JP2013096281A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2013096281A
JP2013096281A JP2011238714A JP2011238714A JP2013096281A JP 2013096281 A JP2013096281 A JP 2013096281A JP 2011238714 A JP2011238714 A JP 2011238714A JP 2011238714 A JP2011238714 A JP 2011238714A JP 2013096281 A JP2013096281 A JP 2013096281A
Authority
JP
Japan
Prior art keywords
piston
shaft
eccentric
partition plate
eccentric portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011238714A
Other languages
Japanese (ja)
Other versions
JP2013096281A5 (en
JP5606422B2 (en
Inventor
Toshitsune Arai
聡経 新井
Masao Tani
谷  真男
Koichi Sato
幸一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011238714A priority Critical patent/JP5606422B2/en
Priority to CZ2012-581A priority patent/CZ305970B6/en
Priority to KR1020120100289A priority patent/KR101393968B1/en
Priority to CN201210346923.3A priority patent/CN103089630B/en
Publication of JP2013096281A publication Critical patent/JP2013096281A/en
Publication of JP2013096281A5 publication Critical patent/JP2013096281A5/ja
Application granted granted Critical
Publication of JP5606422B2 publication Critical patent/JP5606422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/063Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them
    • F04C18/07Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them having crankshaft-and-connecting-rod type drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary compressor capable of achieving high power and high efficiency while securing reliability of a crank shaft.SOLUTION: In a two-cylinder rotary compressor 100, an outer diameter of an intermediate shaft 4e is formed toward an outer peripheral side from an outer circumferential surface of an oppositely eccentric side of a main-shaft-side eccentric part 4c and a counter-shaft-side eccentric part 4d. A partition 10 is divided into a plurality of pieces by a cross section passing through a through hole formed on the partition 10. An inner diameter 10a of the through hole of the partition 10 is formed to be larger than the outer diameter of the intermediate shaft 4e and smaller than outer diameters of the main-shaft-side eccentric part 4c and the counter-shaft-side eccentric part 4d.

Description

この発明は、空気調和機や冷蔵庫等の冷凍空調装置の冷凍サイクルに用いられる、冷媒ガスの圧縮を行う回転圧縮機に関するものである。   The present invention relates to a rotary compressor for compressing refrigerant gas used in a refrigeration cycle of a refrigerating and air-conditioning apparatus such as an air conditioner or a refrigerator.

複数の圧縮室のそれぞれによって低圧の冷媒ガスを高圧の冷媒ガスに圧縮する多気筒回転圧縮機や、低圧の冷媒ガスを複数の圧縮室で順次圧縮していき、高圧の冷媒ガスを生成する多段回転圧縮機が知られている。このような複数の圧縮室を有する圧縮機においては、クランク軸に、シリンダ内に配置される複数の偏芯部と、隣接する偏芯部の間に設けられた中間軸を備えている。そして、このような圧縮機には、偏芯部の偏芯量を大きくとって高出力化や高効率化を図ったものが従来より提案されており、例えば、「クランク軸2aの180゜対向の偏芯部を異なる直径d01,d02で形成し、かつ、クランク軸2aの上端板側の外径d1と下端板側の外径d2を異なる径とし、仕切り板4の中央孔を小径側偏芯部のみを挿通し得る大きさにして、偏芯量を大きくする。」というものが提案されている(例えば、特許文献1参照)。   A multi-cylinder rotary compressor that compresses low-pressure refrigerant gas into high-pressure refrigerant gas by each of a plurality of compression chambers, or a multi-stage that generates high-pressure refrigerant gas by sequentially compressing low-pressure refrigerant gas in the plurality of compression chambers A rotary compressor is known. In such a compressor having a plurality of compression chambers, a crankshaft is provided with a plurality of eccentric parts arranged in a cylinder and an intermediate shaft provided between adjacent eccentric parts. For such a compressor, a compressor having a large eccentricity of the eccentric portion and achieving high output and high efficiency has been proposed. For example, “the crankshaft 2a is opposed to 180 °. Are formed with different diameters d01 and d02, and the outer diameter d1 on the upper end plate side and the outer diameter d2 on the lower end plate side of the crankshaft 2a are different from each other, and the central hole of the partition plate 4 is formed on the smaller diameter side. The amount of eccentricity is increased so that only the core portion can be inserted (see, for example, Patent Document 1).

特開平5−10279号公報(要約、図2)Japanese Patent Laid-Open No. 5-10279 (summary, FIG. 2)

しかしながら、特許文献1に記載の2気筒回転圧縮機においては、各偏芯部の外径が異なっているので、冷媒ガスを圧縮する際にクランク軸の偏芯部に作用するガス負荷が、各偏芯部によって異ってしまう。このため、クランク軸の力の釣り合いがアンバランスとなり、本来は打ち消しあうべき回転方向のモーメントが打ち消されず回転方向に強く作用することになる。したがって、特許文献1に記載の2気筒回転圧縮機は、クランク軸の信頼性が低下し、圧縮機に異常な振動や騒音が発生してしまうという課題があった。   However, in the two-cylinder rotary compressor described in Patent Document 1, since the outer diameter of each eccentric portion is different, the gas load acting on the eccentric portion of the crankshaft when compressing the refrigerant gas is different from each other. It depends on the eccentric part. For this reason, the balance of the force of the crankshaft becomes unbalanced, and the moment in the rotational direction that should be canceled out does not cancel out, but acts strongly in the rotational direction. Therefore, the two-cylinder rotary compressor described in Patent Document 1 has a problem in that the reliability of the crankshaft is lowered, and abnormal vibration and noise are generated in the compressor.

この発明は、上記のような課題を解決するためになされたもので、クランク軸の信頼性を確保しつつも、高出力化や高効率化を可能とする回転圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotary compressor that can achieve high output and high efficiency while ensuring the reliability of the crankshaft. And

この発明に係る回転圧縮機は、固定子及び回転子を有する電動機と、前記回転子に固定された主軸、前記主軸の軸方向の反対側に設けられた副軸、前記主軸と前記副軸との間に所定の位相差を設けて形成された複数の偏芯部、並びに隣接する前記偏芯部の間に設けられた中間軸を有し、前記電動機により駆動されるクランク軸と、円筒状の貫通孔が形成され、該貫通孔に前記偏芯部が配置されて圧縮室が形成される複数のシリンダと、内部に前記中間軸が配置される円筒状の貫通孔が形成され、隣接する前記シリンダの圧縮室の間を仕切る仕切板と、を備えた回転圧縮機であって、
前記中間軸の外周面は、前記偏芯部の反偏芯側の外周面よりも外周側に形成され、前記仕切板は、該仕切板に形成された貫通孔を通る断面によって複数に分割されており、前記仕切板の貫通孔の内径は、前記中間軸の外径よりも大きく、且つ、前記偏芯部の外径よりも小さく形成されているものである。
A rotary compressor according to the present invention includes a motor having a stator and a rotor, a main shaft fixed to the rotor, a sub shaft provided on the opposite side of the main shaft in the axial direction, the main shaft and the sub shaft. A plurality of eccentric parts formed with a predetermined phase difference between them, an intermediate shaft provided between the adjacent eccentric parts, a crankshaft driven by the electric motor, and a cylindrical shape A plurality of cylinders in which the eccentric portion is arranged to form a compression chamber and a cylindrical through hole in which the intermediate shaft is arranged are formed adjacent to each other. A rotary compressor provided with a partition plate for partitioning between the compression chambers of the cylinder,
The outer peripheral surface of the intermediate shaft is formed on the outer peripheral side with respect to the outer peripheral surface on the anti-eccentric side of the eccentric portion, and the partition plate is divided into a plurality of sections through a through hole formed in the partition plate. The inner diameter of the through hole of the partition plate is larger than the outer diameter of the intermediate shaft and smaller than the outer diameter of the eccentric portion.

また、この発明に係る回転圧縮機は、固定子及び回転子を有する電動機と、前記回転子に固定された主軸、前記主軸の軸方向の反対側に設けられた副軸、前記主軸と前記副軸との間に所定の位相差を設けて形成された複数の偏芯部、並びに隣接する前記偏芯部の間に設けられた中間軸を有し、前記電動機により駆動されるクランク軸と、前記偏芯部に嵌合する複数のピストンと、円筒状の貫通孔が形成され、該貫通孔に前記偏芯部及び前記ピストンが配置されて圧縮室が形成される複数のシリンダと、内部に前記中間軸が配置される円筒状の貫通孔が形成され、隣接する前記シリンダの圧縮室の間を仕切る仕切板と、を備えた回転圧縮機であって、
前記中間軸の外周面は、前記偏芯部の反偏芯側の外周面よりも外周側に形成され、前記仕切板は、該仕切板に形成された貫通孔を通る断面によって複数に分割されており、前記仕切板の貫通孔の内径は、前記中間軸の外径よりも大きく、且つ、前記偏芯部の外径よりも小さく形成され、前記ピストンの反偏芯側の外周面は、前記仕切板の貫通孔の内径よりも外周側に形成されているものである。
The rotary compressor according to the present invention includes an electric motor having a stator and a rotor, a main shaft fixed to the rotor, a sub shaft provided on the opposite side of the main shaft in the axial direction, the main shaft and the sub shaft A plurality of eccentric portions formed with a predetermined phase difference between the shaft and an intermediate shaft provided between the adjacent eccentric portions, and a crankshaft driven by the electric motor; A plurality of pistons that fit into the eccentric part, a cylindrical through hole is formed, a plurality of cylinders in which the eccentric part and the piston are arranged in the through hole to form a compression chamber, and inside A rotary compressor having a cylindrical through-hole in which the intermediate shaft is disposed and a partition plate for partitioning between the compression chambers of the adjacent cylinders;
The outer peripheral surface of the intermediate shaft is formed on the outer peripheral side with respect to the outer peripheral surface on the anti-eccentric side of the eccentric portion, and the partition plate is divided into a plurality of sections through a through hole formed in the partition plate. The inner diameter of the through hole of the partition plate is larger than the outer diameter of the intermediate shaft and smaller than the outer diameter of the eccentric part, and the outer peripheral surface of the piston on the side opposite to the eccentric side is It is formed in the outer peripheral side rather than the internal diameter of the through-hole of the said partition plate.

