into the groove 6, so that minute vibrations do not occur during rolling.

この時、内輪1の軌道面1a、外輪2の軌道面2a及び円すいころ3の転動面3cに形成された溝6の転がり方向に対する傾斜角度である傾斜角α1及びα2は、円すいころ3の転がり方向と直交する方向を基準として−90°を超えかつ+90°未満の範囲であれば特に限定されるものではないが、−45°以上−15°以下及び15°以上45°以下の範囲が好ましい。   At this time, the inclination angles α1 and α2, which are inclination angles with respect to the rolling direction of the grooves 6 formed on the raceway surface 1a of the inner ring 1, the raceway surface 2a of the outer ring 2 and the rolling surface 3c of the tapered roller 3, are There is no particular limitation as long as it is in the range of more than −90 ° and less than + 90 ° with respect to the direction orthogonal to the rolling direction, but ranges of −45 ° to −15 ° and 15 ° to 45 ° are possible. preferable.

このような構成であれば、十分な転がり抵抗減少効果が得られると共に、添加剤との相性も向上することができるため、耐摩耗性及び耐焼付き性を得ることができる。
このとき、円すいころ3の転動面3cに形成する溝6の傾斜方向は特に限定されるものでなく、内輪1の軌道面1a及び外輪2の軌道面2aに形成される溝6の傾斜方向と異なる方向であっても良い。また、円すいころ3の転動面3cに形成される溝6の傾斜角α2が、内輪1の軌道面1a及び外輪2の転動面2に形成される溝6の傾斜角α1と異ならしめすようにしてもよい。
With such a configuration, a sufficient rolling resistance reduction effect can be obtained, and compatibility with the additive can be improved, so that wear resistance and seizure resistance can be obtained.
At this time, the inclination direction of the groove 6 formed on the rolling surface 3c of the tapered roller 3 is not particularly limited, and the inclination direction of the groove 6 formed on the raceway surface 1a of the inner ring 1 and the raceway surface 2a of the outer ring 2 is not limited. The direction may be different. Further, the inclination angle α2 of the groove 6 formed on the rolling surface 3c of the tapered roller 3 is made different from the inclination angle α1 of the groove 6 formed on the raceway surface 1a of the inner ring 1 and the rolling surface 2 of the outer ring 2. It may be.

さらに、円すいころ軸受11は、内輪1の軌道面1a及び外輪2の軌道面2aのうち一方の軌道面の幅方向と長手方向における算術平均粗さRa(JIS B0601)を、0.1μm以上0.5μm以下、且つ、内輪1の軌道面1a及び外輪2の軌道面2aのうち一方の軌道面の幅方向と長手方向における表面粗さ曲線の突出谷部平均深さRvk(JIS B0671−2)を0.45μm以上とすることが好ましい。算術平均粗さRaが0.1μm未満であると、転がり抵抗の低減効果は小さくなり、一方、0.5μm超過であると、表面粗さの影響により、油膜が切れて金属接触を生じやすくなるからである。また、突出谷部平均深さRvkが0.45μm以上であると、油溜まりの効果によって、円すいころ3と軌道面1a及び2aとの金属接触が起き難くなるからである。
さらに、ランド部7の算術平均粗さRa(JIS B0601)が、0.2μm以下であることが好ましい。このような構成によれば、円すいころ3と軌道面1a及び2aとの金属接触が起き難くなり、優れた耐摩耗性を発揮できる。
Further, the tapered roller bearing 11 has an arithmetic average roughness Ra (JIS B0601) of 0.1 μm or more in the width direction and the longitudinal direction of one of the raceway surfaces 1a of the inner ring 1 and the raceway surface 2a of the outer ring 2. 0.5 μm or less, and the protruding valley average depth Rvk of the surface roughness curve in the width direction and the longitudinal direction of one of the raceway surfaces 1a of the inner ring 1 and the raceway surface 2a of the outer ring 2 (JIS B0671-2) Is preferably 0.45 μm or more. When the arithmetic average roughness Ra is less than 0.1 μm, the effect of reducing the rolling resistance is reduced. On the other hand, when the arithmetic average roughness Ra is more than 0.5 μm, the oil film is cut off due to the influence of the surface roughness, and metal contact is likely to occur. Because. Moreover, it is because metal contact with the tapered roller 3 and the raceway surfaces 1a and 2a becomes difficult to occur due to the effect of the oil sump when the protruding valley average depth Rvk is 0.45 μm or more.
Furthermore, the arithmetic average roughness Ra (JIS B0601) of the land portion 7 is preferably 0.2 μm or less. According to such a configuration, metal contact between the tapered roller 3 and the raceway surfaces 1a and 2a is difficult to occur, and excellent wear resistance can be exhibited.

