JP2013100837A - Self-aligning roller bearing - Google Patents

Self-aligning roller bearing Download PDF

Info

Publication number
JP2013100837A
JP2013100837A JP2011243429A JP2011243429A JP2013100837A JP 2013100837 A JP2013100837 A JP 2013100837A JP 2011243429 A JP2011243429 A JP 2011243429A JP 2011243429 A JP2011243429 A JP 2011243429A JP 2013100837 A JP2013100837 A JP 2013100837A
Authority
JP
Japan
Prior art keywords
outer ring
self
roller bearing
aligning roller
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011243429A
Other languages
Japanese (ja)
Other versions
JP6075946B2 (en
Inventor
Takuya Ozu
琢也 小津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011243429A priority Critical patent/JP6075946B2/en
Publication of JP2013100837A publication Critical patent/JP2013100837A/en
Application granted granted Critical
Publication of JP6075946B2 publication Critical patent/JP6075946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wind Motors (AREA)
  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-aligning roller bearing which has an enlarged allowable self-aligning angle without damaging load bearing capacity and workability.SOLUTION: The self-aligning roller bearing includes a plurality of arrays of rolling elements 3, 3 between an outer ring 1 and an inner ring 2. A raceway surface 1a of the outer ring 1 assumes a spherical shape continuing from one edge to the other edge along the axial center c0 direction of a bearing, shapes of a plurality of arrays of raceway surfaces 2a, 2a of the inner ring 2 are symmetrical to each other via the symmetrical axis c2 vertical to the axial center c0 direction. The self-aligning roller bearing employs such a configuration that an raceway surface center line c2 passing through the maximum diameter part q2 of the raceway surface 1a of the outer ring 1 and being vertical to the axial center c0 direction is deviated to either side of the axial center c0 direction from an outer ring width bisector c1 which bisects width dimension L1 in the axial center c0 direction of the outer ring 1.

Description

この発明は、風力発電装置の主軸受等に使用する自動調心ころ軸受に関し、より詳しくは、ラジアル荷重と一方向のアキシアル荷重を受ける自動調心ころ軸受に関する。   The present invention relates to a self-aligning roller bearing used for a main bearing or the like of a wind power generator, and more particularly to a self-aligning roller bearing that receives a radial load and an axial load in one direction.

風力発電装置の主軸受等において、自動調心ころ軸受が採用される。この自動調心ころ軸受は、例えば、図7に示すように、内輪2と外輪1との間に複列にころ3,3を介在させた複列の自動調心ころ軸受10となっている。複列の各ころ3,3は、それぞれ保持器4により保持されている。   Spherical roller bearings are used in main bearings of wind power generators. This self-aligning roller bearing is, for example, a double row self-aligning roller bearing 10 in which rollers 3 and 3 are interposed between the inner ring 2 and the outer ring 1 as shown in FIG. . The double row rollers 3 and 3 are respectively held by a cage 4.

外輪1の軌道面1aは球面状となっており、また、各列のころ3,3の外周面は、外輪1の軌道面1aに沿う断面形状となっている。
内輪2は、各列のころ3,3の外周面に沿う断面形状の複列の軌道面2a,2aを有し、両軌道面2a,2aの間、及び各軌道面2a,2aの軸方向外側に、それぞれ鍔が設けられている。なお、この内輪2は、鍔無しのものを採用する場合もある。
The raceway surface 1 a of the outer ring 1 has a spherical shape, and the outer peripheral surfaces of the rollers 3 and 3 in each row have a cross-sectional shape along the raceway surface 1 a of the outer ring 1.
The inner ring 2 has double-row raceway surfaces 2a, 2a having a cross-sectional shape along the outer peripheral surface of each row of rollers 3, 3, and between the raceway surfaces 2a, 2a and in the axial direction of each raceway surface 2a, 2a. Each side is provided with a ridge. In some cases, the inner ring 2 may be one without wrinkles.

自動調心ころ軸受10は、径方向のラジアル荷重と軸方向のアキシアル荷重を支持することができる。また、自動調心ころ軸受10は、内輪2と転動体3のサブアセンブリが、外輪1に対して調心する機能を有するため、軸受の取付け誤差や軸のたわみを許容することができる。このため、自動調心ころ軸受10は、大きい荷重が作用する風力発電装置の主軸受においても使用される。   The self-aligning roller bearing 10 can support a radial radial load and an axial axial load. Further, since the self-aligning roller bearing 10 has a function in which the sub-assembly of the inner ring 2 and the rolling element 3 aligns with the outer ring 1, it is possible to allow a mounting error of the bearing and a deflection of the shaft. For this reason, the self-aligning roller bearing 10 is used also in the main bearing of the wind power generator in which a big load acts.

風力発電装置の主軸受は、例えば、図8に示すように、地盤から立ち上がる支持台32上に、旋回座軸受33を介してナセル31が水平方向に旋回自在に設けられている。ナセル31のケーシング34内には、ハウジング38に固定された主軸支持用の複列の自動調心ころ軸受10を介して主軸30が回転自在となっている。   For example, as shown in FIG. 8, the main bearing of the wind turbine generator is provided with a nacelle 31 that can pivot in a horizontal direction on a support base 32 that rises from the ground via a swivel seat bearing 33. In the casing 34 of the nacelle 31, the main shaft 30 is freely rotatable via a double-row self-aligning roller bearing 10 for supporting the main shaft fixed to the housing 38.

また、主軸30のケーシング34外に突出した部分に、ブレード35がその主軸30と一体回転可能に取付けられている。さらに、ケーシング34内において、主軸30は増速機37に接続され、その増速機37の出力軸が発電機36のロータ軸に結合されている。なお、ナセル31は、図示しない旋回用モータの駆動力により任意の角度に旋回することができる。   A blade 35 is attached to a portion of the main shaft 30 that protrudes outside the casing 34 so as to rotate integrally with the main shaft 30. Further, in the casing 34, the main shaft 30 is connected to the speed increaser 37, and the output shaft of the speed increaser 37 is coupled to the rotor shaft of the generator 36. The nacelle 31 can be turned at an arbitrary angle by a driving force of a turning motor (not shown).

この図8の例では、主軸支持用の自動調心ころ軸受10は、主軸30の軸方向に沿って2個並列して設けられているが、これを1個とする場合もある(例えば、特許文献1参照)。   In the example of FIG. 8, two self-aligning roller bearings 10 for supporting the main shaft are provided in parallel along the axial direction of the main shaft 30. Patent Document 1).

特許第4522266号公報(第7頁第7図)Japanese Patent No. 4522266 (page 7, Fig. 7)

この種の自動調心ころ軸受10は、その調心性を備えるがゆえ、却って軸受の取付け誤差を助長することがある。例えば、図9に示すように、自動調心ころ軸受の許容調心角を越えた状態、すなわち、転動体3が外輪1の軌道面1aの縁に乗り上げた状態で軸受を取付けてしまうことがある。   Since this type of self-aligning roller bearing 10 is provided with the aligning property, it may sometimes promote a mounting error of the bearing. For example, as shown in FIG. 9, the bearing may be mounted in a state where the allowable alignment angle of the self-aligning roller bearing is exceeded, that is, in a state where the rolling element 3 rides on the edge of the raceway surface 1 a of the outer ring 1. is there.

