JP2013093148A - Microwave furnace, porous body, and soft magnetic pressed powder core material - Google Patents

Microwave furnace, porous body, and soft magnetic pressed powder core material Download PDF

Info

Publication number
JP2013093148A
JP2013093148A JP2011233506A JP2011233506A JP2013093148A JP 2013093148 A JP2013093148 A JP 2013093148A JP 2011233506 A JP2011233506 A JP 2011233506A JP 2011233506 A JP2011233506 A JP 2011233506A JP 2013093148 A JP2013093148 A JP 2013093148A
Authority
JP
Japan
Prior art keywords
microwave
furnace
heating furnace
heating
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011233506A
Other languages
Japanese (ja)
Inventor
Masamitsu Taguchi
真実 田口
Hideki Tanaka
秀樹 田中
Minseok Park
ミンソク 朴
Kazutaka Okamoto
和孝 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011233506A priority Critical patent/JP2013093148A/en
Publication of JP2013093148A publication Critical patent/JP2013093148A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress occurrence of uneven heating when a ring-shaped large-sized sample is heated (sintered, annealed), in a single mode type furnace.SOLUTION: A microwave furnace includes: a heating part 13 having an internal space where a heated body 5 is housed; and a magnetron 1 irradiating a microwave into the internal space. In the microwave furnace, the heating part 13 includes: a cylindrical-shaped outer conductor 3 made of metal; and a columnar- or cylindrical-shaped inner conductor 4 which is provided at an inside of the outer conductor 3 via the internal space and made of metal.

Description

本発明は、マイクロ波加熱炉及びこの炉により製造される多孔質体、軟磁性圧粉コア材料に関する。   The present invention relates to a microwave heating furnace, a porous body produced by the furnace, and a soft magnetic powder core material.

マイクロ波加熱は従来、電子レンジに代表されるように、水分を含む食品の急速加熱・急速乾燥に主に用いられてきた。これまで、電子レンジにより加熱できるのは、誘電体のみと考えられてきたが、近年、金属なども粉末であれば加熱できることが解ってきた。マイクロ波による金属粉末加熱のメカニズムは主として、誘導加熱と磁性損失と磁気共鳴によるものである。通常の電子レンジタイプの炉の場合、金属粉末の加熱では、マイクロ波加熱の特徴である高速加熱ができないことがある。これは、大部分の金属粉末はマイクロ波の磁場によって加熱されやすく、電子レンジに代表されるマルチモードタイプの炉では、炉内の電磁界分布がランダムで、試料に充分な磁場が印加されない場合があるためである。   Conventionally, microwave heating has been mainly used for rapid heating and rapid drying of water-containing foods, as represented by microwave ovens. So far, it has been considered that only a dielectric can be heated by a microwave oven. However, in recent years, it has been understood that a metal or the like can be heated if it is a powder. The mechanism of the metal powder heating by microwave is mainly due to induction heating, magnetic loss and magnetic resonance. In the case of a normal microwave oven, high-speed heating, which is a feature of microwave heating, may not be performed when metal powder is heated. This is because most metal powders are easily heated by a microwave magnetic field, and in a multimode type furnace represented by a microwave oven, the electromagnetic field distribution in the furnace is random and a sufficient magnetic field is not applied to the sample. Because there is.

一方、シングルモードタイプの炉では、炉内で特定の電磁界モードのみのマイクロ波を伝搬させる。そのため、炉内に強電界域あるいは強磁界域を作ることができ、殆どの金属粉末を高速に加熱することができる。シングルモードタイプの炉は、金属粉末の加熱において極めて有用なツールである。しかしながら、一般に使用可能なマイクロ波の周波数は2.45GHzであるため、従来のシングルモードタイプの炉は小型のサンプルの処理にしか対応できない。例えば特許文献1には、1000MHz前後の周波数の低いマイクロ波源を用いることで、より広いワークゾーンを確保できることが開示されている。   On the other hand, in a single mode type furnace, microwaves of only a specific electromagnetic field mode are propagated in the furnace. Therefore, a strong electric field region or a strong magnetic field region can be created in the furnace, and most metal powder can be heated at high speed. Single mode furnaces are extremely useful tools for heating metal powders. However, since the microwave frequency that can be generally used is 2.45 GHz, the conventional single-mode type furnace can only handle a small sample. For example, Patent Document 1 discloses that a wider work zone can be secured by using a microwave source having a low frequency of about 1000 MHz.