この発明に係る回転圧縮機においては、中間軸の外周面は、偏芯部の反偏芯側の外周面よりも外周側に形成され、仕切板は、該仕切板に形成された貫通孔を通る断面によって複数に分割されており、仕切板の貫通孔の内径は、中間軸の外径よりも大きく、且つ、偏芯部の外径よりも小さく形成されている。このため、各偏芯部の偏芯量を大きくとって、回転圧縮機の高出力化や高効率化を図ることができる。そして、この発明に係る回転圧縮機は、各偏芯部の外径を異ならせることなく各偏芯部の偏芯量を大きくとれるので、冷媒ガスを圧縮する際に各偏芯部に作用するガス負荷を略同等にでき、回転方向のモーメントを打ち消し合うことができる。したがって、この発明に係る回転圧縮機は、クランク軸の信頼性を確保しつつ、且つ高出力化や高効率化が可能となる。   In the rotary compressor according to the present invention, the outer peripheral surface of the intermediate shaft is formed on the outer peripheral side with respect to the outer peripheral surface on the anti-eccentric side of the eccentric portion, and the partition plate has a through hole formed in the partition plate. The through-hole of the partition plate is formed to be larger than the outer diameter of the intermediate shaft and smaller than the outer diameter of the eccentric portion. For this reason, the eccentric amount of each eccentric part can be taken large, and high output and high efficiency of a rotary compressor can be achieved. Since the rotary compressor according to the present invention can increase the eccentric amount of each eccentric portion without changing the outer diameter of each eccentric portion, it acts on each eccentric portion when compressing the refrigerant gas. The gas load can be made substantially equal, and the moment in the rotational direction can be canceled out. Therefore, the rotary compressor according to the present invention can achieve high output and high efficiency while ensuring the reliability of the crankshaft.

この発明の実施の形態1を示す図で、2気筒回転圧縮機100の縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and a longitudinal cross-sectional view of the 2-cylinder rotary compressor 100. この発明の実施の形態1を示す図で、2気筒回転圧縮機100の圧縮機構部3の縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and a longitudinal cross-sectional view of the compression mechanism part 3 of the 2-cylinder rotary compressor 100. この発明の実施の形態1を示す図で、2気筒回転圧縮機100の圧縮機構部3の縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and a longitudinal cross-sectional view of the compression mechanism part 3 of the 2-cylinder rotary compressor 100. この発明の実施の形態1を示す図で、図2のZ−Z断面図。FIG. 3 shows the first embodiment of the present invention, and is a ZZ sectional view of FIG. 2. この発明の実施の形態1を示す図で、第1のピストン11aの内径の軸方向両端に逃がし形状11a−1を設けた場合の、第1のピストン11aのクランク軸4への組み付け手順を示す図。FIG. 5 is a diagram showing the first embodiment of the present invention, and shows a procedure for assembling the first piston 11a to the crankshaft 4 when relief shapes 11a-1 are provided at both axial ends of the inner diameter of the first piston 11a. Figure. この発明の実施の形態1を示す図で、図5と図7とを比較した図(図6(a)が比較例、図6(b)が本実施の形態)。FIG. 6 shows the first embodiment of the present invention, and is a diagram comparing FIG. 5 and FIG. 7 (FIG. 6 (a) is a comparative example, and FIG. 6 (b) is the present embodiment). 比較例を示す図で、第1のピストン11aのクランク軸4への組み付け手順を示す図。It is a figure which shows a comparative example, and is a figure which shows the assembly | attachment procedure to the crankshaft 4 of the 1st piston 11a. この発明の実施の形態2を示す図で、2気筒回転圧縮機100の圧縮機構部3の縦断面図。FIG. 5 is a diagram illustrating a second embodiment of the present invention, and is a longitudinal sectional view of a compression mechanism section 3 of a two-cylinder rotary compressor 100.

実施の形態1.
図1乃至図6は実施の形態1を示す図で、図1は2気筒回転圧縮機100の縦断面図、図2及び図3は2気筒回転圧縮機100の圧縮機構部3の縦断面図、図4は図2のZ−Z断面図、図5は第1のピストン11aの内径の軸方向両端に逃がし形状11a−1を設けた場合の、第1のピストン11aのクランク軸4への組み付け手順を示す図、図6は図5と図7とを比較した図(図6(a)が比較例、図6(b)が本実施の形態)である。
以下、図1〜図6を用いて、本実施の形態1に係る2気筒回転圧縮機100について説明する。
Embodiment 1 FIG.
1 to 6 are diagrams showing the first embodiment. FIG. 1 is a longitudinal sectional view of a two-cylinder rotary compressor 100. FIGS. 2 and 3 are longitudinal sectional views of a compression mechanism unit 3 of the two-cylinder rotary compressor 100. FIG. 4 is a ZZ cross-sectional view of FIG. 2, and FIG. 5 is a view of the first piston 11a to the crankshaft 4 when relief shapes 11a-1 are provided at both axial ends of the inner diameter of the first piston 11a. FIGS. 6A and 6B are diagrams showing an assembling procedure. FIGS. 6A and 6B are diagrams comparing FIGS. 5 and 7 (FIG. 6A is a comparative example, and FIG. 6B is the present embodiment).
Hereinafter, the two-cylinder rotary compressor 100 according to the first embodiment will be described with reference to FIGS.

図1により、2気筒回転圧縮機100の構成を説明する。2気筒回転圧縮機100は、高圧雰囲気の密閉容器1内に、固定子2aと回転子2bとからなる電動機2と、電動機2により駆動される圧縮機構部3とを収納している。   The configuration of the two-cylinder rotary compressor 100 will be described with reference to FIG. The two-cylinder rotary compressor 100 houses an electric motor 2 composed of a stator 2 a and a rotor 2 b and a compression mechanism unit 3 driven by the electric motor 2 in a sealed container 1 in a high-pressure atmosphere.

電動機2の回転力は、クランク軸4を介して圧縮機構部3に伝達される。   The rotational force of the electric motor 2 is transmitted to the compression mechanism unit 3 via the crankshaft 4.

クランク軸4は、電動機2の回転子2bに固定される主軸4aと、主軸4aの反対側に設けられる副軸4bと、主軸4aと副軸4bとの間に所定の位相差(例えば、180°)を設けて形成される主軸側偏芯部4c及び副軸側偏芯部4dと、これらの主軸側偏芯部4cと副軸側偏芯部4dとの間に設けられる中間軸4eとを有する。   The crankshaft 4 has a predetermined phase difference (for example, 180) between the main shaft 4a fixed to the rotor 2b of the electric motor 2, the sub shaft 4b provided on the opposite side of the main shaft 4a, and the main shaft 4a and the sub shaft 4b. And the intermediate shaft 4e provided between the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. Have

主軸受6は、クランク軸4の主軸4aに摺動のためのクリアランスを持って嵌合され、回転自在に主軸4aを軸支する。   The main bearing 6 is fitted to the main shaft 4a of the crankshaft 4 with a clearance for sliding, and rotatably supports the main shaft 4a.

また、副軸受7は、クランク軸4の副軸4bに摺動のためのクリアランスを持って嵌合され、回転自在に副軸4bを軸支する。   The auxiliary bearing 7 is fitted to the auxiliary shaft 4b of the crankshaft 4 with a clearance for sliding, and rotatably supports the auxiliary shaft 4b.

圧縮機構部3は、主軸4a側の第1のシリンダ8と、副軸4b側の第2のシリンダ9とを備える。   The compression mechanism unit 3 includes a first cylinder 8 on the main shaft 4a side and a second cylinder 9 on the sub shaft 4b side.