このように、乗り上げた状態の転動体3に荷重が作用すると、転動体3と外輪1はエッジ接触(転動体3の外周面に外輪1の軌道面1aと端面1bとの間の稜線が接触した状態)となり、軸受が早期に破損する原因となり得る。   In this way, when a load is applied to the rolling element 3 in the riding state, the rolling element 3 and the outer ring 1 are in edge contact (the outer peripheral surface of the rolling element 3 is in contact with the ridge line between the raceway surface 1a and the end surface 1b of the outer ring 1). And the bearing may be damaged early.

また、風力発電装置の主軸受のように、特に、アキシアル荷重が大きい条件では、複列の転動体3,3のうち、一方の列の転動体3だけで全ての荷重を支持する状態、いわゆる片列負荷となることがある。このため、仮に、その荷重を負荷する側の列の転動体3に乗り上げが生じた場合、軸受が早期に破損する恐れは一層高くなる。   Further, like the main bearing of the wind power generator, in particular, under a condition where the axial load is large, the state in which all the loads are supported by only one of the rolling elements 3 and 3 of the double-row rolling elements 3 and 3, so-called. There may be a single-row load. For this reason, if a run-up occurs on the rolling elements 3 in the row on which the load is applied, there is a higher risk that the bearing will be damaged early.

転動体3の乗り上げを回避するには、例えば、許容調心角を大きくすることで対応することができる。しかし、許容調心角を大きくしつつ、外輪1の幅寸法を変更しない場合、転動体3の長さを短くすることになる。このため、軸受の荷重負荷能力が低下してしまうという問題がある。   In order to avoid getting on the rolling element 3, for example, the allowable alignment angle can be increased. However, when the width of the outer ring 1 is not changed while increasing the allowable alignment angle, the length of the rolling element 3 is shortened. For this reason, there exists a problem that the load capacity of a bearing will fall.

そこで、この発明は、自動調心ころ軸受において、荷重負荷能力や加工性を損なうことなく許容調心角を拡大可能とすることを課題とする。   Accordingly, an object of the present invention is to enable an increase in the allowable alignment angle without impairing the load carrying capacity and workability in a self-aligning roller bearing.

上記の課題を解決するために、この発明は、外輪と内輪との間に複列に転動体を備えた自動調心ころ軸受において、前記外輪の軌道面は、軸受の軸心方向に沿って一端から他端まで連続する球面状であり、前記内輪の複列の軌道面の形状は、前記軸心方向に直交する対称軸を挟んで互いに対称であり、前記外輪の軌道面の最大径部を通り且つ前記軸心方向に直交する軌道面中心線を、前記外輪の前記軸心方向への幅寸法を二分する外輪幅二等分線よりも前記軸心方向いずれかの側へずらしたことを特徴とする自動調心ころ軸受を採用した。   In order to solve the above-described problems, the present invention provides a self-aligning roller bearing provided with rolling elements in a double row between an outer ring and an inner ring, wherein the raceway surface of the outer ring extends along the axial direction of the bearing. The inner ring has a spherical shape continuous from one end to the other end, and the shape of the double-row raceway surface of the inner ring is symmetric with respect to an axis of symmetry perpendicular to the axial direction, and the maximum diameter portion of the raceway surface of the outer ring And the center line of the raceway surface orthogonal to the axial direction is shifted to either side of the axial direction with respect to the outer ring width bisector dividing the width of the outer ring in the axial direction. Spherical roller bearings featuring

すなわち、この構成では、外輪の軌道面の中心点、すなわち最大径部が、外輪の幅寸法を二分する外輪幅二等分線上に存在せず、軸方向いずれかの側へ偏った構成を採用した。このような構成とすることで、軸受の左右列のうち、いずれかの列を外輪に対して転動体の乗り上げが生じにくい列(前記エッジ接触が生じにくい列)とすることができる。
このため、その乗り上げが生じにくい列を、アキシアル荷重の負荷列となるよう軸受を設置すれば、軸受の早期破損を回避することができる。
That is, in this configuration, the center point of the raceway surface of the outer ring, that is, the maximum diameter portion does not exist on the outer ring width bisector that bisects the width dimension of the outer ring, and a configuration that is biased to either side in the axial direction is adopted. did. By adopting such a configuration, it is possible to make one of the left and right rows of the bearings a row where the rolling elements are unlikely to ride on the outer ring (the row where the edge contact is less likely to occur).
For this reason, if the bearings are installed so that the rows that are unlikely to run up become the load rows of the axial load, the early breakage of the bearings can be avoided.

なお、アキシアル荷重の負荷列でない側の列は、相対的に乗り上げが生じやすい列となる。しかし、その列に荷重がほとんど負荷されない状況下では、仮に、転動体が外輪に乗り上げても、大きな問題はないといえる。
特に、風力発電装置の主軸受では、いずれかの側の列に大きなアキシアル荷重の負荷が生じ、もう一方の列には、アキシアル荷重がほとんど負荷されない。このため、アキシアル荷重の負荷列には転動体の外輪への乗り上げを許容せず、負荷列でない側の列には、転動体の外輪への乗り上げをある程度許容可能な構成とできる。
In addition, the row | line | column on the side which is not a load row | line | column of an axial load turns into a row | line | column which tends to arise relatively. However, in a situation where almost no load is applied to the row, it can be said that there is no major problem even if the rolling elements ride on the outer ring.
In particular, in a main bearing of a wind turbine generator, a large axial load is generated on either side of the row, and an axial load is hardly loaded on the other side. For this reason, it is possible to make a configuration in which the load train of the axial load does not allow the rolling element to ride on the outer ring, and the row on the non-load train side can allow the rolling element to ride on the outer ring to some extent.

また、この構成によれば、内輪の軌道面の形状は軸心方向に左右対称であるから、転動体も左右同一のものを使用できる。このため、軸受の荷重負荷能力が低下せず、さらに、従来品と同等の加工性を維持することができる。   Further, according to this configuration, since the shape of the raceway surface of the inner ring is bilaterally symmetrical in the axial direction, the same rolling elements can be used on the left and right. For this reason, the load carrying capacity of the bearing does not decrease, and the workability equivalent to that of the conventional product can be maintained.

したがって、自動調心ころ軸受において、荷重負荷能力や加工性を損なうことなく、許容調心角を拡大可能とし、転動体の外輪への乗り上げによる軸受の損傷リスクを低減することができる。   Therefore, in the self-aligning roller bearing, the allowable alignment angle can be expanded without impairing the load carrying capacity and workability, and the risk of damage to the bearing due to the rolling element riding on the outer ring can be reduced.