特開2008−45789号公報JP 2008-45789 A

しかし上記特許文献のものでは、大型試料を加熱しようとして1000MHz前後の炉を使用する場合、設備も大規模化する。しかも単純に設備を大きくしても、大型試料が同程度の強度の電磁界域に収まるように電磁界の強度分布を広げることは困難である。特に複雑な形状であるリング状の試料を大型化する場合に、強い電磁場域から試料の一部がはみ出ることで加熱ムラが生じ易いという課題がある。   However, in the above-mentioned patent document, when a furnace of about 1000 MHz is used to heat a large sample, the facilities are also enlarged. Moreover, even if the equipment is simply enlarged, it is difficult to widen the electromagnetic field intensity distribution so that the large sample can be accommodated in the electromagnetic field region of the same intensity. In particular, when a ring-shaped sample having a complicated shape is enlarged, there is a problem that uneven heating tends to occur due to a part of the sample protruding from a strong electromagnetic field region.

本発明の目的は、リング状の大型試料を加熱する際の加熱ムラを抑制することにある。   An object of the present invention is to suppress heating unevenness when a ring-shaped large sample is heated.

被加熱体が収容される内部空間を有する加熱部と、前記内部空間へマイクロ波を照射するマグネトロンとを備えたマイクロ波加熱炉において、前記加熱部は、金属製の円筒形状の外側導体と、前記内部空間を介して前記外側導体の内部に設けられた金属製の円柱又は円筒形状の内側導体とを備えることを特徴とする。   In a microwave heating furnace including a heating unit having an internal space in which an object to be heated is accommodated, and a magnetron that irradiates the internal space with microwaves, the heating unit includes a metal cylindrical outer conductor, A metal columnar or cylindrical inner conductor provided inside the outer conductor via the inner space.

本発明によれば、リング状の大型試料を加熱する際の加熱ムラを抑制することができる。   According to the present invention, heating unevenness when heating a ring-shaped large sample can be suppressed.

マイクロ波加熱炉の概略図。Schematic of a microwave heating furnace. マイクロ波の電波モードの電界(磁界)分布図。The electric field (magnetic field) distribution map of the microwave radio wave mode. 炉内の試料(被加熱体)の構造図。The structural diagram of the sample (object to be heated) in the furnace.

導波管によって導波される電磁界は、TEM(transverse electromagnetic)モード、TE(transverse electric)モード、TM(transverse magnetic)モードに分けることができる。マイクロ波の伝搬方向をz方向とすると、各モードにおける電界Ezと磁界Hzは次のようになる。
TEMモード:Ez=Hz=0
TEモード:Ez=0,Hz≠0
TMモード:Ez≠0,Hz=0
The electromagnetic field guided by the waveguide can be divided into a TEM (transverse electromagnetic) mode, a TE (transverse electric) mode, and a TM (transverse magnetic) mode. If the propagation direction of the microwave is the z direction, the electric field E z and the magnetic field H z in each mode are as follows.
TEM mode: E z = H z = 0
TE mode: E z = 0, H z ≠ 0
TM mode: E z ≠ 0, H z = 0

従来のシングルモードタイプの炉では、一般に矩形導波管を用い、例えばTE10モードにより形成される強磁界域あるいは強電界域を試料の加熱に利用する。例えば断面積80mm×80mmの導波管で形成される強磁界域あるいは強電界域を利用すると、加熱ムラを抑制しながら処理できる試料の大きさはおよそ20mm×20mm×20mm程度である。 In a conventional single mode type furnace, a rectangular waveguide is generally used. For example, a strong magnetic field region or a strong electric field region formed by the TE 10 mode is used for heating the sample. For example, when a strong magnetic field region or a strong electric field region formed by a waveguide having a cross-sectional area of 80 mm × 80 mm is used, the size of a sample that can be processed while suppressing heating unevenness is approximately 20 mm × 20 mm × 20 mm.

本発明では、従来、マイクロ波の伝送方法として利用されている同軸ケーブルのケーブル内に分布する電磁界を加熱炉として応用する。同軸ケーブルは従来、受信アンテナなどの信号の送電線などに用いられ、加熱炉などの大出力のエネルギ送電に用いられることは無い。一般の同軸ケーブルは、中心導線の周りにそれを支持するポリエチレンなどの絶縁物で覆われ、さらにその外部が導体で覆われている。   In the present invention, an electromagnetic field distributed in a coaxial cable that has been conventionally used as a microwave transmission method is applied as a heating furnace. Conventionally, a coaxial cable is used for a signal transmission line such as a receiving antenna, and is not used for high-power energy transmission such as a heating furnace. A general coaxial cable is covered with an insulator such as polyethylene that supports the central conductor around the center conductor, and the outside is covered with a conductor.