第1のシリンダ8は、円筒状の貫通孔を有し、この貫通孔に、クランク軸4の主軸側偏芯部4cに回転自在に嵌合する第1のピストン11aが設けられる。さらに、主軸側偏芯部4cの回転に従って往復運動する第1のベーン(図示せず)が設けられる。   The first cylinder 8 has a cylindrical through hole, and a first piston 11 a that is rotatably fitted to the main shaft side eccentric portion 4 c of the crankshaft 4 is provided in the through hole. Further, a first vane (not shown) that reciprocates according to the rotation of the main shaft side eccentric portion 4c is provided.

クランク軸4の主軸側偏芯部4cに回転自在に嵌合する第1のピストン11a、第1のベーンを収納した第1のシリンダ8の貫通孔の軸方向両端面を、主軸受6と仕切板10とで閉塞して圧縮室を形成する。   A first piston 11 a that is rotatably fitted to the main shaft side eccentric portion 4 c of the crankshaft 4, and both axial end surfaces of the through hole of the first cylinder 8 that houses the first vane are partitioned from the main bearing 6. A compression chamber is formed by closing with the plate 10.

第1のシリンダ8は、密閉容器1の内周部に固定される。   The first cylinder 8 is fixed to the inner periphery of the sealed container 1.

第2のシリンダ9も、円筒状の貫通孔を有し、この貫通孔に、クランク軸4の副軸側偏芯部4dに回転自在に嵌合する第2のピストン11bが設けられる。さらに、副軸側偏芯部4dの回転に従って往復運動する第2のベーン(図示せず)が設けられる。   The second cylinder 9 also has a cylindrical through-hole, and a second piston 11 b that is rotatably fitted to the countershaft side eccentric portion 4 d of the crankshaft 4 is provided in the through-hole. Further, a second vane (not shown) that reciprocates according to the rotation of the countershaft side eccentric portion 4d is provided.

クランク軸4の副軸側偏芯部4dに回転自在に嵌合する第2のピストン11b、第2のベーンを収納した第2のシリンダ9の貫通孔の軸方向両端面を、副軸受7と仕切板10とで閉塞して圧縮室を形成する。   A second piston 11b that is rotatably fitted to the sub-shaft side eccentric portion 4d of the crankshaft 4 and both axial end surfaces of the through hole of the second cylinder 9 that houses the second vane are connected to the sub-bearing 7 A compression chamber is formed by closing with the partition plate 10.

圧縮機構部3は、第1のシリンダ8と主軸受6とをボルト締結し、また第2のシリンダ9と副軸受7とをボルト締結した後、仕切板10をそれらの間に挟んで、主軸受6の外側から第2のシリンダ9、及び副軸受7の外側から第1のシリンダ8まで軸方向にボルト締結し固定する。   The compression mechanism unit 3 is bolted to the first cylinder 8 and the main bearing 6, and is bolted to the second cylinder 9 and the auxiliary bearing 7, and then the partition plate 10 is sandwiched between them, The bolts are fastened and fixed in the axial direction from the outside of the bearing 6 to the second cylinder 9 and from the outside of the auxiliary bearing 7 to the first cylinder 8.

図1で図示しているボルト12は、主軸受6の外側から第2のシリンダ9まで軸方向に締結し固定するボルトの一部である。   The bolt 12 illustrated in FIG. 1 is a part of a bolt that is fastened and fixed in the axial direction from the outside of the main bearing 6 to the second cylinder 9.

また、図1で図示しているボルト13は、第2のシリンダ9と副軸受7とを締結するボルトの一部である。   Further, the bolt 13 illustrated in FIG. 1 is a part of a bolt that fastens the second cylinder 9 and the auxiliary bearing 7.

密閉容器1に隣接してアキュムレータ40が設けられる。吸入連結管21、吸入連結管22は夫々第1のシリンダ8、第2のシリンダ9とアキュムレータ40とを連結する。   An accumulator 40 is provided adjacent to the sealed container 1. The suction connection pipe 21 and the suction connection pipe 22 connect the first cylinder 8 and the second cylinder 9 to the accumulator 40, respectively.

第1のシリンダ8、第2のシリンダ9で圧縮された冷媒ガスは、密閉容器1に吐出され、吐出管23から冷凍空調装置の冷凍サイクルへ送り出される。   The refrigerant gas compressed in the first cylinder 8 and the second cylinder 9 is discharged into the sealed container 1 and sent out from the discharge pipe 23 to the refrigeration cycle of the refrigeration air conditioner.

また、電動機2へは、ガラス端子24からリード線25を経由して電力が供給される。   Electric power is supplied to the electric motor 2 from the glass terminal 24 via the lead wire 25.

図示はしないが、密閉容器1内の底部には、圧縮機構部3の各摺動部を潤滑する潤滑油(冷凍機油)が貯留されている。   Although not shown, lubricating oil (refrigeration machine oil) that lubricates each sliding portion of the compression mechanism unit 3 is stored at the bottom of the sealed container 1.

圧縮機構部3の各摺動部への潤滑油の供給は、密閉容器1底部に溜められた潤滑油をクランク軸4の回転による遠心力によりクランク軸4の内径4fに沿って上昇させ、クランク軸4に設けられた給油孔20より行なう。図1の例は、給油孔20が4箇所に形成されている。夫々の給油孔20から、主軸4aと主軸受6、主軸側偏芯部4cと第1のピストン11a、副軸側偏芯部4dと第2のピストン11b及び副軸4bと副軸受7の間の摺動部に潤滑油が供給される。   The supply of the lubricating oil to each sliding portion of the compression mechanism unit 3 is performed by raising the lubricating oil stored in the bottom of the sealed container 1 along the inner diameter 4f of the crankshaft 4 by the centrifugal force generated by the rotation of the crankshaft 4. It is carried out from an oil supply hole 20 provided in the shaft 4. In the example of FIG. 1, the oil supply holes 20 are formed at four locations. From the respective oil supply holes 20, the main shaft 4 a and the main bearing 6, the main shaft side eccentric portion 4 c and the first piston 11 a, the sub shaft side eccentric portion 4 d and the second piston 11 b, the sub shaft 4 b and the sub bearing 7 are provided. Lubricating oil is supplied to the sliding portion.

クランク軸4は、運転中の圧縮ガス負荷による撓みを抑えるよう、ヤング率150GPa以上の素材を使用する。さらに、運転時の振動を抑えるために、主軸側偏芯部4cと副軸側偏芯部4dは、略同一形状(同一直径、同一軸方向長さ)、略同一偏芯量とし、回転時の遠心力のバランスを保っている。   The crankshaft 4 uses a material having a Young's modulus of 150 GPa or more so as to suppress bending due to a compressed gas load during operation. Furthermore, in order to suppress vibration during operation, the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d have substantially the same shape (same diameter, same length in the same axial direction) and substantially the same amount of eccentricity. The balance of centrifugal force is maintained.

ここで、本実施の形態1では、以下の理由により、主軸側偏芯部4cの反偏芯側外周面を、主軸4aの外周面よりも軸中心側になるように形成している。そして、副軸4bの外径を主軸4aの外径よりも細く形成し、副軸側偏芯部4dの反偏芯側外周面を、副軸4bの外周面よりも外周側(反軸中心側)になるように形成している。   Here, in the first embodiment, the anti-eccentric side outer peripheral surface of the main shaft side eccentric portion 4c is formed to be closer to the axial center side than the outer peripheral surface of the main shaft 4a for the following reason. Then, the outer diameter of the sub-shaft 4b is formed to be smaller than the outer diameter of the main shaft 4a, and the anti-eccentric outer peripheral surface of the sub-shaft side eccentric portion 4d is arranged on the outer peripheral side (the anti-axial center) of the sub-shaft 4b. Side).

上述のように、副軸側偏芯部4dは主軸側偏芯部4cと同一形状、同一偏芯量となっている。このため、副軸4bの外径が主軸4aの外径と同一の場合、主軸側偏芯部4cの反偏芯側外周面を主軸4aの外周面よりも軸中心側になるように形成すると、副軸側偏芯部4dの反偏芯側外周面も副軸4bの外周面よりも軸中心側になる。すると、副軸4b側から第1のピストン11a及び第2のピストン11bを取り付けようとした場合、第1のピストン11a及び第2のピストン11bに副軸側偏芯部4dを挿入することができなくなる。つまり、第1のピストン11a及び第2のピストン11bを主軸側偏芯部4c及び副軸側偏芯部4dに取り付けることができなくなる。そのため、本実施の形態1では副軸側偏芯部4dの反偏芯側外周面を副軸4bの外周面よりも外周側に形成し、第1のピストン11a及び第2のピストン11bの取り付けを可能にしている。また、第1のピストン11a及び第2のピストン11bの取り付けに影響しない主軸4aは、クランク軸4の強度を確保するため、その外径を副軸4bの外径よりも大きくしている。   As described above, the countershaft side eccentric portion 4d has the same shape and the same amount of eccentricity as the main shaft side eccentric portion 4c. For this reason, when the outer diameter of the sub-shaft 4b is the same as the outer diameter of the main shaft 4a, the anti-eccentric outer peripheral surface of the main shaft-side eccentric portion 4c is formed so as to be closer to the shaft center side than the outer peripheral surface of the main shaft 4a. The counter eccentric side outer peripheral surface of the sub shaft side eccentric portion 4d is also closer to the shaft center side than the outer peripheral surface of the sub shaft 4b. Then, when it is going to attach the 1st piston 11a and the 2nd piston 11b from the subshaft 4b side, the subshaft side eccentric part 4d can be inserted in the 1st piston 11a and the 2nd piston 11b. Disappear. That is, the first piston 11a and the second piston 11b cannot be attached to the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. Therefore, in Embodiment 1, the counter eccentric side outer peripheral surface of the sub shaft side eccentric portion 4d is formed on the outer peripheral side with respect to the outer peripheral surface of the sub shaft 4b, and the first piston 11a and the second piston 11b are attached. Is possible. Further, the main shaft 4a that does not affect the attachment of the first piston 11a and the second piston 11b has an outer diameter larger than that of the auxiliary shaft 4b in order to ensure the strength of the crankshaft 4.