この構成において、前記複列の転動体のうち一方は、他方よりも相対的に前記軸心方向へのアキシアル荷重を大きく受けるものであり、前記軌道面中心線は、前記外輪幅二等分線に対して、前記他方の転動体側である構成を採用することができる。
すなわち、このように配置することで、軸受の左右列のうち、外輪に対して転動体の乗り上げが生じにくい列を、アキシアル荷重の負荷列とすることができる。
In this configuration, one of the double row rolling elements receives an axial load relatively larger in the axial direction than the other, and the center line of the raceway surface is the bisector of the outer ring width. On the other hand, the structure which is the said other rolling element side is employable.
That is, by arranging in this way, a row in which the rolling elements are unlikely to ride on the outer ring among the left and right rows of the bearing can be set as a load row of the axial load.

このとき、前記内輪に対し、前記軸心方向他方側から一方側へのアキシアル荷重が負荷された場合、複列の転動体のうち他方の転動体は、前記外輪の側面から突出しないようにすることが望ましい。この構成によれば、ラジアル荷重のみを負荷する場合でも、アキシアル荷重の負荷列でない側の列の損傷リスクを低減することができる。   At this time, when an axial load is applied to the inner ring from the other side in the axial direction to the other side, the other rolling element of the double row rolling elements should not protrude from the side surface of the outer ring. It is desirable. According to this configuration, even when only the radial load is applied, it is possible to reduce the risk of damage to the column on the side that is not the load column of the axial load.

これらの各構成において、前記外輪の前記軸心方向への幅寸法と、前記内輪の前記軸心方向への幅寸法とを同一とした構成を採用することができる。
外輪の幅寸法と内輪の幅寸法とは異なっていても差し支えないが、このように、両者の幅寸法を同一とすることで、既存の軸受を、この構成からなる軸受に置き換えようとする際に、その置き換えの対象となる既存の軸受の周辺構造を変更する必要がない。一般に、自動調心ころ軸受の外輪の幅寸法と内輪の幅寸法は同一であることが多いので、この構成によれば、内輪の左右に位置する間座や軸受箱の寸法を変更する必要がない。
In each of these configurations, it is possible to employ a configuration in which the width dimension of the outer ring in the axial direction is the same as the width dimension of the inner ring in the axial direction.
The width of the outer ring may be different from the width of the inner ring. However, when the width of both is the same, the existing bearing is replaced with a bearing of this configuration. In addition, it is not necessary to change the peripheral structure of the existing bearing to be replaced. In general, the width of the outer ring and the width of the inner ring of the self-aligning roller bearing are often the same. Therefore, according to this configuration, it is necessary to change the dimensions of the spacer and the bearing box located on the left and right of the inner ring. Absent.

この構成において、アキシアル荷重が負荷されない状態で、前記外輪の両側の側面と前記内輪の両側の側面とを同一平面上とした構成を採用することができる。
外輪と内輪の側面が同一平面上にある構成とすることで、その軸受が介在する軸と軸受箱(ハウジング)との間の軸心方向への位置関係を変更することなく、既存の軸受を置き換えることができる。なお、この構成の実現には、内輪の形状を軸方向に非対称とする必要があるが、少なくとも、軌道面に関しては、その形状を対称軸を挟んで対称に維持できる。
In this configuration, it is possible to employ a configuration in which the side surfaces on both sides of the outer ring and the side surfaces on both sides of the inner ring are on the same plane in a state where no axial load is applied.
By adopting a configuration in which the outer ring and the inner ring have side surfaces on the same plane, the existing bearing can be used without changing the positional relationship in the axial direction between the shaft in which the bearing is interposed and the bearing housing (housing). Can be replaced. In order to realize this configuration, the shape of the inner ring needs to be asymmetric in the axial direction, but at least the shape of the raceway surface can be maintained symmetrically across the axis of symmetry.

これらの各構成において、前記外輪は、その外輪を内外に貫通する給脂穴を有し、その給脂穴の前記外輪の軌道面への開口が、前記外輪幅二等分線に対して、前記外輪の軌道面の最大径部側に位置する構成を採用することができる。
外輪が内外に貫通する給脂穴を有する場合に、その給脂穴の外輪の軌道面への開口を、外輪幅二等分線に対して外輪の軌道面の中心点側、すなわち、最大径部側に位置する構成とすることで、調心に伴う給脂穴と転動体の干渉を回避することができる。従来品のように、外輪の幅寸法を二分する位置に給脂穴を設けると、その給脂穴と転動体との干渉が起こりやすいからである。
なお、給脂穴の軸線方向が、軸受の軸心に直交する面方向を有する面内にある場合は、その給脂穴の軸線が、外輪幅二等分線に対して最大径部側に位置する構成となる。
In each of these configurations, the outer ring has a greasing hole that penetrates the outer ring inward and outward, and the opening of the greasing hole to the raceway surface of the outer ring is relative to the outer ring width bisector. The structure located in the largest diameter part side of the track surface of the said outer ring | wheel can be employ | adopted.
When the outer ring has a greasing hole that penetrates inside and outside, the opening of the greasing hole to the raceway surface of the outer ring is the center point side of the raceway surface of the outer ring with respect to the outer ring width bisector, that is, the maximum diameter By setting it as the structure located in the part side, interference with the greasing hole and rolling element accompanying alignment can be avoided. This is because if a greasing hole is provided at a position that bisects the width of the outer ring as in the conventional product, the greasing hole and the rolling element are likely to interfere with each other.
In addition, when the axial direction of the greasing hole is in a plane having a surface direction perpendicular to the axial center of the bearing, the axial line of the greasing hole is on the maximum diameter portion side with respect to the outer ring width bisector. It becomes the structure which is located.

また、この構成において、前記外輪は、その外周面に周方向の給脂溝を有し、その給脂溝は前記給脂穴に通じており、前記給脂溝は、前記外輪幅二等分線に跨った範囲に設けられている構成を採用することができる。
このように、給脂溝を、いわば外輪の幅寸法を二分する位置に設けることで、軸受箱の給脂穴の位置を変更することなく既存軸受を置き換えることができる。一般に、自動調心ころ軸受の給脂溝は、外輪の軸心方向中央に位置するため、軸受箱(ハウジング)の給脂穴も自ずと軸受座部の中央に位置する。したがって、給脂溝に関しては、従来品と同様に外輪の幅寸法を二分する位置に設けた方がよい。
Further, in this configuration, the outer ring has a circumferential greasing groove on the outer peripheral surface thereof, the greasing groove communicates with the greasing hole, and the greasing groove is divided into the outer ring width bisected. A configuration provided in a range straddling the line can be employed.
Thus, by providing the greasing groove at a position that divides the width of the outer ring into two, the existing bearing can be replaced without changing the position of the greasing hole of the bearing box. Generally, since the greasing groove of the self-aligning roller bearing is located at the center of the outer ring in the axial center direction, the greasing hole of the bearing box (housing) is naturally located at the center of the bearing seat. Therefore, it is better to provide the greasing groove at a position that bisects the width of the outer ring as in the conventional product.