本発明では、例えば2.45GHzのシングルモードタイプの定在波炉で、外側導体3と内側導体4の各々の中心軸が同軸となるようにこれらの導体を配置することで、内側導体4に対して軸対称に発生する強磁界域あるいは強電界域の何れかを試料の加熱に利用する。電磁界の強度分布は軸対称になり、リング状の試料であっても電磁界が集中するトロイダル状の領域に試料を収容することができるので、加熱ムラを抑制しつつ迅速に加熱することができる。試料を大きくする場合は、外側導体3と内側導体4の径方向寸法を調節することで、試料が同程度の電磁界域に配置されるように調節することができる。これによれば、従来の矩形導波管を用いたシングルモード炉では処理できなかった複雑なリング状の大型試料であっても加熱ムラを抑制しつつ迅速に加熱することができる。   In the present invention, for example, in a single-mode type standing wave furnace of 2.45 GHz, these conductors are arranged so that the central axes of the outer conductor 3 and the inner conductor 4 are coaxial with each other. On the other hand, either a strong magnetic field region or a strong electric field region generated in an axial symmetry is used for heating the sample. The intensity distribution of the electromagnetic field is axisymmetric, and even a ring-shaped sample can be stored in a toroidal region where the electromagnetic field is concentrated, so that heating can be performed quickly while suppressing uneven heating. it can. When enlarging a sample, it can adjust so that a sample may be arrange | positioned in the electromagnetic field area of the same grade by adjusting the radial direction dimension of the outer side conductor 3 and the inner side conductor 4. FIG. According to this, even a complex ring-shaped large sample that could not be processed by a single mode furnace using a conventional rectangular waveguide can be heated quickly while suppressing uneven heating.

なお、本発明において、リング状とは試料が必ずしも周方向につながっていなくてもよく、試料の中心軸を通る断面で試料を切断した際の試料の断面積が場所によって異なっていても良い。また、加熱とは、粉体を成型するための焼結や、成型体の歪みを除去する焼鈍等を示す。   In the present invention, the ring shape does not necessarily mean that the sample is connected in the circumferential direction, and the cross-sectional area of the sample when the sample is cut along a cross section passing through the central axis of the sample may differ depending on the location. Further, heating refers to sintering for molding powder, annealing for removing distortion of the molded body, and the like.

加熱炉の概略を図1に示す。本加熱炉のマイクロ波供給源は2.45GHzのマグネトロン1である。加熱部13は外側導体3、内側導体4、反射体6等から構成される。マグネトロン1から加熱部13まで、マイクロ波をTM又はTEMモードで伝送する。マグネトロン1から発振されたマイクロ波は、接続導波管2を経由し、加熱部13に供給される。一般に、情報通信に使用される同軸ケーブルは円筒形状の外側導体がφ5mm程度、内部導体がφ1.5mm程度であるが、本発明の炉は、外側導体3がφ100mm以上の外径を有する。円筒形状の外側導体3の内部に、外側導体3よりも径の小さい円柱又は円筒形状の内側導体4が設けられ、両者の間は試料(被加熱体)5を設置するため自由空間となっている。外側導体3と内側導体4は共に金属製であり、電気的に絶縁されている。内側導体4はアタッチメントとして、処理する試料5の寸法によりその径を任意に変更することが可能である。外側導体3の内径Dと内側導体4の外径dの比(内径D/外径d)は、試料5の支持冶具8や断熱材スペース、炉内電磁界分布を勘案し、1.05〜3.33の範囲で与えられる。   An outline of the heating furnace is shown in FIG. The microwave supply source of the heating furnace is a 2.45 GHz magnetron 1. The heating unit 13 includes an outer conductor 3, an inner conductor 4, a reflector 6, and the like. Microwaves are transmitted from the magnetron 1 to the heating unit 13 in TM or TEM mode. The microwave oscillated from the magnetron 1 is supplied to the heating unit 13 via the connection waveguide 2. In general, a coaxial cable used for information communication has a cylindrical outer conductor of about φ5 mm and an inner conductor of about φ1.5 mm. In the furnace of the present invention, the outer conductor 3 has an outer diameter of φ100 mm or more. A cylindrical or cylindrical inner conductor 4 having a diameter smaller than that of the outer conductor 3 is provided inside the cylindrical outer conductor 3, and a sample (heated body) 5 is placed between the two to form a free space. Yes. Both the outer conductor 3 and the inner conductor 4 are made of metal and are electrically insulated. The diameter of the inner conductor 4 can be arbitrarily changed depending on the size of the sample 5 to be processed as an attachment. The ratio of the inner diameter D of the outer conductor 3 to the outer diameter d of the inner conductor 4 (inner diameter D / outer diameter d) is 1.05 considering the support jig 8 of the sample 5, the heat insulating material space, and the electromagnetic field distribution in the furnace. It is given in the range of 3.33.