また、本実施の形態1では、クランク軸4(より詳しくは中間軸4e)の強度を確保しつつ主軸側偏芯部4c及び副軸側偏芯部4dの偏芯量を大きくとるため、図2〜図4に示す形状としている。以下、図2〜図4を用いて、仕切板10の貫通孔の内径10a、主軸側偏芯部4c及び副軸側偏芯部4dの外径、中間軸4eの外径、並びに、主軸側偏芯部4c及び副軸側偏芯部4dの反偏芯側外周面位置の関係について説明する。   In the first embodiment, the eccentric amount of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d is increased while securing the strength of the crankshaft 4 (more specifically, the intermediate shaft 4e). 2 to 4 as shown in FIG. Hereinafter, the inner diameter 10a of the through hole of the partition plate 10, the outer diameter of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d, the outer diameter of the intermediate shaft 4e, and the main shaft side will be described with reference to FIGS. The relationship between the eccentric part 4c and the counter eccentric side outer peripheral surface position of the auxiliary shaft side eccentric part 4d will be described.

図2に示すように、仕切板10は、貫通孔の内径10aが直径Dmpとなっている。そして、この直径Dmpは、副軸側偏芯部4d及び主軸側偏芯部4cの外径Dpよりも小さく形成されている。
つまり、
Dmp<Dp…(1)
となっている。
As shown in FIG. 2, in the partition plate 10, the inner diameter 10a of the through hole is a diameter Dmp. The diameter Dmp is smaller than the outer diameter Dp of the sub-shaft side eccentric portion 4d and the main shaft side eccentric portion 4c.
That means
Dmp <Dp (1)
It has become.

ここで、仮に仕切板10が一体部品で形成されているとする。中間軸4eは仕切板10に形成された貫通孔の内部に配置されるため、例えば副軸4b及び副軸側偏芯部4dを仕切板10の貫通孔に通し、仕切板10を中間軸4eの位置に配置する必要がある。しかしながら、本実施の形態1ではDmp<Dpとなっているため、副軸側偏芯部4dを仕切板10の貫通孔に通すことができず、仕切板10を中間軸4eの位置に配置することができない。そこで、図4に示すように、本実施の形態1では、貫通孔を通る断面で仕切板を2つ(第1の分割板10b、第2の分割板10c)に分割している。中間軸4eを挟み込むようにして第1の分割板10b及び第2の分割板10cを配置することにより、Dmp<Dpとなっていても、仕切板10を中間軸4eの位置に配置することができる。なお、仕切板10の分割数は、2つに限らず、例えば3つ以上としても勿論よい。   Here, it is assumed that the partition plate 10 is formed as an integral part. Since the intermediate shaft 4e is disposed inside a through hole formed in the partition plate 10, for example, the sub shaft 4b and the sub shaft side eccentric portion 4d are passed through the through hole of the partition plate 10, and the partition plate 10 is passed through the intermediate shaft 4e. It is necessary to arrange in the position. However, since Dmp <Dp in the first embodiment, the countershaft side eccentric portion 4d cannot be passed through the through hole of the partition plate 10, and the partition plate 10 is disposed at the position of the intermediate shaft 4e. I can't. Therefore, as shown in FIG. 4, in the first embodiment, the partition plate is divided into two (first divided plate 10b and second divided plate 10c) in a cross section passing through the through hole. By arranging the first divided plate 10b and the second divided plate 10c so as to sandwich the intermediate shaft 4e, the partition plate 10 can be arranged at the position of the intermediate shaft 4e even if Dmp <Dp. it can. Of course, the number of divisions of the partition plate 10 is not limited to two, but may be three or more, for example.

つまり、仕切板10を複数に分割して形成することで、副軸側偏芯部4d及び主軸側偏芯部4cの偏芯量を大きくとっても、一体部品の仕切板10の場合には大きくなってしまう内径10aを小さくすることができる。仕切板10の内径が小さいと、副軸側偏芯部4d及び主軸側偏芯部4cにそれぞれ第2のピストン11b及び第1のピストン11aを挿入して圧縮室を形成した場合に、第2のピストン11b及び第1のピストン11aの反偏芯側の外周面と仕切板10の内径との距離を長く確保できる。このため、冷媒ガスの圧縮工程において低圧となっている第2のピストン11b及び第1のピストン11aの反偏芯側の外周面近傍と、圧縮室から吐出された冷媒ガス空間と連通し高圧となっている仕切板10の内径10a内と、のシール長さを大きく確保することができる。したがって、高圧となっている仕切板10の内径10a内から低圧となっている第2のピストン11b及び第1のピストン11aの反偏芯側の外周面近傍へ高圧の冷媒ガスが漏れることを減少させることができる。   In other words, by dividing the partition plate 10 into a plurality of parts, even if the eccentric amounts of the countershaft side eccentric portion 4d and the main shaft side eccentric portion 4c are increased, the partition plate 10 is an integral part. It is possible to reduce the inner diameter 10a. When the inner diameter of the partition plate 10 is small, the second piston 11b and the first piston 11a are inserted into the sub-shaft side eccentric portion 4d and the main shaft-side eccentric portion 4c, respectively, to form the second compression chamber. It is possible to secure a long distance between the outer peripheral surface of the piston 11b and the first piston 11a on the opposite eccentric side and the inner diameter of the partition plate 10. For this reason, in the refrigerant gas compression step, the second piston 11b and the vicinity of the outer surface of the first piston 11a opposite to the eccentric side, the refrigerant gas space discharged from the compression chamber, and the high pressure communicate with each other. A large seal length can be ensured between the inner diameter 10a of the partition plate 10 formed. Accordingly, the high-pressure refrigerant gas is less leaked from the inner diameter 10a of the partition plate 10 having a high pressure to the vicinity of the outer peripheral surface of the second piston 11b having a low pressure and the first piston 11a on the side opposite to the eccentric side. Can be made.

また図3及び下記式(2)に示すように、本実施の形態1では、中間軸4eの外周面の半径Rcは、中間軸4eの軸中心(つまり、主軸4a及び副軸4bの軸中心)から第2のピストン11b及び第1のピストン11aの反偏芯側の内周面までの距離Rp−eよりも大きくなっている。換言すると、中間軸4eの外周面の半径Rcは、中間軸4eの軸中心から副軸側偏芯部4d及び主軸側偏芯部4cの反偏芯側の外周面までの距離Rp−eよりも大きくなっている。
Rc>Rp−e…(2)
つまり、中間軸4eの外周面は、第2のピストン11b及び第1のピストン11aの反偏芯側の内周面よりも外周側に形成されている。換言すると、中間軸4eの外周面は、副軸側偏芯部4d及び主軸側偏芯部4cの反偏芯側の外周面よりも外周側に形成されている。
なお、中間軸4eは仕切板10の内径10aの内部に配置されるため、
Rc<Dmp/2…(3)
となっている。
As shown in FIG. 3 and the following formula (2), in the first embodiment, the radius Rc of the outer peripheral surface of the intermediate shaft 4e is the axial center of the intermediate shaft 4e (that is, the axial center of the main shaft 4a and the sub shaft 4b). ) To the inner peripheral surface of the second piston 11b and the first piston 11a on the side opposite to the eccentricity Rp-e. In other words, the radius Rc of the outer peripheral surface of the intermediate shaft 4e is based on the distance Rp-e from the center of the intermediate shaft 4e to the outer peripheral surface of the sub-shaft side eccentric portion 4d and the main shaft side eccentric portion 4c on the opposite eccentric side. Is also getting bigger.
Rc> Rp-e (2)
That is, the outer peripheral surface of the intermediate shaft 4e is formed on the outer peripheral side with respect to the inner peripheral surfaces on the opposite eccentric side of the second piston 11b and the first piston 11a. In other words, the outer peripheral surface of the intermediate shaft 4e is formed on the outer peripheral side with respect to the outer peripheral surface of the countershaft side eccentric portion 4d and the main shaft side eccentric portion 4c on the opposite eccentric side.
Since the intermediate shaft 4e is arranged inside the inner diameter 10a of the partition plate 10,
Rc <Dmp / 2 (3)
It has become.