これらの各構成において、前記外輪の外周面の形状を、前記外輪幅二等分線に対して非対称とした構成を採用することができる。
外輪の外周面の形状を外輪幅二等分線に対して非対称とすることで、軸受の方向識別が容易となり、設置ミスを低減することができる。このように非対称となる形状としては、外輪の外周面の両端に位置する面取りの寸法を左右で変える手法、あるいは、外輪の外周面や側面、その外周面と側面との間の稜線部に凹部を形成する等、種々の方法を採用することができる。
In each of these configurations, a configuration in which the shape of the outer peripheral surface of the outer ring is asymmetric with respect to the outer ring width bisector can be employed.
By making the shape of the outer peripheral surface of the outer ring asymmetric with respect to the outer ring width bisector, the bearing direction can be easily identified, and installation errors can be reduced. As an asymmetric shape as described above, a method of changing the chamfering dimensions located at both ends of the outer peripheral surface of the outer ring on the left or right side, or a concave portion on the outer peripheral surface or side surface of the outer ring or the ridge line portion between the outer peripheral surface and the side surface. Various methods such as forming can be employed.

これらの各構成からなる自動調心ころ軸受は、前記内輪の内周に風力発電装置のブレードが取付けられた主軸が挿通され、前記外輪はナセルに設けられたハウジングに固定される構成を採用することができる。   The self-aligning roller bearing composed of each of these configurations employs a configuration in which a main shaft with a blade of a wind power generator attached to the inner periphery of the inner ring is inserted, and the outer ring is fixed to a housing provided in the nacelle. be able to.

このとき、前記風力発電装置がアップウィンド形である場合に、前記軌道面中心線が前記外輪幅二等分線に対して風上側となるように設置される。また、前記風力発電装置がダウンウィンド形である場合に、前記軌道面中心線が前記外輪幅二等分線に対して風下側となるように設置される。
風力発電装置の主軸受に作用するアキシアル荷重の方向は、その頻度99%以上において風上から風下へのほぼ一方向であり、この風力発電装置の主軸受は、この発明の適用対象として好ましい。このため、アップウィンド形の風力発電装置、すなわち、ブレードの前方から風を受けてロータを回転させる風車においては、軌道面中心線が外輪幅二等分線に対して風上側となるように設置し、ダウンウィンド形の風力発電装置、すなわち、ブレードの後方から風を受けてロータを回転させる風車においては、軌道面中心線が外輪幅二等分線に対して風下側となるように設置することで、この発明の効果を得ることができる。
At this time, when the wind turbine generator is an upwind type, the track surface center line is installed on the windward side with respect to the outer ring width bisector. Further, when the wind power generator is of a downwind type, the track surface center line is installed on the leeward side with respect to the outer ring width bisector.
The direction of the axial load acting on the main bearing of the wind turbine generator is almost one direction from the windward to the leeward at a frequency of 99% or more, and the main bearing of the wind turbine generator is preferable as an application object of the present invention. For this reason, in an upwind type wind power generator, that is, in a windmill that receives the wind from the front of the blade and rotates the rotor, the center line of the raceway surface is installed on the windward side with respect to the outer ring width bisector. In a downwind type wind power generator, that is, a windmill that receives wind from behind the blades and rotates the rotor, it is installed so that the center line of the raceway surface is on the leeward side with respect to the outer ring width bisector. Thus, the effect of the present invention can be obtained.

この発明によれば、自動調心ころ軸受において、荷重負荷能力や加工性を損なうことなく許容調心角を拡大可能とし、転動体の外輪への乗り上げによる軸受の損傷リスクを低減することができる。さらには、既存軸受の置き換えにも配慮した構成とし得る。   According to the present invention, in the self-aligning roller bearing, the allowable alignment angle can be expanded without impairing the load carrying capacity and workability, and the risk of damage to the bearing due to the rolling element riding on the outer ring can be reduced. . Furthermore, it can be set as the structure which considered the replacement of the existing bearing.

この発明の一実施形態を示す断面図Sectional drawing which shows one Embodiment of this invention 同実施形態を、風力発電装置の主軸受に用いた使用状態図Use state diagram in which the same embodiment is used for a main bearing of a wind turbine generator 外輪の両側の側面と内輪の両側の側面とを同一平面上とした構成を示す断面図Sectional drawing which shows the structure which made the side surface of the both sides of an outer ring | wheel and the side surfaces of both sides of an inner ring | wheel the same plane 他の実施形態の要部拡大断面図The principal part expanded sectional view of other embodiments 図4の実施形態の使用状態図で、(a)要部拡大断面図、(b)は図5の丸印で囲まれた部分の拡大図It is a use state figure of the embodiment of FIG. 4, (a) principal part expanded sectional view, (b) is an enlarged view of the part enclosed by the circle of FIG. 他の実施形態の要部拡大断面図The principal part expanded sectional view of other embodiments 従来例の断面図Cross section of conventional example 風力発電装置の構成を示す模式図Schematic diagram showing the configuration of the wind turbine generator 従来例の使用状態図Usage example of conventional example

この発明の一実施形態を図面を用いて説明する。この実施形態は、アップウィンド形の風力発電装置の主軸受に、この発明の自動調心ころ軸受20を適用したものである。 An embodiment of the present invention will be described with reference to the drawings. In this embodiment, the self-aligning roller bearing 20 of the present invention is applied to a main bearing of an upwind type wind power generator.

図1に、自動調心ころ軸受20の単体の断面図を、図2に、自動調心ころ軸受20を軸受を風力発電装置の主軸受に取付けた使用状態の要部の断面図を示す。風力発電装置の主たる構成は、例えば、従来例の説明で使用した図8と同様のものを使用できる。   FIG. 1 is a cross-sectional view of a single roller roller bearing 20, and FIG. 2 is a cross-sectional view of a main portion of the self-aligning roller bearing 20 in a use state in which the bearing is attached to a main bearing of a wind turbine generator. As the main configuration of the wind turbine generator, for example, the same configuration as that of FIG. 8 used in the description of the conventional example can be used.

この実施形態では、風車のブレード35は、図中左側であるため、左側が風上となるように設定されている。なお、アップウィンド形の場合は、風車のブレード35が風下に設定される。   In this embodiment, since the windmill blade 35 is on the left side in the figure, it is set so that the left side is windward. In the case of the upwind type, the blade 35 of the windmill is set leeward.

主軸30には、風向にしたがって軸受の軸心c0方向他方側から一方側、すなわち、図2に矢印Faで示す右方向へのアキシアル荷重が主として作用する。この場合に、自動調心ころ軸受20は、図中右側の一方側の列(以下、「アキシアル荷重の負荷列」と称する)でそのアキシアル荷重を支持する。このとき、他方側の列(以下、「アキシアル荷重の負荷列でない側の列」と称する)には、荷重はほとんど作用しない。   An axial load mainly acts on the main shaft 30 from the other side in the axial center c0 direction of the bearing to the one side, that is, the right direction indicated by the arrow Fa in FIG. In this case, the self-aligning roller bearing 20 supports the axial load in one row on the right side in the drawing (hereinafter referred to as “load row of axial load”). At this time, the load hardly acts on the other side row (hereinafter referred to as “row on the non-axial load side”).