以下に、本実施形態の円すいころ軸受の転がり抵抗試験及び耐焼付き性試験について、図19及び20を参照しながら説明する。
まず、転がり抵抗試験について説明する。本試験に用いる円すいころ軸受100は、日本精工株式会社製の呼び番号HR30307C(内径:35mm,外径:80mm,最大幅:22.75mm)の円すいころ軸受である。
Below, the rolling resistance test and seizure resistance test of the tapered roller bearing of this embodiment will be described with reference to FIGS.
First, the rolling resistance test will be described. The tapered roller bearing 100 used in this test is a tapered roller bearing having a designation number HR30307C (inner diameter: 35 mm, outer diameter: 80 mm, maximum width: 22.75 mm) manufactured by NSK Ltd.

この円すいころ軸受100は、内輪軌道面を有する内輪10と、外輪軌道面を有する外輪20と、内輪軌道面及び外輪軌道面間に転動自在に配設され、転動面を有する円すい状の複数の円すいころ30と、円すいころ30を転動自在に保持するSPCC製の保持器40とからなる。
また、この円すいころ軸受100では、内輪10の軸方向両端部に大つば及び小つばが形成されており、この大つばの軸方向内面(大つば面)が円すいころの大端面に、小つばの軸方向内面(小つば面)が円すいころの小端面にそれぞれ摺接した状態で案内されるように構成されている。
This tapered roller bearing 100 has a tapered shape having an inner ring raceway surface, an outer ring 20 having an outer ring raceway surface, and an inner ring raceway surface and an outer ring raceway surface. It consists of a plurality of tapered rollers 30 and a SPCC-made retainer 40 that holds the tapered rollers 30 in a rollable manner.
Further, in this tapered roller bearing 100, a large brim and a small brim are formed at both axial ends of the inner ring 10, and the axial inner surface (large brim surface) of the large brim is formed on the large end surface of the tapered roller. The axial inner surface (small brim surface) is guided while being in sliding contact with the small end surface of the tapered roller.

内輪10、外輪20及び円すいころ30は、以下に示すようにして作製した。まず、高炭素クロム軸受鋼二種(SUJ2)からなる素材を内輪、外輪及び円すいころの各形状に加工し、840℃の混合ガス雰囲気(RXガス+エンリッチガス+アンモニアガス)で3時間浸炭窒化した後、油焼入れ及び焼戻しを行った。そして、内輪10、外輪20及び円すいころ30の各表層部(表面から250μmの深さまでの部分)の残留オーステナイト量を15体積%以上40体積%以下とし、前記表層部の硬さをHRC62〜67(Hv746〜900)に調整した。   The inner ring 10, the outer ring 20, and the tapered roller 30 were produced as follows. First, a material composed of two types of high carbon chromium bearing steel (SUJ2) is processed into inner ring, outer ring and tapered roller shapes, and carbonitrided for 3 hours in a mixed gas atmosphere (RX gas + enriched gas + ammonia gas) at 840 ° C. After that, oil quenching and tempering were performed. And the residual austenite amount of each surface layer part (part from the surface to the depth of 250 micrometers) of the inner ring | wheel 10, the outer ring | wheel 20, and the tapered roller 30 shall be 15 volume% or more and 40 volume% or less, and the hardness of the said surface layer part is HRC62-67. (Hv 746 to 900).

このようにして作製した円すいころ30の大端面に、以下に記載する大つば面、内輪10の軌道面及び円すいころ30の転動面に形成する、斜め、綾目状及びV字状と同じ溝の形状を、研削加工により形成した。このようにして得られた円すいころ30、内輪10及び外輪20と、SPCC製の保持器40とを用いて、円すいころ軸受100を組み立てて、本実施例1〜3に係る円すいころ軸受を作製した。図19に、円すいころ30の大端面に形成した、斜め、綾目状及びV字状の溝を示す。   The large end surface of the tapered roller 30 produced in this way is the same as the oblique, cross-shaped and V-shaped formed on the large brim surface, the raceway surface of the inner ring 10 and the rolling surface of the tapered roller 30 described below. The shape of the groove was formed by grinding. Using the tapered roller 30, the inner ring 10 and the outer ring 20 obtained in this way, and the cage 40 made of SPCC, the tapered roller bearing 100 is assembled, and the tapered roller bearing according to the first to third embodiments is manufactured. did. FIG. 19 shows oblique, cross-shaped and V-shaped grooves formed on the large end face of the tapered roller 30.