TE、TM、TEMモードの電界(磁界)分布を図2(a)〜(c)に示す。(a)TEモードと(b)TMモードについては、Z軸に沿って導体中央を切断した断面の電界(磁界)分布を示し、(c)TEMモードについては、導体の斜視図における電界(磁界)分布を示す。図中の破線内が最も電界(磁界)の強度が高い。電界と磁界とは導体中の同じ位置で強度が大きくならず、Z方向にいくらかシフトするが、強度分布は同様の傾向を示す。加熱炉内では、マイクロ波の電波モードはTMモードあるいはTEMモードとする。TEモードでは、内側導体の近傍の電磁界の強度が大きくなり、外側導体に近づくほど強度が弱くなるので、試料5に効率的にマイクロ波を照射することができない。TM又はTEMモードにすることで電磁界の分布はトロイダル状になり、外側導体3と内側導体4間の試料5を強電場あるいは強磁場域に置くことができる。   The electric field (magnetic field) distribution in the TE, TM, and TEM modes is shown in FIGS. For (a) TE mode and (b) TM mode, the electric field (magnetic field) distribution of the cross-section cut along the Z axis is shown, and for (c) TEM mode, the electric field (magnetic field) in the perspective view of the conductor. ) Show the distribution. The intensity of the electric field (magnetic field) is highest in the broken line in the figure. The electric field and the magnetic field do not increase in strength at the same position in the conductor and shift somewhat in the Z direction, but the intensity distribution shows the same tendency. In the heating furnace, the microwave radio wave mode is set to TM mode or TEM mode. In the TE mode, the strength of the electromagnetic field in the vicinity of the inner conductor increases, and the strength decreases as the outer conductor is approached. Therefore, the sample 5 cannot be efficiently irradiated with microwaves. By setting the TM or TEM mode, the electromagnetic field distribution becomes toroidal, and the sample 5 between the outer conductor 3 and the inner conductor 4 can be placed in a strong electric field or a strong magnetic field region.

炉内の電磁界分布は、試料5および断熱材10、炉壁の誘電率、電気抵抗等に影響を受ける。マイクロ波を照射すると、試料5および断熱材10、炉壁の誘電率も変化するため、炉内の電磁界分布も変化する。電磁界分布が変化した場合、試料5が所望の強電界域あるいは強磁界域から外れ、効率的な加熱ができない場合がある。この場合、炉終端部の反射体6を、筒形状の加熱部13の軸方向に移動させる。これにより、炉内の空間の体積を増減させて電磁界分布も移動させることができ、試料5を強電界域あるいは強磁界域に置くことができる。反射体6の移動ストロークは、炉内に形成される定在波の1/8以上、好ましくは1/4波長以上とすることで、ほぼ実用的な加熱温度範囲において電磁界分布が変化しても、その分布を補正することが可能となる。   The electromagnetic field distribution in the furnace is affected by the sample 5, the heat insulating material 10, the dielectric constant of the furnace wall, the electrical resistance, and the like. When microwave irradiation is performed, the dielectric constants of the sample 5, the heat insulating material 10, and the furnace wall also change, so that the electromagnetic field distribution in the furnace also changes. When the electromagnetic field distribution changes, the sample 5 may deviate from the desired strong electric field region or strong magnetic field region, and efficient heating may not be possible. In this case, the reflector 6 at the furnace end is moved in the axial direction of the cylindrical heating unit 13. Thereby, the volume of the space in the furnace can be increased or decreased to move the electromagnetic field distribution, and the sample 5 can be placed in a strong electric field region or a strong magnetic field region. The moving stroke of the reflector 6 is set to 1/8 or more of the standing wave formed in the furnace, preferably 1/4 wavelength or more, so that the electromagnetic field distribution changes in a practical temperature range. It is possible to correct the distribution.

マイクロ波中では、熱電対は先端に電界集中して放電しやすいため、マイクロ波プロセスでの温度測定に熱電対は不適である。マイクロ波プロセスでは、放射温度計により試料5の温度が測定される。反射体6には、放射温度計測用ポート9が設けられている。反射体6は炉の中心軸を回転軸として、円周方向に自由に回転できるように構成されることで、試料5の任意の位置の温度を計測することができる。なお、粉末を焼結したい場合は後述するように試料5を容器として試料内に粉末をセットする。炉の設置方向を反射体6が炉上部になる方向に設置すると、粉末をこぼさずに粉末表面の温度を放射温度計で直接測定することができる。   In a microwave, since a thermocouple is likely to discharge due to electric field concentration at the tip, the thermocouple is not suitable for temperature measurement in a microwave process. In the microwave process, the temperature of the sample 5 is measured by a radiation thermometer. The reflector 6 is provided with a radiation temperature measurement port 9. The reflector 6 is configured to be freely rotatable in the circumferential direction with the central axis of the furnace as the rotation axis, so that the temperature at an arbitrary position of the sample 5 can be measured. If the powder is to be sintered, the powder is set in the sample using the sample 5 as a container as described later. When the installation direction of the furnace is set in a direction in which the reflector 6 becomes the upper part of the furnace, the temperature of the powder surface can be directly measured with a radiation thermometer without spilling the powder.