また、主軸30に、図2に矢印Frで示す方向への荷重が作用した場合等には、自動調心ころ軸受20は、その複列の両側の列で、ラジアル荷重を受けるようになっている。   Further, when a load in the direction indicated by the arrow Fr in FIG. 2 is applied to the main shaft 30, the self-aligning roller bearing 20 receives a radial load in both rows of the double row. Yes.

自動調心ころ軸受20は、外輪1と内輪2との間に複列に転動体(ころ)3,3を備える。外輪1の軌道面1aは、軸受の軸心c0方向に沿って一端から他端まで連続する球面状となっている。図1に示す符号Sφは、その球面の直径を示している。   The self-aligning roller bearing 20 includes rolling elements (rollers) 3 and 3 in a double row between the outer ring 1 and the inner ring 2. The raceway surface 1a of the outer ring 1 has a spherical shape that continues from one end to the other end along the direction of the axial center c0 of the bearing. A symbol Sφ shown in FIG. 1 indicates the diameter of the spherical surface.

内輪2の複列の軌道面2a,2aの形状は、軸受の軸心c0方向に直交する対称軸を挟んで互いに対称である。この対称軸は、軸心c0方向他方側(図中左側)の軌道面2aの一端(右端)と、軸心c0方向一方側(図中右側)の軌道面2aの他端(左端)との間の中点、すなわち、軌道面2a,2a間に設けられた鍔部の幅方向中心を通り、軸受の軸心c0に直交する線である。   The shapes of the double-row raceway surfaces 2a and 2a of the inner ring 2 are symmetric with respect to each other with an axis of symmetry orthogonal to the direction of the axis c0 of the bearing. The axis of symmetry is between one end (right end) of the raceway surface 2a on the other side (left side in the figure) in the axis c0 direction and the other end (left end) of the raceway surface 2a on one side (right side in the figure) in the axis c0 direction. It is a line that passes through the center in the width direction of the flange portion provided between the raceway surfaces 2a and 2a and is orthogonal to the shaft center c0 of the bearing.

このように、内輪2の軌道面2a,2aが対称であるから、その各列において、各共通の大きさ、形状、寸法からなる転動体3を採用している。   As described above, since the raceway surfaces 2a and 2a of the inner ring 2 are symmetrical, the rolling elements 3 having common sizes, shapes, and dimensions are employed in the respective rows.

また、図1に示すように、外輪1の軌道面1aの最大径部q2を通り、且つ、軸受の軸心c0方向に直交する軌道面中心線c2は、外輪1の軸受の軸心c0方向への幅寸法L1を二分する外輪幅二等分線c1よりも、軸心c0方向他方側(図中左側)へずらした構成となっている。このため、外輪1の軌道面1aの一端の内径Aと他端の内径Bとの間には、A<Bの関係が成立する。   Further, as shown in FIG. 1, the raceway center line c2 that passes through the maximum diameter portion q2 of the raceway surface 1a of the outer ring 1 and is orthogonal to the bearing axis c0 direction is the direction of the axis c0 of the bearing of the outer ring 1 The outer ring width bisector c1 that bisects the width dimension L1 is shifted to the other side (left side in the figure) in the axial center c0 direction. Therefore, a relationship of A <B is established between the inner diameter A at one end of the raceway surface 1a of the outer ring 1 and the inner diameter B at the other end.

なお、図中の符号q1は、外輪幅二等分線c1と外輪1の軌道面1aとの交点を示す。また、図中の符号p1は、外輪幅二等分線c1と軸受の軸心c0との交点を、符号p2は、軌道面中心線c2と軸受の軸心c0との交点を示す。また、図中の外輪1の幅寸法L1は、外輪幅二等分線c1によって寸法L3,L3に二分される。   In addition, the symbol q1 in the figure indicates the intersection between the outer ring width bisector c1 and the raceway surface 1a of the outer ring 1. In the figure, reference sign p1 indicates an intersection between the outer ring width bisector c1 and the bearing axis c0, and reference sign p2 indicates an intersection between the raceway center line c2 and the bearing axis c0. Also, the width dimension L1 of the outer ring 1 in the figure is divided into two dimensions L3 and L3 by the outer ring width bisector c1.

このように、外輪1の軌道面1aの中心点、すなわち、最大径部q2が、外輪幅二等分線c1上に存在せず、その外輪幅二等分線c1よりも図中左側、すなわち、アキシアル荷重の負荷列でない側の列に寄っている。
このため、図中右側、すなわち、アキシアル荷重の負荷列の転動体3は、従来よりも外輪1の中央寄りに位置することとなり、図中右方向へのアキシアル荷重が作用した場合に、転動体3が外輪1の軌道面1aの縁に乗り上げにくい構成となっている。したがって、アキシアル荷重の負荷列における転動体のエッジ接触を防止し、軸受の早期破損を回避することができる。
Thus, the center point of the raceway surface 1a of the outer ring 1, that is, the maximum diameter portion q2 does not exist on the outer ring width bisector c1, and is the left side of the outer ring width bisector c1 in the drawing, The axial load is not close to the load column.
For this reason, the rolling element 3 on the right side in the drawing, that is, the load train of the axial load is positioned closer to the center of the outer ring 1 than in the prior art, and when the axial load in the right direction in FIG. 3 is configured to be difficult to ride on the edge of the raceway surface 1 a of the outer ring 1. Therefore, the edge contact of the rolling element in the load train of the axial load can be prevented, and the early breakage of the bearing can be avoided.

この構成では、図中左側のアキシアル荷重の負荷列でない側の列は、図中右側のアキシアル荷重の負荷列と比べて相対的に転動体3の乗り上げが生じやすい列となる。しかし、その列に荷重がほとんど負荷されない状況下では、仮に、転動体3が外輪に乗り上げても、大きな問題はないといえる。
このように、アキシアル荷重の負荷列には、転動体3の外輪1への乗り上げを許容せず、負荷列でない側の列には、転動体3の外輪1への乗り上げをある程度許容可能な構成とすることで、荷重負荷能力や加工性を損なうことなく、許容調心角を拡大可能とし得る。
In this configuration, the column on the left side in the drawing that is not the load column for the axial load is a column in which the rolling elements 3 are relatively likely to ride on compared to the load column for the axial load on the right side in the drawing. However, in a situation where almost no load is applied to the row, it can be said that there is no major problem even if the rolling element 3 rides on the outer ring.
In this way, the load train of the axial load does not allow the rolling element 3 to ride on the outer ring 1, and the row that is not the load train can allow the rolling element 3 to ride on the outer ring 1 to some extent. By doing so, the allowable alignment angle can be expanded without impairing the load carrying capacity and workability.