また、上記のようにして作製した内輪10の大つば面に、摺動方向に対して傾斜角度を45°にして、斜め、綾目状及びV字状の溝を研削加工により形成した。このようにして得られた内輪10、円すいころ30及び外輪20と、SPCC製の保持器40とを用いて、円すいころ軸受100を組み立てて、本実施例4〜6に係る円すいころ軸受を作製した。   In addition, on the large brim surface of the inner ring 10 manufactured as described above, an inclined angle with respect to the sliding direction was set to 45 °, and oblique, cross-shaped and V-shaped grooves were formed by grinding. Using the inner ring 10, the tapered roller 30 and the outer ring 20 thus obtained, and the SPCC cage 40, the tapered roller bearing 100 is assembled, and the tapered roller bearings according to Examples 4 to 6 are manufactured. did.

さらに、上記のようにして作製した内輪10の軌道面に、摺動方向に対して傾斜角度を45°にして、斜め、綾目状及びV字状に溝を研削加工により形成した。このようにして得られた内輪10、円すいころ30及び外輪20と、SPCC製の保持器40とを用いて、円すいころ軸受100を組み立てて、実験例1〜3に係る円すいころ軸受を作製した。   Further, on the raceway surface of the inner ring 10 manufactured as described above, an inclination angle with respect to the sliding direction was set to 45 °, and grooves were formed in an oblique shape, a cross shape, and a V shape by grinding. Using the inner ring 10, the tapered roller 30 and the outer ring 20 obtained in this way, and the cage 40 made of SPCC, the tapered roller bearing 100 was assembled to produce tapered roller bearings according to Experimental Examples 1 to 3. .

また、上記のようにして作製した円すいころ30の転動面に、摺動方向に対して傾斜角度を45°にして、斜め、綾目状及びV字状に溝を研削加工により形成した。このようにして得られた円すいころ30、内輪10及び外輪20と、SPCC製の保持器40とを用いて、円すいころ軸受100を組み立てて、実験例4〜6に係る円すいころ軸受を作製した。   In addition, on the rolling surface of the tapered roller 30 produced as described above, an inclination angle with respect to the sliding direction was set to 45 °, and grooves were formed in an oblique shape, a cross shape, and a V shape by grinding. Using the tapered roller 30, the inner ring 10 and the outer ring 20 obtained in this way, and the cage 40 made of SPCC, the tapered roller bearing 100 was assembled to produce tapered roller bearings according to Experimental Examples 4 to 6. .

また、上記のようにして作製した内輪10、外輪20及び円すいころ30と、SPCC製の保持器40とを用いて、円すいころ軸受100を組み立てて比較例1に係る円すいころ軸受を作製した。なお、比較例1に係る円すいころ軸受の内輪10、外輪20及び円すいころ30には、溝は形成されていない。
この転がり抵抗試験は、図20に示す縦型内輪回転式試験機を用いて行った。この試験機は、図20に示すように、主軸221と、この主軸221の軸方向一端部221aに設けられた支持軸受222と、本体部223と、この本体部223の軸方向上端面に設けられた静圧軸受224と、からなり、試験軸受である円すいころ軸受100の内輪10を主軸221に外嵌させ、外輪20を本体部223に内嵌させた状態で使用されるように構成されている。
Moreover, the tapered roller bearing 100 was assembled using the inner ring 10, the outer ring 20, the tapered roller 30, and the cage 40 made of SPCC, and the tapered roller bearing according to Comparative Example 1 was fabricated. Note that no groove is formed in the inner ring 10, the outer ring 20, and the tapered roller 30 of the tapered roller bearing according to the first comparative example.
This rolling resistance test was conducted using a vertical inner ring rotating tester shown in FIG. As shown in FIG. 20, this testing machine is provided on a main shaft 221, a support bearing 222 provided at one axial end 221 a of the main shaft 221, a main body 223, and an axial upper end surface of the main body 223. And is configured to be used in a state in which the inner ring 10 of the tapered roller bearing 100 as a test bearing is fitted on the main shaft 221 and the outer ring 20 is fitted on the main body 223. ing.