炉は同心円状であり、電磁界も同心円状に発生させることができるため、例えば、圧粉コア材料などのリング状の製品を効率的に加熱することができる。特に、非晶質材などでは加熱により結晶化した際、電界あるいは磁界の振動方向に対して配向するように組織を制御することが可能である。   Since the furnace is concentric and electromagnetic fields can be generated concentrically, for example, a ring-shaped product such as a dust core material can be efficiently heated. In particular, when an amorphous material or the like is crystallized by heating, the structure can be controlled so as to be oriented with respect to the vibration direction of an electric field or a magnetic field.

一般に強磁性体に電磁界が印加されると、渦電流損失とヒステリシス損失による発熱が生じるが、GHz帯の電磁界では磁壁の移動が追随しないため、ヒステリシス損失の影響は非常に小さくなる。しかし、GHz帯であっても材料系と周波数によっては、磁気共鳴が生じ発熱する場合がある。磁気共鳴周波数は材料の微細構造の影響を受ける。特にひずみが加わり結晶構造の対称性が大きく変化した個所では、磁気共鳴が集中し、局所加熱が起きる可能性がある。鉄系の圧粉コア材料をプレス成形した後に、ひずみ除去するために本発明の炉を用いると、上記のようなヒータ加熱とは異なるメカニズムにより製品が加熱されるため、従来のヒータ加熱よりも優れた磁気特性を発現する。   In general, when an electromagnetic field is applied to a ferromagnetic material, heat is generated due to eddy current loss and hysteresis loss. However, in the GHz band electromagnetic field, domain wall movement does not follow, so the influence of hysteresis loss is very small. However, even in the GHz band, depending on the material system and frequency, magnetic resonance may occur and heat may be generated. The magnetic resonance frequency is affected by the microstructure of the material. In particular, magnetic resonance concentrates and local heating may occur at a location where the symmetry of the crystal structure changes greatly due to strain. When the furnace of the present invention is used to remove strain after press forming iron-based dust core material, the product is heated by a mechanism different from the heater heating as described above. Excellent magnetic properties.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

本実施例では、鋳鉄粉末の多孔質体を焼結した。粉末の平均粒径を150μm程度とした。炉の外側導体3の内径をφ100mmとし、内側導体4の外径をφ70mmとした。ここで試料(被加熱体)5は、断熱材10と、断熱材10上面の溝に充填された鋳鉄粉末11と、蓋12から構成される。断熱材10はCを0.5%含む低密度Al23で形成され、外径φ95mm/内径φ65mm×厚さ20mmである。この上面に、外径φ85mm、内径φ75mm、深さ7mmの溝が形成され、この溝に鋳鉄粉末11をタッピングにより充填した。溝に充填された鋳鉄粉末11の見掛け密度はおよそ3g/mm3である。粉末を焼結する場合は、試料5と支持冶具8とが粉末の支持部材となる。 In this example, a porous body of cast iron powder was sintered. The average particle size of the powder was about 150 μm. The inner diameter of the outer conductor 3 of the furnace was φ100 mm, and the outer diameter of the inner conductor 4 was φ70 mm. Here, the sample (object to be heated) 5 includes a heat insulating material 10, cast iron powder 11 filled in a groove on the upper surface of the heat insulating material 10, and a lid 12. The heat insulating material 10 is made of low-density Al 2 O 3 containing 0.5% of C, and has an outer diameter of 95 mm / inner diameter of 65 mm × thickness of 20 mm. A groove having an outer diameter of φ85 mm, an inner diameter of φ75 mm, and a depth of 7 mm was formed on the upper surface, and the cast iron powder 11 was filled into the groove by tapping. The apparent density of the cast iron powder 11 filled in the groove is about 3 g / mm 3 . In the case of sintering powder, the sample 5 and the support jig 8 are powder support members.

図3は炉内の試料5の構造を説明する図であり、粉末を試料5内に充填し、試料5を炉内にセッティングした状態を示す。鋳鉄粉末11を充填した断熱材10には、断熱材10と同材質の断熱材を蓋12として載せた。試料温度を放射温度計で測定する際に、放射温度計の視野を確保するため、蓋12には約30°間隔で放射温度計測用の貫通穴7を設けた。   FIG. 3 is a diagram for explaining the structure of the sample 5 in the furnace, and shows a state in which the powder is filled in the sample 5 and the sample 5 is set in the furnace. On the heat insulating material 10 filled with the cast iron powder 11, a heat insulating material of the same material as the heat insulating material 10 was placed as a lid 12. When the sample temperature was measured with a radiation thermometer, the lid 12 was provided with through-holes 7 for measuring the radiation temperature at intervals of about 30 ° in order to ensure the field of view of the radiation thermometer.