なお、主軸30から内輪2に対し、軸心c0方向他方側から一方側へのアキシアル荷重が負荷された場合、アキシアル荷重の負荷列でない側の転動体3が、外輪1の側面1bから突出しないように設定すれば、軸受にラジアル荷重のみを負荷する場合でも、アキシアル荷重の負荷列でない側の列の損傷リスクを低減することができる。   In addition, when an axial load is applied from the main shaft 30 to the inner ring 2 from the other side to the one side in the direction of the axis c0, the rolling elements 3 on the side that is not the load train of the axial load do not protrude from the side surface 1b of the outer ring 1. With this setting, even when only a radial load is applied to the bearing, it is possible to reduce the risk of damage to the side of the axial load that is not the load row.

この自動調心ころ軸受20は、前述のように、並列する各列に同一の転動体3を使用しており、また、内輪2の形状も左右対称であることから、軸受の荷重負荷能力が低下せず、さらに、従来品と同等の加工性を維持して製造することができる。   As described above, the self-aligning roller bearing 20 uses the same rolling elements 3 in parallel rows, and the shape of the inner ring 2 is also bilaterally symmetrical. In addition, it can be manufactured while maintaining the same workability as the conventional product.

また、この実施形態では、外輪1の軸心c0方向への幅寸法L1と、内輪2の軸心C0方向への幅寸法L2とを同一としたので、既存の軸受を、この構成からなる軸受に置き換えようとする際に、その置き換えの対象となる既存の軸受の周辺構造を変更する必要がない。このため、内輪2の左右に位置する間座や、ハウジング38の寸法を変更する必要がない。   Further, in this embodiment, since the width dimension L1 of the outer ring 1 in the direction of the axis c0 and the width dimension L2 of the inner ring 2 in the direction of the axis C0 are the same, the existing bearing is a bearing having this configuration. There is no need to change the peripheral structure of the existing bearing to be replaced. For this reason, it is not necessary to change the dimensions of the spacers located on the left and right of the inner ring 2 and the size of the housing 38.

また、この実施形態では、図3に示すように、アキシアル荷重が負荷されない状態で、外輪1の両側の側面1b,1bと内輪2の両側の側面2b,2bとを同一平面上としている。このため、既存の軸受を置き換える際、周辺構造の変更が不要なだけでなく、その軸受が介在する主軸30とハウジング38との間の軸心c0方向への位置関係を変更することなく、既存の軸受を置き換えることができる。このため、軸受周囲のラビリンスシールやオイルシールへの悪影響がない。   Further, in this embodiment, as shown in FIG. 3, the side surfaces 1b, 1b on both sides of the outer ring 1 and the side surfaces 2b, 2b on both sides of the inner ring 2 are on the same plane in a state where no axial load is applied. For this reason, when replacing an existing bearing, not only is there no need to change the peripheral structure, but the existing bearing is not changed without changing the positional relationship between the main shaft 30 and the housing 38 in the direction of the axis c0. The bearing can be replaced. For this reason, there is no adverse effect on the labyrinth seal and oil seal around the bearing.

他の実施形態を、図4乃至図5に示す。この実施形態は、前述の各構成に対して、外輪1に給脂穴21と給脂溝22を追加したものである。   Other embodiments are shown in FIGS. In this embodiment, a greasing hole 21 and a greasing groove 22 are added to the outer ring 1 with respect to the above-described configurations.

給脂穴21は、外輪1を内外を直線状に貫通するものであり、その給脂穴21の軸線c3は、軸受の軸心c0に直交する面方向を有する面内に位置している。また、その給脂穴21の軸線c3は、外輪幅二等分線c1に対して最大径部q2側に位置している。この実施形態では、特に、給脂穴21の軸線c3と軌道面中心線c2とを一致させた構成としている。   The greasing hole 21 penetrates the outer ring 1 linearly inside and outside, and the axis c3 of the greasing hole 21 is located in a plane having a surface direction orthogonal to the axis c0 of the bearing. Moreover, the axis c3 of the greasing hole 21 is located on the maximum diameter portion q2 side with respect to the outer ring width bisector c1. In this embodiment, in particular, the configuration is such that the axis c3 of the greasing hole 21 and the raceway surface center line c2 coincide with each other.

すなわち、給脂穴21の軌道面1aへの開口が、外輪幅二等分線c1よりも最大径部q2側にあり、特に、この実施形態では、給脂穴21の軸線c3及び開口が、外輪1の軌道面1aの中心点(前記最大径部q2)に位置している。
給脂穴21が、複列の転動体3,3間の中央に位置するため、内輪2と転動体3のサブアセンブリが調心しても、その転動体3と給脂穴21とが干渉しにくい。
That is, the opening to the raceway surface 1a of the greasing hole 21 is closer to the maximum diameter portion q2 than the outer ring width bisector c1, and in this embodiment, in particular, the axis c3 and the opening of the greasing hole 21 are It is located at the center point of the raceway surface 1a of the outer ring 1 (the maximum diameter portion q2).
Since the greasing hole 21 is located at the center between the double row rolling elements 3 and 3, even if the sub-assembly of the inner ring 2 and the rolling element 3 is aligned, the rolling element 3 and the greasing hole 21 are unlikely to interfere with each other. .

また、図5に示すように、外輪1は、その外周面に周方向の給脂溝22を有し、その給脂溝22は給脂穴21に通じている。給脂穴21は、給脂溝22内に開口している。
さらに、その給脂溝22は、外輪幅二等分線c1に跨った範囲に設けられている。この実施形態では、給脂溝22は、外輪幅二等分線c1を挟んで左右対称に設けられている。
このように、給脂溝22を、いわば外輪1の幅寸法を二分する位置に設けることで、ハウジング38の給脂穴23の位置を変更することなく、既存の軸受を置き換えることができる。
As shown in FIG. 5, the outer ring 1 has a circumferential greasing groove 22 on its outer peripheral surface, and the greasing groove 22 communicates with the greasing hole 21. The greasing hole 21 opens into the greasing groove 22.
Furthermore, the greasing groove 22 is provided in a range straddling the outer ring width bisector c1. In this embodiment, the greasing grooves 22 are provided symmetrically with respect to the outer ring width bisector c1.
Thus, by providing the greasing groove 22 at a position that bisects the width of the outer ring 1, the existing bearing can be replaced without changing the position of the greasing hole 23 of the housing 38.

さらに他の実施形態を、図6に示す。この実施形態は、外輪1の外周面の形状を外輪幅二等分線c1に対して非対称としたものである。ここでは、図中左側の外周面と側面との稜線部に段付き部を設けることで、軸受の方向識別を容易にしている。
なお、アキシアル荷重の負荷列側の外輪1の側面1bは、ハウジング38等でしっかりと支持する必要があるため、このような稜線部に設けられる段付き形状は、アキシアル荷重の負荷列でない側にあることが望ましい。
Yet another embodiment is shown in FIG. In this embodiment, the shape of the outer peripheral surface of the outer ring 1 is asymmetric with respect to the outer ring width bisector c1. Here, the direction of the bearing can be easily identified by providing a stepped portion at the ridge line portion between the outer peripheral surface and the side surface on the left side in the drawing.
In addition, since the side surface 1b of the outer ring 1 on the load train side of the axial load needs to be firmly supported by the housing 38 or the like, the stepped shape provided in such a ridge line portion is on the side that is not the load train of the axial load. It is desirable to be.