このように中間軸4eを構成することで、中間軸4eの外径を大きくすることができ、クランク軸4の剛性を高くすることができる。このため、冷媒ガスを圧縮する工程でクランク軸4に働くガス荷重によってクランク軸4が変形することを軽減できるので、主軸受6及び副軸受7内での油膜の状態も良好に保つことができ、クランク軸4の信頼性を高くすることができる。   By configuring the intermediate shaft 4e in this way, the outer diameter of the intermediate shaft 4e can be increased, and the rigidity of the crankshaft 4 can be increased. For this reason, since it is possible to reduce the deformation of the crankshaft 4 due to the gas load acting on the crankshaft 4 in the process of compressing the refrigerant gas, the state of the oil film in the main bearing 6 and the sub-bearing 7 can be maintained well. The reliability of the crankshaft 4 can be increased.

したがって、本実施の形態1のように構成された2気筒回転圧縮機100は、クランク軸4の信頼性を確保しつつ、主軸側偏芯部4c及び副軸側偏芯部4dの偏芯量を大きくとって圧縮室の排除容積を拡大でき、2気筒回転圧縮機100の高出力化が可能となる。   Therefore, the two-cylinder rotary compressor 100 configured as in the first embodiment secures the reliability of the crankshaft 4, and the eccentric amount of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. As a result, the displacement volume of the compression chamber can be increased, and the output of the two-cylinder rotary compressor 100 can be increased.

また、言い換えれば、同じ出力を得るのに圧縮室の容積を小さくでき、2気筒回転圧縮機100の小型軽量化が可能となる。   In other words, the volume of the compression chamber can be reduced to obtain the same output, and the two-cylinder rotary compressor 100 can be reduced in size and weight.

さらに言い換えれば、圧縮室の容積を変更しない場合には、圧縮室の軸方向高さが扁平となる分だけ、つまり第1のシリンダ8及び第2のシリンダ9の厚みが薄くなる分だけ、これら第1のシリンダ8及び第2のシリンダ9のシリンダ内径と第1のピストン11a及び第2のピストン11bの外径をより大きくできる。このため、第1のシリンダ8及び第2のシリンダ9のシリンダ内径と第1のピストン11a及び第2のピストン11bとのシール部を長く確保でき、圧縮効率を改善することができる。   In other words, when the volume of the compression chamber is not changed, the axial height of the compression chamber is flattened, that is, the thickness of the first cylinder 8 and the second cylinder 9 is thinned. The cylinder inner diameters of the first cylinder 8 and the second cylinder 9 and the outer diameters of the first piston 11a and the second piston 11b can be made larger. For this reason, the cylinder inner diameters of the first cylinder 8 and the second cylinder 9 and the seal portion between the first piston 11a and the second piston 11b can be secured long, and the compression efficiency can be improved.

ところで、本実施の形態1に係る2気筒回転圧縮機100に、圧縮機構部3の軸方向長さを短くする工夫をさらに施してもよい。このとき、例えば第1のピストン11aを副軸4b側から取り付けようとすると、圧縮機構部3の軸方向長さを短くする際に第1のピストン11a及び第2のピストン11bの軸方向長さを変更しない場合、つまり、圧縮室の軸方向高さを変更しない場合、第1のピストン11aが中間軸4eを通過できなくなることが懸念される。この懸念事項を解消するには、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを短くする下記の方法や、中間軸4eの軸方向長さを短くする下記の方法が考えられる。   Incidentally, the two-cylinder rotary compressor 100 according to the first embodiment may be further devised to shorten the axial length of the compression mechanism unit 3. At this time, for example, if the first piston 11a is to be attached from the side of the auxiliary shaft 4b, the axial lengths of the first piston 11a and the second piston 11b when the axial length of the compression mechanism portion 3 is shortened. If it is not changed, that is, if the axial height of the compression chamber is not changed, there is a concern that the first piston 11a cannot pass through the intermediate shaft 4e. In order to eliminate this concern, the following method of shortening the axial length of at least one of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d, or the axial length of the intermediate shaft 4e can be reduced. The following method of shortening can be considered.

図示はしないが、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを短くする方法とは、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを、当該偏芯部に取り付けられるピストン(第1のピストン11a及び第2のピストン11b)の長さよりも短くする方法である。この場合、軸方向長さを短くする偏芯部は、中間軸4e側を削って軸方向の長さを短くする。   Although not shown, the method of shortening the axial length of at least one of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d is the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d. In this method, the axial length of at least one of the pistons is made shorter than the lengths of the pistons (the first piston 11a and the second piston 11b) attached to the eccentric part. In this case, the eccentric portion that shortens the axial length shortens the axial length by scraping the intermediate shaft 4e side.

第1のピストン11aの軸方向長さよりも、中間軸4eの軸方向長さが長ければ、第1のピストン11aを主軸側偏芯部4cに組み付けることができる。   If the axial length of the intermediate shaft 4e is longer than the axial length of the first piston 11a, the first piston 11a can be assembled to the main shaft side eccentric portion 4c.

つまり、中間軸4eの軸方向長さが、第1のピストン11aを主軸側偏芯部4cに組み付けることができる略最小寸法となるように、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを、当該偏芯部に取り付けられるピストン(第1のピストン11a及び第2のピストン11b)の長さよりも短くする。それにより、第1のピストン11a及び第2のピストン11bの軸方向長さを変更せずに圧縮機構部3の軸方向長さを短くできる。   That is, the main shaft side eccentric portion 4c and the sub shaft side eccentric portion are such that the axial length of the intermediate shaft 4e is substantially the minimum dimension that allows the first piston 11a to be assembled to the main shaft side eccentric portion 4c. The axial length of at least one of 4d is made shorter than the lengths of the pistons (first piston 11a and second piston 11b) attached to the eccentric portion. Thereby, the axial direction length of the compression mechanism part 3 can be shortened, without changing the axial direction length of the 1st piston 11a and the 2nd piston 11b.

圧縮機構部3の軸方向長さを短くする他の方法は、図5に示すように、第1のピストン11aの軸方向の長さより中間軸4eの軸方向長さを短くし、第1のピストン11aを主軸側偏芯部4cに組み付け可能にするために、第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設ける方法である。逃がし形状11a−1は、傾斜、段差等で形成する。   As shown in FIG. 5, another method for shortening the axial length of the compression mechanism section 3 is to shorten the axial length of the intermediate shaft 4e from the axial length of the first piston 11a, In order to allow the piston 11a to be assembled to the main shaft side eccentric portion 4c, a relief shape 11a-1 is provided on both axial end surfaces of the inner diameter of the first piston 11a. The relief shape 11a-1 is formed with an inclination, a step or the like.

図5により、第1のピストン11aを主軸側偏芯部4cに組み付ける手順を説明する。
(1)図5(a)に示すように、第1のピストン11aを、副軸4b、副軸側偏芯部4dをくぐらせて、第1のピストン11aの軸方向の一端を主軸側偏芯部4cに当接させる。
(2)次に、図5(b)に示すように、第1のピストン11aを傾ける(図5(b)では反時計方向)。
(3)そして、図5(c)に示すように、主軸側偏芯部4cの偏芯方向に、傾いた状態のまま移動させる。第1のピストン11aの内径が、主軸側偏芯部4cの反偏芯方向の外周面に当接するまで傾いた状態のまま移動させる。
(4)最後に、第1のピストン11aを主軸側偏芯部4cに挿入する。
The procedure for assembling the first piston 11a to the main shaft side eccentric portion 4c will be described with reference to FIG.
(1) As shown in FIG. 5 (a), the first piston 11a is passed through the sub shaft 4b and the sub shaft side eccentric portion 4d so that one end of the first piston 11a in the axial direction is displaced from the main shaft side. It abuts on the core 4c.
(2) Next, as shown in FIG. 5 (b), the first piston 11a is tilted (counterclockwise in FIG. 5 (b)).
(3) Then, as shown in FIG. 5 (c), the main shaft side eccentric portion 4c is moved while being inclined in the eccentric direction. The first piston 11a is moved while being inclined until the inner diameter of the first piston 11a abuts on the outer circumferential surface of the main shaft side eccentric portion 4c in the anti-eccentric direction.
(4) Finally, the first piston 11a is inserted into the main shaft side eccentric portion 4c.

第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設けることによる効果を説明する前に、図7により、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さ、又は中間軸4eの軸方向長さを短くしない比較例について説明する。   Before describing the effect of providing the relief shape 11a-1 on both axial end surfaces of the inner diameter of the first piston 11a, FIG. 7 shows that the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d are A comparative example in which at least one axial length or the axial length of the intermediate shaft 4e is not shortened will be described.

図7に示す比較例の組み立て手順は、以下に示すとおりである。
(1)図7(a)に示すように、第1のピストン11aを、副軸4b、副軸側偏芯部4dをくぐらせて、第1のピストン11aの軸方向の一端を主軸側偏芯部4cに当接させる。
(2)図7(b)に示すように、第1のピストン11aを、中間軸4eにおいて主軸側偏芯部4c側に移動する。
(3)図7(c)に示すように、第1のピストン11aを、主軸側偏芯部4cに挿入する。
The assembly procedure of the comparative example shown in FIG. 7 is as follows.
(1) As shown in FIG. 7 (a), the first piston 11a is passed through the sub shaft 4b and the sub shaft side eccentric portion 4d, and one end of the first piston 11a in the axial direction is displaced from the main shaft side. It abuts on the core 4c.
(2) As shown in FIG. 7B, the first piston 11a is moved to the main shaft side eccentric portion 4c side in the intermediate shaft 4e.
(3) As shown in FIG. 7C, the first piston 11a is inserted into the main shaft side eccentric portion 4c.

