JP2013095656A5 - - Google Patents

Download PDF

Info

Publication number
JP2013095656A5
JP2013095656A5 JP2011242892A JP2011242892A JP2013095656A5 JP 2013095656 A5 JP2013095656 A5 JP 2013095656A5 JP 2011242892 A JP2011242892 A JP 2011242892A JP 2011242892 A JP2011242892 A JP 2011242892A JP 2013095656 A5 JP2013095656 A5 JP 2013095656A5
Authority
JP
Japan
Prior art keywords
oxide
sintering
sintered body
zno
oxide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011242892A
Other languages
Japanese (ja)
Other versions
JP2013095656A (en
JP5318932B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2011242892A priority Critical patent/JP5318932B2/en
Priority claimed from JP2011242892A external-priority patent/JP5318932B2/en
Priority to PCT/JP2012/078325 priority patent/WO2013065784A1/en
Priority to TW101140794A priority patent/TW201335407A/en
Publication of JP2013095656A publication Critical patent/JP2013095656A/en
Publication of JP2013095656A5 publication Critical patent/JP2013095656A5/ja
Application granted granted Critical
Publication of JP5318932B2 publication Critical patent/JP5318932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明におけるX線回折条件は、以下のとおりである。
分析装置:理学電機製「X線回折装置RINT−1500」
分析条件:
ターゲット:Cu
単色化:モノクロメートを使用(Kα)
ターゲット出力:40kV−200mA
(連続測定)θ/2θ走査
スリット:発散1/2°、散乱1/2°、受光0.15mm
モノクロメータ受光スリット:0.6mm
走査速度:2°/min
サンプリング幅:0.02°
測定角度(2θ):5〜90°
The X-ray diffraction conditions in the present invention are as follows.
Analysis device: “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation
Analysis conditions:
Target: Cu
Monochromatic: Uses a monochrome mate (Kα)
Target output: 40kV-200mA
(Continuous measurement) θ / 2θ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm
Monochromator light receiving slit: 0.6mm
Scanning speed: 2 ° / min
Sampling width: 0.02 °
Measurement angle (2θ): 5 to 90 °

分析装置:理学電機製「X線回折装置RINT−1500」
分析条件:
ターゲット:Cu
単色化:モノクロメートを使用(Kα)
ターゲット出力:40kV−200mA
(連続測定)θ/2θ走査
スリット:発散1/2°、散乱1/2°、受光0.15mm
モノクロメータ受光スリット:0.6mm
走査速度:2°/min
サンプリング幅:0.02°
測定角度(2θ):5〜90°
Analysis device: “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation
Analysis conditions:
Target: Cu
Monochromatic: Uses a monochrome mate (Kα)
Target output: 40kV-200mA
(Continuous measurement) θ / 2θ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm
Monochromator light receiving slit: 0.6mm
Scanning speed: 2 ° / min
Sampling width: 0.02 °
Measurement angle (2θ): 5 to 90 °

Claims (3)