また、静圧軸受224の上方からはアキシャル荷重Faを付与できるように構成されている。さらに、本体部223の側面には、棒材225を介してロードセル226が接続されており、本体部223に加わる動摩擦トルクを検出できるように構成されている。さらに、本体部223の側面には、試験軸受である円すいころ軸受100の転がり面に潤滑油Jを供給するための通路227と、外輪の温度を検出するための熱電対228とが設けられている。   The axial load Fa can be applied from above the hydrostatic bearing 224. Further, a load cell 226 is connected to a side surface of the main body 223 via a bar 225 so that a dynamic friction torque applied to the main body 223 can be detected. Further, a passage 227 for supplying the lubricating oil J to the rolling surface of the tapered roller bearing 100 that is a test bearing and a thermocouple 228 for detecting the temperature of the outer ring are provided on the side surface of the main body 223. Yes.

また、この回転試験は、通常量(300ml/min)よりも少ない量の潤滑油Jを供給しつつ、以下に示す条件で内輪10を回転させることで行い、内輪10を一定時間(24時間)回転させた後の回転トルクを測定した。この結果は、比較例1の円すいころ軸受の回転トルクを1とした時の比(回転トルク比)として、表1に併せて示した。また、大つば面に、摺動方向に対して傾斜角度を変えて、斜め、綾目状及びV字状の溝を形成した本実施例に係る円すいころ軸受の転がり抵抗試験の結果を、比較例1の円すいころ軸受の回転トルクを1とした時の比(回転トルク比)として、表2に併せて示した。
〔回転試験条件〕
荷重:9.8kN
回転速度:100min-1
潤滑油:ISO粘度グレードがISOVG32であるタービン油
軸受油量:200ml/min
潤滑油温度:30±3℃
In addition, this rotation test was performed by rotating the inner ring 10 under the following conditions while supplying a smaller amount of the lubricating oil J than the normal amount (300 ml / min), and the inner ring 10 was kept for a certain time (24 hours). The rotational torque after the rotation was measured. The results are also shown in Table 1 as a ratio (rotational torque ratio) when the rotational torque of the tapered roller bearing of Comparative Example 1 is 1. In addition, the results of the rolling resistance test of the tapered roller bearing according to the present example in which the slanted, crossed and V-shaped grooves are formed on the large brim surface by changing the inclination angle with respect to the sliding direction are compared. Table 2 also shows the ratio (rotational torque ratio) when the rotational torque of the tapered roller bearing of Example 1 is 1.
[Rotation test conditions]
Load: 9.8kN
Rotational speed: 100min -1
Lubricating oil: Turbine oil bearing oil whose ISO viscosity grade is ISOVG32: 200 ml / min
Lubricating oil temperature: 30 ± 3 ℃

Figure 2013100839
Figure 2013100839

表1から、本実施例1〜6に係る円すいころ軸受は、比較例1に係る転がり軸受に比して回転トルクが減少していることがわかる。また、実験例1〜6に係る円すいころ軸受も、比較例1に係る円すいころ軸受に比して同様に回転トルクが減少していることがわかる。   From Table 1, it can be seen that the tapered torque bearings according to Examples 1 to 6 have reduced rotational torque as compared to the rolling bearing according to Comparative Example 1. It can also be seen that the tapered torque bearings according to Experimental Examples 1 to 6 are similarly reduced in rotational torque as compared to the tapered roller bearing according to Comparative Example 1.

Figure 2013100839
Figure 2013100839

また、表2から、大つば面に、斜め、綾目状及びV字状の溝を、摺動方向に対して好ましい傾斜角度である15°,30°,45°の角度に形成した実施例4〜6,7,8,10,11,13,14に係る円すいころ軸受の方が、斜め、綾目状及びV字状の溝を傾斜角度60°の角度に形成した実施例9,12,15に係る円すいころ軸受に比して、回転トルクが減少していることがわかる。   In addition, from Table 2, an example in which diagonal, cross-shaped and V-shaped grooves are formed on the large brim surface at angles of 15 °, 30 °, and 45 °, which are preferable inclination angles with respect to the sliding direction. Examples 9 and 12 in which tapered roller bearings according to 4 to 6, 7, 8, 10, 11, 13, and 14 are formed with oblique, cross-shaped and V-shaped grooves at an inclination angle of 60 °. 15, the rotational torque is reduced as compared with the tapered roller bearing according to FIGS.