図6は、図5に示した第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設けた本実施の形態と、図7に示す比較例とを比較した図である。図6(a)が図7(c)相当図で、図6(b)が図5(d)相当図である。   FIG. 6 is a diagram comparing the present embodiment in which the relief shape 11a-1 is provided on both axial end surfaces of the inner diameter of the first piston 11a shown in FIG. 5 and the comparative example shown in FIG. FIG. 6A is a view corresponding to FIG. 7C, and FIG. 6B is a view corresponding to FIG.

図5に示した第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設けたクランク軸4は、中間軸4eの軸方向の長さが、比較例の中間軸4eの軸方向の長さよりも、寸法dだけ短い。そのため、圧縮機構部3の軸方向の長さを、寸法dだけ短縮できる。   The crankshaft 4 provided with the relief shape 11a-1 on both axial end surfaces of the inner diameter of the first piston 11a shown in FIG. 5 has the axial length of the intermediate shaft 4e that is the axis of the intermediate shaft 4e of the comparative example. The dimension d is shorter than the length in the direction. Therefore, the axial length of the compression mechanism unit 3 can be shortened by the dimension d.

主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを、当該偏芯部に取り付けられるピストン(第1のピストン11a及び第2のピストン11b)の長さよりも短くする方法、又は第1のピストン11aの軸方向の長さより中間軸4eの軸方向長さを短くし、第1のピストン11aを主軸側偏芯部4cに組み付け可能にするために、第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設ける方法によれば、上記のように、圧縮機構部をコンパクトに設計できるという利点がある。   The axial length of at least one of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d is determined from the lengths of the pistons (the first piston 11a and the second piston 11b) attached to the eccentric portion. In order to shorten the axial length of the intermediate shaft 4e to be shorter than the axial length of the first piston 11a so that the first piston 11a can be assembled to the main shaft side eccentric portion 4c. According to the method of providing the relief shape 11a-1 on both axial end surfaces of the inner diameter of one piston 11a, there is an advantage that the compression mechanism can be designed compactly as described above.

さらに、圧縮ガス負荷の作用点であるクランク軸4の主軸側偏芯部4c又は副軸側偏芯部4dと、支持点となる主軸受6又は副軸受7までの間隔を小さくできるため、同一ガス負荷においてもクランク軸4の撓みを抑制できる。クランク軸4の撓みが大きくなると、主軸受6又は副軸受7に対するクランク軸4の傾きが大きくなり、片当たりが生じる。しかし、クランク軸4の撓みの抑制により片当たりを抑制し、主軸受6又は副軸受7の信頼性を向上することができる。   Furthermore, the distance between the main shaft side eccentric portion 4c or the sub shaft side eccentric portion 4d of the crankshaft 4 which is the operating point of the compressed gas load and the main bearing 6 or the sub bearing 7 serving as a support point can be reduced. The bending of the crankshaft 4 can be suppressed even under a gas load. When the bending of the crankshaft 4 is increased, the inclination of the crankshaft 4 with respect to the main bearing 6 or the sub-bearing 7 is increased, and one-sided contact occurs. However, by suppressing the bending of the crankshaft 4, it is possible to suppress the contact with each other and improve the reliability of the main bearing 6 or the sub-bearing 7.

なお、主軸側偏芯部4c及び副軸側偏芯部4dのうちの少なくとも一方の軸方向長さを、当該偏芯部に取り付けられるピストン(第1のピストン11a及び第2のピストン11b)の長さよりも短くする方法と、第1のピストン11aの軸方向の長さより中間軸4eの軸方向長さを短くし、第1のピストン11aを主軸側偏芯部4cに組み付け可能にするために、第1のピストン11aの内径の軸方向両端面に逃がし形状11a−1を設ける方法とを組み合わせて実施してもよい。これにより、第1のピストン11aの主軸側偏芯部4cへの組み付けを、さらに容易に行うことができる。   It should be noted that the axial length of at least one of the main shaft side eccentric portion 4c and the sub shaft side eccentric portion 4d is set to the piston (first piston 11a and second piston 11b) attached to the eccentric portion. To shorten the axial length of the intermediate shaft 4e from the axial length of the first piston 11a and to make the first piston 11a assembled to the main shaft side eccentric portion 4c. A method of providing the relief shape 11a-1 on both axial end surfaces of the inner diameter of the first piston 11a may be combined. Thereby, the assembly | attachment to the main axis | shaft side eccentric part 4c of the 1st piston 11a can be performed still more easily.

以上、本実施の形態1のように構成された2気筒回転圧縮機100においては、仕切板10の内径10aの直径Dmpを副軸側偏芯部4d及び主軸側偏芯部4cの外径Dpよりも小さく形成し、中間軸4eの外周面を第2のピストン11b及び第1のピストン11aの反偏芯側の内周面よりも外周側(換言すると、副軸側偏芯部4d及び主軸側偏芯部4cの反偏芯側の外周面よりも外周側)に形成している。このため、クランク軸4の信頼性を確保しつつ、2気筒回転圧縮機100の高出力化や高効率化が可能となる。   As described above, in the two-cylinder rotary compressor 100 configured as in the first embodiment, the diameter Dmp of the inner diameter 10a of the partition plate 10 is set to the outer diameter Dp of the auxiliary shaft side eccentric portion 4d and the main shaft side eccentric portion 4c. Smaller than the inner peripheral surface of the second piston 11b and the first piston 11a on the side opposite to the eccentric side (in other words, the sub-shaft side eccentric portion 4d and the main shaft). It is formed on the outer peripheral side of the outer eccentric surface of the side eccentric portion 4c on the side opposite to the eccentric side. For this reason, high output and high efficiency of the two-cylinder rotary compressor 100 can be achieved while ensuring the reliability of the crankshaft 4.

なお、本実施の形態1では、各圧縮室の吸入冷媒の圧力及び吐出冷媒の圧力が同じ2気筒回転圧縮機を例に説明したが、低段側の圧縮室で低圧の冷媒ガスを中圧の冷媒ガスに圧縮し、高段側の圧縮室で中圧の冷媒ガスを高圧の冷媒ガスに圧縮する2段回転圧縮機に本発明を実施することも勿論可能である。また、圧縮室の数も2つに限定されるものではなく、3つ以上の圧縮機を有する多気筒回転圧縮機や多段回転圧縮機に本発明を実施することも勿論可能である。また、本実施の形態1では密閉容器1内が高圧の吐出冷媒となる高圧シェル型の圧縮機を例に説明したが、密閉容器1内が低圧の吸入冷媒となる低圧シェル型の圧縮機に本発明を実施することも勿論可能である。   In the first embodiment, a two-cylinder rotary compressor in which the pressure of the suction refrigerant and the pressure of the discharge refrigerant in each compression chamber are the same has been described as an example. It is of course possible to implement the present invention in a two-stage rotary compressor that compresses the refrigerant gas into a high-pressure refrigerant gas and compresses the medium-pressure refrigerant gas into the high-pressure refrigerant gas in the high-stage compression chamber. Further, the number of compression chambers is not limited to two, and it is of course possible to implement the present invention in a multi-cylinder rotary compressor or a multistage rotary compressor having three or more compressors. In the first embodiment, the high-pressure shell type compressor in which the inside of the sealed container 1 is a high-pressure discharge refrigerant has been described as an example. However, the low-pressure shell type compressor in which the inside of the sealed container 1 is a low-pressure suction refrigerant is described. Of course, it is possible to implement the present invention.

実施の形態2.
実施の形態1では、仕切板10の内径10aと第1のピストン11a及び第2のピストン11bとの関係について特に言及しなかった。仕切板10の内径10aと第1のピストン11a及び第2のピストン11bとは、例えば次のような関係となるように形成すればよい。なお、本実施の形態2で特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In Embodiment 1, the relationship between the inner diameter 10a of the partition plate 10 and the first piston 11a and the second piston 11b is not particularly mentioned. What is necessary is just to form the internal diameter 10a of the partition plate 10, the 1st piston 11a, and the 2nd piston 11b so that it may become the following relationships, for example. Note that items not particularly described in the second embodiment are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.