焼結条件は、雰囲気をN2ガス、目標温度を1050〜1060℃とした。また、初期マイクロ波出力を1kWとし、加熱状況を見ながら出力を調整した。試料5には強電場が印加されるよう初期位置を反射体の初期位置を調整した。温度の測定は放射温度計により行い、設定放射率は1.0とした。加熱処理中、温度上昇が緩慢になった場合は反射体6を移動し、昇温速度が最大となるよう制御した。1000℃以上に加熱されたとき、反射体6を周方向に回転させ、12点の試料位置で温度を測定し、温度差が±20℃程度であることを確認した。また、比較のため、同様の断熱材にセッティングした鋳鉄粉末を通常のマルチモード炉により焼結した。 The sintering conditions were an atmosphere of N 2 gas and a target temperature of 1050 to 1060 ° C. Moreover, the initial microwave output was set to 1 kW, and the output was adjusted while observing the heating state. The initial position of the reflector was adjusted so that the sample 5 was applied with a strong electric field. The temperature was measured with a radiation thermometer, and the set emissivity was 1.0. During the heat treatment, when the temperature rise slowed, the reflector 6 was moved and controlled so that the rate of temperature rise was maximized. When heated to 1000 ° C. or higher, the reflector 6 was rotated in the circumferential direction, the temperature was measured at 12 sample positions, and it was confirmed that the temperature difference was about ± 20 ° C. For comparison, cast iron powder set on the same heat insulating material was sintered in a normal multimode furnace.

焼結時の加熱時の昇温状況と、焼結結果を表1に示す。一般のマルチモード炉での加熱と比較すると、本実施例の炉は1.0kWの低い出力でも目標温度に達し、一般のマルチモード炉の約5倍の加熱速度を得た。本実施例の炉で焼結したリングは、焼結による収縮が殆どなく、ほぼ充填した形状のまま焼結させることができた。加熱後の試料は充分ハンドリングでき、リング全周にわたり良好な焼結状態であった。一方、マルチモード炉で焼結した試料では加熱ムラが激しく、試料の一部は溶融により凝集し、リング状の製品が得られなかった。本実験により、本実施例の炉は低出力でかつ効率的に粉末を焼結することができることが確認された。   Table 1 shows the temperature rise during heating during sintering and the sintering results. Compared to heating in a general multimode furnace, the furnace of this example reached the target temperature even at a low power of 1.0 kW, and a heating rate about 5 times that of a general multimode furnace was obtained. The ring sintered in the furnace of this example was hardly shrunk by sintering, and could be sintered in a substantially filled shape. The sample after heating could be handled sufficiently and was in a good sintered state over the entire circumference of the ring. On the other hand, in the sample sintered in the multimode furnace, the heating unevenness was severe, and a part of the sample was agglomerated by melting, and a ring-shaped product was not obtained. From this experiment, it was confirmed that the furnace of this example can sinter the powder efficiently with low power.

マイクロ波で粉末を焼結させると、粉末の接触部分のみ反応するため、焼結させても体積が減少しにくい。つまり、粉末間の空隙が残ったままの多孔質焼結体を生成することができるので、その焼結体に金属等を含侵させる場合は含侵率を高めることができる。   When the powder is sintered with microwaves, only the contact portion of the powder reacts, so that the volume is difficult to decrease even if the powder is sintered. That is, since a porous sintered body can be produced with the voids between the powders remaining, the impregnation rate can be increased when the sintered body is impregnated with metal or the like.

本実施例では、鉄系の圧粉コアを焼鈍した。試料原料は純鉄粉末とし、その表面にリン酸コートを施し、圧粉成形圧を1200MPaとして外径φ80mm/内径φ60mm×厚さ5mmの圧粉コアを作製した。作製した軟磁性圧粉コア材料は、本実施例の炉と通常のヒータ加熱炉により焼鈍処理をし、それぞれ磁性特性を評価した。   In this example, an iron-based dust core was annealed. The raw material of the sample was pure iron powder, and the surface thereof was coated with phosphoric acid, and a dust core with an outer diameter of φ80 mm / inner diameter of φ60 mm × thickness of 5 mm was prepared with a compacting pressure of 1200 MPa. The produced soft magnetic powder core material was annealed by the furnace of this example and a normal heater heating furnace, and the magnetic properties were evaluated.