次に、縦型内輪回転式試験機を用いた耐焼付き性試験について説明する。試験には、回転トルクが最も小さかった実施例13に係る円すいころ軸受と、その実施例13に係る円すいころ軸受の綾目状に形成した溝の内面に、固体潤滑剤である二硫化モリブデン(MoS)の膜を形成することにより作製した実験例7に係る円すいころ軸受とを用いて行った。これらの円すいころ軸受に、試験前に数的の潤滑油を供給するのみで、給油を行うことなく円すいころ軸受を回転させて、外輪温度が温度100℃を超えるまでの時間を焼付き時間とした。この結果は、比較例1の円すいころ軸受の焼付き時間と併せて表3に示した。 Next, a seizure resistance test using a vertical inner ring rotating tester will be described. In the test, a tapered roller bearing according to Example 13 having the smallest rotational torque, and molybdenum disulfide (solid lubricant) (solid lubricant) on the inner surface of the groove formed in the tapered roller bearing according to Example 13 It was carried out using a tapered roller bearing according to Experimental Example 7 produced by forming a film of MoS 2 ). The time until the outer ring temperature exceeds the temperature of 100 ° C. is determined by rotating the tapered roller bearing without supplying oil only by supplying a few lubricating oils before the test to these tapered roller bearings. did. The results are shown in Table 3 together with the seizure time of the tapered roller bearing of Comparative Example 1.

Figure 2013100839
Figure 2013100839

表3から、比較例1に係る転がり軸受では、回転開始から20分程度で外輪温度が急上昇して焼付きが発生したが、実施例13に係る円すいころ軸受では、比較例1に比して約4倍の焼付き時間となった。また、実験例7に係る円すいころ軸受では、比較例1に比して約5倍の焼付き時間となった。
これらの結果から、耐焼付き性を向上させるには、実験例7のように、綾目状に形成した溝の内面に固体潤滑剤である二硫化モリブデン(MoS)の膜を形成することが好ましい。
From Table 3, in the rolling bearing according to Comparative Example 1, the outer ring temperature rapidly increased and seizure occurred in about 20 minutes from the start of rotation. However, in the tapered roller bearing according to Example 13, compared to Comparative Example 1. The seizure time was about 4 times. Further, in the tapered roller bearing according to Experimental Example 7, the seizure time was about five times that of Comparative Example 1.
From these results, in order to improve the seizure resistance, a film of molybdenum disulfide (MoS 2 ), which is a solid lubricant, is formed on the inner surface of the groove formed in a tread pattern as in Experimental Example 7. preferable.

1,10 内輪
2,20 外輪
3,30 円すいころ
5a 大つば
5b 大つば面
5c 小つば
5d 小つば面
6,6A,6B 溝
7 ランド部
11 円すいころ軸受
DESCRIPTION OF SYMBOLS 1,10 Inner ring 2,20 Outer ring 3,30 Tapered roller 5a Large brim 5b Large brim surface 5c Small brim 5d Small brim surface 6,6A, 6B Groove 7 Land part 11 Tapered roller bearing

Claims (6)