図8は実施の形態2を示す図で、2気筒回転圧縮機100の圧縮機構部3の縦断面図である。
図8に示すように、中間軸4eの軸中心から仕切板10の内径10aの内周面までの距離(つまり、仕切板10の内径10aの半径)をRc、中間軸4eの軸中心から第2のピストン11b及び第1のピストン11aの反偏芯側の内周面までの距離をRp−e、中間軸4eの軸中心から第2のピストン11b及び第1のピストン11aの反偏芯側の外周面までの距離をRr−eとすると、
Rmp>Rp−e…(4)
Rmp<Rr−e…(5)
となっている。
つまり、第2のピストン11b及び第1のピストン11aの反偏芯側の内周面は、仕切板10の内径10aよりも、中間軸4eの軸中心側に配置されている。また、第2のピストン11b及び第1のピストン11aの反偏芯側の外周面は、仕切板10の内径10aよりも外周側に配置されている。
FIG. 8 shows the second embodiment and is a longitudinal sectional view of the compression mechanism section 3 of the two-cylinder rotary compressor 100.
As shown in FIG. 8, the distance from the center of the intermediate shaft 4e to the inner peripheral surface of the inner diameter 10a of the partition plate 10 (that is, the radius of the inner diameter 10a of the partition plate 10) is Rc, and the distance from the center of the intermediate shaft 4e is Rp-e, the distance from the center of the intermediate shaft 4e to the anti-eccentric side of the second piston 11b and the first piston 11a. If the distance to the outer peripheral surface is Rr-e,
Rmp> Rp-e (4)
Rmp <Rr-e (5)
It has become.
That is, the inner peripheral surfaces of the second piston 11b and the first piston 11a on the side opposite to the eccentric side are arranged closer to the center side of the intermediate shaft 4e than the inner diameter 10a of the partition plate 10. Further, the outer peripheral surfaces of the second piston 11 b and the first piston 11 a on the opposite eccentric side are arranged on the outer peripheral side with respect to the inner diameter 10 a of the partition plate 10.

なお、仕切板10は、実施の形態1と同様に、複数の分割板に分割されている。また、仕切板10の内径10aの直径Dmpと副軸側偏芯部4d及び主軸側偏芯部4cの外径Dpとの関係、中間軸4eの外周面と第2のピストン11b及び第1のピストン11aの反偏芯側の内周面との関係、及び、中間軸4eと仕切板10の内径10aとの関係等も、実施の形態1で示した式(1)〜式(3)と同様である。   Note that the partition plate 10 is divided into a plurality of divided plates, as in the first embodiment. Further, the relationship between the diameter Dmp of the inner diameter 10a of the partition plate 10 and the outer diameter Dp of the auxiliary shaft side eccentric portion 4d and the main shaft side eccentric portion 4c, the outer peripheral surface of the intermediate shaft 4e, the second piston 11b, and the first piston The relationship with the inner peripheral surface of the piston 11a on the side opposite to the eccentricity, the relationship between the intermediate shaft 4e and the inner diameter 10a of the partition plate 10 and the like are also the same as the equations (1) to (3) shown in the first embodiment. It is the same.

以上、このように構成された2気筒回転圧縮機100においては、仕切板10を複数に分割して形成することで、副軸側偏芯部4d及び主軸側偏芯部4cの偏芯量を大きくとっても、一体部品の仕切板10の場合には大きくなってしまう内径10aを小さくすることができる。仕切板10の内径が小さいと、副軸側偏芯部4d及び主軸側偏芯部4cにそれぞれ第2のピストン11b及び第1のピストン11aを挿入して圧縮室を形成した場合に、第2のピストン11b及び第1のピストン11aの反偏芯側の外周面と仕切板10の内径との距離を長く確保できる。このため、冷媒ガスの圧縮工程において低圧となっている第2のピストン11b及び第1のピストン11aの反偏芯側の外周面近傍と、圧縮室から吐出された冷媒ガス空間と連通し高圧となっている仕切板10の内径10a内と、のシール長さを大きく確保することができる。したがって、実施の形態1と同様に、高圧となっている仕切板10の内径10a内から低圧となっている第2のピストン11b及び第1のピストン11aの反偏芯側の外周面近傍へ高圧の冷媒ガスが漏れることを減少させることができる。   As described above, in the two-cylinder rotary compressor 100 configured as described above, the partition plate 10 is divided into a plurality of parts so that the eccentric amounts of the sub-shaft side eccentric portion 4d and the main shaft-side eccentric portion 4c are reduced. Even if it is large, the inner diameter 10a which becomes large in the case of the partition plate 10 of an integral part can be reduced. When the inner diameter of the partition plate 10 is small, the second piston 11b and the first piston 11a are inserted into the sub-shaft side eccentric portion 4d and the main shaft-side eccentric portion 4c, respectively, to form the second compression chamber. It is possible to secure a long distance between the outer peripheral surface of the piston 11b and the first piston 11a on the opposite eccentric side and the inner diameter of the partition plate 10. For this reason, in the refrigerant gas compression step, the second piston 11b and the vicinity of the outer surface of the first piston 11a opposite to the eccentric side, the refrigerant gas space discharged from the compression chamber, and the high pressure communicate with each other. A large seal length can be ensured between the inner diameter 10a of the partition plate 10 formed. Therefore, as in the first embodiment, the high pressure is applied from the inside of the inner diameter 10a of the partition plate 10 having a high pressure to the vicinity of the outer peripheral surface of the second piston 11b having a low pressure and the anti-eccentric side of the first piston 11a. The leakage of the refrigerant gas can be reduced.

このとき、第2のピストン11b及び第1のピストン11aの反偏芯側の外周面を仕切板10の内径10aよりも外周側に配置しているので、冷媒ガスの圧縮工程において低圧となっている第2のピストン11b及び第1のピストン11aの反偏芯側の外周面近傍と、圧縮室から吐出された冷媒ガス空間と連通し高圧となっている仕切板10の内径10a内と、のシール長さを確実に確保することができる。したがって、高圧となっている仕切板10の内径10a内から低圧となっている第2のピストン11b及び第1のピストン11aの反偏芯側の外周面近傍へ高圧の冷媒ガスが漏れることを確実に減少させることができる。   At this time, since the outer peripheral surfaces of the second piston 11b and the first piston 11a on the opposite eccentric side are arranged on the outer peripheral side with respect to the inner diameter 10a of the partition plate 10, the pressure becomes low in the refrigerant gas compression process. Between the outer peripheral surface of the second piston 11b and the first piston 11a opposite to the eccentric side, and the inner diameter 10a of the partition plate 10 communicating with the refrigerant gas space discharged from the compression chamber and having a high pressure. The seal length can be ensured reliably. Therefore, it is ensured that the high-pressure refrigerant gas leaks from the inner diameter 10a of the partition plate 10 that is at a high pressure to the vicinity of the outer peripheral surface of the second piston 11b that is at a low pressure and the anti-eccentric side of the first piston 11a. Can be reduced.

したがって、本実施の形態2のように構成された2気筒回転圧縮機100においても、クランク軸4の信頼性を確保しつつ、2気筒回転圧縮機100の高出力化や高効率化が可能となる。   Therefore, even in the two-cylinder rotary compressor 100 configured as in the second embodiment, it is possible to increase the output and the efficiency of the two-cylinder rotary compressor 100 while ensuring the reliability of the crankshaft 4. Become.

1 密閉容器、2 電動機、2a 固定子、2b 回転子、3 圧縮機構部、4 クランク軸、4a 主軸、4b 副軸、4c 主軸側偏芯部、4d 副軸側偏芯部、4e 中間軸、4e−1 第1の中間軸、4e−2 第2の中間軸、4f 内径、6 主軸受、7 副軸受、8 第1のシリンダ、9 第2のシリンダ、10 仕切板、10a 内径、10b 第1の分割板、10c 第2の分割板、11a 第1のピストン、11a−1 逃がし形状、11b 第2のピストン、12 ボルト、13 ボルト、20 給油孔、21 吸入連結管、22 吸入連結管、23 吐出管、24 ガラス端子、25 リード線、40 アキュムレータ、100 2気筒回転圧縮機。   DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Electric motor, 2a Stator, 2b Rotor, 3 Compression mechanism part, 4 Crankshaft, 4a Main shaft, 4b Secondary shaft, 4c Main shaft side eccentric part, 4d Subshaft side eccentric part, 4e Intermediate shaft, 4e-1 first intermediate shaft, 4e-2 second intermediate shaft, 4f inner diameter, 6 main bearing, 7 auxiliary bearing, 8 first cylinder, 9 second cylinder, 10 partition plate, 10a inner diameter, 10b first 1 divided plate, 10c second divided plate, 11a first piston, 11a-1 relief shape, 11b second piston, 12 bolt, 13 bolt, 20 oil supply hole, 21 suction connection tube, 22 suction connection tube, 23 discharge pipe, 24 glass terminal, 25 lead wire, 40 accumulator, 100 2-cylinder rotary compressor.