このように、外輪1の外周面の形状を非対称とする手段としては、他にも、例えば、外輪1の外周面の両端に位置する面取りの寸法を左右で変える手法、あるいは、外輪1の外周面や側面1b、あるいは、その外周面と側面1bとの稜線部に凹部を形成する等、種々の方法を採用することができる。これらの各手段は、前述の各実施形態に適用できる。   As described above, other means for making the shape of the outer peripheral surface of the outer ring 1 asymmetrical include, for example, a method of changing the chamfer dimensions positioned at both ends of the outer peripheral surface of the outer ring 1 on the left and right, Various methods, such as forming a recessed part in the ridgeline part of the surface and the side surface 1b or the outer peripheral surface and the side surface 1b, can be employ | adopted. Each of these means can be applied to the above-described embodiments.

1 外輪
1a 軌道面
1b 側面
2 内輪
2a 軌道面
2b 側面
3 転動体(ころ)
3b 端面
4 保持器
10,20 自動調心ころ軸受
21,23 給脂穴
22 給脂溝
30 軸
38 ハウジング
1 outer ring 1a raceway surface 1b side surface 2 inner ring 2a raceway surface 2b side surface 3 rolling element (roller)
3b End face 4 Cage 10, 20 Spherical roller bearings 21, 23 Greasing hole 22 Greasing groove 30 Shaft 38 Housing

Claims (11)

外輪(1)と内輪(2)との間に複列に転動体(3,3)を備えた自動調心ころ軸受において、前記外輪(1)の軌道面(1a)は、軸受の軸心(c0)方向に沿って一端から他端まで連続する球面状であり、前記内輪(2)の複列の軌道面(2a,2a)の形状は、前記軸心(c0)方向に直交する対称軸(c2)を挟んで互いに対称であり、前記外輪(1)の軌道面(1a)の最大径部(q2)を通り且つ前記軸心(c0)方向に直交する軌道面中心線(c2)を、前記外輪(1)の前記軸心(c0)方向への幅寸法(L1)を二分する外輪幅二等分線(c1)よりも前記軸心(c0)方向いずれかの側へずらしたことを特徴とする自動調心ころ軸受。   In a self-aligning roller bearing provided with rolling elements (3, 3) in a double row between an outer ring (1) and an inner ring (2), the raceway surface (1a) of the outer ring (1) is an axis of the bearing. The spherical shape is continuous from one end to the other end along the (c0) direction, and the shape of the double-row raceway surfaces (2a, 2a) of the inner ring (2) is symmetrical to the axis (c0) direction. A track surface center line (c2) that is symmetrical with respect to the axis (c2), passes through the maximum diameter portion (q2) of the track surface (1a) of the outer ring (1), and is orthogonal to the direction of the axis (c0). Is shifted to either side in the axial center (c0) direction from the outer ring width bisector (c1) that bisects the width dimension (L1) in the axial center (c0) direction of the outer ring (1). Spherical roller bearings characterized by that. 前記複列の転動体(3,3)のうち一方は、他方よりも相対的に前記軸心(c0)方向へのアキシアル荷重を大きく受けるものであり、前記軌道面中心線(c2)は、前記外輪幅二等分線(c1)に対して、前記他方の転動体(3)側であることを特徴とする請求項1に記載の自動調心ころ軸受。   One of the double row rolling elements (3, 3) receives an axial load in the axial center (c0) direction relatively larger than the other, and the raceway center line (c2) is: 2. The self-aligning roller bearing according to claim 1, wherein it is on the other rolling element (3) side with respect to the outer ring width bisector (c <b> 1). 前記内輪(2)に対し、前記軸心(c0)方向他方側から一方側へのアキシアル荷重が負荷された場合に、前記他方の転動体(3)は、前記外輪(1)の側面(1b)から突出しないことを特徴とする請求項2に記載の自動調心ころ軸受。   When an axial load is applied to the inner ring (2) from the other side in the axial center (c0) direction to the one side, the other rolling element (3) moves to the side surface (1b) of the outer ring (1). The self-aligning roller bearing according to claim 2, wherein the self-aligning roller bearing does not protrude from the spherical roller bearing. 前記外輪(1)の前記軸心(c0)方向への幅寸法(L1)と、前記内輪(2)の前記軸心(c0)方向への幅寸法(L2)とを同一としたことを特徴とする請求項1乃至3のいずれか一つに記載の自動調心ころ軸受。 The width dimension (L1) in the axial center (c0) direction of the outer ring (1) and the width dimension (L2) in the axial center (c0) direction of the inner ring (2) are the same. A self-aligning roller bearing according to any one of claims 1 to 3. アキシアル荷重が負荷されない状態において、前記外輪(1)の両側の側面(1b,1b)と前記内輪(2)の両側の側面(2b,2b)とを同一平面上としたことを特徴とする請求項4に記載の自動調心ころ軸受。 The side surfaces (1b, 1b) on both sides of the outer ring (1) and the side surfaces (2b, 2b) on both sides of the inner ring (2) are in the same plane in a state where no axial load is applied. Item 5. Self-aligning roller bearing according to item 4. 前記外輪(1)は、その外輪(1)を内外に貫通する給脂穴(21)を有し、その給脂穴(21)の前記外輪(1)の軌道面(1a)への開口が、前記外輪幅二等分線(c1)に対して、前記外輪(1)の軌道面(1a)の最大径部(q2)側に位置することを特徴とする請求項1乃至5のいずれか一つに記載の自動調心ころ軸受。 The outer ring (1) has a greasing hole (21) penetrating the outer ring (1) inward and outward, and an opening of the greasing hole (21) to the raceway surface (1a) of the outer ring (1) is provided. The outer ring width bisector (c1) is located on the maximum diameter portion (q2) side of the raceway surface (1a) of the outer ring (1). Spherical roller bearings according to one. 前記外輪(1)は、その外周面に周方向の給脂溝(22)を有し、その給脂溝(22)は前記給脂穴(21)に通じており、前記給脂溝(22)は、前記外輪幅二等分線(c1)に跨った範囲に設けられていることを特徴とする請求項6に記載の自動調心ころ軸受。 The outer ring (1) has a circumferential greasing groove (22) on its outer peripheral surface, and the greasing groove (22) communicates with the greasing hole (21). ) Is provided in a range straddling the outer ring width bisector (c1). Spherical roller bearing according to claim 6, 前記外輪(1)の外周面の形状を、前記外輪幅二等分線(c1)に対して非対称としたことを特徴とする請求項1乃至7のいずれか一つに記載の自動調心ころ軸受。 The self-aligning roller according to any one of claims 1 to 7, wherein a shape of an outer peripheral surface of the outer ring (1) is asymmetric with respect to the outer ring width bisector (c1). bearing. 前記内輪(2)の内周に風力発電装置のブレード(35)が取付けられた主軸(30)が挿通され、前記外輪(1)はナセル(31)に設けられたハウジング(38)に固定されることを特徴とする請求項1乃至8のいずれか一つに記載の自動調心ころ軸受。   A main shaft (30) having a wind power generator blade (35) attached thereto is inserted through the inner periphery of the inner ring (2), and the outer ring (1) is fixed to a housing (38) provided in the nacelle (31). The self-aligning roller bearing according to any one of claims 1 to 8, wherein the self-aligning roller bearing is provided. 前記風力発電装置はアップウィンド形であり、前記軌道面中心線(c2)が前記外輪幅二等分線(c1)に対して風上側となるように設置されることを特徴とする請求項9に記載の自動調心ころ軸受。   The wind power generator has an upwind shape, and is installed so that the raceway center line (c2) is on the windward side with respect to the outer ring width bisector (c1). Spherical roller bearings described in 1. 前記風力発電装置はダウンウィンド形であり、前記軌道面中心線(c2)が前記外輪幅二等分線(c1)に対して風下側となるように設置されることを特徴とする請求項9に記載の自動調心ころ軸受。   The said wind power generator is a downwind type, and is installed so that the said track surface centerline (c2) may become a leeward side with respect to the said outer ring | wheel width bisector (c1). Spherical roller bearings described in 1.
JP2011243429A 2011-11-07 2011-11-07 Spherical roller bearing Expired - Fee Related JP6075946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243429A JP6075946B2 (en) 2011-11-07 2011-11-07 Spherical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243429A JP6075946B2 (en) 2011-11-07 2011-11-07 Spherical roller bearing