酸化亜鉛と;酸化インジウムと;Ti、Mg、Al、およびNbよりなる群から選択される少なくとも1種の金属の酸化物と、を混合および焼結して得られる酸化物焼結体であって、
前記酸化物焼結体をX線回折したとき、ZnmIn23+m(mは5〜7の整数)、In23、及びZnOの各結晶相を含むと共に、相対密度95%以上、比抵抗0.1Ω・cm以下であり、
前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[Zn]、[In]、[Ti]、[Mg]、[Al]、および[Nb]としたとき、[Zn]に対する[In]の比、[Zn]+[In]+[Ti]+[Mg]+[Al]+[Nb]に対する[Ti]+[Mg]+[Al]+[Nb]の比は、それぞれ下式を満足し、
前記酸化物焼結体に含まれる前記Zn m In 2 3+m 、前記In 2 3 、及び前記ZnOの合計に対する各結晶相の体積比は、下式を満足することを特徴とする酸化物焼結体。
0.27≦[In]/[Zn]≦0.45
([Ti]+[Mg]+[Al]+[Nb])/([Zn]+[In]+[Ti]+[Mg]+[Al]+[Nb])≦0.05
0.1≦Zn m In 2 3+m /(Zn m In 2 3+m +In 2 3 +ZnO)<0.75
0.05≦In 2 3 /(Zn m In 2 3+m +In 2 3 +ZnO)≦0.7
0.05≦ZnO/(Zn m In 2 3+m +In 2 3 +ZnO)≦0.7
(但し、Zn m In 2 3+m はZn 5 In 2 8 、Zn 6 In 2 9 、Zn 7 In 2 10 の合計である。)
An oxide sintered body obtained by mixing and sintering zinc oxide; indium oxide; and an oxide of at least one metal selected from the group consisting of Ti, Mg, Al, and Nb. ,
When the oxide sintered body was subjected to X-ray diffraction, it contained Zn m In 2 O 3 + m (m is an integer of 5 to 7), In 2 O 3 , and ZnO, and a relative density of 95%. more state, and we are following a specific resistance 0.1Ω · cm,
When the content (atomic%) of the metal element contained in the oxide sintered body is [Zn], [In], [Ti], [Mg], [Al], and [Nb], [ [In] to [Zn], [Ti] + [In] + [Ti] + [Mg] + [Al] + [Nb] to [Ti] + [Mg] + [Al] + [Nb] Satisfy the following formulas,
The volume ratio of each crystal phase to the sum of the Zn m In 2 O 3 + m , In 2 O 3 , and ZnO contained in the oxide sintered body satisfies the following formula: Sintered product.
0.27 ≦ [In] / [Zn] ≦ 0.45
([Ti] + [Mg] + [Al] + [Nb]) / ([Zn] + [In] + [Ti] + [Mg] + [Al] + [Nb]) ≦ 0.05
0.1 ≦ Zn m In 2 O 3 + m / (Zn m In 2 O 3 + m + In 2 O 3 + ZnO) <0.75
0.05 ≦ In 2 O 3 / (Zn m In 2 O 3 + m + In 2 O 3 + ZnO) ≦ 0.7
0.05 ≦ ZnO / (Zn m In 2 O 3 + m + In 2 O 3 + ZnO) ≦ 0.7
(However, Zn m In 2 O 3 + m is the total of Zn 5 In 2 O 8 , Zn 6 In 2 O 9 , and Zn 7 In 2 O 10. )
請求項1に記載の酸化物焼結体を用いて得られるスパッタリングターゲット。 A sputtering target obtained using the oxide sintered body according to claim 1 . 請求項1に記載の酸化物焼結体の製造方法であって、
酸化亜鉛と;酸化インジウムと;Ti、Mg、Al、およびNbよりなる群から選択される少なくとも1種の金属の酸化物とを混合し、黒鉛型にセットした後、焼結温度850〜1050℃、該温度域での保持時間1〜10時間で焼結する第一の焼結工程と、
前記第一の焼結工程後、焼結温度1000〜1050℃(但し、第一の工程の焼結温度よりも高い温度)、該温度域での保持時間0.5〜10時間で焼結する第二の焼結工程とを包含すると共に、
前記第一の焼結工程と前記第二の焼結工程を、加圧圧力100〜500kgf/cm2で行うことを特徴とする酸化物焼結体の製造方法。
A method for producing the oxide sintered body according to claim 1 ,
Zinc oxide, indium oxide, and an oxide of at least one metal selected from the group consisting of Ti, Mg, Al, and Nb are mixed and set in a graphite mold, and then sintered at 850 to 1050 ° C. A first sintering step of sintering in a holding time of 1 to 10 hours in the temperature range;
After the first sintering step, sintering is performed at a sintering temperature of 1000 to 1050 ° C. (however, higher than the sintering temperature of the first step), and a holding time in the temperature range of 0.5 to 10 hours. Including a second sintering step,
A method for producing an oxide sintered body, wherein the first sintering step and the second sintering step are performed at a pressure of 100 to 500 kgf / cm 2 .
JP2011242892A 2011-11-04 2011-11-04 Oxide sintered body, sputtering target, and manufacturing method thereof Active JP5318932B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011242892A JP5318932B2 (en) 2011-11-04 2011-11-04 Oxide sintered body, sputtering target, and manufacturing method thereof
PCT/JP2012/078325 WO2013065784A1 (en) 2011-11-04 2012-11-01 Oxide sintered compact and sputtering target, and method for producing same
TW101140794A TW201335407A (en) 2011-11-04 2012-11-02 Oxide sintered compact and sputtering target, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011242892A JP5318932B2 (en) 2011-11-04 2011-11-04 Oxide sintered body, sputtering target, and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2013095656A JP2013095656A (en) 2013-05-20
JP2013095656A5 true JP2013095656A5 (en) 2013-06-27
JP5318932B2 JP5318932B2 (en) 2013-10-16

Family

ID=48192122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011242892A Active JP5318932B2 (en) 2011-11-04 2011-11-04 Oxide sintered body, sputtering target, and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP5318932B2 (en)
TW (1) TW201335407A (en)
WO (1) WO2013065784A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI602939B (en) * 2013-01-15 2017-10-21 出光興產股份有限公司 Sputtering targets, oxide semiconductor films, and methods of making them
JP6613314B2 (en) * 2015-11-25 2019-11-27 株式会社アルバック Thin film transistor, oxide semiconductor film, and sputtering target
KR20230017294A (en) * 2020-08-05 2023-02-03 미쓰이금속광업주식회사 Sputtering target material and oxide semiconductor
CN113735564A (en) * 2021-08-11 2021-12-03 芜湖映日科技股份有限公司 Nb-doped IZO target blank and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69328197T2 (en) * 1992-12-15 2000-08-17 Idemitsu Kosan Co TRANSPARENT, CONDUCTIVE LAYER, TRANSPARENT, CONDUCTIVE BASE MATERIAL AND CONDUCTIVE MATERIAL
ES2383352T3 (en) * 2001-07-17 2012-06-20 Idemitsu Kosan Co., Ltd. Cathodic spray target for the deposition of a transparent conductive film
WO2003086661A1 (en) * 2002-04-05 2003-10-23 Ppg Industries Ohio, Inc. Process for applying automotive quality effect coatings to metal substrates
JP4488184B2 (en) * 2004-04-21 2010-06-23 出光興産株式会社 Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
US8461583B2 (en) * 2007-12-25 2013-06-11 Idemitsu Kosan Co., Ltd. Oxide semiconductor field effect transistor and method for manufacturing the same
JP5096250B2 (en) * 2008-07-18 2012-12-12 出光興産株式会社 Oxide sintered body manufacturing method, oxide sintered body, sputtering target, oxide thin film, thin film transistor manufacturing method, and semiconductor device

Similar Documents

Publication Publication Date Title
JP2013095656A5 (en)
Liu et al. First-principles phase diagram calculations for the rocksalt-structure quasibinary systems TiN–ZrN, TiN–HfN and ZrN–HfN
JP2015531000A5 (en)
WO2009014158A1 (en) Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery
WO2010138636A3 (en) Synthesis of multinary chalcogenide nanoparticles comprising cu, zn, sn, s, and se
JP2013095655A5 (en)
JP2015127293A5 (en)
WO2012066425A3 (en) Scintillation compound including a rare earth element and a process of forming the same
Wu et al. First-principles study of doping effect on the phase transition of zinc oxide with transition metal doped
Mohammadpour et al. Experimental and predicted mechanical properties of Cr 1− x AI x N thin films, at high temperatures, incorporating in situ synchrotron radiation X-ray diffraction and computational modelling
Gayner et al. Effects of Co-doping and microstructure on charge carrier energy filtering in thermoelectric titanium-doped zinc aluminum oxide
Biswas et al. Exploring a Superlattice of SnO-PbO: A New Material for Thermoelectric Applications
Rukk et al. Synthesis, X-ray crystal structure and cytotoxicity studies of lanthanide (III) iodide complexes with antipyrine
Kumada et al. Preparation and crystal structure of a new tin titanate containing Sn2+; Sn2TiO4
Khyzhun et al. New quaternary thallium indium germanium selenide TlInGe2Se6: Crystal and electronic structure
Nakhal et al. Crystal Structure of 3R‐LiTiS2 and its Stability Compared to Other Polymorphs
TW201333230A (en) Oxide sintered compact and sputtering target, and method for producing same
JP2010017707A5 (en)
Ponomarev et al. Synthesis and crystal structure of [B12] 2 [CBC][C2] Mg1. 42’a new modification of B25C4Mg1. 42
Basciano et al. A crystallographic study of the incomplete solid-solution between plumbojarosite and jarosite
Yankova et al. Crystal structure and IR investigation of double salt Cs2Ni (SeO4) 2· 4H2O
Amini et al. Effect of intermediate phases on the formation of nanostructured lead-free (Bi0. 5Na0. 5) 0.94 Ba0. 06TiO3 piezoceramics by mechanical alloying
Dmytriv et al. New real ternary and pseudoternary phases in the Li–Au–In system
Zhang et al. Ordered/Disordered Rocksalt Structured Li1+ xM1-xO2 Cathode Materials for Li-Ion Battery
Pavlyuk et al. Crystal structure of the TbZnSn2 and TbZnSn ternary compounds