Claims (3)

固定子及び回転子を有する電動機と、
前記回転子に固定された主軸、前記主軸の軸方向の反対側に設けられた副軸、前記主軸と前記副軸との間に所定の位相差を設けて形成された複数の偏芯部、並びに隣接する前記偏芯部の間に設けられた中間軸を有し、前記電動機により駆動されるクランク軸と、
円筒状の貫通孔が形成され、該貫通孔に前記偏芯部が配置されて圧縮室が形成される複数のシリンダと、
内部に前記中間軸が配置される円筒状の貫通孔が形成され、隣接する前記シリンダの圧縮室の間を仕切る仕切板と、
を備えた回転圧縮機であって、
前記中間軸の外周面は、前記偏芯部の反偏芯側の外周面よりも外周側に形成され、
前記仕切板は、該仕切板に形成された貫通孔を通る断面によって複数に分割されており、
前記仕切板の貫通孔の内径は、前記中間軸の外径よりも大きく、且つ、前記偏芯部の外径よりも小さく形成されていることを特徴とする回転圧縮機。
An electric motor having a stator and a rotor;
A main shaft fixed to the rotor, a sub shaft provided on the opposite side of the main shaft in the axial direction, a plurality of eccentric portions formed with a predetermined phase difference between the main shaft and the sub shaft; And an intermediate shaft provided between the adjacent eccentric portions, and a crankshaft driven by the electric motor,
A plurality of cylinders in which a cylindrical through hole is formed, and the eccentric portion is disposed in the through hole to form a compression chamber;
A cylindrical through hole in which the intermediate shaft is disposed is formed, and a partition plate for partitioning between the compression chambers of the adjacent cylinders;
A rotary compressor comprising:
The outer peripheral surface of the intermediate shaft is formed on the outer peripheral side with respect to the outer peripheral surface on the anti-eccentric side of the eccentric portion,
The partition plate is divided into a plurality of sections through a through hole formed in the partition plate,
The rotary compressor according to claim 1, wherein an inner diameter of the through hole of the partition plate is larger than an outer diameter of the intermediate shaft and smaller than an outer diameter of the eccentric portion.
固定子及び回転子を有する電動機と、
前記回転子に固定された主軸、前記主軸の軸方向の反対側に設けられた副軸、前記主軸と前記副軸との間に所定の位相差を設けて形成された複数の偏芯部、並びに隣接する前記偏芯部の間に設けられた中間軸を有し、前記電動機により駆動されるクランク軸と、
前記偏芯部に嵌合する複数のピストンと、
円筒状の貫通孔が形成され、該貫通孔に前記偏芯部及び前記ピストンが配置されて圧縮室が形成される複数のシリンダと、
内部に前記中間軸が配置される円筒状の貫通孔が形成され、隣接する前記シリンダの圧縮室の間を仕切る仕切板と、
を備えた回転圧縮機であって、
前記中間軸の外周面は、前記偏芯部の反偏芯側の外周面よりも外周側に形成され、
前記仕切板は、該仕切板に形成された貫通孔を通る断面によって複数に分割されており、
前記仕切板の貫通孔の内径は、前記中間軸の外径よりも大きく、且つ、前記偏芯部の外径よりも小さく形成され、
前記ピストンの反偏芯側外周面は、前記仕切板の貫通孔の内径よりも外周側に形成されていることを特徴とする回転圧縮機。
An electric motor having a stator and a rotor;
A main shaft fixed to the rotor, a sub shaft provided on the opposite side of the main shaft in the axial direction, a plurality of eccentric portions formed with a predetermined phase difference between the main shaft and the sub shaft; And an intermediate shaft provided between the adjacent eccentric portions, and a crankshaft driven by the electric motor,
A plurality of pistons fitted to the eccentric part;
A plurality of cylinders in which a cylindrical through hole is formed, and the eccentric portion and the piston are arranged in the through hole to form a compression chamber;
A cylindrical through hole in which the intermediate shaft is disposed is formed, and a partition plate for partitioning between the compression chambers of the adjacent cylinders;
A rotary compressor comprising:
The outer peripheral surface of the intermediate shaft is formed on the outer peripheral side with respect to the outer peripheral surface on the anti-eccentric side of the eccentric portion,
The partition plate is divided into a plurality of sections through a through hole formed in the partition plate,
The inner diameter of the through hole of the partition plate is larger than the outer diameter of the intermediate shaft and smaller than the outer diameter of the eccentric part,
2. The rotary compressor according to claim 1, wherein the outer circumferential surface of the piston on the side opposite to the eccentric side is formed on the outer circumferential side of the inner diameter of the through hole of the partition plate.
前記クランク軸は、ヤング率が150GPa以上の材料で形成されていることを特徴とする請求項1又は請求項2に記載の回転圧縮機。   The rotary compressor according to claim 1 or 2, wherein the crankshaft is made of a material having a Young's modulus of 150 GPa or more.
JP2011238714A 2011-10-31 2011-10-31 Rotary compressor Active JP5606422B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011238714A JP5606422B2 (en) 2011-10-31 2011-10-31 Rotary compressor
CZ2012-581A CZ305970B6 (en) 2011-10-31 2012-08-29 Rotary-type compressor
KR1020120100289A KR101393968B1 (en) 2011-10-31 2012-09-11 Rotary compressor
CN201210346923.3A CN103089630B (en) 2011-10-31 2012-09-18 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238714A JP5606422B2 (en) 2011-10-31 2011-10-31 Rotary compressor

Publications (3)

Publication Number Publication Date
JP2013096281A true JP2013096281A (en) 2013-05-20
JP2013096281A5 JP2013096281A5 (en) 2013-09-26
JP5606422B2 JP5606422B2 (en) 2014-10-15

Family

ID=48202617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238714A Active JP5606422B2 (en) 2011-10-31 2011-10-31 Rotary compressor

Country Status (4)

Country Link
JP (1) JP5606422B2 (en)
KR (1) KR101393968B1 (en)
CN (1) CN103089630B (en)
CZ (1) CZ305970B6 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150081137A (en) * 2014-01-03 2015-07-13 엘지전자 주식회사 A rotary compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10473367B2 (en) * 2013-05-24 2019-11-12 Mitsubishi Electric Corporation Heat pump apparatus
CN110249132A (en) * 2017-02-03 2019-09-17 三菱电机株式会社 Compressor
US20240052838A1 (en) * 2021-01-04 2024-02-15 Siam Compressor Industry Co., Ltd. A compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510279A (en) * 1991-07-05 1993-01-19 Matsushita Electric Ind Co Ltd Two-cylinder rotary compressor
JP2009275645A (en) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp Rotary compressor
JP2011106427A (en) * 2009-11-20 2011-06-02 Mitsubishi Electric Corp Multiple-cylinder rotary compressor and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136595A (en) * 1983-01-26 1984-08-06 Mitsubishi Electric Corp Multi-cylinder rotary compressor
JPS59115891U (en) * 1983-01-26 1984-08-04 三菱電機株式会社 Multi-cylinder rotary compressor
JP4045154B2 (en) 2002-09-11 2008-02-13 日立アプライアンス株式会社 Compressor
JP2009180203A (en) * 2008-02-01 2009-08-13 Hitachi Appliances Inc Double cylinder rotary compressor
JP5084692B2 (en) 2008-10-21 2012-11-28 三菱電機株式会社 2-cylinder rotary compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510279A (en) * 1991-07-05 1993-01-19 Matsushita Electric Ind Co Ltd Two-cylinder rotary compressor
JP2009275645A (en) * 2008-05-16 2009-11-26 Mitsubishi Electric Corp Rotary compressor
JP2011106427A (en) * 2009-11-20 2011-06-02 Mitsubishi Electric Corp Multiple-cylinder rotary compressor and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150081137A (en) * 2014-01-03 2015-07-13 엘지전자 주식회사 A rotary compressor
KR101868193B1 (en) * 2014-01-03 2018-06-15 엘지전자 주식회사 A rotary compressor

Also Published As

Publication number Publication date
CZ2012581A3 (en) 2013-06-05
CN103089630B (en) 2016-02-17
CN103089630A (en) 2013-05-08
KR20130047571A (en) 2013-05-08
JP5606422B2 (en) 2014-10-15
CZ305970B6 (en) 2016-05-25
KR101393968B1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5441982B2 (en) Rotary compressor
JP6156697B2 (en) Rotary compressor with two cylinders
KR100947419B1 (en) 2 cylinder rotary compressor
JP5084692B2 (en) 2-cylinder rotary compressor
EP2749735B1 (en) Compressor
JP5781019B2 (en) Rotary compressor
JP2011106427A (en) Multiple-cylinder rotary compressor and method of manufacturing the same
US9145890B2 (en) Rotary compressor with dual eccentric portion
JP5606422B2 (en) Rotary compressor
JP2017150425A (en) Two-cylinder type sealed compressor
JP5535511B2 (en) Method for manufacturing hermetic fluid machine and hermetic fluid machine
KR20020034883A (en) Plural cylinder rotary compressor
WO2016139873A1 (en) Compressor
JP5766166B2 (en) Rotary compressor
KR101487820B1 (en) Accumulator for compressor
JP5766165B2 (en) Rotary compressor
JP6409910B1 (en) Scroll compressor
WO2013015215A1 (en) Fluid machine
JP2019035391A (en) Compressor
CN219529308U (en) Compressor and refrigeration equipment
JP2016113923A (en) Compressor
JP6430429B2 (en) Fluid machinery
JP6008478B2 (en) Fluid machinery
JP2014098382A (en) Rotary compressor
KR20110064281A (en) Twin type rotary compressor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5606422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250