内輪と、外輪と、前記内輪及び前記外輪の間に転動自在に配された複数のころとを備え、前記内輪及び前記外輪の少なくとも一方につばが形成されたころ軸受であって、
前記ころの端面及び前記つばのころと摺接する面の少なくとも一方に溝が形成されていることを特徴とするころ軸受。
A roller bearing comprising an inner ring, an outer ring, and a plurality of rollers arranged to roll between the inner ring and the outer ring, wherein a collar is formed on at least one of the inner ring and the outer ring,
A roller bearing, wherein a groove is formed in at least one of an end surface of the roller and a surface in sliding contact with the collar roller.
前記つばのころと接する面に形成された溝は、前記ころと前記つばとが摺動する摺動方向に対して斜めに傾斜しており、ランド部を挟んで複数形成されたことを特徴とする請求項1に記載のころ軸受。   The groove formed on the surface in contact with the collar roller is inclined obliquely with respect to the sliding direction in which the roller and the collar slide, and a plurality of grooves are formed across the land portion. The roller bearing according to claim 1. 前記つばのころと摺接する面に形成された前記溝の前記摺動方向に対する傾斜角度である傾斜角αが、前記ころの摺動方向と直交する方向を基準として−90°を超えかつ+90°未満の範囲であることを特徴とする請求項2に記載のころ軸受。   An inclination angle α, which is an inclination angle with respect to the sliding direction of the groove formed on the surface in sliding contact with the collar roller, exceeds −90 ° and + 90 ° with respect to a direction orthogonal to the sliding direction of the roller. The roller bearing according to claim 2, wherein the roller bearing is in a range of less than. 前記溝は、その溝の横断方向断面の形状がほぼV字状になっていると共に、溝が形成された面と、断面V字状に形成された溝の内面とで形成される角度βが、15°以上90°未満であることを特徴とする請求項1〜3のいずれか1項に記載のころ軸受。   The groove has a substantially V-shaped cross-sectional shape in the transverse direction of the groove, and an angle β formed between the surface on which the groove is formed and the inner surface of the groove formed in the V-shaped cross section. The roller bearing according to claim 1, wherein the roller bearing is at least 15 ° and less than 90 °. 前記溝は、平面形状が綾目状に形成されていることを特徴とする請求項1〜4のいずれか1項に記載のころ軸受。   The roller bearing according to any one of claims 1 to 4, wherein the groove is formed in a cross-shaped planar shape. 前記溝は、平面形状がV字状に形成されていることを特徴とする請求項1〜4のいずれか1項に記載のころ軸受。
The roller bearing according to any one of claims 1 to 4, wherein the groove has a V-shaped planar shape.
JP2011243474A 2011-11-07 2011-11-07 Roll bearing Pending JP2013100839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243474A JP2013100839A (en) 2011-11-07 2011-11-07 Roll bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243474A JP2013100839A (en) 2011-11-07 2011-11-07 Roll bearing

Publications (1)

Publication Number Publication Date
JP2013100839A true JP2013100839A (en) 2013-05-23

Family

ID=48621628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243474A Pending JP2013100839A (en) 2011-11-07 2011-11-07 Roll bearing

Country Status (1)

Country Link
JP (1) JP2013100839A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758860A (en) * 2014-01-13 2014-04-30 洛阳理工学院 Spherical roller bearing with high self-aligning performance
JP2016038079A (en) * 2014-08-11 2016-03-22 株式会社ジェイテクト Roller bearing
JP2017203467A (en) * 2016-05-09 2017-11-16 株式会社不二Wpc Roller bearing
DE102019210890A1 (en) * 2019-07-23 2021-01-28 Minebea Mitsumi Inc. Rolling bearing arrangement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758860A (en) * 2014-01-13 2014-04-30 洛阳理工学院 Spherical roller bearing with high self-aligning performance
JP2016038079A (en) * 2014-08-11 2016-03-22 株式会社ジェイテクト Roller bearing
JP2017203467A (en) * 2016-05-09 2017-11-16 株式会社不二Wpc Roller bearing
DE102019210890A1 (en) * 2019-07-23 2021-01-28 Minebea Mitsumi Inc. Rolling bearing arrangement

Similar Documents

Publication Publication Date Title
US8118493B2 (en) Tapered roller bearing
JP5531966B2 (en) Ball bearing and hybrid vehicle transmission
WO2009150935A1 (en) Retainer, deep groove ball bearing, and bearing with seal
JP5920221B2 (en) Actuator manufacturing method
JP2014095469A (en) Rolling bearing
JP2013100839A (en) Roll bearing
JP2009108963A (en) Rolling member
JP2009121659A (en) Rolling member
JP2017150597A (en) Rolling bearing, rolling device and manufacturing method of rolling device
JP2009204125A (en) Rolling bearing
JP2010265926A (en) Roller bearing
JP5974532B2 (en) Roller bearing and manufacturing method thereof
JP2010169182A (en) Roller bearing
JP2008051308A (en) Wheel bearing device
US11319994B2 (en) Thrust roller bearing
JP2003176826A (en) Rolling bearing
JP2007127251A (en) Double-row self-aligning roller bearing
JP2007100775A (en) Thrust cylindrical roller bearing
JP4322641B2 (en) Cylindrical roller bearing
US20200049199A1 (en) Resin holder for cylindrical roller bearings and cylindrical roller bearing
JP2011112201A (en) Ball bearing
JP2014025529A (en) Self-aligning roller bearing
JP2008051274A (en) Wheel bearing device
CN203743200U (en) Multi-row ball bearing
JP2007120651A (en) Tapered roller bearing