焼鈍条件は、雰囲気を大気中、ヒータ加熱では目標温度を550℃、保持時間を10minとした。マイクロ波加熱では目標温度500℃、保持時間0minとした。マイクロ波加熱では放射温度計で温度を測定し、放射率は1.0とした。本実施例のマイクロ波で加熱する際は、断熱材10は使用せず、SiO2製の支持冶具8の上に圧粉コアを直接置いた。圧粉コアには強磁場が印加されるよう初期位置を調整した。マイクロ波の出力は約500Wとし、目標温度に到達後に直ちに出力を切り炉を冷却した。本実施例の炉の外側導体の内径はφ100mmとし、内部導体の外径はφ70mmとした。コア材料は、鉄系結晶材料または非晶質材料、あるいは結晶と非晶質が混ざりあったものでも良い。 As for the annealing conditions, the atmosphere was air, the target temperature was 550 ° C., and the holding time was 10 minutes for heater heating. In microwave heating, the target temperature was 500 ° C. and the holding time was 0 min. In microwave heating, the temperature was measured with a radiation thermometer, and the emissivity was set to 1.0. When heating with the microwave of the present embodiment, the heat insulating material 10 was not used, and the dust core was directly placed on the support jig 8 made of SiO 2 . The initial position was adjusted so that a strong magnetic field was applied to the dust core. The output of the microwave was about 500 W, and immediately after reaching the target temperature, the output was turned off and the furnace was cooled. The inner diameter of the outer conductor of the furnace of this example was 100 mm, and the outer diameter of the inner conductor was 70 mm. The core material may be an iron-based crystal material or an amorphous material, or a mixture of crystal and amorphous.

マイクロ波およびヒータ加熱後の各圧粉コアの(400Hzにおける)磁気特性評価結果を表2に示す。渦電流損(渦損)の比較では、マイクロ波加熱とヒータ加熱に大きな差は認められないが、ヒステリシス損(ヒス損)の比較では、マイクロ波加熱の方が損失は小さかった。マイクロ波を用いて磁場中で加熱すると、従来のヒータ加熱と異なるメカニズムで加熱されるため、ひずみ除去効果が発揮される。また、本実施例の炉を使用した場合、焼鈍処理に要する時間は約3分程度であり、ヒータ加熱の1/10以下であり、処理工程の短縮においても有効である。   Table 2 shows the magnetic property evaluation results (at 400 Hz) of the powder cores after heating with the microwave and the heater. In the comparison of eddy current loss (eddy loss), there is no significant difference between microwave heating and heater heating, but in the comparison of hysteresis loss (hist loss), the loss was smaller in microwave heating. When heated in a magnetic field using microwaves, the effect of removing strain is exhibited because it is heated by a mechanism different from conventional heater heating. Further, when the furnace of the present embodiment is used, the time required for the annealing process is about 3 minutes, which is 1/10 or less of the heater heating, which is effective in shortening the processing process.

1 マグネトロン
2 接続導波管
3 外側導体
4 内側導体
5 試料(被加熱体)
6 反射体
7 貫通穴
8 支持冶具
9 放射温度計測用ポート
10 断熱材
11 鋳鉄粉末
12 蓋
13 加熱部
DESCRIPTION OF SYMBOLS 1 Magnetron 2 Connection waveguide 3 Outer conductor 4 Inner conductor 5 Sample (to-be-heated body)
6 Reflector 7 Through-hole 8 Support jig 9 Radiation temperature measurement port 10 Heat insulating material 11 Cast iron powder 12 Lid 13 Heating part

Claims (9)

被加熱体が収容される内部空間を有する加熱部と、前記内部空間へマイクロ波を照射するマグネトロンとを備えたマイクロ波加熱炉において、
前記加熱部は、金属製の円筒形状の外側導体と、前記内部空間を介して前記外側導体の内部に設けられた金属製の円柱又は円筒形状の内側導体とを備えることを特徴とするマイクロ波加熱炉。
In a microwave heating furnace including a heating unit having an internal space in which an object to be heated is accommodated, and a magnetron that irradiates the internal space with microwaves,
The heating section includes a metal cylindrical outer conductor and a metal columnar or cylindrical inner conductor provided inside the outer conductor via the inner space. heating furnace.
請求項1において、前記内側導体の中心軸は、前記外側導体の中心軸と同軸となるように配置されることを特徴とするマイクロ波加熱炉。   2. The microwave heating furnace according to claim 1, wherein the central axis of the inner conductor is arranged so as to be coaxial with the central axis of the outer conductor. 請求項1において、前記外側導体の内径Dと前記内側導体の外径dとのD/d比が1.05〜3.33であることを特徴とするマイクロ波加熱炉。   The microwave heating furnace according to claim 1, wherein a D / d ratio between an inner diameter D of the outer conductor and an outer diameter d of the inner conductor is 1.05 to 3.33. 請求項1において、前記マグネトロンと反対側になる前記加熱部の端部に反射体を備え、前記反射体が前記加熱部の軸方向に移動可能であることを特徴とするマイクロ波加熱炉。   2. The microwave heating furnace according to claim 1, wherein a reflector is provided at an end portion of the heating unit opposite to the magnetron, and the reflector is movable in an axial direction of the heating unit. 請求項1において、入力される前記マイクロ波がTMモード又はTEMモードであることを特徴とするマイクロ波加熱炉。   2. The microwave heating furnace according to claim 1, wherein the input microwave is TM mode or TEM mode. 請求項1において、前記加熱部は、アルミナ又はシリカを主成分とする支持冶具を備えることを特徴とするマイクロ波加熱炉。   The microwave heating furnace according to claim 1, wherein the heating unit includes a support jig mainly composed of alumina or silica. 請求項1に記載のマイクロ波加熱炉で焼結され、密度が90%以下であることを特徴とするリング状の多孔質体。   A ring-shaped porous body characterized by being sintered in the microwave heating furnace according to claim 1 and having a density of 90% or less. 請求項1に記載のマイクロ波加熱炉で焼鈍されたことを特徴とするリング状の軟磁性圧粉コア材料。   A ring-shaped soft magnetic powder core material that is annealed in the microwave heating furnace according to claim 1. 請求項7において、前記軟磁性圧粉コア材料が、結晶、非晶質、結晶と非晶質との混合物の何れかであることを特徴とするリング状の軟磁性圧粉コア材料。   The ring-shaped soft magnetic dust core material according to claim 7, wherein the soft magnetic dust core material is any one of a crystal, an amorphous material, and a mixture of a crystal and an amorphous material.
JP2011233506A 2011-10-25 2011-10-25 Microwave furnace, porous body, and soft magnetic pressed powder core material Pending JP2013093148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011233506A JP2013093148A (en) 2011-10-25 2011-10-25 Microwave furnace, porous body, and soft magnetic pressed powder core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233506A JP2013093148A (en) 2011-10-25 2011-10-25 Microwave furnace, porous body, and soft magnetic pressed powder core material

Publications (1)

Publication Number Publication Date
JP2013093148A true JP2013093148A (en) 2013-05-16

Family

ID=48616145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233506A Pending JP2013093148A (en) 2011-10-25 2011-10-25 Microwave furnace, porous body, and soft magnetic pressed powder core material

Country Status (1)

Country Link
JP (1) JP2013093148A (en)

Similar Documents

Publication Publication Date Title
Leonelli et al. Microwave assisted sintering of green metal parts
Wang et al. Intergranular insulated Fe/SiO2 soft magnetic composite for decreased core loss
Demirskyi et al. Neck formation between copper spherical particles under single-mode and multimode microwave sintering
JP5877448B2 (en) Heating device using microwaves
JP5787289B2 (en) Heating device using microwaves
CA2411114C (en) Burning furnace, burnt body producing method, and burnt body
KR100948587B1 (en) High frequency inductive heating appatratus of ceramic material and non-pressing sintering method using the same
US10260173B2 (en) Carbon fiber manufacturing device and carbon fiber manufacturing method
US20220279629A1 (en) Microwave band induction heating device
JP2013171967A (en) Soft magnetic powder dust core, reactor, choke coil, stator and motor using the same, and method for producing soft magnetic powder dust core
US11713280B2 (en) Method for thermal treatment of a ceramic part by microwaves
JP2013093148A (en) Microwave furnace, porous body, and soft magnetic pressed powder core material
US6889744B2 (en) Device and method for the in-situ foaming of hollow profiles with metal foam
US20050183820A1 (en) Thermal treatment equipment
US10403467B2 (en) Magnetron
JP2024501621A (en) Microwave induction heating device and high-speed simultaneous sintering method for multilayer ceramic capacitors using the same
US8344301B2 (en) Rapid and homogenous heat treatment of large metallic sample using high power microwaves
JPH0585833A (en) Apparatus and process for heat-treating component made of ceramic matrix composite material by ultrahigh- frequency heating
CN219218223U (en) Quick annealing equipment
KR20090119363A (en) Bonding method of metal fiber using microwave, metal fiber structure and gas filter manufactured by the same
JPH1045472A (en) Dielectric ceramic product for high frequency and its manufacture
JP2013112876A (en) Heating reducing device of agglomerate
Gjoka et al. Experimental proof of microwave sintering of Nd–Fe–B powders toward fabrication of permanent magnets
KR101952834B1 (en) Waveguide Antenna type Microwave Plasma Source
JP2005085743A (en) Microwave heating apparatus