Publications (2)

Publication Number Publication Date
JP2013100837A true JP2013100837A (en) 2013-05-23
JP6075946B2 JP6075946B2 (en) 2017-02-08

Family

ID=48621627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243429A Expired - Fee Related JP6075946B2 (en) 2011-11-07 2011-11-07 Spherical roller bearing

Country Status (1)

Country Link
JP (1) JP6075946B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046129A1 (en) * 2013-09-24 2015-04-02 Ntn株式会社 Monitoring system and monitoring method
JP2017148701A (en) * 2016-02-23 2017-08-31 住友金属鉱山株式会社 Support tool for filter cloth peeling and filter cloth peeling method
CN111856055A (en) * 2020-07-27 2020-10-30 长沙开元仪器有限公司 Feeding mechanism

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1645345A (en) * 1926-12-09 1927-10-11 Okner Bernard Ball bearing
US2822225A (en) * 1955-05-18 1958-02-04 F I Saemann Ball bearing assembly
DE1056882B (en) * 1954-10-05 1959-05-06 Alois Teufel Ball bearings, especially for high-speed rotating bodies
JP2000287426A (en) * 1999-03-30 2000-10-13 Sakuragigumi:Kk Wind turbine power generator
JP2003129935A (en) * 2001-10-26 2003-05-08 Mitsubishi Heavy Ind Ltd Wind power generator
JP2005299702A (en) * 2004-04-06 2005-10-27 Nsk Ltd Automatic aligning roller bearing
JP2006090346A (en) * 2004-09-21 2006-04-06 Ntn Corp Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP2006090345A (en) * 2004-09-21 2006-04-06 Ntn Corp Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP2006177445A (en) * 2004-12-22 2006-07-06 Ntn Corp Double-row automatic aligned roller bearing
JP4522266B2 (en) * 2005-01-11 2010-08-11 Ntn株式会社 Double row roller bearing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1645345A (en) * 1926-12-09 1927-10-11 Okner Bernard Ball bearing
DE1056882B (en) * 1954-10-05 1959-05-06 Alois Teufel Ball bearings, especially for high-speed rotating bodies
US2822225A (en) * 1955-05-18 1958-02-04 F I Saemann Ball bearing assembly
JP2000287426A (en) * 1999-03-30 2000-10-13 Sakuragigumi:Kk Wind turbine power generator
JP2003129935A (en) * 2001-10-26 2003-05-08 Mitsubishi Heavy Ind Ltd Wind power generator
JP2005299702A (en) * 2004-04-06 2005-10-27 Nsk Ltd Automatic aligning roller bearing
JP2006090346A (en) * 2004-09-21 2006-04-06 Ntn Corp Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP2006090345A (en) * 2004-09-21 2006-04-06 Ntn Corp Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP2006177445A (en) * 2004-12-22 2006-07-06 Ntn Corp Double-row automatic aligned roller bearing
JP4522266B2 (en) * 2005-01-11 2010-08-11 Ntn株式会社 Double row roller bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046129A1 (en) * 2013-09-24 2015-04-02 Ntn株式会社 Monitoring system and monitoring method
JP2015063916A (en) * 2013-09-24 2015-04-09 Ntn株式会社 Monitoring system and monitoring method
CN105579702A (en) * 2013-09-24 2016-05-11 Ntn株式会社 Monitoring system and monitoring method
JP2017148701A (en) * 2016-02-23 2017-08-31 住友金属鉱山株式会社 Support tool for filter cloth peeling and filter cloth peeling method
CN111856055A (en) * 2020-07-27 2020-10-30 长沙开元仪器有限公司 Feeding mechanism

Also Published As

Publication number Publication date
JP6075946B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
US9046128B2 (en) Roller bearing for wind turbines
CN105464897B (en) Wind turbine rotor shaft arrangement
US9541126B2 (en) Large rolling bearing
US20150192174A1 (en) Wind/tidal power generation bearing
JP4573791B2 (en) Roller bearing and main shaft support structure of wind power generator
BR102014026410A2 (en) bearing arrangement for fluid machinery application
KR20140020899A (en) Angular contact roller bearing, notably used in a wind turbine
US20180202489A1 (en) Double-row self-aligning roller bearing
CN104350297A (en) Cage segment of tapered roller bearing and tapered roller bearing
US20090074345A1 (en) Rolling Bearing, Retainer Segment and Main Shaft Support Structure of Wind-Power Generator
CN104632879A (en) Bearing unit for fluid machinery application
JP6075946B2 (en) Spherical roller bearing
US9822814B2 (en) Bearing for combined loads
JP4522266B2 (en) Double row roller bearing
US20140112606A1 (en) Roller bearing for wind turbines
JP2009052681A (en) Bearing structure
CN104074865A (en) Rolling bearing and associated mounting method
ES2952267T3 (en) Rotor bearing of a wind turbine
JP4163596B2 (en) Double row spherical roller bearing and wind power generator spindle support device
JP2007132418A (en) Spindle supporting structure for wind power generator
JP2005164047A (en) Double row self-aligning roller bearings
JP2006090346A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP2006177445A (en) Double-row automatic aligned roller bearing
JP2017057952A (en) Double row self-aligning roller bearing
JP2017057953A (en) Double row self-aligning roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170110

R150 Certificate of patent or registration of utility model

Ref document number: 6075946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees